PR 61713: ICE when expanding single-threaded version of atomic_test_and_set.
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "stringpool.h"
34 #include "varasm.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "function.h"
38 #include "except.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "ggc.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 struct target_optabs default_target_optabs;
49 struct target_libfuncs default_target_libfuncs;
50 struct target_optabs *this_fn_optabs = &default_target_optabs;
51 #if SWITCHABLE_TARGET
52 struct target_optabs *this_target_optabs = &default_target_optabs;
53 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
54 #endif
55
56 #define libfunc_hash \
57 (this_target_libfuncs->x_libfunc_hash)
58
59 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
60 enum machine_mode *);
61 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
62 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
63
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
66
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
73 \f
74 /* Used for libfunc_hash. */
75
76 static hashval_t
77 hash_libfunc (const void *p)
78 {
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
80 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
81 }
82
83 /* Used for libfunc_hash. */
84
85 static int
86 eq_libfunc (const void *p, const void *q)
87 {
88 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
89 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
90 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
91 }
92
93 /* Return libfunc corresponding operation defined by OPTAB converting
94 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
95 if no libfunc is available. */
96 rtx
97 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
98 enum machine_mode mode2)
99 {
100 struct libfunc_entry e;
101 struct libfunc_entry **slot;
102
103 /* ??? This ought to be an assert, but not all of the places
104 that we expand optabs know about the optabs that got moved
105 to being direct. */
106 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
107 return NULL_RTX;
108
109 e.op = optab;
110 e.mode1 = mode1;
111 e.mode2 = mode2;
112 slot = (struct libfunc_entry **)
113 htab_find_slot (libfunc_hash, &e, NO_INSERT);
114 if (!slot)
115 {
116 const struct convert_optab_libcall_d *d
117 = &convlib_def[optab - FIRST_CONV_OPTAB];
118
119 if (d->libcall_gen == NULL)
120 return NULL;
121
122 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
123 slot = (struct libfunc_entry **)
124 htab_find_slot (libfunc_hash, &e, NO_INSERT);
125 if (!slot)
126 return NULL;
127 }
128 return (*slot)->libfunc;
129 }
130
131 /* Return libfunc corresponding operation defined by OPTAB in MODE.
132 Trigger lazy initialization if needed, return NULL if no libfunc is
133 available. */
134 rtx
135 optab_libfunc (optab optab, enum machine_mode mode)
136 {
137 struct libfunc_entry e;
138 struct libfunc_entry **slot;
139
140 /* ??? This ought to be an assert, but not all of the places
141 that we expand optabs know about the optabs that got moved
142 to being direct. */
143 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
144 return NULL_RTX;
145
146 e.op = optab;
147 e.mode1 = mode;
148 e.mode2 = VOIDmode;
149 slot = (struct libfunc_entry **)
150 htab_find_slot (libfunc_hash, &e, NO_INSERT);
151 if (!slot)
152 {
153 const struct optab_libcall_d *d
154 = &normlib_def[optab - FIRST_NORM_OPTAB];
155
156 if (d->libcall_gen == NULL)
157 return NULL;
158
159 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
160 slot = (struct libfunc_entry **)
161 htab_find_slot (libfunc_hash, &e, NO_INSERT);
162 if (!slot)
163 return NULL;
164 }
165 return (*slot)->libfunc;
166 }
167
168 \f
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
172
173 If the last insn does not set TARGET, don't do anything, but return 1.
174
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
178
179 static int
180 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
181 {
182 rtx last_insn, set;
183 rtx note;
184
185 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
186
187 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
188 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
189 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
190 && GET_RTX_CLASS (code) != RTX_COMPARE
191 && GET_RTX_CLASS (code) != RTX_UNARY)
192 return 1;
193
194 if (GET_CODE (target) == ZERO_EXTRACT)
195 return 1;
196
197 for (last_insn = insns;
198 NEXT_INSN (last_insn) != NULL_RTX;
199 last_insn = NEXT_INSN (last_insn))
200 ;
201
202 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
203 a value changing in the insn, so the note would be invalid for CSE. */
204 if (reg_overlap_mentioned_p (target, op0)
205 || (op1 && reg_overlap_mentioned_p (target, op1)))
206 {
207 if (MEM_P (target)
208 && (rtx_equal_p (target, op0)
209 || (op1 && rtx_equal_p (target, op1))))
210 {
211 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
212 over expanding it as temp = MEM op X, MEM = temp. If the target
213 supports MEM = MEM op X instructions, it is sometimes too hard
214 to reconstruct that form later, especially if X is also a memory,
215 and due to multiple occurrences of addresses the address might
216 be forced into register unnecessarily.
217 Note that not emitting the REG_EQUIV note might inhibit
218 CSE in some cases. */
219 set = single_set (last_insn);
220 if (set
221 && GET_CODE (SET_SRC (set)) == code
222 && MEM_P (SET_DEST (set))
223 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
224 || (op1 && rtx_equal_p (SET_DEST (set),
225 XEXP (SET_SRC (set), 1)))))
226 return 1;
227 }
228 return 0;
229 }
230
231 set = set_for_reg_notes (last_insn);
232 if (set == NULL_RTX)
233 return 1;
234
235 if (! rtx_equal_p (SET_DEST (set), target)
236 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
237 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
238 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
239 return 1;
240
241 if (GET_RTX_CLASS (code) == RTX_UNARY)
242 switch (code)
243 {
244 case FFS:
245 case CLZ:
246 case CTZ:
247 case CLRSB:
248 case POPCOUNT:
249 case PARITY:
250 case BSWAP:
251 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
252 {
253 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
254 if (GET_MODE_SIZE (GET_MODE (op0))
255 > GET_MODE_SIZE (GET_MODE (target)))
256 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
257 note, GET_MODE (op0));
258 else
259 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
260 note, GET_MODE (op0));
261 break;
262 }
263 /* FALLTHRU */
264 default:
265 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
266 break;
267 }
268 else
269 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
270
271 set_unique_reg_note (last_insn, REG_EQUAL, note);
272
273 return 1;
274 }
275 \f
276 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
277 for a widening operation would be. In most cases this would be OP0, but if
278 that's a constant it'll be VOIDmode, which isn't useful. */
279
280 static enum machine_mode
281 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
282 {
283 enum machine_mode m0 = GET_MODE (op0);
284 enum machine_mode m1 = GET_MODE (op1);
285 enum machine_mode result;
286
287 if (m0 == VOIDmode && m1 == VOIDmode)
288 return to_mode;
289 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
290 result = m1;
291 else
292 result = m0;
293
294 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
295 return to_mode;
296
297 return result;
298 }
299 \f
300 /* Like optab_handler, but for widening_operations that have a
301 TO_MODE and a FROM_MODE. */
302
303 enum insn_code
304 widening_optab_handler (optab op, enum machine_mode to_mode,
305 enum machine_mode from_mode)
306 {
307 unsigned scode = (op << 16) | to_mode;
308 if (to_mode != from_mode && from_mode != VOIDmode)
309 {
310 /* ??? Why does find_widening_optab_handler_and_mode attempt to
311 widen things that can't be widened? E.g. add_optab... */
312 if (op > LAST_CONV_OPTAB)
313 return CODE_FOR_nothing;
314 scode |= from_mode << 8;
315 }
316 return raw_optab_handler (scode);
317 }
318
319 /* Find a widening optab even if it doesn't widen as much as we want.
320 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
321 direct HI->SI insn, then return SI->DI, if that exists.
322 If PERMIT_NON_WIDENING is non-zero then this can be used with
323 non-widening optabs also. */
324
325 enum insn_code
326 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
327 enum machine_mode from_mode,
328 int permit_non_widening,
329 enum machine_mode *found_mode)
330 {
331 for (; (permit_non_widening || from_mode != to_mode)
332 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
333 && from_mode != VOIDmode;
334 from_mode = GET_MODE_WIDER_MODE (from_mode))
335 {
336 enum insn_code handler = widening_optab_handler (op, to_mode,
337 from_mode);
338
339 if (handler != CODE_FOR_nothing)
340 {
341 if (found_mode)
342 *found_mode = from_mode;
343 return handler;
344 }
345 }
346
347 return CODE_FOR_nothing;
348 }
349 \f
350 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
351 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
352 not actually do a sign-extend or zero-extend, but can leave the
353 higher-order bits of the result rtx undefined, for example, in the case
354 of logical operations, but not right shifts. */
355
356 static rtx
357 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
358 int unsignedp, int no_extend)
359 {
360 rtx result;
361
362 /* If we don't have to extend and this is a constant, return it. */
363 if (no_extend && GET_MODE (op) == VOIDmode)
364 return op;
365
366 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
367 extend since it will be more efficient to do so unless the signedness of
368 a promoted object differs from our extension. */
369 if (! no_extend
370 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
371 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
372 return convert_modes (mode, oldmode, op, unsignedp);
373
374 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
375 SUBREG. */
376 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
377 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
378
379 /* Otherwise, get an object of MODE, clobber it, and set the low-order
380 part to OP. */
381
382 result = gen_reg_rtx (mode);
383 emit_clobber (result);
384 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
385 return result;
386 }
387 \f
388 /* Return the optab used for computing the operation given by the tree code,
389 CODE and the tree EXP. This function is not always usable (for example, it
390 cannot give complete results for multiplication or division) but probably
391 ought to be relied on more widely throughout the expander. */
392 optab
393 optab_for_tree_code (enum tree_code code, const_tree type,
394 enum optab_subtype subtype)
395 {
396 bool trapv;
397 switch (code)
398 {
399 case BIT_AND_EXPR:
400 return and_optab;
401
402 case BIT_IOR_EXPR:
403 return ior_optab;
404
405 case BIT_NOT_EXPR:
406 return one_cmpl_optab;
407
408 case BIT_XOR_EXPR:
409 return xor_optab;
410
411 case MULT_HIGHPART_EXPR:
412 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
413
414 case TRUNC_MOD_EXPR:
415 case CEIL_MOD_EXPR:
416 case FLOOR_MOD_EXPR:
417 case ROUND_MOD_EXPR:
418 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
419
420 case RDIV_EXPR:
421 case TRUNC_DIV_EXPR:
422 case CEIL_DIV_EXPR:
423 case FLOOR_DIV_EXPR:
424 case ROUND_DIV_EXPR:
425 case EXACT_DIV_EXPR:
426 if (TYPE_SATURATING (type))
427 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
428 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
429
430 case LSHIFT_EXPR:
431 if (TREE_CODE (type) == VECTOR_TYPE)
432 {
433 if (subtype == optab_vector)
434 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
435
436 gcc_assert (subtype == optab_scalar);
437 }
438 if (TYPE_SATURATING (type))
439 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
440 return ashl_optab;
441
442 case RSHIFT_EXPR:
443 if (TREE_CODE (type) == VECTOR_TYPE)
444 {
445 if (subtype == optab_vector)
446 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
447
448 gcc_assert (subtype == optab_scalar);
449 }
450 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
451
452 case LROTATE_EXPR:
453 if (TREE_CODE (type) == VECTOR_TYPE)
454 {
455 if (subtype == optab_vector)
456 return vrotl_optab;
457
458 gcc_assert (subtype == optab_scalar);
459 }
460 return rotl_optab;
461
462 case RROTATE_EXPR:
463 if (TREE_CODE (type) == VECTOR_TYPE)
464 {
465 if (subtype == optab_vector)
466 return vrotr_optab;
467
468 gcc_assert (subtype == optab_scalar);
469 }
470 return rotr_optab;
471
472 case MAX_EXPR:
473 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
474
475 case MIN_EXPR:
476 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
477
478 case REALIGN_LOAD_EXPR:
479 return vec_realign_load_optab;
480
481 case WIDEN_SUM_EXPR:
482 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
483
484 case DOT_PROD_EXPR:
485 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
486
487 case SAD_EXPR:
488 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
489
490 case WIDEN_MULT_PLUS_EXPR:
491 return (TYPE_UNSIGNED (type)
492 ? (TYPE_SATURATING (type)
493 ? usmadd_widen_optab : umadd_widen_optab)
494 : (TYPE_SATURATING (type)
495 ? ssmadd_widen_optab : smadd_widen_optab));
496
497 case WIDEN_MULT_MINUS_EXPR:
498 return (TYPE_UNSIGNED (type)
499 ? (TYPE_SATURATING (type)
500 ? usmsub_widen_optab : umsub_widen_optab)
501 : (TYPE_SATURATING (type)
502 ? ssmsub_widen_optab : smsub_widen_optab));
503
504 case FMA_EXPR:
505 return fma_optab;
506
507 case REDUC_MAX_EXPR:
508 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
509
510 case REDUC_MIN_EXPR:
511 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
512
513 case REDUC_PLUS_EXPR:
514 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
515
516 case VEC_LSHIFT_EXPR:
517 return vec_shl_optab;
518
519 case VEC_RSHIFT_EXPR:
520 return vec_shr_optab;
521
522 case VEC_WIDEN_MULT_HI_EXPR:
523 return TYPE_UNSIGNED (type) ?
524 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
525
526 case VEC_WIDEN_MULT_LO_EXPR:
527 return TYPE_UNSIGNED (type) ?
528 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
529
530 case VEC_WIDEN_MULT_EVEN_EXPR:
531 return TYPE_UNSIGNED (type) ?
532 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
533
534 case VEC_WIDEN_MULT_ODD_EXPR:
535 return TYPE_UNSIGNED (type) ?
536 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
537
538 case VEC_WIDEN_LSHIFT_HI_EXPR:
539 return TYPE_UNSIGNED (type) ?
540 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
541
542 case VEC_WIDEN_LSHIFT_LO_EXPR:
543 return TYPE_UNSIGNED (type) ?
544 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
545
546 case VEC_UNPACK_HI_EXPR:
547 return TYPE_UNSIGNED (type) ?
548 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
549
550 case VEC_UNPACK_LO_EXPR:
551 return TYPE_UNSIGNED (type) ?
552 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
553
554 case VEC_UNPACK_FLOAT_HI_EXPR:
555 /* The signedness is determined from input operand. */
556 return TYPE_UNSIGNED (type) ?
557 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
558
559 case VEC_UNPACK_FLOAT_LO_EXPR:
560 /* The signedness is determined from input operand. */
561 return TYPE_UNSIGNED (type) ?
562 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
563
564 case VEC_PACK_TRUNC_EXPR:
565 return vec_pack_trunc_optab;
566
567 case VEC_PACK_SAT_EXPR:
568 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
569
570 case VEC_PACK_FIX_TRUNC_EXPR:
571 /* The signedness is determined from output operand. */
572 return TYPE_UNSIGNED (type) ?
573 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
574
575 default:
576 break;
577 }
578
579 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
580 switch (code)
581 {
582 case POINTER_PLUS_EXPR:
583 case PLUS_EXPR:
584 if (TYPE_SATURATING (type))
585 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
586 return trapv ? addv_optab : add_optab;
587
588 case MINUS_EXPR:
589 if (TYPE_SATURATING (type))
590 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
591 return trapv ? subv_optab : sub_optab;
592
593 case MULT_EXPR:
594 if (TYPE_SATURATING (type))
595 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
596 return trapv ? smulv_optab : smul_optab;
597
598 case NEGATE_EXPR:
599 if (TYPE_SATURATING (type))
600 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
601 return trapv ? negv_optab : neg_optab;
602
603 case ABS_EXPR:
604 return trapv ? absv_optab : abs_optab;
605
606 default:
607 return unknown_optab;
608 }
609 }
610 \f
611
612 /* Expand vector widening operations.
613
614 There are two different classes of operations handled here:
615 1) Operations whose result is wider than all the arguments to the operation.
616 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
617 In this case OP0 and optionally OP1 would be initialized,
618 but WIDE_OP wouldn't (not relevant for this case).
619 2) Operations whose result is of the same size as the last argument to the
620 operation, but wider than all the other arguments to the operation.
621 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
622 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
623
624 E.g, when called to expand the following operations, this is how
625 the arguments will be initialized:
626 nops OP0 OP1 WIDE_OP
627 widening-sum 2 oprnd0 - oprnd1
628 widening-dot-product 3 oprnd0 oprnd1 oprnd2
629 widening-mult 2 oprnd0 oprnd1 -
630 type-promotion (vec-unpack) 1 oprnd0 - - */
631
632 rtx
633 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
634 rtx target, int unsignedp)
635 {
636 struct expand_operand eops[4];
637 tree oprnd0, oprnd1, oprnd2;
638 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
639 optab widen_pattern_optab;
640 enum insn_code icode;
641 int nops = TREE_CODE_LENGTH (ops->code);
642 int op;
643
644 oprnd0 = ops->op0;
645 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
646 widen_pattern_optab =
647 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
648 if (ops->code == WIDEN_MULT_PLUS_EXPR
649 || ops->code == WIDEN_MULT_MINUS_EXPR)
650 icode = find_widening_optab_handler (widen_pattern_optab,
651 TYPE_MODE (TREE_TYPE (ops->op2)),
652 tmode0, 0);
653 else
654 icode = optab_handler (widen_pattern_optab, tmode0);
655 gcc_assert (icode != CODE_FOR_nothing);
656
657 if (nops >= 2)
658 {
659 oprnd1 = ops->op1;
660 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
661 }
662
663 /* The last operand is of a wider mode than the rest of the operands. */
664 if (nops == 2)
665 wmode = tmode1;
666 else if (nops == 3)
667 {
668 gcc_assert (tmode1 == tmode0);
669 gcc_assert (op1);
670 oprnd2 = ops->op2;
671 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
672 }
673
674 op = 0;
675 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
676 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
677 if (op1)
678 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
679 if (wide_op)
680 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
681 expand_insn (icode, op, eops);
682 return eops[0].value;
683 }
684
685 /* Generate code to perform an operation specified by TERNARY_OPTAB
686 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
687
688 UNSIGNEDP is for the case where we have to widen the operands
689 to perform the operation. It says to use zero-extension.
690
691 If TARGET is nonzero, the value
692 is generated there, if it is convenient to do so.
693 In all cases an rtx is returned for the locus of the value;
694 this may or may not be TARGET. */
695
696 rtx
697 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
698 rtx op1, rtx op2, rtx target, int unsignedp)
699 {
700 struct expand_operand ops[4];
701 enum insn_code icode = optab_handler (ternary_optab, mode);
702
703 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
704
705 create_output_operand (&ops[0], target, mode);
706 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
707 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
708 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
709 expand_insn (icode, 4, ops);
710 return ops[0].value;
711 }
712
713
714 /* Like expand_binop, but return a constant rtx if the result can be
715 calculated at compile time. The arguments and return value are
716 otherwise the same as for expand_binop. */
717
718 rtx
719 simplify_expand_binop (enum machine_mode mode, optab binoptab,
720 rtx op0, rtx op1, rtx target, int unsignedp,
721 enum optab_methods methods)
722 {
723 if (CONSTANT_P (op0) && CONSTANT_P (op1))
724 {
725 rtx x = simplify_binary_operation (optab_to_code (binoptab),
726 mode, op0, op1);
727 if (x)
728 return x;
729 }
730
731 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
732 }
733
734 /* Like simplify_expand_binop, but always put the result in TARGET.
735 Return true if the expansion succeeded. */
736
737 bool
738 force_expand_binop (enum machine_mode mode, optab binoptab,
739 rtx op0, rtx op1, rtx target, int unsignedp,
740 enum optab_methods methods)
741 {
742 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
743 target, unsignedp, methods);
744 if (x == 0)
745 return false;
746 if (x != target)
747 emit_move_insn (target, x);
748 return true;
749 }
750
751 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
752
753 rtx
754 expand_vec_shift_expr (sepops ops, rtx target)
755 {
756 struct expand_operand eops[3];
757 enum insn_code icode;
758 rtx rtx_op1, rtx_op2;
759 enum machine_mode mode = TYPE_MODE (ops->type);
760 tree vec_oprnd = ops->op0;
761 tree shift_oprnd = ops->op1;
762 optab shift_optab;
763
764 switch (ops->code)
765 {
766 case VEC_RSHIFT_EXPR:
767 shift_optab = vec_shr_optab;
768 break;
769 case VEC_LSHIFT_EXPR:
770 shift_optab = vec_shl_optab;
771 break;
772 default:
773 gcc_unreachable ();
774 }
775
776 icode = optab_handler (shift_optab, mode);
777 gcc_assert (icode != CODE_FOR_nothing);
778
779 rtx_op1 = expand_normal (vec_oprnd);
780 rtx_op2 = expand_normal (shift_oprnd);
781
782 create_output_operand (&eops[0], target, mode);
783 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
784 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
785 expand_insn (icode, 3, eops);
786
787 return eops[0].value;
788 }
789
790 /* Create a new vector value in VMODE with all elements set to OP. The
791 mode of OP must be the element mode of VMODE. If OP is a constant,
792 then the return value will be a constant. */
793
794 static rtx
795 expand_vector_broadcast (enum machine_mode vmode, rtx op)
796 {
797 enum insn_code icode;
798 rtvec vec;
799 rtx ret;
800 int i, n;
801
802 gcc_checking_assert (VECTOR_MODE_P (vmode));
803
804 n = GET_MODE_NUNITS (vmode);
805 vec = rtvec_alloc (n);
806 for (i = 0; i < n; ++i)
807 RTVEC_ELT (vec, i) = op;
808
809 if (CONSTANT_P (op))
810 return gen_rtx_CONST_VECTOR (vmode, vec);
811
812 /* ??? If the target doesn't have a vec_init, then we have no easy way
813 of performing this operation. Most of this sort of generic support
814 is hidden away in the vector lowering support in gimple. */
815 icode = optab_handler (vec_init_optab, vmode);
816 if (icode == CODE_FOR_nothing)
817 return NULL;
818
819 ret = gen_reg_rtx (vmode);
820 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
821
822 return ret;
823 }
824
825 /* This subroutine of expand_doubleword_shift handles the cases in which
826 the effective shift value is >= BITS_PER_WORD. The arguments and return
827 value are the same as for the parent routine, except that SUPERWORD_OP1
828 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
829 INTO_TARGET may be null if the caller has decided to calculate it. */
830
831 static bool
832 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
833 rtx outof_target, rtx into_target,
834 int unsignedp, enum optab_methods methods)
835 {
836 if (into_target != 0)
837 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
838 into_target, unsignedp, methods))
839 return false;
840
841 if (outof_target != 0)
842 {
843 /* For a signed right shift, we must fill OUTOF_TARGET with copies
844 of the sign bit, otherwise we must fill it with zeros. */
845 if (binoptab != ashr_optab)
846 emit_move_insn (outof_target, CONST0_RTX (word_mode));
847 else
848 if (!force_expand_binop (word_mode, binoptab,
849 outof_input, GEN_INT (BITS_PER_WORD - 1),
850 outof_target, unsignedp, methods))
851 return false;
852 }
853 return true;
854 }
855
856 /* This subroutine of expand_doubleword_shift handles the cases in which
857 the effective shift value is < BITS_PER_WORD. The arguments and return
858 value are the same as for the parent routine. */
859
860 static bool
861 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
862 rtx outof_input, rtx into_input, rtx op1,
863 rtx outof_target, rtx into_target,
864 int unsignedp, enum optab_methods methods,
865 unsigned HOST_WIDE_INT shift_mask)
866 {
867 optab reverse_unsigned_shift, unsigned_shift;
868 rtx tmp, carries;
869
870 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
871 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
872
873 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
874 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
875 the opposite direction to BINOPTAB. */
876 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
877 {
878 carries = outof_input;
879 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
880 op1_mode), op1_mode);
881 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
882 0, true, methods);
883 }
884 else
885 {
886 /* We must avoid shifting by BITS_PER_WORD bits since that is either
887 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
888 has unknown behavior. Do a single shift first, then shift by the
889 remainder. It's OK to use ~OP1 as the remainder if shift counts
890 are truncated to the mode size. */
891 carries = expand_binop (word_mode, reverse_unsigned_shift,
892 outof_input, const1_rtx, 0, unsignedp, methods);
893 if (shift_mask == BITS_PER_WORD - 1)
894 {
895 tmp = immed_wide_int_const
896 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
897 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
898 0, true, methods);
899 }
900 else
901 {
902 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
903 op1_mode), op1_mode);
904 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
905 0, true, methods);
906 }
907 }
908 if (tmp == 0 || carries == 0)
909 return false;
910 carries = expand_binop (word_mode, reverse_unsigned_shift,
911 carries, tmp, 0, unsignedp, methods);
912 if (carries == 0)
913 return false;
914
915 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
916 so the result can go directly into INTO_TARGET if convenient. */
917 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
918 into_target, unsignedp, methods);
919 if (tmp == 0)
920 return false;
921
922 /* Now OR in the bits carried over from OUTOF_INPUT. */
923 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
924 into_target, unsignedp, methods))
925 return false;
926
927 /* Use a standard word_mode shift for the out-of half. */
928 if (outof_target != 0)
929 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
930 outof_target, unsignedp, methods))
931 return false;
932
933 return true;
934 }
935
936
937 #ifdef HAVE_conditional_move
938 /* Try implementing expand_doubleword_shift using conditional moves.
939 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
940 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
941 are the shift counts to use in the former and latter case. All other
942 arguments are the same as the parent routine. */
943
944 static bool
945 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
946 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
947 rtx outof_input, rtx into_input,
948 rtx subword_op1, rtx superword_op1,
949 rtx outof_target, rtx into_target,
950 int unsignedp, enum optab_methods methods,
951 unsigned HOST_WIDE_INT shift_mask)
952 {
953 rtx outof_superword, into_superword;
954
955 /* Put the superword version of the output into OUTOF_SUPERWORD and
956 INTO_SUPERWORD. */
957 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
958 if (outof_target != 0 && subword_op1 == superword_op1)
959 {
960 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
961 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
962 into_superword = outof_target;
963 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
964 outof_superword, 0, unsignedp, methods))
965 return false;
966 }
967 else
968 {
969 into_superword = gen_reg_rtx (word_mode);
970 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
971 outof_superword, into_superword,
972 unsignedp, methods))
973 return false;
974 }
975
976 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
977 if (!expand_subword_shift (op1_mode, binoptab,
978 outof_input, into_input, subword_op1,
979 outof_target, into_target,
980 unsignedp, methods, shift_mask))
981 return false;
982
983 /* Select between them. Do the INTO half first because INTO_SUPERWORD
984 might be the current value of OUTOF_TARGET. */
985 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
986 into_target, into_superword, word_mode, false))
987 return false;
988
989 if (outof_target != 0)
990 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
991 outof_target, outof_superword,
992 word_mode, false))
993 return false;
994
995 return true;
996 }
997 #endif
998
999 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1000 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1001 input operand; the shift moves bits in the direction OUTOF_INPUT->
1002 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1003 of the target. OP1 is the shift count and OP1_MODE is its mode.
1004 If OP1 is constant, it will have been truncated as appropriate
1005 and is known to be nonzero.
1006
1007 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1008 shift count is outside the range [0, BITS_PER_WORD). This routine must
1009 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1010
1011 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1012 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1013 fill with zeros or sign bits as appropriate.
1014
1015 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1016 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1017 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1018 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1019 are undefined.
1020
1021 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1022 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1023 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1024 function wants to calculate it itself.
1025
1026 Return true if the shift could be successfully synthesized. */
1027
1028 static bool
1029 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1030 rtx outof_input, rtx into_input, rtx op1,
1031 rtx outof_target, rtx into_target,
1032 int unsignedp, enum optab_methods methods,
1033 unsigned HOST_WIDE_INT shift_mask)
1034 {
1035 rtx superword_op1, tmp, cmp1, cmp2;
1036 rtx subword_label, done_label;
1037 enum rtx_code cmp_code;
1038
1039 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1040 fill the result with sign or zero bits as appropriate. If so, the value
1041 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1042 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1043 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1044
1045 This isn't worthwhile for constant shifts since the optimizers will
1046 cope better with in-range shift counts. */
1047 if (shift_mask >= BITS_PER_WORD
1048 && outof_target != 0
1049 && !CONSTANT_P (op1))
1050 {
1051 if (!expand_doubleword_shift (op1_mode, binoptab,
1052 outof_input, into_input, op1,
1053 0, into_target,
1054 unsignedp, methods, shift_mask))
1055 return false;
1056 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1057 outof_target, unsignedp, methods))
1058 return false;
1059 return true;
1060 }
1061
1062 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1063 is true when the effective shift value is less than BITS_PER_WORD.
1064 Set SUPERWORD_OP1 to the shift count that should be used to shift
1065 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1066 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1067 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1068 {
1069 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1070 is a subword shift count. */
1071 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1072 0, true, methods);
1073 cmp2 = CONST0_RTX (op1_mode);
1074 cmp_code = EQ;
1075 superword_op1 = op1;
1076 }
1077 else
1078 {
1079 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1080 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1081 0, true, methods);
1082 cmp2 = CONST0_RTX (op1_mode);
1083 cmp_code = LT;
1084 superword_op1 = cmp1;
1085 }
1086 if (cmp1 == 0)
1087 return false;
1088
1089 /* If we can compute the condition at compile time, pick the
1090 appropriate subroutine. */
1091 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1092 if (tmp != 0 && CONST_INT_P (tmp))
1093 {
1094 if (tmp == const0_rtx)
1095 return expand_superword_shift (binoptab, outof_input, superword_op1,
1096 outof_target, into_target,
1097 unsignedp, methods);
1098 else
1099 return expand_subword_shift (op1_mode, binoptab,
1100 outof_input, into_input, op1,
1101 outof_target, into_target,
1102 unsignedp, methods, shift_mask);
1103 }
1104
1105 #ifdef HAVE_conditional_move
1106 /* Try using conditional moves to generate straight-line code. */
1107 {
1108 rtx start = get_last_insn ();
1109 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1110 cmp_code, cmp1, cmp2,
1111 outof_input, into_input,
1112 op1, superword_op1,
1113 outof_target, into_target,
1114 unsignedp, methods, shift_mask))
1115 return true;
1116 delete_insns_since (start);
1117 }
1118 #endif
1119
1120 /* As a last resort, use branches to select the correct alternative. */
1121 subword_label = gen_label_rtx ();
1122 done_label = gen_label_rtx ();
1123
1124 NO_DEFER_POP;
1125 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1126 0, 0, subword_label, -1);
1127 OK_DEFER_POP;
1128
1129 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1130 outof_target, into_target,
1131 unsignedp, methods))
1132 return false;
1133
1134 emit_jump_insn (gen_jump (done_label));
1135 emit_barrier ();
1136 emit_label (subword_label);
1137
1138 if (!expand_subword_shift (op1_mode, binoptab,
1139 outof_input, into_input, op1,
1140 outof_target, into_target,
1141 unsignedp, methods, shift_mask))
1142 return false;
1143
1144 emit_label (done_label);
1145 return true;
1146 }
1147 \f
1148 /* Subroutine of expand_binop. Perform a double word multiplication of
1149 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1150 as the target's word_mode. This function return NULL_RTX if anything
1151 goes wrong, in which case it may have already emitted instructions
1152 which need to be deleted.
1153
1154 If we want to multiply two two-word values and have normal and widening
1155 multiplies of single-word values, we can do this with three smaller
1156 multiplications.
1157
1158 The multiplication proceeds as follows:
1159 _______________________
1160 [__op0_high_|__op0_low__]
1161 _______________________
1162 * [__op1_high_|__op1_low__]
1163 _______________________________________________
1164 _______________________
1165 (1) [__op0_low__*__op1_low__]
1166 _______________________
1167 (2a) [__op0_low__*__op1_high_]
1168 _______________________
1169 (2b) [__op0_high_*__op1_low__]
1170 _______________________
1171 (3) [__op0_high_*__op1_high_]
1172
1173
1174 This gives a 4-word result. Since we are only interested in the
1175 lower 2 words, partial result (3) and the upper words of (2a) and
1176 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1177 calculated using non-widening multiplication.
1178
1179 (1), however, needs to be calculated with an unsigned widening
1180 multiplication. If this operation is not directly supported we
1181 try using a signed widening multiplication and adjust the result.
1182 This adjustment works as follows:
1183
1184 If both operands are positive then no adjustment is needed.
1185
1186 If the operands have different signs, for example op0_low < 0 and
1187 op1_low >= 0, the instruction treats the most significant bit of
1188 op0_low as a sign bit instead of a bit with significance
1189 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1190 with 2**BITS_PER_WORD - op0_low, and two's complements the
1191 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1192 the result.
1193
1194 Similarly, if both operands are negative, we need to add
1195 (op0_low + op1_low) * 2**BITS_PER_WORD.
1196
1197 We use a trick to adjust quickly. We logically shift op0_low right
1198 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1199 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1200 logical shift exists, we do an arithmetic right shift and subtract
1201 the 0 or -1. */
1202
1203 static rtx
1204 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1205 bool umulp, enum optab_methods methods)
1206 {
1207 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1208 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1209 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1210 rtx product, adjust, product_high, temp;
1211
1212 rtx op0_high = operand_subword_force (op0, high, mode);
1213 rtx op0_low = operand_subword_force (op0, low, mode);
1214 rtx op1_high = operand_subword_force (op1, high, mode);
1215 rtx op1_low = operand_subword_force (op1, low, mode);
1216
1217 /* If we're using an unsigned multiply to directly compute the product
1218 of the low-order words of the operands and perform any required
1219 adjustments of the operands, we begin by trying two more multiplications
1220 and then computing the appropriate sum.
1221
1222 We have checked above that the required addition is provided.
1223 Full-word addition will normally always succeed, especially if
1224 it is provided at all, so we don't worry about its failure. The
1225 multiplication may well fail, however, so we do handle that. */
1226
1227 if (!umulp)
1228 {
1229 /* ??? This could be done with emit_store_flag where available. */
1230 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1231 NULL_RTX, 1, methods);
1232 if (temp)
1233 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1234 NULL_RTX, 0, OPTAB_DIRECT);
1235 else
1236 {
1237 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1238 NULL_RTX, 0, methods);
1239 if (!temp)
1240 return NULL_RTX;
1241 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1242 NULL_RTX, 0, OPTAB_DIRECT);
1243 }
1244
1245 if (!op0_high)
1246 return NULL_RTX;
1247 }
1248
1249 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1250 NULL_RTX, 0, OPTAB_DIRECT);
1251 if (!adjust)
1252 return NULL_RTX;
1253
1254 /* OP0_HIGH should now be dead. */
1255
1256 if (!umulp)
1257 {
1258 /* ??? This could be done with emit_store_flag where available. */
1259 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1260 NULL_RTX, 1, methods);
1261 if (temp)
1262 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1263 NULL_RTX, 0, OPTAB_DIRECT);
1264 else
1265 {
1266 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1267 NULL_RTX, 0, methods);
1268 if (!temp)
1269 return NULL_RTX;
1270 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1271 NULL_RTX, 0, OPTAB_DIRECT);
1272 }
1273
1274 if (!op1_high)
1275 return NULL_RTX;
1276 }
1277
1278 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1279 NULL_RTX, 0, OPTAB_DIRECT);
1280 if (!temp)
1281 return NULL_RTX;
1282
1283 /* OP1_HIGH should now be dead. */
1284
1285 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1286 NULL_RTX, 0, OPTAB_DIRECT);
1287
1288 if (target && !REG_P (target))
1289 target = NULL_RTX;
1290
1291 if (umulp)
1292 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1293 target, 1, OPTAB_DIRECT);
1294 else
1295 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1296 target, 1, OPTAB_DIRECT);
1297
1298 if (!product)
1299 return NULL_RTX;
1300
1301 product_high = operand_subword (product, high, 1, mode);
1302 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1303 NULL_RTX, 0, OPTAB_DIRECT);
1304 emit_move_insn (product_high, adjust);
1305 return product;
1306 }
1307 \f
1308 /* Wrapper around expand_binop which takes an rtx code to specify
1309 the operation to perform, not an optab pointer. All other
1310 arguments are the same. */
1311 rtx
1312 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1313 rtx op1, rtx target, int unsignedp,
1314 enum optab_methods methods)
1315 {
1316 optab binop = code_to_optab (code);
1317 gcc_assert (binop);
1318
1319 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1320 }
1321
1322 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1323 binop. Order them according to commutative_operand_precedence and, if
1324 possible, try to put TARGET or a pseudo first. */
1325 static bool
1326 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1327 {
1328 int op0_prec = commutative_operand_precedence (op0);
1329 int op1_prec = commutative_operand_precedence (op1);
1330
1331 if (op0_prec < op1_prec)
1332 return true;
1333
1334 if (op0_prec > op1_prec)
1335 return false;
1336
1337 /* With equal precedence, both orders are ok, but it is better if the
1338 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1339 if (target == 0 || REG_P (target))
1340 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1341 else
1342 return rtx_equal_p (op1, target);
1343 }
1344
1345 /* Return true if BINOPTAB implements a shift operation. */
1346
1347 static bool
1348 shift_optab_p (optab binoptab)
1349 {
1350 switch (optab_to_code (binoptab))
1351 {
1352 case ASHIFT:
1353 case SS_ASHIFT:
1354 case US_ASHIFT:
1355 case ASHIFTRT:
1356 case LSHIFTRT:
1357 case ROTATE:
1358 case ROTATERT:
1359 return true;
1360
1361 default:
1362 return false;
1363 }
1364 }
1365
1366 /* Return true if BINOPTAB implements a commutative binary operation. */
1367
1368 static bool
1369 commutative_optab_p (optab binoptab)
1370 {
1371 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1372 || binoptab == smul_widen_optab
1373 || binoptab == umul_widen_optab
1374 || binoptab == smul_highpart_optab
1375 || binoptab == umul_highpart_optab);
1376 }
1377
1378 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1379 optimizing, and if the operand is a constant that costs more than
1380 1 instruction, force the constant into a register and return that
1381 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1382
1383 static rtx
1384 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1385 int opn, rtx x, bool unsignedp)
1386 {
1387 bool speed = optimize_insn_for_speed_p ();
1388
1389 if (mode != VOIDmode
1390 && optimize
1391 && CONSTANT_P (x)
1392 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1393 > set_src_cost (x, speed)))
1394 {
1395 if (CONST_INT_P (x))
1396 {
1397 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1398 if (intval != INTVAL (x))
1399 x = GEN_INT (intval);
1400 }
1401 else
1402 x = convert_modes (mode, VOIDmode, x, unsignedp);
1403 x = force_reg (mode, x);
1404 }
1405 return x;
1406 }
1407
1408 /* Helper function for expand_binop: handle the case where there
1409 is an insn that directly implements the indicated operation.
1410 Returns null if this is not possible. */
1411 static rtx
1412 expand_binop_directly (enum machine_mode mode, optab binoptab,
1413 rtx op0, rtx op1,
1414 rtx target, int unsignedp, enum optab_methods methods,
1415 rtx last)
1416 {
1417 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1418 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1419 from_mode, 1);
1420 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1421 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1422 enum machine_mode mode0, mode1, tmp_mode;
1423 struct expand_operand ops[3];
1424 bool commutative_p;
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
1427 rtx swap;
1428
1429 /* If it is a commutative operator and the modes would match
1430 if we would swap the operands, we can save the conversions. */
1431 commutative_p = commutative_optab_p (binoptab);
1432 if (commutative_p
1433 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1434 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1435 {
1436 swap = xop0;
1437 xop0 = xop1;
1438 xop1 = swap;
1439 }
1440
1441 /* If we are optimizing, force expensive constants into a register. */
1442 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1443 if (!shift_optab_p (binoptab))
1444 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1445
1446 /* In case the insn wants input operands in modes different from
1447 those of the actual operands, convert the operands. It would
1448 seem that we don't need to convert CONST_INTs, but we do, so
1449 that they're properly zero-extended, sign-extended or truncated
1450 for their mode. */
1451
1452 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1453 if (xmode0 != VOIDmode && xmode0 != mode0)
1454 {
1455 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1456 mode0 = xmode0;
1457 }
1458
1459 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1460 if (xmode1 != VOIDmode && xmode1 != mode1)
1461 {
1462 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1463 mode1 = xmode1;
1464 }
1465
1466 /* If operation is commutative,
1467 try to make the first operand a register.
1468 Even better, try to make it the same as the target.
1469 Also try to make the last operand a constant. */
1470 if (commutative_p
1471 && swap_commutative_operands_with_target (target, xop0, xop1))
1472 {
1473 swap = xop1;
1474 xop1 = xop0;
1475 xop0 = swap;
1476 }
1477
1478 /* Now, if insn's predicates don't allow our operands, put them into
1479 pseudo regs. */
1480
1481 if (binoptab == vec_pack_trunc_optab
1482 || binoptab == vec_pack_usat_optab
1483 || binoptab == vec_pack_ssat_optab
1484 || binoptab == vec_pack_ufix_trunc_optab
1485 || binoptab == vec_pack_sfix_trunc_optab)
1486 {
1487 /* The mode of the result is different then the mode of the
1488 arguments. */
1489 tmp_mode = insn_data[(int) icode].operand[0].mode;
1490 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1491 {
1492 delete_insns_since (last);
1493 return NULL_RTX;
1494 }
1495 }
1496 else
1497 tmp_mode = mode;
1498
1499 create_output_operand (&ops[0], target, tmp_mode);
1500 create_input_operand (&ops[1], xop0, mode0);
1501 create_input_operand (&ops[2], xop1, mode1);
1502 pat = maybe_gen_insn (icode, 3, ops);
1503 if (pat)
1504 {
1505 /* If PAT is composed of more than one insn, try to add an appropriate
1506 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1507 operand, call expand_binop again, this time without a target. */
1508 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1509 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1510 ops[1].value, ops[2].value))
1511 {
1512 delete_insns_since (last);
1513 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1514 unsignedp, methods);
1515 }
1516
1517 emit_insn (pat);
1518 return ops[0].value;
1519 }
1520 delete_insns_since (last);
1521 return NULL_RTX;
1522 }
1523
1524 /* Generate code to perform an operation specified by BINOPTAB
1525 on operands OP0 and OP1, with result having machine-mode MODE.
1526
1527 UNSIGNEDP is for the case where we have to widen the operands
1528 to perform the operation. It says to use zero-extension.
1529
1530 If TARGET is nonzero, the value
1531 is generated there, if it is convenient to do so.
1532 In all cases an rtx is returned for the locus of the value;
1533 this may or may not be TARGET. */
1534
1535 rtx
1536 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1537 rtx target, int unsignedp, enum optab_methods methods)
1538 {
1539 enum optab_methods next_methods
1540 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1541 ? OPTAB_WIDEN : methods);
1542 enum mode_class mclass;
1543 enum machine_mode wider_mode;
1544 rtx libfunc;
1545 rtx temp;
1546 rtx entry_last = get_last_insn ();
1547 rtx last;
1548
1549 mclass = GET_MODE_CLASS (mode);
1550
1551 /* If subtracting an integer constant, convert this into an addition of
1552 the negated constant. */
1553
1554 if (binoptab == sub_optab && CONST_INT_P (op1))
1555 {
1556 op1 = negate_rtx (mode, op1);
1557 binoptab = add_optab;
1558 }
1559
1560 /* Record where to delete back to if we backtrack. */
1561 last = get_last_insn ();
1562
1563 /* If we can do it with a three-operand insn, do so. */
1564
1565 if (methods != OPTAB_MUST_WIDEN
1566 && find_widening_optab_handler (binoptab, mode,
1567 widened_mode (mode, op0, op1), 1)
1568 != CODE_FOR_nothing)
1569 {
1570 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1571 unsignedp, methods, last);
1572 if (temp)
1573 return temp;
1574 }
1575
1576 /* If we were trying to rotate, and that didn't work, try rotating
1577 the other direction before falling back to shifts and bitwise-or. */
1578 if (((binoptab == rotl_optab
1579 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1580 || (binoptab == rotr_optab
1581 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1582 && mclass == MODE_INT)
1583 {
1584 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1585 rtx newop1;
1586 unsigned int bits = GET_MODE_PRECISION (mode);
1587
1588 if (CONST_INT_P (op1))
1589 newop1 = GEN_INT (bits - INTVAL (op1));
1590 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1591 newop1 = negate_rtx (GET_MODE (op1), op1);
1592 else
1593 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1594 gen_int_mode (bits, GET_MODE (op1)), op1,
1595 NULL_RTX, unsignedp, OPTAB_DIRECT);
1596
1597 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1598 target, unsignedp, methods, last);
1599 if (temp)
1600 return temp;
1601 }
1602
1603 /* If this is a multiply, see if we can do a widening operation that
1604 takes operands of this mode and makes a wider mode. */
1605
1606 if (binoptab == smul_optab
1607 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1608 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1609 : smul_widen_optab),
1610 GET_MODE_2XWIDER_MODE (mode), mode)
1611 != CODE_FOR_nothing))
1612 {
1613 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1614 unsignedp ? umul_widen_optab : smul_widen_optab,
1615 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1616
1617 if (temp != 0)
1618 {
1619 if (GET_MODE_CLASS (mode) == MODE_INT
1620 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1621 return gen_lowpart (mode, temp);
1622 else
1623 return convert_to_mode (mode, temp, unsignedp);
1624 }
1625 }
1626
1627 /* If this is a vector shift by a scalar, see if we can do a vector
1628 shift by a vector. If so, broadcast the scalar into a vector. */
1629 if (mclass == MODE_VECTOR_INT)
1630 {
1631 optab otheroptab = unknown_optab;
1632
1633 if (binoptab == ashl_optab)
1634 otheroptab = vashl_optab;
1635 else if (binoptab == ashr_optab)
1636 otheroptab = vashr_optab;
1637 else if (binoptab == lshr_optab)
1638 otheroptab = vlshr_optab;
1639 else if (binoptab == rotl_optab)
1640 otheroptab = vrotl_optab;
1641 else if (binoptab == rotr_optab)
1642 otheroptab = vrotr_optab;
1643
1644 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1645 {
1646 rtx vop1 = expand_vector_broadcast (mode, op1);
1647 if (vop1)
1648 {
1649 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1650 target, unsignedp, methods, last);
1651 if (temp)
1652 return temp;
1653 }
1654 }
1655 }
1656
1657 /* Look for a wider mode of the same class for which we think we
1658 can open-code the operation. Check for a widening multiply at the
1659 wider mode as well. */
1660
1661 if (CLASS_HAS_WIDER_MODES_P (mclass)
1662 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1663 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1664 wider_mode != VOIDmode;
1665 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1666 {
1667 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1668 || (binoptab == smul_optab
1669 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1670 && (find_widening_optab_handler ((unsignedp
1671 ? umul_widen_optab
1672 : smul_widen_optab),
1673 GET_MODE_WIDER_MODE (wider_mode),
1674 mode, 0)
1675 != CODE_FOR_nothing)))
1676 {
1677 rtx xop0 = op0, xop1 = op1;
1678 int no_extend = 0;
1679
1680 /* For certain integer operations, we need not actually extend
1681 the narrow operands, as long as we will truncate
1682 the results to the same narrowness. */
1683
1684 if ((binoptab == ior_optab || binoptab == and_optab
1685 || binoptab == xor_optab
1686 || binoptab == add_optab || binoptab == sub_optab
1687 || binoptab == smul_optab || binoptab == ashl_optab)
1688 && mclass == MODE_INT)
1689 {
1690 no_extend = 1;
1691 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1692 xop0, unsignedp);
1693 if (binoptab != ashl_optab)
1694 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1695 xop1, unsignedp);
1696 }
1697
1698 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1699
1700 /* The second operand of a shift must always be extended. */
1701 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1702 no_extend && binoptab != ashl_optab);
1703
1704 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1705 unsignedp, OPTAB_DIRECT);
1706 if (temp)
1707 {
1708 if (mclass != MODE_INT
1709 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1710 {
1711 if (target == 0)
1712 target = gen_reg_rtx (mode);
1713 convert_move (target, temp, 0);
1714 return target;
1715 }
1716 else
1717 return gen_lowpart (mode, temp);
1718 }
1719 else
1720 delete_insns_since (last);
1721 }
1722 }
1723
1724 /* If operation is commutative,
1725 try to make the first operand a register.
1726 Even better, try to make it the same as the target.
1727 Also try to make the last operand a constant. */
1728 if (commutative_optab_p (binoptab)
1729 && swap_commutative_operands_with_target (target, op0, op1))
1730 {
1731 temp = op1;
1732 op1 = op0;
1733 op0 = temp;
1734 }
1735
1736 /* These can be done a word at a time. */
1737 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1738 && mclass == MODE_INT
1739 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1740 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1741 {
1742 int i;
1743 rtx insns;
1744
1745 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1746 won't be accurate, so use a new target. */
1747 if (target == 0
1748 || target == op0
1749 || target == op1
1750 || !valid_multiword_target_p (target))
1751 target = gen_reg_rtx (mode);
1752
1753 start_sequence ();
1754
1755 /* Do the actual arithmetic. */
1756 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1757 {
1758 rtx target_piece = operand_subword (target, i, 1, mode);
1759 rtx x = expand_binop (word_mode, binoptab,
1760 operand_subword_force (op0, i, mode),
1761 operand_subword_force (op1, i, mode),
1762 target_piece, unsignedp, next_methods);
1763
1764 if (x == 0)
1765 break;
1766
1767 if (target_piece != x)
1768 emit_move_insn (target_piece, x);
1769 }
1770
1771 insns = get_insns ();
1772 end_sequence ();
1773
1774 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1775 {
1776 emit_insn (insns);
1777 return target;
1778 }
1779 }
1780
1781 /* Synthesize double word shifts from single word shifts. */
1782 if ((binoptab == lshr_optab || binoptab == ashl_optab
1783 || binoptab == ashr_optab)
1784 && mclass == MODE_INT
1785 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1786 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1787 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1788 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1789 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1790 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1791 {
1792 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1793 enum machine_mode op1_mode;
1794
1795 double_shift_mask = targetm.shift_truncation_mask (mode);
1796 shift_mask = targetm.shift_truncation_mask (word_mode);
1797 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1798
1799 /* Apply the truncation to constant shifts. */
1800 if (double_shift_mask > 0 && CONST_INT_P (op1))
1801 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1802
1803 if (op1 == CONST0_RTX (op1_mode))
1804 return op0;
1805
1806 /* Make sure that this is a combination that expand_doubleword_shift
1807 can handle. See the comments there for details. */
1808 if (double_shift_mask == 0
1809 || (shift_mask == BITS_PER_WORD - 1
1810 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1811 {
1812 rtx insns;
1813 rtx into_target, outof_target;
1814 rtx into_input, outof_input;
1815 int left_shift, outof_word;
1816
1817 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1818 won't be accurate, so use a new target. */
1819 if (target == 0
1820 || target == op0
1821 || target == op1
1822 || !valid_multiword_target_p (target))
1823 target = gen_reg_rtx (mode);
1824
1825 start_sequence ();
1826
1827 /* OUTOF_* is the word we are shifting bits away from, and
1828 INTO_* is the word that we are shifting bits towards, thus
1829 they differ depending on the direction of the shift and
1830 WORDS_BIG_ENDIAN. */
1831
1832 left_shift = binoptab == ashl_optab;
1833 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1834
1835 outof_target = operand_subword (target, outof_word, 1, mode);
1836 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1837
1838 outof_input = operand_subword_force (op0, outof_word, mode);
1839 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1840
1841 if (expand_doubleword_shift (op1_mode, binoptab,
1842 outof_input, into_input, op1,
1843 outof_target, into_target,
1844 unsignedp, next_methods, shift_mask))
1845 {
1846 insns = get_insns ();
1847 end_sequence ();
1848
1849 emit_insn (insns);
1850 return target;
1851 }
1852 end_sequence ();
1853 }
1854 }
1855
1856 /* Synthesize double word rotates from single word shifts. */
1857 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1858 && mclass == MODE_INT
1859 && CONST_INT_P (op1)
1860 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1861 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1862 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1863 {
1864 rtx insns;
1865 rtx into_target, outof_target;
1866 rtx into_input, outof_input;
1867 rtx inter;
1868 int shift_count, left_shift, outof_word;
1869
1870 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1871 won't be accurate, so use a new target. Do this also if target is not
1872 a REG, first because having a register instead may open optimization
1873 opportunities, and second because if target and op0 happen to be MEMs
1874 designating the same location, we would risk clobbering it too early
1875 in the code sequence we generate below. */
1876 if (target == 0
1877 || target == op0
1878 || target == op1
1879 || !REG_P (target)
1880 || !valid_multiword_target_p (target))
1881 target = gen_reg_rtx (mode);
1882
1883 start_sequence ();
1884
1885 shift_count = INTVAL (op1);
1886
1887 /* OUTOF_* is the word we are shifting bits away from, and
1888 INTO_* is the word that we are shifting bits towards, thus
1889 they differ depending on the direction of the shift and
1890 WORDS_BIG_ENDIAN. */
1891
1892 left_shift = (binoptab == rotl_optab);
1893 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1894
1895 outof_target = operand_subword (target, outof_word, 1, mode);
1896 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1897
1898 outof_input = operand_subword_force (op0, outof_word, mode);
1899 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1900
1901 if (shift_count == BITS_PER_WORD)
1902 {
1903 /* This is just a word swap. */
1904 emit_move_insn (outof_target, into_input);
1905 emit_move_insn (into_target, outof_input);
1906 inter = const0_rtx;
1907 }
1908 else
1909 {
1910 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1911 rtx first_shift_count, second_shift_count;
1912 optab reverse_unsigned_shift, unsigned_shift;
1913
1914 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1915 ? lshr_optab : ashl_optab);
1916
1917 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1918 ? ashl_optab : lshr_optab);
1919
1920 if (shift_count > BITS_PER_WORD)
1921 {
1922 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1923 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1924 }
1925 else
1926 {
1927 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1928 second_shift_count = GEN_INT (shift_count);
1929 }
1930
1931 into_temp1 = expand_binop (word_mode, unsigned_shift,
1932 outof_input, first_shift_count,
1933 NULL_RTX, unsignedp, next_methods);
1934 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1935 into_input, second_shift_count,
1936 NULL_RTX, unsignedp, next_methods);
1937
1938 if (into_temp1 != 0 && into_temp2 != 0)
1939 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1940 into_target, unsignedp, next_methods);
1941 else
1942 inter = 0;
1943
1944 if (inter != 0 && inter != into_target)
1945 emit_move_insn (into_target, inter);
1946
1947 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1948 into_input, first_shift_count,
1949 NULL_RTX, unsignedp, next_methods);
1950 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1951 outof_input, second_shift_count,
1952 NULL_RTX, unsignedp, next_methods);
1953
1954 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1955 inter = expand_binop (word_mode, ior_optab,
1956 outof_temp1, outof_temp2,
1957 outof_target, unsignedp, next_methods);
1958
1959 if (inter != 0 && inter != outof_target)
1960 emit_move_insn (outof_target, inter);
1961 }
1962
1963 insns = get_insns ();
1964 end_sequence ();
1965
1966 if (inter != 0)
1967 {
1968 emit_insn (insns);
1969 return target;
1970 }
1971 }
1972
1973 /* These can be done a word at a time by propagating carries. */
1974 if ((binoptab == add_optab || binoptab == sub_optab)
1975 && mclass == MODE_INT
1976 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1977 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1978 {
1979 unsigned int i;
1980 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1981 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1982 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1983 rtx xop0, xop1, xtarget;
1984
1985 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1986 value is one of those, use it. Otherwise, use 1 since it is the
1987 one easiest to get. */
1988 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1989 int normalizep = STORE_FLAG_VALUE;
1990 #else
1991 int normalizep = 1;
1992 #endif
1993
1994 /* Prepare the operands. */
1995 xop0 = force_reg (mode, op0);
1996 xop1 = force_reg (mode, op1);
1997
1998 xtarget = gen_reg_rtx (mode);
1999
2000 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
2001 target = xtarget;
2002
2003 /* Indicate for flow that the entire target reg is being set. */
2004 if (REG_P (target))
2005 emit_clobber (xtarget);
2006
2007 /* Do the actual arithmetic. */
2008 for (i = 0; i < nwords; i++)
2009 {
2010 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
2011 rtx target_piece = operand_subword (xtarget, index, 1, mode);
2012 rtx op0_piece = operand_subword_force (xop0, index, mode);
2013 rtx op1_piece = operand_subword_force (xop1, index, mode);
2014 rtx x;
2015
2016 /* Main add/subtract of the input operands. */
2017 x = expand_binop (word_mode, binoptab,
2018 op0_piece, op1_piece,
2019 target_piece, unsignedp, next_methods);
2020 if (x == 0)
2021 break;
2022
2023 if (i + 1 < nwords)
2024 {
2025 /* Store carry from main add/subtract. */
2026 carry_out = gen_reg_rtx (word_mode);
2027 carry_out = emit_store_flag_force (carry_out,
2028 (binoptab == add_optab
2029 ? LT : GT),
2030 x, op0_piece,
2031 word_mode, 1, normalizep);
2032 }
2033
2034 if (i > 0)
2035 {
2036 rtx newx;
2037
2038 /* Add/subtract previous carry to main result. */
2039 newx = expand_binop (word_mode,
2040 normalizep == 1 ? binoptab : otheroptab,
2041 x, carry_in,
2042 NULL_RTX, 1, next_methods);
2043
2044 if (i + 1 < nwords)
2045 {
2046 /* Get out carry from adding/subtracting carry in. */
2047 rtx carry_tmp = gen_reg_rtx (word_mode);
2048 carry_tmp = emit_store_flag_force (carry_tmp,
2049 (binoptab == add_optab
2050 ? LT : GT),
2051 newx, x,
2052 word_mode, 1, normalizep);
2053
2054 /* Logical-ior the two poss. carry together. */
2055 carry_out = expand_binop (word_mode, ior_optab,
2056 carry_out, carry_tmp,
2057 carry_out, 0, next_methods);
2058 if (carry_out == 0)
2059 break;
2060 }
2061 emit_move_insn (target_piece, newx);
2062 }
2063 else
2064 {
2065 if (x != target_piece)
2066 emit_move_insn (target_piece, x);
2067 }
2068
2069 carry_in = carry_out;
2070 }
2071
2072 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2073 {
2074 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2075 || ! rtx_equal_p (target, xtarget))
2076 {
2077 rtx temp = emit_move_insn (target, xtarget);
2078
2079 set_dst_reg_note (temp, REG_EQUAL,
2080 gen_rtx_fmt_ee (optab_to_code (binoptab),
2081 mode, copy_rtx (xop0),
2082 copy_rtx (xop1)),
2083 target);
2084 }
2085 else
2086 target = xtarget;
2087
2088 return target;
2089 }
2090
2091 else
2092 delete_insns_since (last);
2093 }
2094
2095 /* Attempt to synthesize double word multiplies using a sequence of word
2096 mode multiplications. We first attempt to generate a sequence using a
2097 more efficient unsigned widening multiply, and if that fails we then
2098 try using a signed widening multiply. */
2099
2100 if (binoptab == smul_optab
2101 && mclass == MODE_INT
2102 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2103 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2104 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2105 {
2106 rtx product = NULL_RTX;
2107 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2108 != CODE_FOR_nothing)
2109 {
2110 product = expand_doubleword_mult (mode, op0, op1, target,
2111 true, methods);
2112 if (!product)
2113 delete_insns_since (last);
2114 }
2115
2116 if (product == NULL_RTX
2117 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2118 != CODE_FOR_nothing)
2119 {
2120 product = expand_doubleword_mult (mode, op0, op1, target,
2121 false, methods);
2122 if (!product)
2123 delete_insns_since (last);
2124 }
2125
2126 if (product != NULL_RTX)
2127 {
2128 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2129 {
2130 temp = emit_move_insn (target ? target : product, product);
2131 set_dst_reg_note (temp,
2132 REG_EQUAL,
2133 gen_rtx_fmt_ee (MULT, mode,
2134 copy_rtx (op0),
2135 copy_rtx (op1)),
2136 target ? target : product);
2137 }
2138 return product;
2139 }
2140 }
2141
2142 /* It can't be open-coded in this mode.
2143 Use a library call if one is available and caller says that's ok. */
2144
2145 libfunc = optab_libfunc (binoptab, mode);
2146 if (libfunc
2147 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2148 {
2149 rtx insns;
2150 rtx op1x = op1;
2151 enum machine_mode op1_mode = mode;
2152 rtx value;
2153
2154 start_sequence ();
2155
2156 if (shift_optab_p (binoptab))
2157 {
2158 op1_mode = targetm.libgcc_shift_count_mode ();
2159 /* Specify unsigned here,
2160 since negative shift counts are meaningless. */
2161 op1x = convert_to_mode (op1_mode, op1, 1);
2162 }
2163
2164 if (GET_MODE (op0) != VOIDmode
2165 && GET_MODE (op0) != mode)
2166 op0 = convert_to_mode (mode, op0, unsignedp);
2167
2168 /* Pass 1 for NO_QUEUE so we don't lose any increments
2169 if the libcall is cse'd or moved. */
2170 value = emit_library_call_value (libfunc,
2171 NULL_RTX, LCT_CONST, mode, 2,
2172 op0, mode, op1x, op1_mode);
2173
2174 insns = get_insns ();
2175 end_sequence ();
2176
2177 target = gen_reg_rtx (mode);
2178 emit_libcall_block_1 (insns, target, value,
2179 gen_rtx_fmt_ee (optab_to_code (binoptab),
2180 mode, op0, op1),
2181 trapv_binoptab_p (binoptab));
2182
2183 return target;
2184 }
2185
2186 delete_insns_since (last);
2187
2188 /* It can't be done in this mode. Can we do it in a wider mode? */
2189
2190 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2191 || methods == OPTAB_MUST_WIDEN))
2192 {
2193 /* Caller says, don't even try. */
2194 delete_insns_since (entry_last);
2195 return 0;
2196 }
2197
2198 /* Compute the value of METHODS to pass to recursive calls.
2199 Don't allow widening to be tried recursively. */
2200
2201 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2202
2203 /* Look for a wider mode of the same class for which it appears we can do
2204 the operation. */
2205
2206 if (CLASS_HAS_WIDER_MODES_P (mclass))
2207 {
2208 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2209 wider_mode != VOIDmode;
2210 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2211 {
2212 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2213 != CODE_FOR_nothing
2214 || (methods == OPTAB_LIB
2215 && optab_libfunc (binoptab, wider_mode)))
2216 {
2217 rtx xop0 = op0, xop1 = op1;
2218 int no_extend = 0;
2219
2220 /* For certain integer operations, we need not actually extend
2221 the narrow operands, as long as we will truncate
2222 the results to the same narrowness. */
2223
2224 if ((binoptab == ior_optab || binoptab == and_optab
2225 || binoptab == xor_optab
2226 || binoptab == add_optab || binoptab == sub_optab
2227 || binoptab == smul_optab || binoptab == ashl_optab)
2228 && mclass == MODE_INT)
2229 no_extend = 1;
2230
2231 xop0 = widen_operand (xop0, wider_mode, mode,
2232 unsignedp, no_extend);
2233
2234 /* The second operand of a shift must always be extended. */
2235 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2236 no_extend && binoptab != ashl_optab);
2237
2238 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2239 unsignedp, methods);
2240 if (temp)
2241 {
2242 if (mclass != MODE_INT
2243 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2244 {
2245 if (target == 0)
2246 target = gen_reg_rtx (mode);
2247 convert_move (target, temp, 0);
2248 return target;
2249 }
2250 else
2251 return gen_lowpart (mode, temp);
2252 }
2253 else
2254 delete_insns_since (last);
2255 }
2256 }
2257 }
2258
2259 delete_insns_since (entry_last);
2260 return 0;
2261 }
2262 \f
2263 /* Expand a binary operator which has both signed and unsigned forms.
2264 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2265 signed operations.
2266
2267 If we widen unsigned operands, we may use a signed wider operation instead
2268 of an unsigned wider operation, since the result would be the same. */
2269
2270 rtx
2271 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2272 rtx op0, rtx op1, rtx target, int unsignedp,
2273 enum optab_methods methods)
2274 {
2275 rtx temp;
2276 optab direct_optab = unsignedp ? uoptab : soptab;
2277 bool save_enable;
2278
2279 /* Do it without widening, if possible. */
2280 temp = expand_binop (mode, direct_optab, op0, op1, target,
2281 unsignedp, OPTAB_DIRECT);
2282 if (temp || methods == OPTAB_DIRECT)
2283 return temp;
2284
2285 /* Try widening to a signed int. Disable any direct use of any
2286 signed insn in the current mode. */
2287 save_enable = swap_optab_enable (soptab, mode, false);
2288
2289 temp = expand_binop (mode, soptab, op0, op1, target,
2290 unsignedp, OPTAB_WIDEN);
2291
2292 /* For unsigned operands, try widening to an unsigned int. */
2293 if (!temp && unsignedp)
2294 temp = expand_binop (mode, uoptab, op0, op1, target,
2295 unsignedp, OPTAB_WIDEN);
2296 if (temp || methods == OPTAB_WIDEN)
2297 goto egress;
2298
2299 /* Use the right width libcall if that exists. */
2300 temp = expand_binop (mode, direct_optab, op0, op1, target,
2301 unsignedp, OPTAB_LIB);
2302 if (temp || methods == OPTAB_LIB)
2303 goto egress;
2304
2305 /* Must widen and use a libcall, use either signed or unsigned. */
2306 temp = expand_binop (mode, soptab, op0, op1, target,
2307 unsignedp, methods);
2308 if (!temp && unsignedp)
2309 temp = expand_binop (mode, uoptab, op0, op1, target,
2310 unsignedp, methods);
2311
2312 egress:
2313 /* Undo the fiddling above. */
2314 if (save_enable)
2315 swap_optab_enable (soptab, mode, true);
2316 return temp;
2317 }
2318 \f
2319 /* Generate code to perform an operation specified by UNOPPTAB
2320 on operand OP0, with two results to TARG0 and TARG1.
2321 We assume that the order of the operands for the instruction
2322 is TARG0, TARG1, OP0.
2323
2324 Either TARG0 or TARG1 may be zero, but what that means is that
2325 the result is not actually wanted. We will generate it into
2326 a dummy pseudo-reg and discard it. They may not both be zero.
2327
2328 Returns 1 if this operation can be performed; 0 if not. */
2329
2330 int
2331 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2332 int unsignedp)
2333 {
2334 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2335 enum mode_class mclass;
2336 enum machine_mode wider_mode;
2337 rtx entry_last = get_last_insn ();
2338 rtx last;
2339
2340 mclass = GET_MODE_CLASS (mode);
2341
2342 if (!targ0)
2343 targ0 = gen_reg_rtx (mode);
2344 if (!targ1)
2345 targ1 = gen_reg_rtx (mode);
2346
2347 /* Record where to go back to if we fail. */
2348 last = get_last_insn ();
2349
2350 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2351 {
2352 struct expand_operand ops[3];
2353 enum insn_code icode = optab_handler (unoptab, mode);
2354
2355 create_fixed_operand (&ops[0], targ0);
2356 create_fixed_operand (&ops[1], targ1);
2357 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2358 if (maybe_expand_insn (icode, 3, ops))
2359 return 1;
2360 }
2361
2362 /* It can't be done in this mode. Can we do it in a wider mode? */
2363
2364 if (CLASS_HAS_WIDER_MODES_P (mclass))
2365 {
2366 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2367 wider_mode != VOIDmode;
2368 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2369 {
2370 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2371 {
2372 rtx t0 = gen_reg_rtx (wider_mode);
2373 rtx t1 = gen_reg_rtx (wider_mode);
2374 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2375
2376 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2377 {
2378 convert_move (targ0, t0, unsignedp);
2379 convert_move (targ1, t1, unsignedp);
2380 return 1;
2381 }
2382 else
2383 delete_insns_since (last);
2384 }
2385 }
2386 }
2387
2388 delete_insns_since (entry_last);
2389 return 0;
2390 }
2391 \f
2392 /* Generate code to perform an operation specified by BINOPTAB
2393 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2394 We assume that the order of the operands for the instruction
2395 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2396 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2397
2398 Either TARG0 or TARG1 may be zero, but what that means is that
2399 the result is not actually wanted. We will generate it into
2400 a dummy pseudo-reg and discard it. They may not both be zero.
2401
2402 Returns 1 if this operation can be performed; 0 if not. */
2403
2404 int
2405 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2406 int unsignedp)
2407 {
2408 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2409 enum mode_class mclass;
2410 enum machine_mode wider_mode;
2411 rtx entry_last = get_last_insn ();
2412 rtx last;
2413
2414 mclass = GET_MODE_CLASS (mode);
2415
2416 if (!targ0)
2417 targ0 = gen_reg_rtx (mode);
2418 if (!targ1)
2419 targ1 = gen_reg_rtx (mode);
2420
2421 /* Record where to go back to if we fail. */
2422 last = get_last_insn ();
2423
2424 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2425 {
2426 struct expand_operand ops[4];
2427 enum insn_code icode = optab_handler (binoptab, mode);
2428 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2429 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2430 rtx xop0 = op0, xop1 = op1;
2431
2432 /* If we are optimizing, force expensive constants into a register. */
2433 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2434 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2435
2436 create_fixed_operand (&ops[0], targ0);
2437 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2438 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2439 create_fixed_operand (&ops[3], targ1);
2440 if (maybe_expand_insn (icode, 4, ops))
2441 return 1;
2442 delete_insns_since (last);
2443 }
2444
2445 /* It can't be done in this mode. Can we do it in a wider mode? */
2446
2447 if (CLASS_HAS_WIDER_MODES_P (mclass))
2448 {
2449 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2450 wider_mode != VOIDmode;
2451 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2452 {
2453 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2454 {
2455 rtx t0 = gen_reg_rtx (wider_mode);
2456 rtx t1 = gen_reg_rtx (wider_mode);
2457 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2458 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2459
2460 if (expand_twoval_binop (binoptab, cop0, cop1,
2461 t0, t1, unsignedp))
2462 {
2463 convert_move (targ0, t0, unsignedp);
2464 convert_move (targ1, t1, unsignedp);
2465 return 1;
2466 }
2467 else
2468 delete_insns_since (last);
2469 }
2470 }
2471 }
2472
2473 delete_insns_since (entry_last);
2474 return 0;
2475 }
2476
2477 /* Expand the two-valued library call indicated by BINOPTAB, but
2478 preserve only one of the values. If TARG0 is non-NULL, the first
2479 value is placed into TARG0; otherwise the second value is placed
2480 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2481 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2482 This routine assumes that the value returned by the library call is
2483 as if the return value was of an integral mode twice as wide as the
2484 mode of OP0. Returns 1 if the call was successful. */
2485
2486 bool
2487 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2488 rtx targ0, rtx targ1, enum rtx_code code)
2489 {
2490 enum machine_mode mode;
2491 enum machine_mode libval_mode;
2492 rtx libval;
2493 rtx insns;
2494 rtx libfunc;
2495
2496 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2497 gcc_assert (!targ0 != !targ1);
2498
2499 mode = GET_MODE (op0);
2500 libfunc = optab_libfunc (binoptab, mode);
2501 if (!libfunc)
2502 return false;
2503
2504 /* The value returned by the library function will have twice as
2505 many bits as the nominal MODE. */
2506 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2507 MODE_INT);
2508 start_sequence ();
2509 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2510 libval_mode, 2,
2511 op0, mode,
2512 op1, mode);
2513 /* Get the part of VAL containing the value that we want. */
2514 libval = simplify_gen_subreg (mode, libval, libval_mode,
2515 targ0 ? 0 : GET_MODE_SIZE (mode));
2516 insns = get_insns ();
2517 end_sequence ();
2518 /* Move the into the desired location. */
2519 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2520 gen_rtx_fmt_ee (code, mode, op0, op1));
2521
2522 return true;
2523 }
2524
2525 \f
2526 /* Wrapper around expand_unop which takes an rtx code to specify
2527 the operation to perform, not an optab pointer. All other
2528 arguments are the same. */
2529 rtx
2530 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2531 rtx target, int unsignedp)
2532 {
2533 optab unop = code_to_optab (code);
2534 gcc_assert (unop);
2535
2536 return expand_unop (mode, unop, op0, target, unsignedp);
2537 }
2538
2539 /* Try calculating
2540 (clz:narrow x)
2541 as
2542 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2543
2544 A similar operation can be used for clrsb. UNOPTAB says which operation
2545 we are trying to expand. */
2546 static rtx
2547 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2548 {
2549 enum mode_class mclass = GET_MODE_CLASS (mode);
2550 if (CLASS_HAS_WIDER_MODES_P (mclass))
2551 {
2552 enum machine_mode wider_mode;
2553 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2554 wider_mode != VOIDmode;
2555 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2556 {
2557 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2558 {
2559 rtx xop0, temp, last;
2560
2561 last = get_last_insn ();
2562
2563 if (target == 0)
2564 target = gen_reg_rtx (mode);
2565 xop0 = widen_operand (op0, wider_mode, mode,
2566 unoptab != clrsb_optab, false);
2567 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2568 unoptab != clrsb_optab);
2569 if (temp != 0)
2570 temp = expand_binop
2571 (wider_mode, sub_optab, temp,
2572 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2573 - GET_MODE_PRECISION (mode),
2574 wider_mode),
2575 target, true, OPTAB_DIRECT);
2576 if (temp == 0)
2577 delete_insns_since (last);
2578
2579 return temp;
2580 }
2581 }
2582 }
2583 return 0;
2584 }
2585
2586 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2587 quantities, choosing which based on whether the high word is nonzero. */
2588 static rtx
2589 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2590 {
2591 rtx xop0 = force_reg (mode, op0);
2592 rtx subhi = gen_highpart (word_mode, xop0);
2593 rtx sublo = gen_lowpart (word_mode, xop0);
2594 rtx hi0_label = gen_label_rtx ();
2595 rtx after_label = gen_label_rtx ();
2596 rtx seq, temp, result;
2597
2598 /* If we were not given a target, use a word_mode register, not a
2599 'mode' register. The result will fit, and nobody is expecting
2600 anything bigger (the return type of __builtin_clz* is int). */
2601 if (!target)
2602 target = gen_reg_rtx (word_mode);
2603
2604 /* In any case, write to a word_mode scratch in both branches of the
2605 conditional, so we can ensure there is a single move insn setting
2606 'target' to tag a REG_EQUAL note on. */
2607 result = gen_reg_rtx (word_mode);
2608
2609 start_sequence ();
2610
2611 /* If the high word is not equal to zero,
2612 then clz of the full value is clz of the high word. */
2613 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2614 word_mode, true, hi0_label);
2615
2616 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2617 if (!temp)
2618 goto fail;
2619
2620 if (temp != result)
2621 convert_move (result, temp, true);
2622
2623 emit_jump_insn (gen_jump (after_label));
2624 emit_barrier ();
2625
2626 /* Else clz of the full value is clz of the low word plus the number
2627 of bits in the high word. */
2628 emit_label (hi0_label);
2629
2630 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2631 if (!temp)
2632 goto fail;
2633 temp = expand_binop (word_mode, add_optab, temp,
2634 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2635 result, true, OPTAB_DIRECT);
2636 if (!temp)
2637 goto fail;
2638 if (temp != result)
2639 convert_move (result, temp, true);
2640
2641 emit_label (after_label);
2642 convert_move (target, result, true);
2643
2644 seq = get_insns ();
2645 end_sequence ();
2646
2647 add_equal_note (seq, target, CLZ, xop0, 0);
2648 emit_insn (seq);
2649 return target;
2650
2651 fail:
2652 end_sequence ();
2653 return 0;
2654 }
2655
2656 /* Try calculating
2657 (bswap:narrow x)
2658 as
2659 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2660 static rtx
2661 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2662 {
2663 enum mode_class mclass = GET_MODE_CLASS (mode);
2664 enum machine_mode wider_mode;
2665 rtx x, last;
2666
2667 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2668 return NULL_RTX;
2669
2670 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2671 wider_mode != VOIDmode;
2672 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2673 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2674 goto found;
2675 return NULL_RTX;
2676
2677 found:
2678 last = get_last_insn ();
2679
2680 x = widen_operand (op0, wider_mode, mode, true, true);
2681 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2682
2683 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2684 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2685 if (x != 0)
2686 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2687 GET_MODE_BITSIZE (wider_mode)
2688 - GET_MODE_BITSIZE (mode),
2689 NULL_RTX, true);
2690
2691 if (x != 0)
2692 {
2693 if (target == 0)
2694 target = gen_reg_rtx (mode);
2695 emit_move_insn (target, gen_lowpart (mode, x));
2696 }
2697 else
2698 delete_insns_since (last);
2699
2700 return target;
2701 }
2702
2703 /* Try calculating bswap as two bswaps of two word-sized operands. */
2704
2705 static rtx
2706 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2707 {
2708 rtx t0, t1;
2709
2710 t1 = expand_unop (word_mode, bswap_optab,
2711 operand_subword_force (op, 0, mode), NULL_RTX, true);
2712 t0 = expand_unop (word_mode, bswap_optab,
2713 operand_subword_force (op, 1, mode), NULL_RTX, true);
2714
2715 if (target == 0 || !valid_multiword_target_p (target))
2716 target = gen_reg_rtx (mode);
2717 if (REG_P (target))
2718 emit_clobber (target);
2719 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2720 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2721
2722 return target;
2723 }
2724
2725 /* Try calculating (parity x) as (and (popcount x) 1), where
2726 popcount can also be done in a wider mode. */
2727 static rtx
2728 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2729 {
2730 enum mode_class mclass = GET_MODE_CLASS (mode);
2731 if (CLASS_HAS_WIDER_MODES_P (mclass))
2732 {
2733 enum machine_mode wider_mode;
2734 for (wider_mode = mode; wider_mode != VOIDmode;
2735 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2736 {
2737 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2738 {
2739 rtx xop0, temp, last;
2740
2741 last = get_last_insn ();
2742
2743 if (target == 0)
2744 target = gen_reg_rtx (mode);
2745 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2746 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2747 true);
2748 if (temp != 0)
2749 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2750 target, true, OPTAB_DIRECT);
2751 if (temp == 0)
2752 delete_insns_since (last);
2753
2754 return temp;
2755 }
2756 }
2757 }
2758 return 0;
2759 }
2760
2761 /* Try calculating ctz(x) as K - clz(x & -x) ,
2762 where K is GET_MODE_PRECISION(mode) - 1.
2763
2764 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2765 don't have to worry about what the hardware does in that case. (If
2766 the clz instruction produces the usual value at 0, which is K, the
2767 result of this code sequence will be -1; expand_ffs, below, relies
2768 on this. It might be nice to have it be K instead, for consistency
2769 with the (very few) processors that provide a ctz with a defined
2770 value, but that would take one more instruction, and it would be
2771 less convenient for expand_ffs anyway. */
2772
2773 static rtx
2774 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2775 {
2776 rtx seq, temp;
2777
2778 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2779 return 0;
2780
2781 start_sequence ();
2782
2783 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2784 if (temp)
2785 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2786 true, OPTAB_DIRECT);
2787 if (temp)
2788 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2789 if (temp)
2790 temp = expand_binop (mode, sub_optab,
2791 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2792 temp, target,
2793 true, OPTAB_DIRECT);
2794 if (temp == 0)
2795 {
2796 end_sequence ();
2797 return 0;
2798 }
2799
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 add_equal_note (seq, temp, CTZ, op0, 0);
2804 emit_insn (seq);
2805 return temp;
2806 }
2807
2808
2809 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2810 else with the sequence used by expand_clz.
2811
2812 The ffs builtin promises to return zero for a zero value and ctz/clz
2813 may have an undefined value in that case. If they do not give us a
2814 convenient value, we have to generate a test and branch. */
2815 static rtx
2816 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2817 {
2818 HOST_WIDE_INT val = 0;
2819 bool defined_at_zero = false;
2820 rtx temp, seq;
2821
2822 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2823 {
2824 start_sequence ();
2825
2826 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2827 if (!temp)
2828 goto fail;
2829
2830 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2831 }
2832 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2833 {
2834 start_sequence ();
2835 temp = expand_ctz (mode, op0, 0);
2836 if (!temp)
2837 goto fail;
2838
2839 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2840 {
2841 defined_at_zero = true;
2842 val = (GET_MODE_PRECISION (mode) - 1) - val;
2843 }
2844 }
2845 else
2846 return 0;
2847
2848 if (defined_at_zero && val == -1)
2849 /* No correction needed at zero. */;
2850 else
2851 {
2852 /* We don't try to do anything clever with the situation found
2853 on some processors (eg Alpha) where ctz(0:mode) ==
2854 bitsize(mode). If someone can think of a way to send N to -1
2855 and leave alone all values in the range 0..N-1 (where N is a
2856 power of two), cheaper than this test-and-branch, please add it.
2857
2858 The test-and-branch is done after the operation itself, in case
2859 the operation sets condition codes that can be recycled for this.
2860 (This is true on i386, for instance.) */
2861
2862 rtx nonzero_label = gen_label_rtx ();
2863 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2864 mode, true, nonzero_label);
2865
2866 convert_move (temp, GEN_INT (-1), false);
2867 emit_label (nonzero_label);
2868 }
2869
2870 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2871 to produce a value in the range 0..bitsize. */
2872 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2873 target, false, OPTAB_DIRECT);
2874 if (!temp)
2875 goto fail;
2876
2877 seq = get_insns ();
2878 end_sequence ();
2879
2880 add_equal_note (seq, temp, FFS, op0, 0);
2881 emit_insn (seq);
2882 return temp;
2883
2884 fail:
2885 end_sequence ();
2886 return 0;
2887 }
2888
2889 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2890 conditions, VAL may already be a SUBREG against which we cannot generate
2891 a further SUBREG. In this case, we expect forcing the value into a
2892 register will work around the situation. */
2893
2894 static rtx
2895 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2896 enum machine_mode imode)
2897 {
2898 rtx ret;
2899 ret = lowpart_subreg (omode, val, imode);
2900 if (ret == NULL)
2901 {
2902 val = force_reg (imode, val);
2903 ret = lowpart_subreg (omode, val, imode);
2904 gcc_assert (ret != NULL);
2905 }
2906 return ret;
2907 }
2908
2909 /* Expand a floating point absolute value or negation operation via a
2910 logical operation on the sign bit. */
2911
2912 static rtx
2913 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2914 rtx op0, rtx target)
2915 {
2916 const struct real_format *fmt;
2917 int bitpos, word, nwords, i;
2918 enum machine_mode imode;
2919 rtx temp, insns;
2920
2921 /* The format has to have a simple sign bit. */
2922 fmt = REAL_MODE_FORMAT (mode);
2923 if (fmt == NULL)
2924 return NULL_RTX;
2925
2926 bitpos = fmt->signbit_rw;
2927 if (bitpos < 0)
2928 return NULL_RTX;
2929
2930 /* Don't create negative zeros if the format doesn't support them. */
2931 if (code == NEG && !fmt->has_signed_zero)
2932 return NULL_RTX;
2933
2934 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2935 {
2936 imode = int_mode_for_mode (mode);
2937 if (imode == BLKmode)
2938 return NULL_RTX;
2939 word = 0;
2940 nwords = 1;
2941 }
2942 else
2943 {
2944 imode = word_mode;
2945
2946 if (FLOAT_WORDS_BIG_ENDIAN)
2947 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2948 else
2949 word = bitpos / BITS_PER_WORD;
2950 bitpos = bitpos % BITS_PER_WORD;
2951 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2952 }
2953
2954 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2955 if (code == ABS)
2956 mask = ~mask;
2957
2958 if (target == 0
2959 || target == op0
2960 || (nwords > 1 && !valid_multiword_target_p (target)))
2961 target = gen_reg_rtx (mode);
2962
2963 if (nwords > 1)
2964 {
2965 start_sequence ();
2966
2967 for (i = 0; i < nwords; ++i)
2968 {
2969 rtx targ_piece = operand_subword (target, i, 1, mode);
2970 rtx op0_piece = operand_subword_force (op0, i, mode);
2971
2972 if (i == word)
2973 {
2974 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2975 op0_piece,
2976 immed_wide_int_const (mask, imode),
2977 targ_piece, 1, OPTAB_LIB_WIDEN);
2978 if (temp != targ_piece)
2979 emit_move_insn (targ_piece, temp);
2980 }
2981 else
2982 emit_move_insn (targ_piece, op0_piece);
2983 }
2984
2985 insns = get_insns ();
2986 end_sequence ();
2987
2988 emit_insn (insns);
2989 }
2990 else
2991 {
2992 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2993 gen_lowpart (imode, op0),
2994 immed_wide_int_const (mask, imode),
2995 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2996 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2997
2998 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2999 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
3000 target);
3001 }
3002
3003 return target;
3004 }
3005
3006 /* As expand_unop, but will fail rather than attempt the operation in a
3007 different mode or with a libcall. */
3008 static rtx
3009 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3010 int unsignedp)
3011 {
3012 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
3013 {
3014 struct expand_operand ops[2];
3015 enum insn_code icode = optab_handler (unoptab, mode);
3016 rtx last = get_last_insn ();
3017 rtx pat;
3018
3019 create_output_operand (&ops[0], target, mode);
3020 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
3021 pat = maybe_gen_insn (icode, 2, ops);
3022 if (pat)
3023 {
3024 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3025 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3026 ops[1].value, NULL_RTX))
3027 {
3028 delete_insns_since (last);
3029 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3030 }
3031
3032 emit_insn (pat);
3033
3034 return ops[0].value;
3035 }
3036 }
3037 return 0;
3038 }
3039
3040 /* Generate code to perform an operation specified by UNOPTAB
3041 on operand OP0, with result having machine-mode MODE.
3042
3043 UNSIGNEDP is for the case where we have to widen the operands
3044 to perform the operation. It says to use zero-extension.
3045
3046 If TARGET is nonzero, the value
3047 is generated there, if it is convenient to do so.
3048 In all cases an rtx is returned for the locus of the value;
3049 this may or may not be TARGET. */
3050
3051 rtx
3052 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3053 int unsignedp)
3054 {
3055 enum mode_class mclass = GET_MODE_CLASS (mode);
3056 enum machine_mode wider_mode;
3057 rtx temp;
3058 rtx libfunc;
3059
3060 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3061 if (temp)
3062 return temp;
3063
3064 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3065
3066 /* Widening (or narrowing) clz needs special treatment. */
3067 if (unoptab == clz_optab)
3068 {
3069 temp = widen_leading (mode, op0, target, unoptab);
3070 if (temp)
3071 return temp;
3072
3073 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3074 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3075 {
3076 temp = expand_doubleword_clz (mode, op0, target);
3077 if (temp)
3078 return temp;
3079 }
3080
3081 goto try_libcall;
3082 }
3083
3084 if (unoptab == clrsb_optab)
3085 {
3086 temp = widen_leading (mode, op0, target, unoptab);
3087 if (temp)
3088 return temp;
3089 goto try_libcall;
3090 }
3091
3092 /* Widening (or narrowing) bswap needs special treatment. */
3093 if (unoptab == bswap_optab)
3094 {
3095 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3096 or ROTATERT. First try these directly; if this fails, then try the
3097 obvious pair of shifts with allowed widening, as this will probably
3098 be always more efficient than the other fallback methods. */
3099 if (mode == HImode)
3100 {
3101 rtx last, temp1, temp2;
3102
3103 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3104 {
3105 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3106 unsignedp, OPTAB_DIRECT);
3107 if (temp)
3108 return temp;
3109 }
3110
3111 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3112 {
3113 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3114 unsignedp, OPTAB_DIRECT);
3115 if (temp)
3116 return temp;
3117 }
3118
3119 last = get_last_insn ();
3120
3121 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3122 unsignedp, OPTAB_WIDEN);
3123 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3124 unsignedp, OPTAB_WIDEN);
3125 if (temp1 && temp2)
3126 {
3127 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3128 unsignedp, OPTAB_WIDEN);
3129 if (temp)
3130 return temp;
3131 }
3132
3133 delete_insns_since (last);
3134 }
3135
3136 temp = widen_bswap (mode, op0, target);
3137 if (temp)
3138 return temp;
3139
3140 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3141 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3142 {
3143 temp = expand_doubleword_bswap (mode, op0, target);
3144 if (temp)
3145 return temp;
3146 }
3147
3148 goto try_libcall;
3149 }
3150
3151 if (CLASS_HAS_WIDER_MODES_P (mclass))
3152 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3153 wider_mode != VOIDmode;
3154 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3155 {
3156 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3157 {
3158 rtx xop0 = op0;
3159 rtx last = get_last_insn ();
3160
3161 /* For certain operations, we need not actually extend
3162 the narrow operand, as long as we will truncate the
3163 results to the same narrowness. */
3164
3165 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3166 (unoptab == neg_optab
3167 || unoptab == one_cmpl_optab)
3168 && mclass == MODE_INT);
3169
3170 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3171 unsignedp);
3172
3173 if (temp)
3174 {
3175 if (mclass != MODE_INT
3176 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3177 {
3178 if (target == 0)
3179 target = gen_reg_rtx (mode);
3180 convert_move (target, temp, 0);
3181 return target;
3182 }
3183 else
3184 return gen_lowpart (mode, temp);
3185 }
3186 else
3187 delete_insns_since (last);
3188 }
3189 }
3190
3191 /* These can be done a word at a time. */
3192 if (unoptab == one_cmpl_optab
3193 && mclass == MODE_INT
3194 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3195 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3196 {
3197 int i;
3198 rtx insns;
3199
3200 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3201 target = gen_reg_rtx (mode);
3202
3203 start_sequence ();
3204
3205 /* Do the actual arithmetic. */
3206 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3207 {
3208 rtx target_piece = operand_subword (target, i, 1, mode);
3209 rtx x = expand_unop (word_mode, unoptab,
3210 operand_subword_force (op0, i, mode),
3211 target_piece, unsignedp);
3212
3213 if (target_piece != x)
3214 emit_move_insn (target_piece, x);
3215 }
3216
3217 insns = get_insns ();
3218 end_sequence ();
3219
3220 emit_insn (insns);
3221 return target;
3222 }
3223
3224 if (optab_to_code (unoptab) == NEG)
3225 {
3226 /* Try negating floating point values by flipping the sign bit. */
3227 if (SCALAR_FLOAT_MODE_P (mode))
3228 {
3229 temp = expand_absneg_bit (NEG, mode, op0, target);
3230 if (temp)
3231 return temp;
3232 }
3233
3234 /* If there is no negation pattern, and we have no negative zero,
3235 try subtracting from zero. */
3236 if (!HONOR_SIGNED_ZEROS (mode))
3237 {
3238 temp = expand_binop (mode, (unoptab == negv_optab
3239 ? subv_optab : sub_optab),
3240 CONST0_RTX (mode), op0, target,
3241 unsignedp, OPTAB_DIRECT);
3242 if (temp)
3243 return temp;
3244 }
3245 }
3246
3247 /* Try calculating parity (x) as popcount (x) % 2. */
3248 if (unoptab == parity_optab)
3249 {
3250 temp = expand_parity (mode, op0, target);
3251 if (temp)
3252 return temp;
3253 }
3254
3255 /* Try implementing ffs (x) in terms of clz (x). */
3256 if (unoptab == ffs_optab)
3257 {
3258 temp = expand_ffs (mode, op0, target);
3259 if (temp)
3260 return temp;
3261 }
3262
3263 /* Try implementing ctz (x) in terms of clz (x). */
3264 if (unoptab == ctz_optab)
3265 {
3266 temp = expand_ctz (mode, op0, target);
3267 if (temp)
3268 return temp;
3269 }
3270
3271 try_libcall:
3272 /* Now try a library call in this mode. */
3273 libfunc = optab_libfunc (unoptab, mode);
3274 if (libfunc)
3275 {
3276 rtx insns;
3277 rtx value;
3278 rtx eq_value;
3279 enum machine_mode outmode = mode;
3280
3281 /* All of these functions return small values. Thus we choose to
3282 have them return something that isn't a double-word. */
3283 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3284 || unoptab == clrsb_optab || unoptab == popcount_optab
3285 || unoptab == parity_optab)
3286 outmode
3287 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3288 optab_libfunc (unoptab, mode)));
3289
3290 start_sequence ();
3291
3292 /* Pass 1 for NO_QUEUE so we don't lose any increments
3293 if the libcall is cse'd or moved. */
3294 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3295 1, op0, mode);
3296 insns = get_insns ();
3297 end_sequence ();
3298
3299 target = gen_reg_rtx (outmode);
3300 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3301 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3302 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3303 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3304 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3305 emit_libcall_block_1 (insns, target, value, eq_value,
3306 trapv_unoptab_p (unoptab));
3307
3308 return target;
3309 }
3310
3311 /* It can't be done in this mode. Can we do it in a wider mode? */
3312
3313 if (CLASS_HAS_WIDER_MODES_P (mclass))
3314 {
3315 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3316 wider_mode != VOIDmode;
3317 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3318 {
3319 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3320 || optab_libfunc (unoptab, wider_mode))
3321 {
3322 rtx xop0 = op0;
3323 rtx last = get_last_insn ();
3324
3325 /* For certain operations, we need not actually extend
3326 the narrow operand, as long as we will truncate the
3327 results to the same narrowness. */
3328 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3329 (unoptab == neg_optab
3330 || unoptab == one_cmpl_optab
3331 || unoptab == bswap_optab)
3332 && mclass == MODE_INT);
3333
3334 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3335 unsignedp);
3336
3337 /* If we are generating clz using wider mode, adjust the
3338 result. Similarly for clrsb. */
3339 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3340 && temp != 0)
3341 temp = expand_binop
3342 (wider_mode, sub_optab, temp,
3343 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3344 - GET_MODE_PRECISION (mode),
3345 wider_mode),
3346 target, true, OPTAB_DIRECT);
3347
3348 /* Likewise for bswap. */
3349 if (unoptab == bswap_optab && temp != 0)
3350 {
3351 gcc_assert (GET_MODE_PRECISION (wider_mode)
3352 == GET_MODE_BITSIZE (wider_mode)
3353 && GET_MODE_PRECISION (mode)
3354 == GET_MODE_BITSIZE (mode));
3355
3356 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3357 GET_MODE_BITSIZE (wider_mode)
3358 - GET_MODE_BITSIZE (mode),
3359 NULL_RTX, true);
3360 }
3361
3362 if (temp)
3363 {
3364 if (mclass != MODE_INT)
3365 {
3366 if (target == 0)
3367 target = gen_reg_rtx (mode);
3368 convert_move (target, temp, 0);
3369 return target;
3370 }
3371 else
3372 return gen_lowpart (mode, temp);
3373 }
3374 else
3375 delete_insns_since (last);
3376 }
3377 }
3378 }
3379
3380 /* One final attempt at implementing negation via subtraction,
3381 this time allowing widening of the operand. */
3382 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3383 {
3384 rtx temp;
3385 temp = expand_binop (mode,
3386 unoptab == negv_optab ? subv_optab : sub_optab,
3387 CONST0_RTX (mode), op0,
3388 target, unsignedp, OPTAB_LIB_WIDEN);
3389 if (temp)
3390 return temp;
3391 }
3392
3393 return 0;
3394 }
3395 \f
3396 /* Emit code to compute the absolute value of OP0, with result to
3397 TARGET if convenient. (TARGET may be 0.) The return value says
3398 where the result actually is to be found.
3399
3400 MODE is the mode of the operand; the mode of the result is
3401 different but can be deduced from MODE.
3402
3403 */
3404
3405 rtx
3406 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3407 int result_unsignedp)
3408 {
3409 rtx temp;
3410
3411 if (GET_MODE_CLASS (mode) != MODE_INT
3412 || ! flag_trapv)
3413 result_unsignedp = 1;
3414
3415 /* First try to do it with a special abs instruction. */
3416 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3417 op0, target, 0);
3418 if (temp != 0)
3419 return temp;
3420
3421 /* For floating point modes, try clearing the sign bit. */
3422 if (SCALAR_FLOAT_MODE_P (mode))
3423 {
3424 temp = expand_absneg_bit (ABS, mode, op0, target);
3425 if (temp)
3426 return temp;
3427 }
3428
3429 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3430 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3431 && !HONOR_SIGNED_ZEROS (mode))
3432 {
3433 rtx last = get_last_insn ();
3434
3435 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3436 op0, NULL_RTX, 0);
3437 if (temp != 0)
3438 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3439 OPTAB_WIDEN);
3440
3441 if (temp != 0)
3442 return temp;
3443
3444 delete_insns_since (last);
3445 }
3446
3447 /* If this machine has expensive jumps, we can do integer absolute
3448 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3449 where W is the width of MODE. */
3450
3451 if (GET_MODE_CLASS (mode) == MODE_INT
3452 && BRANCH_COST (optimize_insn_for_speed_p (),
3453 false) >= 2)
3454 {
3455 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3456 GET_MODE_PRECISION (mode) - 1,
3457 NULL_RTX, 0);
3458
3459 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3460 OPTAB_LIB_WIDEN);
3461 if (temp != 0)
3462 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3463 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3464
3465 if (temp != 0)
3466 return temp;
3467 }
3468
3469 return NULL_RTX;
3470 }
3471
3472 rtx
3473 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3474 int result_unsignedp, int safe)
3475 {
3476 rtx temp, op1;
3477
3478 if (GET_MODE_CLASS (mode) != MODE_INT
3479 || ! flag_trapv)
3480 result_unsignedp = 1;
3481
3482 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3483 if (temp != 0)
3484 return temp;
3485
3486 /* If that does not win, use conditional jump and negate. */
3487
3488 /* It is safe to use the target if it is the same
3489 as the source if this is also a pseudo register */
3490 if (op0 == target && REG_P (op0)
3491 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3492 safe = 1;
3493
3494 op1 = gen_label_rtx ();
3495 if (target == 0 || ! safe
3496 || GET_MODE (target) != mode
3497 || (MEM_P (target) && MEM_VOLATILE_P (target))
3498 || (REG_P (target)
3499 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3500 target = gen_reg_rtx (mode);
3501
3502 emit_move_insn (target, op0);
3503 NO_DEFER_POP;
3504
3505 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3506 NULL_RTX, NULL_RTX, op1, -1);
3507
3508 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3509 target, target, 0);
3510 if (op0 != target)
3511 emit_move_insn (target, op0);
3512 emit_label (op1);
3513 OK_DEFER_POP;
3514 return target;
3515 }
3516
3517 /* Emit code to compute the one's complement absolute value of OP0
3518 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3519 (TARGET may be NULL_RTX.) The return value says where the result
3520 actually is to be found.
3521
3522 MODE is the mode of the operand; the mode of the result is
3523 different but can be deduced from MODE. */
3524
3525 rtx
3526 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3527 {
3528 rtx temp;
3529
3530 /* Not applicable for floating point modes. */
3531 if (FLOAT_MODE_P (mode))
3532 return NULL_RTX;
3533
3534 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3535 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3536 {
3537 rtx last = get_last_insn ();
3538
3539 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3540 if (temp != 0)
3541 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3542 OPTAB_WIDEN);
3543
3544 if (temp != 0)
3545 return temp;
3546
3547 delete_insns_since (last);
3548 }
3549
3550 /* If this machine has expensive jumps, we can do one's complement
3551 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3552
3553 if (GET_MODE_CLASS (mode) == MODE_INT
3554 && BRANCH_COST (optimize_insn_for_speed_p (),
3555 false) >= 2)
3556 {
3557 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3558 GET_MODE_PRECISION (mode) - 1,
3559 NULL_RTX, 0);
3560
3561 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3562 OPTAB_LIB_WIDEN);
3563
3564 if (temp != 0)
3565 return temp;
3566 }
3567
3568 return NULL_RTX;
3569 }
3570
3571 /* A subroutine of expand_copysign, perform the copysign operation using the
3572 abs and neg primitives advertised to exist on the target. The assumption
3573 is that we have a split register file, and leaving op0 in fp registers,
3574 and not playing with subregs so much, will help the register allocator. */
3575
3576 static rtx
3577 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3578 int bitpos, bool op0_is_abs)
3579 {
3580 enum machine_mode imode;
3581 enum insn_code icode;
3582 rtx sign, label;
3583
3584 if (target == op1)
3585 target = NULL_RTX;
3586
3587 /* Check if the back end provides an insn that handles signbit for the
3588 argument's mode. */
3589 icode = optab_handler (signbit_optab, mode);
3590 if (icode != CODE_FOR_nothing)
3591 {
3592 imode = insn_data[(int) icode].operand[0].mode;
3593 sign = gen_reg_rtx (imode);
3594 emit_unop_insn (icode, sign, op1, UNKNOWN);
3595 }
3596 else
3597 {
3598 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3599 {
3600 imode = int_mode_for_mode (mode);
3601 if (imode == BLKmode)
3602 return NULL_RTX;
3603 op1 = gen_lowpart (imode, op1);
3604 }
3605 else
3606 {
3607 int word;
3608
3609 imode = word_mode;
3610 if (FLOAT_WORDS_BIG_ENDIAN)
3611 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3612 else
3613 word = bitpos / BITS_PER_WORD;
3614 bitpos = bitpos % BITS_PER_WORD;
3615 op1 = operand_subword_force (op1, word, mode);
3616 }
3617
3618 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3619 sign = expand_binop (imode, and_optab, op1,
3620 immed_wide_int_const (mask, imode),
3621 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3622 }
3623
3624 if (!op0_is_abs)
3625 {
3626 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3627 if (op0 == NULL)
3628 return NULL_RTX;
3629 target = op0;
3630 }
3631 else
3632 {
3633 if (target == NULL_RTX)
3634 target = copy_to_reg (op0);
3635 else
3636 emit_move_insn (target, op0);
3637 }
3638
3639 label = gen_label_rtx ();
3640 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3641
3642 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3643 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3644 else
3645 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3646 if (op0 != target)
3647 emit_move_insn (target, op0);
3648
3649 emit_label (label);
3650
3651 return target;
3652 }
3653
3654
3655 /* A subroutine of expand_copysign, perform the entire copysign operation
3656 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3657 is true if op0 is known to have its sign bit clear. */
3658
3659 static rtx
3660 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3661 int bitpos, bool op0_is_abs)
3662 {
3663 enum machine_mode imode;
3664 int word, nwords, i;
3665 rtx temp, insns;
3666
3667 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3668 {
3669 imode = int_mode_for_mode (mode);
3670 if (imode == BLKmode)
3671 return NULL_RTX;
3672 word = 0;
3673 nwords = 1;
3674 }
3675 else
3676 {
3677 imode = word_mode;
3678
3679 if (FLOAT_WORDS_BIG_ENDIAN)
3680 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3681 else
3682 word = bitpos / BITS_PER_WORD;
3683 bitpos = bitpos % BITS_PER_WORD;
3684 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3685 }
3686
3687 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3688
3689 if (target == 0
3690 || target == op0
3691 || target == op1
3692 || (nwords > 1 && !valid_multiword_target_p (target)))
3693 target = gen_reg_rtx (mode);
3694
3695 if (nwords > 1)
3696 {
3697 start_sequence ();
3698
3699 for (i = 0; i < nwords; ++i)
3700 {
3701 rtx targ_piece = operand_subword (target, i, 1, mode);
3702 rtx op0_piece = operand_subword_force (op0, i, mode);
3703
3704 if (i == word)
3705 {
3706 if (!op0_is_abs)
3707 op0_piece
3708 = expand_binop (imode, and_optab, op0_piece,
3709 immed_wide_int_const (~mask, imode),
3710 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3711 op1 = expand_binop (imode, and_optab,
3712 operand_subword_force (op1, i, mode),
3713 immed_wide_int_const (mask, imode),
3714 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3715
3716 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3717 targ_piece, 1, OPTAB_LIB_WIDEN);
3718 if (temp != targ_piece)
3719 emit_move_insn (targ_piece, temp);
3720 }
3721 else
3722 emit_move_insn (targ_piece, op0_piece);
3723 }
3724
3725 insns = get_insns ();
3726 end_sequence ();
3727
3728 emit_insn (insns);
3729 }
3730 else
3731 {
3732 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3733 immed_wide_int_const (mask, imode),
3734 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3735
3736 op0 = gen_lowpart (imode, op0);
3737 if (!op0_is_abs)
3738 op0 = expand_binop (imode, and_optab, op0,
3739 immed_wide_int_const (~mask, imode),
3740 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3741
3742 temp = expand_binop (imode, ior_optab, op0, op1,
3743 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3744 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3745 }
3746
3747 return target;
3748 }
3749
3750 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3751 scalar floating point mode. Return NULL if we do not know how to
3752 expand the operation inline. */
3753
3754 rtx
3755 expand_copysign (rtx op0, rtx op1, rtx target)
3756 {
3757 enum machine_mode mode = GET_MODE (op0);
3758 const struct real_format *fmt;
3759 bool op0_is_abs;
3760 rtx temp;
3761
3762 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3763 gcc_assert (GET_MODE (op1) == mode);
3764
3765 /* First try to do it with a special instruction. */
3766 temp = expand_binop (mode, copysign_optab, op0, op1,
3767 target, 0, OPTAB_DIRECT);
3768 if (temp)
3769 return temp;
3770
3771 fmt = REAL_MODE_FORMAT (mode);
3772 if (fmt == NULL || !fmt->has_signed_zero)
3773 return NULL_RTX;
3774
3775 op0_is_abs = false;
3776 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3777 {
3778 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3779 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3780 op0_is_abs = true;
3781 }
3782
3783 if (fmt->signbit_ro >= 0
3784 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3785 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3786 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3787 {
3788 temp = expand_copysign_absneg (mode, op0, op1, target,
3789 fmt->signbit_ro, op0_is_abs);
3790 if (temp)
3791 return temp;
3792 }
3793
3794 if (fmt->signbit_rw < 0)
3795 return NULL_RTX;
3796 return expand_copysign_bit (mode, op0, op1, target,
3797 fmt->signbit_rw, op0_is_abs);
3798 }
3799 \f
3800 /* Generate an instruction whose insn-code is INSN_CODE,
3801 with two operands: an output TARGET and an input OP0.
3802 TARGET *must* be nonzero, and the output is always stored there.
3803 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3804 the value that is stored into TARGET.
3805
3806 Return false if expansion failed. */
3807
3808 bool
3809 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3810 enum rtx_code code)
3811 {
3812 struct expand_operand ops[2];
3813 rtx pat;
3814
3815 create_output_operand (&ops[0], target, GET_MODE (target));
3816 create_input_operand (&ops[1], op0, GET_MODE (op0));
3817 pat = maybe_gen_insn (icode, 2, ops);
3818 if (!pat)
3819 return false;
3820
3821 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3822 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3823
3824 emit_insn (pat);
3825
3826 if (ops[0].value != target)
3827 emit_move_insn (target, ops[0].value);
3828 return true;
3829 }
3830 /* Generate an instruction whose insn-code is INSN_CODE,
3831 with two operands: an output TARGET and an input OP0.
3832 TARGET *must* be nonzero, and the output is always stored there.
3833 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3834 the value that is stored into TARGET. */
3835
3836 void
3837 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3838 {
3839 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3840 gcc_assert (ok);
3841 }
3842 \f
3843 struct no_conflict_data
3844 {
3845 rtx target, first, insn;
3846 bool must_stay;
3847 };
3848
3849 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3850 the currently examined clobber / store has to stay in the list of
3851 insns that constitute the actual libcall block. */
3852 static void
3853 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3854 {
3855 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3856
3857 /* If this inns directly contributes to setting the target, it must stay. */
3858 if (reg_overlap_mentioned_p (p->target, dest))
3859 p->must_stay = true;
3860 /* If we haven't committed to keeping any other insns in the list yet,
3861 there is nothing more to check. */
3862 else if (p->insn == p->first)
3863 return;
3864 /* If this insn sets / clobbers a register that feeds one of the insns
3865 already in the list, this insn has to stay too. */
3866 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3867 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3868 || reg_used_between_p (dest, p->first, p->insn)
3869 /* Likewise if this insn depends on a register set by a previous
3870 insn in the list, or if it sets a result (presumably a hard
3871 register) that is set or clobbered by a previous insn.
3872 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3873 SET_DEST perform the former check on the address, and the latter
3874 check on the MEM. */
3875 || (GET_CODE (set) == SET
3876 && (modified_in_p (SET_SRC (set), p->first)
3877 || modified_in_p (SET_DEST (set), p->first)
3878 || modified_between_p (SET_SRC (set), p->first, p->insn)
3879 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3880 p->must_stay = true;
3881 }
3882
3883 \f
3884 /* Emit code to make a call to a constant function or a library call.
3885
3886 INSNS is a list containing all insns emitted in the call.
3887 These insns leave the result in RESULT. Our block is to copy RESULT
3888 to TARGET, which is logically equivalent to EQUIV.
3889
3890 We first emit any insns that set a pseudo on the assumption that these are
3891 loading constants into registers; doing so allows them to be safely cse'ed
3892 between blocks. Then we emit all the other insns in the block, followed by
3893 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3894 note with an operand of EQUIV. */
3895
3896 static void
3897 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3898 bool equiv_may_trap)
3899 {
3900 rtx final_dest = target;
3901 rtx next, last, insn;
3902
3903 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3904 into a MEM later. Protect the libcall block from this change. */
3905 if (! REG_P (target) || REG_USERVAR_P (target))
3906 target = gen_reg_rtx (GET_MODE (target));
3907
3908 /* If we're using non-call exceptions, a libcall corresponding to an
3909 operation that may trap may also trap. */
3910 /* ??? See the comment in front of make_reg_eh_region_note. */
3911 if (cfun->can_throw_non_call_exceptions
3912 && (equiv_may_trap || may_trap_p (equiv)))
3913 {
3914 for (insn = insns; insn; insn = NEXT_INSN (insn))
3915 if (CALL_P (insn))
3916 {
3917 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3918 if (note)
3919 {
3920 int lp_nr = INTVAL (XEXP (note, 0));
3921 if (lp_nr == 0 || lp_nr == INT_MIN)
3922 remove_note (insn, note);
3923 }
3924 }
3925 }
3926 else
3927 {
3928 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3929 reg note to indicate that this call cannot throw or execute a nonlocal
3930 goto (unless there is already a REG_EH_REGION note, in which case
3931 we update it). */
3932 for (insn = insns; insn; insn = NEXT_INSN (insn))
3933 if (CALL_P (insn))
3934 make_reg_eh_region_note_nothrow_nononlocal (insn);
3935 }
3936
3937 /* First emit all insns that set pseudos. Remove them from the list as
3938 we go. Avoid insns that set pseudos which were referenced in previous
3939 insns. These can be generated by move_by_pieces, for example,
3940 to update an address. Similarly, avoid insns that reference things
3941 set in previous insns. */
3942
3943 for (insn = insns; insn; insn = next)
3944 {
3945 rtx set = single_set (insn);
3946
3947 next = NEXT_INSN (insn);
3948
3949 if (set != 0 && REG_P (SET_DEST (set))
3950 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3951 {
3952 struct no_conflict_data data;
3953
3954 data.target = const0_rtx;
3955 data.first = insns;
3956 data.insn = insn;
3957 data.must_stay = 0;
3958 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3959 if (! data.must_stay)
3960 {
3961 if (PREV_INSN (insn))
3962 NEXT_INSN (PREV_INSN (insn)) = next;
3963 else
3964 insns = next;
3965
3966 if (next)
3967 PREV_INSN (next) = PREV_INSN (insn);
3968
3969 add_insn (insn);
3970 }
3971 }
3972
3973 /* Some ports use a loop to copy large arguments onto the stack.
3974 Don't move anything outside such a loop. */
3975 if (LABEL_P (insn))
3976 break;
3977 }
3978
3979 /* Write the remaining insns followed by the final copy. */
3980 for (insn = insns; insn; insn = next)
3981 {
3982 next = NEXT_INSN (insn);
3983
3984 add_insn (insn);
3985 }
3986
3987 last = emit_move_insn (target, result);
3988 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3989
3990 if (final_dest != target)
3991 emit_move_insn (final_dest, target);
3992 }
3993
3994 void
3995 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3996 {
3997 emit_libcall_block_1 (insns, target, result, equiv, false);
3998 }
3999 \f
4000 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
4001 PURPOSE describes how this comparison will be used. CODE is the rtx
4002 comparison code we will be using.
4003
4004 ??? Actually, CODE is slightly weaker than that. A target is still
4005 required to implement all of the normal bcc operations, but not
4006 required to implement all (or any) of the unordered bcc operations. */
4007
4008 int
4009 can_compare_p (enum rtx_code code, enum machine_mode mode,
4010 enum can_compare_purpose purpose)
4011 {
4012 rtx test;
4013 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
4014 do
4015 {
4016 enum insn_code icode;
4017
4018 if (purpose == ccp_jump
4019 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
4020 && insn_operand_matches (icode, 0, test))
4021 return 1;
4022 if (purpose == ccp_store_flag
4023 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4024 && insn_operand_matches (icode, 1, test))
4025 return 1;
4026 if (purpose == ccp_cmov
4027 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4028 return 1;
4029
4030 mode = GET_MODE_WIDER_MODE (mode);
4031 PUT_MODE (test, mode);
4032 }
4033 while (mode != VOIDmode);
4034
4035 return 0;
4036 }
4037
4038 /* This function is called when we are going to emit a compare instruction that
4039 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4040
4041 *PMODE is the mode of the inputs (in case they are const_int).
4042 *PUNSIGNEDP nonzero says that the operands are unsigned;
4043 this matters if they need to be widened (as given by METHODS).
4044
4045 If they have mode BLKmode, then SIZE specifies the size of both operands.
4046
4047 This function performs all the setup necessary so that the caller only has
4048 to emit a single comparison insn. This setup can involve doing a BLKmode
4049 comparison or emitting a library call to perform the comparison if no insn
4050 is available to handle it.
4051 The values which are passed in through pointers can be modified; the caller
4052 should perform the comparison on the modified values. Constant
4053 comparisons must have already been folded. */
4054
4055 static void
4056 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4057 int unsignedp, enum optab_methods methods,
4058 rtx *ptest, enum machine_mode *pmode)
4059 {
4060 enum machine_mode mode = *pmode;
4061 rtx libfunc, test;
4062 enum machine_mode cmp_mode;
4063 enum mode_class mclass;
4064
4065 /* The other methods are not needed. */
4066 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4067 || methods == OPTAB_LIB_WIDEN);
4068
4069 /* If we are optimizing, force expensive constants into a register. */
4070 if (CONSTANT_P (x) && optimize
4071 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4072 > COSTS_N_INSNS (1)))
4073 x = force_reg (mode, x);
4074
4075 if (CONSTANT_P (y) && optimize
4076 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4077 > COSTS_N_INSNS (1)))
4078 y = force_reg (mode, y);
4079
4080 #ifdef HAVE_cc0
4081 /* Make sure if we have a canonical comparison. The RTL
4082 documentation states that canonical comparisons are required only
4083 for targets which have cc0. */
4084 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4085 #endif
4086
4087 /* Don't let both operands fail to indicate the mode. */
4088 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4089 x = force_reg (mode, x);
4090 if (mode == VOIDmode)
4091 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4092
4093 /* Handle all BLKmode compares. */
4094
4095 if (mode == BLKmode)
4096 {
4097 enum machine_mode result_mode;
4098 enum insn_code cmp_code;
4099 tree length_type;
4100 rtx libfunc;
4101 rtx result;
4102 rtx opalign
4103 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4104
4105 gcc_assert (size);
4106
4107 /* Try to use a memory block compare insn - either cmpstr
4108 or cmpmem will do. */
4109 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4110 cmp_mode != VOIDmode;
4111 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4112 {
4113 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4114 if (cmp_code == CODE_FOR_nothing)
4115 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4116 if (cmp_code == CODE_FOR_nothing)
4117 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4118 if (cmp_code == CODE_FOR_nothing)
4119 continue;
4120
4121 /* Must make sure the size fits the insn's mode. */
4122 if ((CONST_INT_P (size)
4123 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4124 || (GET_MODE_BITSIZE (GET_MODE (size))
4125 > GET_MODE_BITSIZE (cmp_mode)))
4126 continue;
4127
4128 result_mode = insn_data[cmp_code].operand[0].mode;
4129 result = gen_reg_rtx (result_mode);
4130 size = convert_to_mode (cmp_mode, size, 1);
4131 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4132
4133 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4134 *pmode = result_mode;
4135 return;
4136 }
4137
4138 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4139 goto fail;
4140
4141 /* Otherwise call a library function, memcmp. */
4142 libfunc = memcmp_libfunc;
4143 length_type = sizetype;
4144 result_mode = TYPE_MODE (integer_type_node);
4145 cmp_mode = TYPE_MODE (length_type);
4146 size = convert_to_mode (TYPE_MODE (length_type), size,
4147 TYPE_UNSIGNED (length_type));
4148
4149 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4150 result_mode, 3,
4151 XEXP (x, 0), Pmode,
4152 XEXP (y, 0), Pmode,
4153 size, cmp_mode);
4154 x = result;
4155 y = const0_rtx;
4156 mode = result_mode;
4157 methods = OPTAB_LIB_WIDEN;
4158 unsignedp = false;
4159 }
4160
4161 /* Don't allow operands to the compare to trap, as that can put the
4162 compare and branch in different basic blocks. */
4163 if (cfun->can_throw_non_call_exceptions)
4164 {
4165 if (may_trap_p (x))
4166 x = force_reg (mode, x);
4167 if (may_trap_p (y))
4168 y = force_reg (mode, y);
4169 }
4170
4171 if (GET_MODE_CLASS (mode) == MODE_CC)
4172 {
4173 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4174 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4175 return;
4176 }
4177
4178 mclass = GET_MODE_CLASS (mode);
4179 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4180 cmp_mode = mode;
4181 do
4182 {
4183 enum insn_code icode;
4184 icode = optab_handler (cbranch_optab, cmp_mode);
4185 if (icode != CODE_FOR_nothing
4186 && insn_operand_matches (icode, 0, test))
4187 {
4188 rtx last = get_last_insn ();
4189 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4190 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4191 if (op0 && op1
4192 && insn_operand_matches (icode, 1, op0)
4193 && insn_operand_matches (icode, 2, op1))
4194 {
4195 XEXP (test, 0) = op0;
4196 XEXP (test, 1) = op1;
4197 *ptest = test;
4198 *pmode = cmp_mode;
4199 return;
4200 }
4201 delete_insns_since (last);
4202 }
4203
4204 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4205 break;
4206 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4207 }
4208 while (cmp_mode != VOIDmode);
4209
4210 if (methods != OPTAB_LIB_WIDEN)
4211 goto fail;
4212
4213 if (!SCALAR_FLOAT_MODE_P (mode))
4214 {
4215 rtx result;
4216 enum machine_mode ret_mode;
4217
4218 /* Handle a libcall just for the mode we are using. */
4219 libfunc = optab_libfunc (cmp_optab, mode);
4220 gcc_assert (libfunc);
4221
4222 /* If we want unsigned, and this mode has a distinct unsigned
4223 comparison routine, use that. */
4224 if (unsignedp)
4225 {
4226 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4227 if (ulibfunc)
4228 libfunc = ulibfunc;
4229 }
4230
4231 ret_mode = targetm.libgcc_cmp_return_mode ();
4232 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4233 ret_mode, 2, x, mode, y, mode);
4234
4235 /* There are two kinds of comparison routines. Biased routines
4236 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4237 of gcc expect that the comparison operation is equivalent
4238 to the modified comparison. For signed comparisons compare the
4239 result against 1 in the biased case, and zero in the unbiased
4240 case. For unsigned comparisons always compare against 1 after
4241 biasing the unbiased result by adding 1. This gives us a way to
4242 represent LTU.
4243 The comparisons in the fixed-point helper library are always
4244 biased. */
4245 x = result;
4246 y = const1_rtx;
4247
4248 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4249 {
4250 if (unsignedp)
4251 x = plus_constant (ret_mode, result, 1);
4252 else
4253 y = const0_rtx;
4254 }
4255
4256 *pmode = word_mode;
4257 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4258 ptest, pmode);
4259 }
4260 else
4261 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4262
4263 return;
4264
4265 fail:
4266 *ptest = NULL_RTX;
4267 }
4268
4269 /* Before emitting an insn with code ICODE, make sure that X, which is going
4270 to be used for operand OPNUM of the insn, is converted from mode MODE to
4271 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4272 that it is accepted by the operand predicate. Return the new value. */
4273
4274 rtx
4275 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4276 enum machine_mode wider_mode, int unsignedp)
4277 {
4278 if (mode != wider_mode)
4279 x = convert_modes (wider_mode, mode, x, unsignedp);
4280
4281 if (!insn_operand_matches (icode, opnum, x))
4282 {
4283 if (reload_completed)
4284 return NULL_RTX;
4285 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4286 }
4287
4288 return x;
4289 }
4290
4291 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4292 we can do the branch. */
4293
4294 static void
4295 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4296 {
4297 enum machine_mode optab_mode;
4298 enum mode_class mclass;
4299 enum insn_code icode;
4300 rtx insn;
4301
4302 mclass = GET_MODE_CLASS (mode);
4303 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4304 icode = optab_handler (cbranch_optab, optab_mode);
4305
4306 gcc_assert (icode != CODE_FOR_nothing);
4307 gcc_assert (insn_operand_matches (icode, 0, test));
4308 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4309 XEXP (test, 1), label));
4310 if (prob != -1
4311 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4312 && insn
4313 && JUMP_P (insn)
4314 && any_condjump_p (insn)
4315 && !find_reg_note (insn, REG_BR_PROB, 0))
4316 add_int_reg_note (insn, REG_BR_PROB, prob);
4317 }
4318
4319 /* Generate code to compare X with Y so that the condition codes are
4320 set and to jump to LABEL if the condition is true. If X is a
4321 constant and Y is not a constant, then the comparison is swapped to
4322 ensure that the comparison RTL has the canonical form.
4323
4324 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4325 need to be widened. UNSIGNEDP is also used to select the proper
4326 branch condition code.
4327
4328 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4329
4330 MODE is the mode of the inputs (in case they are const_int).
4331
4332 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4333 It will be potentially converted into an unsigned variant based on
4334 UNSIGNEDP to select a proper jump instruction.
4335
4336 PROB is the probability of jumping to LABEL. */
4337
4338 void
4339 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4340 enum machine_mode mode, int unsignedp, rtx label,
4341 int prob)
4342 {
4343 rtx op0 = x, op1 = y;
4344 rtx test;
4345
4346 /* Swap operands and condition to ensure canonical RTL. */
4347 if (swap_commutative_operands_p (x, y)
4348 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4349 {
4350 op0 = y, op1 = x;
4351 comparison = swap_condition (comparison);
4352 }
4353
4354 /* If OP0 is still a constant, then both X and Y must be constants
4355 or the opposite comparison is not supported. Force X into a register
4356 to create canonical RTL. */
4357 if (CONSTANT_P (op0))
4358 op0 = force_reg (mode, op0);
4359
4360 if (unsignedp)
4361 comparison = unsigned_condition (comparison);
4362
4363 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4364 &test, &mode);
4365 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4366 }
4367
4368 \f
4369 /* Emit a library call comparison between floating point X and Y.
4370 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4371
4372 static void
4373 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4374 rtx *ptest, enum machine_mode *pmode)
4375 {
4376 enum rtx_code swapped = swap_condition (comparison);
4377 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4378 enum machine_mode orig_mode = GET_MODE (x);
4379 enum machine_mode mode, cmp_mode;
4380 rtx true_rtx, false_rtx;
4381 rtx value, target, insns, equiv;
4382 rtx libfunc = 0;
4383 bool reversed_p = false;
4384 cmp_mode = targetm.libgcc_cmp_return_mode ();
4385
4386 for (mode = orig_mode;
4387 mode != VOIDmode;
4388 mode = GET_MODE_WIDER_MODE (mode))
4389 {
4390 if (code_to_optab (comparison)
4391 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4392 break;
4393
4394 if (code_to_optab (swapped)
4395 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4396 {
4397 rtx tmp;
4398 tmp = x; x = y; y = tmp;
4399 comparison = swapped;
4400 break;
4401 }
4402
4403 if (code_to_optab (reversed)
4404 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4405 {
4406 comparison = reversed;
4407 reversed_p = true;
4408 break;
4409 }
4410 }
4411
4412 gcc_assert (mode != VOIDmode);
4413
4414 if (mode != orig_mode)
4415 {
4416 x = convert_to_mode (mode, x, 0);
4417 y = convert_to_mode (mode, y, 0);
4418 }
4419
4420 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4421 the RTL. The allows the RTL optimizers to delete the libcall if the
4422 condition can be determined at compile-time. */
4423 if (comparison == UNORDERED
4424 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4425 {
4426 true_rtx = const_true_rtx;
4427 false_rtx = const0_rtx;
4428 }
4429 else
4430 {
4431 switch (comparison)
4432 {
4433 case EQ:
4434 true_rtx = const0_rtx;
4435 false_rtx = const_true_rtx;
4436 break;
4437
4438 case NE:
4439 true_rtx = const_true_rtx;
4440 false_rtx = const0_rtx;
4441 break;
4442
4443 case GT:
4444 true_rtx = const1_rtx;
4445 false_rtx = const0_rtx;
4446 break;
4447
4448 case GE:
4449 true_rtx = const0_rtx;
4450 false_rtx = constm1_rtx;
4451 break;
4452
4453 case LT:
4454 true_rtx = constm1_rtx;
4455 false_rtx = const0_rtx;
4456 break;
4457
4458 case LE:
4459 true_rtx = const0_rtx;
4460 false_rtx = const1_rtx;
4461 break;
4462
4463 default:
4464 gcc_unreachable ();
4465 }
4466 }
4467
4468 if (comparison == UNORDERED)
4469 {
4470 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4471 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4472 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4473 temp, const_true_rtx, equiv);
4474 }
4475 else
4476 {
4477 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4478 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4479 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4480 equiv, true_rtx, false_rtx);
4481 }
4482
4483 start_sequence ();
4484 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4485 cmp_mode, 2, x, mode, y, mode);
4486 insns = get_insns ();
4487 end_sequence ();
4488
4489 target = gen_reg_rtx (cmp_mode);
4490 emit_libcall_block (insns, target, value, equiv);
4491
4492 if (comparison == UNORDERED
4493 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4494 || reversed_p)
4495 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4496 else
4497 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4498
4499 *pmode = cmp_mode;
4500 }
4501 \f
4502 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4503
4504 void
4505 emit_indirect_jump (rtx loc)
4506 {
4507 struct expand_operand ops[1];
4508
4509 create_address_operand (&ops[0], loc);
4510 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4511 emit_barrier ();
4512 }
4513 \f
4514 #ifdef HAVE_conditional_move
4515
4516 /* Emit a conditional move instruction if the machine supports one for that
4517 condition and machine mode.
4518
4519 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4520 the mode to use should they be constants. If it is VOIDmode, they cannot
4521 both be constants.
4522
4523 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4524 should be stored there. MODE is the mode to use should they be constants.
4525 If it is VOIDmode, they cannot both be constants.
4526
4527 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4528 is not supported. */
4529
4530 rtx
4531 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4532 enum machine_mode cmode, rtx op2, rtx op3,
4533 enum machine_mode mode, int unsignedp)
4534 {
4535 rtx tem, comparison, last;
4536 enum insn_code icode;
4537 enum rtx_code reversed;
4538
4539 /* If one operand is constant, make it the second one. Only do this
4540 if the other operand is not constant as well. */
4541
4542 if (swap_commutative_operands_p (op0, op1))
4543 {
4544 tem = op0;
4545 op0 = op1;
4546 op1 = tem;
4547 code = swap_condition (code);
4548 }
4549
4550 /* get_condition will prefer to generate LT and GT even if the old
4551 comparison was against zero, so undo that canonicalization here since
4552 comparisons against zero are cheaper. */
4553 if (code == LT && op1 == const1_rtx)
4554 code = LE, op1 = const0_rtx;
4555 else if (code == GT && op1 == constm1_rtx)
4556 code = GE, op1 = const0_rtx;
4557
4558 if (cmode == VOIDmode)
4559 cmode = GET_MODE (op0);
4560
4561 if (swap_commutative_operands_p (op2, op3)
4562 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4563 != UNKNOWN))
4564 {
4565 tem = op2;
4566 op2 = op3;
4567 op3 = tem;
4568 code = reversed;
4569 }
4570
4571 if (mode == VOIDmode)
4572 mode = GET_MODE (op2);
4573
4574 icode = direct_optab_handler (movcc_optab, mode);
4575
4576 if (icode == CODE_FOR_nothing)
4577 return 0;
4578
4579 if (!target)
4580 target = gen_reg_rtx (mode);
4581
4582 code = unsignedp ? unsigned_condition (code) : code;
4583 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4584
4585 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4586 return NULL and let the caller figure out how best to deal with this
4587 situation. */
4588 if (!COMPARISON_P (comparison))
4589 return NULL_RTX;
4590
4591 saved_pending_stack_adjust save;
4592 save_pending_stack_adjust (&save);
4593 last = get_last_insn ();
4594 do_pending_stack_adjust ();
4595 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4596 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4597 &comparison, &cmode);
4598 if (comparison)
4599 {
4600 struct expand_operand ops[4];
4601
4602 create_output_operand (&ops[0], target, mode);
4603 create_fixed_operand (&ops[1], comparison);
4604 create_input_operand (&ops[2], op2, mode);
4605 create_input_operand (&ops[3], op3, mode);
4606 if (maybe_expand_insn (icode, 4, ops))
4607 {
4608 if (ops[0].value != target)
4609 convert_move (target, ops[0].value, false);
4610 return target;
4611 }
4612 }
4613 delete_insns_since (last);
4614 restore_pending_stack_adjust (&save);
4615 return NULL_RTX;
4616 }
4617
4618 /* Return nonzero if a conditional move of mode MODE is supported.
4619
4620 This function is for combine so it can tell whether an insn that looks
4621 like a conditional move is actually supported by the hardware. If we
4622 guess wrong we lose a bit on optimization, but that's it. */
4623 /* ??? sparc64 supports conditionally moving integers values based on fp
4624 comparisons, and vice versa. How do we handle them? */
4625
4626 int
4627 can_conditionally_move_p (enum machine_mode mode)
4628 {
4629 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4630 return 1;
4631
4632 return 0;
4633 }
4634
4635 #endif /* HAVE_conditional_move */
4636
4637 /* Emit a conditional addition instruction if the machine supports one for that
4638 condition and machine mode.
4639
4640 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4641 the mode to use should they be constants. If it is VOIDmode, they cannot
4642 both be constants.
4643
4644 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4645 should be stored there. MODE is the mode to use should they be constants.
4646 If it is VOIDmode, they cannot both be constants.
4647
4648 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4649 is not supported. */
4650
4651 rtx
4652 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4653 enum machine_mode cmode, rtx op2, rtx op3,
4654 enum machine_mode mode, int unsignedp)
4655 {
4656 rtx tem, comparison, last;
4657 enum insn_code icode;
4658
4659 /* If one operand is constant, make it the second one. Only do this
4660 if the other operand is not constant as well. */
4661
4662 if (swap_commutative_operands_p (op0, op1))
4663 {
4664 tem = op0;
4665 op0 = op1;
4666 op1 = tem;
4667 code = swap_condition (code);
4668 }
4669
4670 /* get_condition will prefer to generate LT and GT even if the old
4671 comparison was against zero, so undo that canonicalization here since
4672 comparisons against zero are cheaper. */
4673 if (code == LT && op1 == const1_rtx)
4674 code = LE, op1 = const0_rtx;
4675 else if (code == GT && op1 == constm1_rtx)
4676 code = GE, op1 = const0_rtx;
4677
4678 if (cmode == VOIDmode)
4679 cmode = GET_MODE (op0);
4680
4681 if (mode == VOIDmode)
4682 mode = GET_MODE (op2);
4683
4684 icode = optab_handler (addcc_optab, mode);
4685
4686 if (icode == CODE_FOR_nothing)
4687 return 0;
4688
4689 if (!target)
4690 target = gen_reg_rtx (mode);
4691
4692 code = unsignedp ? unsigned_condition (code) : code;
4693 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4694
4695 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4696 return NULL and let the caller figure out how best to deal with this
4697 situation. */
4698 if (!COMPARISON_P (comparison))
4699 return NULL_RTX;
4700
4701 do_pending_stack_adjust ();
4702 last = get_last_insn ();
4703 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4704 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4705 &comparison, &cmode);
4706 if (comparison)
4707 {
4708 struct expand_operand ops[4];
4709
4710 create_output_operand (&ops[0], target, mode);
4711 create_fixed_operand (&ops[1], comparison);
4712 create_input_operand (&ops[2], op2, mode);
4713 create_input_operand (&ops[3], op3, mode);
4714 if (maybe_expand_insn (icode, 4, ops))
4715 {
4716 if (ops[0].value != target)
4717 convert_move (target, ops[0].value, false);
4718 return target;
4719 }
4720 }
4721 delete_insns_since (last);
4722 return NULL_RTX;
4723 }
4724 \f
4725 /* These functions attempt to generate an insn body, rather than
4726 emitting the insn, but if the gen function already emits them, we
4727 make no attempt to turn them back into naked patterns. */
4728
4729 /* Generate and return an insn body to add Y to X. */
4730
4731 rtx
4732 gen_add2_insn (rtx x, rtx y)
4733 {
4734 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4735
4736 gcc_assert (insn_operand_matches (icode, 0, x));
4737 gcc_assert (insn_operand_matches (icode, 1, x));
4738 gcc_assert (insn_operand_matches (icode, 2, y));
4739
4740 return GEN_FCN (icode) (x, x, y);
4741 }
4742
4743 /* Generate and return an insn body to add r1 and c,
4744 storing the result in r0. */
4745
4746 rtx
4747 gen_add3_insn (rtx r0, rtx r1, rtx c)
4748 {
4749 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4750
4751 if (icode == CODE_FOR_nothing
4752 || !insn_operand_matches (icode, 0, r0)
4753 || !insn_operand_matches (icode, 1, r1)
4754 || !insn_operand_matches (icode, 2, c))
4755 return NULL_RTX;
4756
4757 return GEN_FCN (icode) (r0, r1, c);
4758 }
4759
4760 int
4761 have_add2_insn (rtx x, rtx y)
4762 {
4763 enum insn_code icode;
4764
4765 gcc_assert (GET_MODE (x) != VOIDmode);
4766
4767 icode = optab_handler (add_optab, GET_MODE (x));
4768
4769 if (icode == CODE_FOR_nothing)
4770 return 0;
4771
4772 if (!insn_operand_matches (icode, 0, x)
4773 || !insn_operand_matches (icode, 1, x)
4774 || !insn_operand_matches (icode, 2, y))
4775 return 0;
4776
4777 return 1;
4778 }
4779
4780 /* Generate and return an insn body to add Y to X. */
4781
4782 rtx
4783 gen_addptr3_insn (rtx x, rtx y, rtx z)
4784 {
4785 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4786
4787 gcc_assert (insn_operand_matches (icode, 0, x));
4788 gcc_assert (insn_operand_matches (icode, 1, y));
4789 gcc_assert (insn_operand_matches (icode, 2, z));
4790
4791 return GEN_FCN (icode) (x, y, z);
4792 }
4793
4794 /* Return true if the target implements an addptr pattern and X, Y,
4795 and Z are valid for the pattern predicates. */
4796
4797 int
4798 have_addptr3_insn (rtx x, rtx y, rtx z)
4799 {
4800 enum insn_code icode;
4801
4802 gcc_assert (GET_MODE (x) != VOIDmode);
4803
4804 icode = optab_handler (addptr3_optab, GET_MODE (x));
4805
4806 if (icode == CODE_FOR_nothing)
4807 return 0;
4808
4809 if (!insn_operand_matches (icode, 0, x)
4810 || !insn_operand_matches (icode, 1, y)
4811 || !insn_operand_matches (icode, 2, z))
4812 return 0;
4813
4814 return 1;
4815 }
4816
4817 /* Generate and return an insn body to subtract Y from X. */
4818
4819 rtx
4820 gen_sub2_insn (rtx x, rtx y)
4821 {
4822 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4823
4824 gcc_assert (insn_operand_matches (icode, 0, x));
4825 gcc_assert (insn_operand_matches (icode, 1, x));
4826 gcc_assert (insn_operand_matches (icode, 2, y));
4827
4828 return GEN_FCN (icode) (x, x, y);
4829 }
4830
4831 /* Generate and return an insn body to subtract r1 and c,
4832 storing the result in r0. */
4833
4834 rtx
4835 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4836 {
4837 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4838
4839 if (icode == CODE_FOR_nothing
4840 || !insn_operand_matches (icode, 0, r0)
4841 || !insn_operand_matches (icode, 1, r1)
4842 || !insn_operand_matches (icode, 2, c))
4843 return NULL_RTX;
4844
4845 return GEN_FCN (icode) (r0, r1, c);
4846 }
4847
4848 int
4849 have_sub2_insn (rtx x, rtx y)
4850 {
4851 enum insn_code icode;
4852
4853 gcc_assert (GET_MODE (x) != VOIDmode);
4854
4855 icode = optab_handler (sub_optab, GET_MODE (x));
4856
4857 if (icode == CODE_FOR_nothing)
4858 return 0;
4859
4860 if (!insn_operand_matches (icode, 0, x)
4861 || !insn_operand_matches (icode, 1, x)
4862 || !insn_operand_matches (icode, 2, y))
4863 return 0;
4864
4865 return 1;
4866 }
4867
4868 /* Generate the body of an instruction to copy Y into X.
4869 It may be a list of insns, if one insn isn't enough. */
4870
4871 rtx
4872 gen_move_insn (rtx x, rtx y)
4873 {
4874 rtx seq;
4875
4876 start_sequence ();
4877 emit_move_insn_1 (x, y);
4878 seq = get_insns ();
4879 end_sequence ();
4880 return seq;
4881 }
4882 \f
4883 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4884 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4885 no such operation exists, CODE_FOR_nothing will be returned. */
4886
4887 enum insn_code
4888 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4889 int unsignedp)
4890 {
4891 convert_optab tab;
4892 #ifdef HAVE_ptr_extend
4893 if (unsignedp < 0)
4894 return CODE_FOR_ptr_extend;
4895 #endif
4896
4897 tab = unsignedp ? zext_optab : sext_optab;
4898 return convert_optab_handler (tab, to_mode, from_mode);
4899 }
4900
4901 /* Generate the body of an insn to extend Y (with mode MFROM)
4902 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4903
4904 rtx
4905 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4906 enum machine_mode mfrom, int unsignedp)
4907 {
4908 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4909 return GEN_FCN (icode) (x, y);
4910 }
4911 \f
4912 /* can_fix_p and can_float_p say whether the target machine
4913 can directly convert a given fixed point type to
4914 a given floating point type, or vice versa.
4915 The returned value is the CODE_FOR_... value to use,
4916 or CODE_FOR_nothing if these modes cannot be directly converted.
4917
4918 *TRUNCP_PTR is set to 1 if it is necessary to output
4919 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4920
4921 static enum insn_code
4922 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4923 int unsignedp, int *truncp_ptr)
4924 {
4925 convert_optab tab;
4926 enum insn_code icode;
4927
4928 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4929 icode = convert_optab_handler (tab, fixmode, fltmode);
4930 if (icode != CODE_FOR_nothing)
4931 {
4932 *truncp_ptr = 0;
4933 return icode;
4934 }
4935
4936 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4937 for this to work. We need to rework the fix* and ftrunc* patterns
4938 and documentation. */
4939 tab = unsignedp ? ufix_optab : sfix_optab;
4940 icode = convert_optab_handler (tab, fixmode, fltmode);
4941 if (icode != CODE_FOR_nothing
4942 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4943 {
4944 *truncp_ptr = 1;
4945 return icode;
4946 }
4947
4948 *truncp_ptr = 0;
4949 return CODE_FOR_nothing;
4950 }
4951
4952 enum insn_code
4953 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4954 int unsignedp)
4955 {
4956 convert_optab tab;
4957
4958 tab = unsignedp ? ufloat_optab : sfloat_optab;
4959 return convert_optab_handler (tab, fltmode, fixmode);
4960 }
4961
4962 /* Function supportable_convert_operation
4963
4964 Check whether an operation represented by the code CODE is a
4965 convert operation that is supported by the target platform in
4966 vector form (i.e., when operating on arguments of type VECTYPE_IN
4967 producing a result of type VECTYPE_OUT).
4968
4969 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4970 This function checks if these operations are supported
4971 by the target platform either directly (via vector tree-codes), or via
4972 target builtins.
4973
4974 Output:
4975 - CODE1 is code of vector operation to be used when
4976 vectorizing the operation, if available.
4977 - DECL is decl of target builtin functions to be used
4978 when vectorizing the operation, if available. In this case,
4979 CODE1 is CALL_EXPR. */
4980
4981 bool
4982 supportable_convert_operation (enum tree_code code,
4983 tree vectype_out, tree vectype_in,
4984 tree *decl, enum tree_code *code1)
4985 {
4986 enum machine_mode m1,m2;
4987 int truncp;
4988
4989 m1 = TYPE_MODE (vectype_out);
4990 m2 = TYPE_MODE (vectype_in);
4991
4992 /* First check if we can done conversion directly. */
4993 if ((code == FIX_TRUNC_EXPR
4994 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4995 != CODE_FOR_nothing)
4996 || (code == FLOAT_EXPR
4997 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4998 != CODE_FOR_nothing))
4999 {
5000 *code1 = code;
5001 return true;
5002 }
5003
5004 /* Now check for builtin. */
5005 if (targetm.vectorize.builtin_conversion
5006 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
5007 {
5008 *code1 = CALL_EXPR;
5009 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
5010 return true;
5011 }
5012 return false;
5013 }
5014
5015 \f
5016 /* Generate code to convert FROM to floating point
5017 and store in TO. FROM must be fixed point and not VOIDmode.
5018 UNSIGNEDP nonzero means regard FROM as unsigned.
5019 Normally this is done by correcting the final value
5020 if it is negative. */
5021
5022 void
5023 expand_float (rtx to, rtx from, int unsignedp)
5024 {
5025 enum insn_code icode;
5026 rtx target = to;
5027 enum machine_mode fmode, imode;
5028 bool can_do_signed = false;
5029
5030 /* Crash now, because we won't be able to decide which mode to use. */
5031 gcc_assert (GET_MODE (from) != VOIDmode);
5032
5033 /* Look for an insn to do the conversion. Do it in the specified
5034 modes if possible; otherwise convert either input, output or both to
5035 wider mode. If the integer mode is wider than the mode of FROM,
5036 we can do the conversion signed even if the input is unsigned. */
5037
5038 for (fmode = GET_MODE (to); fmode != VOIDmode;
5039 fmode = GET_MODE_WIDER_MODE (fmode))
5040 for (imode = GET_MODE (from); imode != VOIDmode;
5041 imode = GET_MODE_WIDER_MODE (imode))
5042 {
5043 int doing_unsigned = unsignedp;
5044
5045 if (fmode != GET_MODE (to)
5046 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
5047 continue;
5048
5049 icode = can_float_p (fmode, imode, unsignedp);
5050 if (icode == CODE_FOR_nothing && unsignedp)
5051 {
5052 enum insn_code scode = can_float_p (fmode, imode, 0);
5053 if (scode != CODE_FOR_nothing)
5054 can_do_signed = true;
5055 if (imode != GET_MODE (from))
5056 icode = scode, doing_unsigned = 0;
5057 }
5058
5059 if (icode != CODE_FOR_nothing)
5060 {
5061 if (imode != GET_MODE (from))
5062 from = convert_to_mode (imode, from, unsignedp);
5063
5064 if (fmode != GET_MODE (to))
5065 target = gen_reg_rtx (fmode);
5066
5067 emit_unop_insn (icode, target, from,
5068 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5069
5070 if (target != to)
5071 convert_move (to, target, 0);
5072 return;
5073 }
5074 }
5075
5076 /* Unsigned integer, and no way to convert directly. Convert as signed,
5077 then unconditionally adjust the result. */
5078 if (unsignedp && can_do_signed)
5079 {
5080 rtx label = gen_label_rtx ();
5081 rtx temp;
5082 REAL_VALUE_TYPE offset;
5083
5084 /* Look for a usable floating mode FMODE wider than the source and at
5085 least as wide as the target. Using FMODE will avoid rounding woes
5086 with unsigned values greater than the signed maximum value. */
5087
5088 for (fmode = GET_MODE (to); fmode != VOIDmode;
5089 fmode = GET_MODE_WIDER_MODE (fmode))
5090 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5091 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5092 break;
5093
5094 if (fmode == VOIDmode)
5095 {
5096 /* There is no such mode. Pretend the target is wide enough. */
5097 fmode = GET_MODE (to);
5098
5099 /* Avoid double-rounding when TO is narrower than FROM. */
5100 if ((significand_size (fmode) + 1)
5101 < GET_MODE_PRECISION (GET_MODE (from)))
5102 {
5103 rtx temp1;
5104 rtx neglabel = gen_label_rtx ();
5105
5106 /* Don't use TARGET if it isn't a register, is a hard register,
5107 or is the wrong mode. */
5108 if (!REG_P (target)
5109 || REGNO (target) < FIRST_PSEUDO_REGISTER
5110 || GET_MODE (target) != fmode)
5111 target = gen_reg_rtx (fmode);
5112
5113 imode = GET_MODE (from);
5114 do_pending_stack_adjust ();
5115
5116 /* Test whether the sign bit is set. */
5117 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5118 0, neglabel);
5119
5120 /* The sign bit is not set. Convert as signed. */
5121 expand_float (target, from, 0);
5122 emit_jump_insn (gen_jump (label));
5123 emit_barrier ();
5124
5125 /* The sign bit is set.
5126 Convert to a usable (positive signed) value by shifting right
5127 one bit, while remembering if a nonzero bit was shifted
5128 out; i.e., compute (from & 1) | (from >> 1). */
5129
5130 emit_label (neglabel);
5131 temp = expand_binop (imode, and_optab, from, const1_rtx,
5132 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5133 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5134 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5135 OPTAB_LIB_WIDEN);
5136 expand_float (target, temp, 0);
5137
5138 /* Multiply by 2 to undo the shift above. */
5139 temp = expand_binop (fmode, add_optab, target, target,
5140 target, 0, OPTAB_LIB_WIDEN);
5141 if (temp != target)
5142 emit_move_insn (target, temp);
5143
5144 do_pending_stack_adjust ();
5145 emit_label (label);
5146 goto done;
5147 }
5148 }
5149
5150 /* If we are about to do some arithmetic to correct for an
5151 unsigned operand, do it in a pseudo-register. */
5152
5153 if (GET_MODE (to) != fmode
5154 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5155 target = gen_reg_rtx (fmode);
5156
5157 /* Convert as signed integer to floating. */
5158 expand_float (target, from, 0);
5159
5160 /* If FROM is negative (and therefore TO is negative),
5161 correct its value by 2**bitwidth. */
5162
5163 do_pending_stack_adjust ();
5164 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5165 0, label);
5166
5167
5168 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5169 temp = expand_binop (fmode, add_optab, target,
5170 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5171 target, 0, OPTAB_LIB_WIDEN);
5172 if (temp != target)
5173 emit_move_insn (target, temp);
5174
5175 do_pending_stack_adjust ();
5176 emit_label (label);
5177 goto done;
5178 }
5179
5180 /* No hardware instruction available; call a library routine. */
5181 {
5182 rtx libfunc;
5183 rtx insns;
5184 rtx value;
5185 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5186
5187 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5188 from = convert_to_mode (SImode, from, unsignedp);
5189
5190 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5191 gcc_assert (libfunc);
5192
5193 start_sequence ();
5194
5195 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5196 GET_MODE (to), 1, from,
5197 GET_MODE (from));
5198 insns = get_insns ();
5199 end_sequence ();
5200
5201 emit_libcall_block (insns, target, value,
5202 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5203 GET_MODE (to), from));
5204 }
5205
5206 done:
5207
5208 /* Copy result to requested destination
5209 if we have been computing in a temp location. */
5210
5211 if (target != to)
5212 {
5213 if (GET_MODE (target) == GET_MODE (to))
5214 emit_move_insn (to, target);
5215 else
5216 convert_move (to, target, 0);
5217 }
5218 }
5219 \f
5220 /* Generate code to convert FROM to fixed point and store in TO. FROM
5221 must be floating point. */
5222
5223 void
5224 expand_fix (rtx to, rtx from, int unsignedp)
5225 {
5226 enum insn_code icode;
5227 rtx target = to;
5228 enum machine_mode fmode, imode;
5229 int must_trunc = 0;
5230
5231 /* We first try to find a pair of modes, one real and one integer, at
5232 least as wide as FROM and TO, respectively, in which we can open-code
5233 this conversion. If the integer mode is wider than the mode of TO,
5234 we can do the conversion either signed or unsigned. */
5235
5236 for (fmode = GET_MODE (from); fmode != VOIDmode;
5237 fmode = GET_MODE_WIDER_MODE (fmode))
5238 for (imode = GET_MODE (to); imode != VOIDmode;
5239 imode = GET_MODE_WIDER_MODE (imode))
5240 {
5241 int doing_unsigned = unsignedp;
5242
5243 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5244 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5245 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5246
5247 if (icode != CODE_FOR_nothing)
5248 {
5249 rtx last = get_last_insn ();
5250 if (fmode != GET_MODE (from))
5251 from = convert_to_mode (fmode, from, 0);
5252
5253 if (must_trunc)
5254 {
5255 rtx temp = gen_reg_rtx (GET_MODE (from));
5256 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5257 temp, 0);
5258 }
5259
5260 if (imode != GET_MODE (to))
5261 target = gen_reg_rtx (imode);
5262
5263 if (maybe_emit_unop_insn (icode, target, from,
5264 doing_unsigned ? UNSIGNED_FIX : FIX))
5265 {
5266 if (target != to)
5267 convert_move (to, target, unsignedp);
5268 return;
5269 }
5270 delete_insns_since (last);
5271 }
5272 }
5273
5274 /* For an unsigned conversion, there is one more way to do it.
5275 If we have a signed conversion, we generate code that compares
5276 the real value to the largest representable positive number. If if
5277 is smaller, the conversion is done normally. Otherwise, subtract
5278 one plus the highest signed number, convert, and add it back.
5279
5280 We only need to check all real modes, since we know we didn't find
5281 anything with a wider integer mode.
5282
5283 This code used to extend FP value into mode wider than the destination.
5284 This is needed for decimal float modes which cannot accurately
5285 represent one plus the highest signed number of the same size, but
5286 not for binary modes. Consider, for instance conversion from SFmode
5287 into DImode.
5288
5289 The hot path through the code is dealing with inputs smaller than 2^63
5290 and doing just the conversion, so there is no bits to lose.
5291
5292 In the other path we know the value is positive in the range 2^63..2^64-1
5293 inclusive. (as for other input overflow happens and result is undefined)
5294 So we know that the most important bit set in mantissa corresponds to
5295 2^63. The subtraction of 2^63 should not generate any rounding as it
5296 simply clears out that bit. The rest is trivial. */
5297
5298 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5299 for (fmode = GET_MODE (from); fmode != VOIDmode;
5300 fmode = GET_MODE_WIDER_MODE (fmode))
5301 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5302 && (!DECIMAL_FLOAT_MODE_P (fmode)
5303 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5304 {
5305 int bitsize;
5306 REAL_VALUE_TYPE offset;
5307 rtx limit, lab1, lab2, insn;
5308
5309 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5310 real_2expN (&offset, bitsize - 1, fmode);
5311 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5312 lab1 = gen_label_rtx ();
5313 lab2 = gen_label_rtx ();
5314
5315 if (fmode != GET_MODE (from))
5316 from = convert_to_mode (fmode, from, 0);
5317
5318 /* See if we need to do the subtraction. */
5319 do_pending_stack_adjust ();
5320 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5321 0, lab1);
5322
5323 /* If not, do the signed "fix" and branch around fixup code. */
5324 expand_fix (to, from, 0);
5325 emit_jump_insn (gen_jump (lab2));
5326 emit_barrier ();
5327
5328 /* Otherwise, subtract 2**(N-1), convert to signed number,
5329 then add 2**(N-1). Do the addition using XOR since this
5330 will often generate better code. */
5331 emit_label (lab1);
5332 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5333 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5334 expand_fix (to, target, 0);
5335 target = expand_binop (GET_MODE (to), xor_optab, to,
5336 gen_int_mode
5337 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5338 GET_MODE (to)),
5339 to, 1, OPTAB_LIB_WIDEN);
5340
5341 if (target != to)
5342 emit_move_insn (to, target);
5343
5344 emit_label (lab2);
5345
5346 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5347 {
5348 /* Make a place for a REG_NOTE and add it. */
5349 insn = emit_move_insn (to, to);
5350 set_dst_reg_note (insn, REG_EQUAL,
5351 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5352 copy_rtx (from)),
5353 to);
5354 }
5355
5356 return;
5357 }
5358
5359 /* We can't do it with an insn, so use a library call. But first ensure
5360 that the mode of TO is at least as wide as SImode, since those are the
5361 only library calls we know about. */
5362
5363 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5364 {
5365 target = gen_reg_rtx (SImode);
5366
5367 expand_fix (target, from, unsignedp);
5368 }
5369 else
5370 {
5371 rtx insns;
5372 rtx value;
5373 rtx libfunc;
5374
5375 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5376 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5377 gcc_assert (libfunc);
5378
5379 start_sequence ();
5380
5381 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5382 GET_MODE (to), 1, from,
5383 GET_MODE (from));
5384 insns = get_insns ();
5385 end_sequence ();
5386
5387 emit_libcall_block (insns, target, value,
5388 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5389 GET_MODE (to), from));
5390 }
5391
5392 if (target != to)
5393 {
5394 if (GET_MODE (to) == GET_MODE (target))
5395 emit_move_insn (to, target);
5396 else
5397 convert_move (to, target, 0);
5398 }
5399 }
5400
5401 /* Generate code to convert FROM or TO a fixed-point.
5402 If UINTP is true, either TO or FROM is an unsigned integer.
5403 If SATP is true, we need to saturate the result. */
5404
5405 void
5406 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5407 {
5408 enum machine_mode to_mode = GET_MODE (to);
5409 enum machine_mode from_mode = GET_MODE (from);
5410 convert_optab tab;
5411 enum rtx_code this_code;
5412 enum insn_code code;
5413 rtx insns, value;
5414 rtx libfunc;
5415
5416 if (to_mode == from_mode)
5417 {
5418 emit_move_insn (to, from);
5419 return;
5420 }
5421
5422 if (uintp)
5423 {
5424 tab = satp ? satfractuns_optab : fractuns_optab;
5425 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5426 }
5427 else
5428 {
5429 tab = satp ? satfract_optab : fract_optab;
5430 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5431 }
5432 code = convert_optab_handler (tab, to_mode, from_mode);
5433 if (code != CODE_FOR_nothing)
5434 {
5435 emit_unop_insn (code, to, from, this_code);
5436 return;
5437 }
5438
5439 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5440 gcc_assert (libfunc);
5441
5442 start_sequence ();
5443 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5444 1, from, from_mode);
5445 insns = get_insns ();
5446 end_sequence ();
5447
5448 emit_libcall_block (insns, to, value,
5449 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5450 }
5451
5452 /* Generate code to convert FROM to fixed point and store in TO. FROM
5453 must be floating point, TO must be signed. Use the conversion optab
5454 TAB to do the conversion. */
5455
5456 bool
5457 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5458 {
5459 enum insn_code icode;
5460 rtx target = to;
5461 enum machine_mode fmode, imode;
5462
5463 /* We first try to find a pair of modes, one real and one integer, at
5464 least as wide as FROM and TO, respectively, in which we can open-code
5465 this conversion. If the integer mode is wider than the mode of TO,
5466 we can do the conversion either signed or unsigned. */
5467
5468 for (fmode = GET_MODE (from); fmode != VOIDmode;
5469 fmode = GET_MODE_WIDER_MODE (fmode))
5470 for (imode = GET_MODE (to); imode != VOIDmode;
5471 imode = GET_MODE_WIDER_MODE (imode))
5472 {
5473 icode = convert_optab_handler (tab, imode, fmode);
5474 if (icode != CODE_FOR_nothing)
5475 {
5476 rtx last = get_last_insn ();
5477 if (fmode != GET_MODE (from))
5478 from = convert_to_mode (fmode, from, 0);
5479
5480 if (imode != GET_MODE (to))
5481 target = gen_reg_rtx (imode);
5482
5483 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5484 {
5485 delete_insns_since (last);
5486 continue;
5487 }
5488 if (target != to)
5489 convert_move (to, target, 0);
5490 return true;
5491 }
5492 }
5493
5494 return false;
5495 }
5496 \f
5497 /* Report whether we have an instruction to perform the operation
5498 specified by CODE on operands of mode MODE. */
5499 int
5500 have_insn_for (enum rtx_code code, enum machine_mode mode)
5501 {
5502 return (code_to_optab (code)
5503 && (optab_handler (code_to_optab (code), mode)
5504 != CODE_FOR_nothing));
5505 }
5506
5507 /* Initialize the libfunc fields of an entire group of entries in some
5508 optab. Each entry is set equal to a string consisting of a leading
5509 pair of underscores followed by a generic operation name followed by
5510 a mode name (downshifted to lowercase) followed by a single character
5511 representing the number of operands for the given operation (which is
5512 usually one of the characters '2', '3', or '4').
5513
5514 OPTABLE is the table in which libfunc fields are to be initialized.
5515 OPNAME is the generic (string) name of the operation.
5516 SUFFIX is the character which specifies the number of operands for
5517 the given generic operation.
5518 MODE is the mode to generate for.
5519 */
5520
5521 static void
5522 gen_libfunc (optab optable, const char *opname, int suffix,
5523 enum machine_mode mode)
5524 {
5525 unsigned opname_len = strlen (opname);
5526 const char *mname = GET_MODE_NAME (mode);
5527 unsigned mname_len = strlen (mname);
5528 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5529 int len = prefix_len + opname_len + mname_len + 1 + 1;
5530 char *libfunc_name = XALLOCAVEC (char, len);
5531 char *p;
5532 const char *q;
5533
5534 p = libfunc_name;
5535 *p++ = '_';
5536 *p++ = '_';
5537 if (targetm.libfunc_gnu_prefix)
5538 {
5539 *p++ = 'g';
5540 *p++ = 'n';
5541 *p++ = 'u';
5542 *p++ = '_';
5543 }
5544 for (q = opname; *q; )
5545 *p++ = *q++;
5546 for (q = mname; *q; q++)
5547 *p++ = TOLOWER (*q);
5548 *p++ = suffix;
5549 *p = '\0';
5550
5551 set_optab_libfunc (optable, mode,
5552 ggc_alloc_string (libfunc_name, p - libfunc_name));
5553 }
5554
5555 /* Like gen_libfunc, but verify that integer operation is involved. */
5556
5557 void
5558 gen_int_libfunc (optab optable, const char *opname, char suffix,
5559 enum machine_mode mode)
5560 {
5561 int maxsize = 2 * BITS_PER_WORD;
5562 int minsize = BITS_PER_WORD;
5563
5564 if (GET_MODE_CLASS (mode) != MODE_INT)
5565 return;
5566 if (maxsize < LONG_LONG_TYPE_SIZE)
5567 maxsize = LONG_LONG_TYPE_SIZE;
5568 if (minsize > INT_TYPE_SIZE
5569 && (trapv_binoptab_p (optable)
5570 || trapv_unoptab_p (optable)))
5571 minsize = INT_TYPE_SIZE;
5572 if (GET_MODE_BITSIZE (mode) < minsize
5573 || GET_MODE_BITSIZE (mode) > maxsize)
5574 return;
5575 gen_libfunc (optable, opname, suffix, mode);
5576 }
5577
5578 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5579
5580 void
5581 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5582 enum machine_mode mode)
5583 {
5584 char *dec_opname;
5585
5586 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5587 gen_libfunc (optable, opname, suffix, mode);
5588 if (DECIMAL_FLOAT_MODE_P (mode))
5589 {
5590 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5591 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5592 depending on the low level floating format used. */
5593 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5594 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5595 gen_libfunc (optable, dec_opname, suffix, mode);
5596 }
5597 }
5598
5599 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5600
5601 void
5602 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5603 enum machine_mode mode)
5604 {
5605 if (!ALL_FIXED_POINT_MODE_P (mode))
5606 return;
5607 gen_libfunc (optable, opname, suffix, mode);
5608 }
5609
5610 /* Like gen_libfunc, but verify that signed fixed-point operation is
5611 involved. */
5612
5613 void
5614 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5615 enum machine_mode mode)
5616 {
5617 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5618 return;
5619 gen_libfunc (optable, opname, suffix, mode);
5620 }
5621
5622 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5623 involved. */
5624
5625 void
5626 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5627 enum machine_mode mode)
5628 {
5629 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5630 return;
5631 gen_libfunc (optable, opname, suffix, mode);
5632 }
5633
5634 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5635
5636 void
5637 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5638 enum machine_mode mode)
5639 {
5640 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5641 gen_fp_libfunc (optable, name, suffix, mode);
5642 if (INTEGRAL_MODE_P (mode))
5643 gen_int_libfunc (optable, name, suffix, mode);
5644 }
5645
5646 /* Like gen_libfunc, but verify that FP or INT operation is involved
5647 and add 'v' suffix for integer operation. */
5648
5649 void
5650 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5651 enum machine_mode mode)
5652 {
5653 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5654 gen_fp_libfunc (optable, name, suffix, mode);
5655 if (GET_MODE_CLASS (mode) == MODE_INT)
5656 {
5657 int len = strlen (name);
5658 char *v_name = XALLOCAVEC (char, len + 2);
5659 strcpy (v_name, name);
5660 v_name[len] = 'v';
5661 v_name[len + 1] = 0;
5662 gen_int_libfunc (optable, v_name, suffix, mode);
5663 }
5664 }
5665
5666 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5667 involved. */
5668
5669 void
5670 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5671 enum machine_mode mode)
5672 {
5673 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5674 gen_fp_libfunc (optable, name, suffix, mode);
5675 if (INTEGRAL_MODE_P (mode))
5676 gen_int_libfunc (optable, name, suffix, mode);
5677 if (ALL_FIXED_POINT_MODE_P (mode))
5678 gen_fixed_libfunc (optable, name, suffix, mode);
5679 }
5680
5681 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5682 involved. */
5683
5684 void
5685 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5686 enum machine_mode mode)
5687 {
5688 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5689 gen_fp_libfunc (optable, name, suffix, mode);
5690 if (INTEGRAL_MODE_P (mode))
5691 gen_int_libfunc (optable, name, suffix, mode);
5692 if (SIGNED_FIXED_POINT_MODE_P (mode))
5693 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5694 }
5695
5696 /* Like gen_libfunc, but verify that INT or FIXED operation is
5697 involved. */
5698
5699 void
5700 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5701 enum machine_mode mode)
5702 {
5703 if (INTEGRAL_MODE_P (mode))
5704 gen_int_libfunc (optable, name, suffix, mode);
5705 if (ALL_FIXED_POINT_MODE_P (mode))
5706 gen_fixed_libfunc (optable, name, suffix, mode);
5707 }
5708
5709 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5710 involved. */
5711
5712 void
5713 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5714 enum machine_mode mode)
5715 {
5716 if (INTEGRAL_MODE_P (mode))
5717 gen_int_libfunc (optable, name, suffix, mode);
5718 if (SIGNED_FIXED_POINT_MODE_P (mode))
5719 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5720 }
5721
5722 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5723 involved. */
5724
5725 void
5726 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5727 enum machine_mode mode)
5728 {
5729 if (INTEGRAL_MODE_P (mode))
5730 gen_int_libfunc (optable, name, suffix, mode);
5731 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5732 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5733 }
5734
5735 /* Initialize the libfunc fields of an entire group of entries of an
5736 inter-mode-class conversion optab. The string formation rules are
5737 similar to the ones for init_libfuncs, above, but instead of having
5738 a mode name and an operand count these functions have two mode names
5739 and no operand count. */
5740
5741 void
5742 gen_interclass_conv_libfunc (convert_optab tab,
5743 const char *opname,
5744 enum machine_mode tmode,
5745 enum machine_mode fmode)
5746 {
5747 size_t opname_len = strlen (opname);
5748 size_t mname_len = 0;
5749
5750 const char *fname, *tname;
5751 const char *q;
5752 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5753 char *libfunc_name, *suffix;
5754 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5755 char *p;
5756
5757 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5758 depends on which underlying decimal floating point format is used. */
5759 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5760
5761 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5762
5763 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5764 nondec_name[0] = '_';
5765 nondec_name[1] = '_';
5766 if (targetm.libfunc_gnu_prefix)
5767 {
5768 nondec_name[2] = 'g';
5769 nondec_name[3] = 'n';
5770 nondec_name[4] = 'u';
5771 nondec_name[5] = '_';
5772 }
5773
5774 memcpy (&nondec_name[prefix_len], opname, opname_len);
5775 nondec_suffix = nondec_name + opname_len + prefix_len;
5776
5777 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5778 dec_name[0] = '_';
5779 dec_name[1] = '_';
5780 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5781 memcpy (&dec_name[2+dec_len], opname, opname_len);
5782 dec_suffix = dec_name + dec_len + opname_len + 2;
5783
5784 fname = GET_MODE_NAME (fmode);
5785 tname = GET_MODE_NAME (tmode);
5786
5787 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5788 {
5789 libfunc_name = dec_name;
5790 suffix = dec_suffix;
5791 }
5792 else
5793 {
5794 libfunc_name = nondec_name;
5795 suffix = nondec_suffix;
5796 }
5797
5798 p = suffix;
5799 for (q = fname; *q; p++, q++)
5800 *p = TOLOWER (*q);
5801 for (q = tname; *q; p++, q++)
5802 *p = TOLOWER (*q);
5803
5804 *p = '\0';
5805
5806 set_conv_libfunc (tab, tmode, fmode,
5807 ggc_alloc_string (libfunc_name, p - libfunc_name));
5808 }
5809
5810 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5811 int->fp conversion. */
5812
5813 void
5814 gen_int_to_fp_conv_libfunc (convert_optab tab,
5815 const char *opname,
5816 enum machine_mode tmode,
5817 enum machine_mode fmode)
5818 {
5819 if (GET_MODE_CLASS (fmode) != MODE_INT)
5820 return;
5821 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5822 return;
5823 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5824 }
5825
5826 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5827 naming scheme. */
5828
5829 void
5830 gen_ufloat_conv_libfunc (convert_optab tab,
5831 const char *opname ATTRIBUTE_UNUSED,
5832 enum machine_mode tmode,
5833 enum machine_mode fmode)
5834 {
5835 if (DECIMAL_FLOAT_MODE_P (tmode))
5836 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5837 else
5838 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5839 }
5840
5841 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5842 fp->int conversion. */
5843
5844 void
5845 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5846 const char *opname,
5847 enum machine_mode tmode,
5848 enum machine_mode fmode)
5849 {
5850 if (GET_MODE_CLASS (fmode) != MODE_INT)
5851 return;
5852 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5853 return;
5854 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5855 }
5856
5857 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5858 fp->int conversion with no decimal floating point involved. */
5859
5860 void
5861 gen_fp_to_int_conv_libfunc (convert_optab tab,
5862 const char *opname,
5863 enum machine_mode tmode,
5864 enum machine_mode fmode)
5865 {
5866 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5867 return;
5868 if (GET_MODE_CLASS (tmode) != MODE_INT)
5869 return;
5870 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5871 }
5872
5873 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5874 The string formation rules are
5875 similar to the ones for init_libfunc, above. */
5876
5877 void
5878 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5879 enum machine_mode tmode, enum machine_mode fmode)
5880 {
5881 size_t opname_len = strlen (opname);
5882 size_t mname_len = 0;
5883
5884 const char *fname, *tname;
5885 const char *q;
5886 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5887 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5888 char *libfunc_name, *suffix;
5889 char *p;
5890
5891 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5892 depends on which underlying decimal floating point format is used. */
5893 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5894
5895 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5896
5897 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5898 nondec_name[0] = '_';
5899 nondec_name[1] = '_';
5900 if (targetm.libfunc_gnu_prefix)
5901 {
5902 nondec_name[2] = 'g';
5903 nondec_name[3] = 'n';
5904 nondec_name[4] = 'u';
5905 nondec_name[5] = '_';
5906 }
5907 memcpy (&nondec_name[prefix_len], opname, opname_len);
5908 nondec_suffix = nondec_name + opname_len + prefix_len;
5909
5910 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5911 dec_name[0] = '_';
5912 dec_name[1] = '_';
5913 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5914 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5915 dec_suffix = dec_name + dec_len + opname_len + 2;
5916
5917 fname = GET_MODE_NAME (fmode);
5918 tname = GET_MODE_NAME (tmode);
5919
5920 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5921 {
5922 libfunc_name = dec_name;
5923 suffix = dec_suffix;
5924 }
5925 else
5926 {
5927 libfunc_name = nondec_name;
5928 suffix = nondec_suffix;
5929 }
5930
5931 p = suffix;
5932 for (q = fname; *q; p++, q++)
5933 *p = TOLOWER (*q);
5934 for (q = tname; *q; p++, q++)
5935 *p = TOLOWER (*q);
5936
5937 *p++ = '2';
5938 *p = '\0';
5939
5940 set_conv_libfunc (tab, tmode, fmode,
5941 ggc_alloc_string (libfunc_name, p - libfunc_name));
5942 }
5943
5944 /* Pick proper libcall for trunc_optab. We need to chose if we do
5945 truncation or extension and interclass or intraclass. */
5946
5947 void
5948 gen_trunc_conv_libfunc (convert_optab tab,
5949 const char *opname,
5950 enum machine_mode tmode,
5951 enum machine_mode fmode)
5952 {
5953 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5954 return;
5955 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5956 return;
5957 if (tmode == fmode)
5958 return;
5959
5960 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5961 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5962 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5963
5964 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5965 return;
5966
5967 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5968 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5969 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5970 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5971 }
5972
5973 /* Pick proper libcall for extend_optab. We need to chose if we do
5974 truncation or extension and interclass or intraclass. */
5975
5976 void
5977 gen_extend_conv_libfunc (convert_optab tab,
5978 const char *opname ATTRIBUTE_UNUSED,
5979 enum machine_mode tmode,
5980 enum machine_mode fmode)
5981 {
5982 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5983 return;
5984 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5985 return;
5986 if (tmode == fmode)
5987 return;
5988
5989 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5990 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5991 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5992
5993 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5994 return;
5995
5996 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5997 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5998 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5999 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6000 }
6001
6002 /* Pick proper libcall for fract_optab. We need to chose if we do
6003 interclass or intraclass. */
6004
6005 void
6006 gen_fract_conv_libfunc (convert_optab tab,
6007 const char *opname,
6008 enum machine_mode tmode,
6009 enum machine_mode fmode)
6010 {
6011 if (tmode == fmode)
6012 return;
6013 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
6014 return;
6015
6016 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6017 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6018 else
6019 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6020 }
6021
6022 /* Pick proper libcall for fractuns_optab. */
6023
6024 void
6025 gen_fractuns_conv_libfunc (convert_optab tab,
6026 const char *opname,
6027 enum machine_mode tmode,
6028 enum machine_mode fmode)
6029 {
6030 if (tmode == fmode)
6031 return;
6032 /* One mode must be a fixed-point mode, and the other must be an integer
6033 mode. */
6034 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6035 || (ALL_FIXED_POINT_MODE_P (fmode)
6036 && GET_MODE_CLASS (tmode) == MODE_INT)))
6037 return;
6038
6039 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6040 }
6041
6042 /* Pick proper libcall for satfract_optab. We need to chose if we do
6043 interclass or intraclass. */
6044
6045 void
6046 gen_satfract_conv_libfunc (convert_optab tab,
6047 const char *opname,
6048 enum machine_mode tmode,
6049 enum machine_mode fmode)
6050 {
6051 if (tmode == fmode)
6052 return;
6053 /* TMODE must be a fixed-point mode. */
6054 if (!ALL_FIXED_POINT_MODE_P (tmode))
6055 return;
6056
6057 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6058 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6059 else
6060 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6061 }
6062
6063 /* Pick proper libcall for satfractuns_optab. */
6064
6065 void
6066 gen_satfractuns_conv_libfunc (convert_optab tab,
6067 const char *opname,
6068 enum machine_mode tmode,
6069 enum machine_mode fmode)
6070 {
6071 if (tmode == fmode)
6072 return;
6073 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6074 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6075 return;
6076
6077 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6078 }
6079
6080 /* A table of previously-created libfuncs, hashed by name. */
6081 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6082
6083 /* Hashtable callbacks for libfunc_decls. */
6084
6085 static hashval_t
6086 libfunc_decl_hash (const void *entry)
6087 {
6088 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6089 }
6090
6091 static int
6092 libfunc_decl_eq (const void *entry1, const void *entry2)
6093 {
6094 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6095 }
6096
6097 /* Build a decl for a libfunc named NAME. */
6098
6099 tree
6100 build_libfunc_function (const char *name)
6101 {
6102 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6103 get_identifier (name),
6104 build_function_type (integer_type_node, NULL_TREE));
6105 /* ??? We don't have any type information except for this is
6106 a function. Pretend this is "int foo()". */
6107 DECL_ARTIFICIAL (decl) = 1;
6108 DECL_EXTERNAL (decl) = 1;
6109 TREE_PUBLIC (decl) = 1;
6110 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6111
6112 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6113 are the flags assigned by targetm.encode_section_info. */
6114 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6115
6116 return decl;
6117 }
6118
6119 rtx
6120 init_one_libfunc (const char *name)
6121 {
6122 tree id, decl;
6123 void **slot;
6124 hashval_t hash;
6125
6126 if (libfunc_decls == NULL)
6127 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6128 libfunc_decl_eq, NULL);
6129
6130 /* See if we have already created a libfunc decl for this function. */
6131 id = get_identifier (name);
6132 hash = IDENTIFIER_HASH_VALUE (id);
6133 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6134 decl = (tree) *slot;
6135 if (decl == NULL)
6136 {
6137 /* Create a new decl, so that it can be passed to
6138 targetm.encode_section_info. */
6139 decl = build_libfunc_function (name);
6140 *slot = decl;
6141 }
6142 return XEXP (DECL_RTL (decl), 0);
6143 }
6144
6145 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6146
6147 rtx
6148 set_user_assembler_libfunc (const char *name, const char *asmspec)
6149 {
6150 tree id, decl;
6151 void **slot;
6152 hashval_t hash;
6153
6154 id = get_identifier (name);
6155 hash = IDENTIFIER_HASH_VALUE (id);
6156 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6157 gcc_assert (slot);
6158 decl = (tree) *slot;
6159 set_user_assembler_name (decl, asmspec);
6160 return XEXP (DECL_RTL (decl), 0);
6161 }
6162
6163 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6164 MODE to NAME, which should be either 0 or a string constant. */
6165 void
6166 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6167 {
6168 rtx val;
6169 struct libfunc_entry e;
6170 struct libfunc_entry **slot;
6171
6172 e.op = op;
6173 e.mode1 = mode;
6174 e.mode2 = VOIDmode;
6175
6176 if (name)
6177 val = init_one_libfunc (name);
6178 else
6179 val = 0;
6180 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6181 if (*slot == NULL)
6182 *slot = ggc_alloc<libfunc_entry> ();
6183 (*slot)->op = op;
6184 (*slot)->mode1 = mode;
6185 (*slot)->mode2 = VOIDmode;
6186 (*slot)->libfunc = val;
6187 }
6188
6189 /* Call this to reset the function entry for one conversion optab
6190 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6191 either 0 or a string constant. */
6192 void
6193 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6194 enum machine_mode fmode, const char *name)
6195 {
6196 rtx val;
6197 struct libfunc_entry e;
6198 struct libfunc_entry **slot;
6199
6200 e.op = optab;
6201 e.mode1 = tmode;
6202 e.mode2 = fmode;
6203
6204 if (name)
6205 val = init_one_libfunc (name);
6206 else
6207 val = 0;
6208 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6209 if (*slot == NULL)
6210 *slot = ggc_alloc<libfunc_entry> ();
6211 (*slot)->op = optab;
6212 (*slot)->mode1 = tmode;
6213 (*slot)->mode2 = fmode;
6214 (*slot)->libfunc = val;
6215 }
6216
6217 /* Call this to initialize the contents of the optabs
6218 appropriately for the current target machine. */
6219
6220 void
6221 init_optabs (void)
6222 {
6223 if (libfunc_hash)
6224 htab_empty (libfunc_hash);
6225 else
6226 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6227
6228 /* Fill in the optabs with the insns we support. */
6229 init_all_optabs (this_fn_optabs);
6230
6231 /* The ffs function operates on `int'. Fall back on it if we do not
6232 have a libgcc2 function for that width. */
6233 if (INT_TYPE_SIZE < BITS_PER_WORD)
6234 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6235 "ffs");
6236
6237 /* Explicitly initialize the bswap libfuncs since we need them to be
6238 valid for things other than word_mode. */
6239 if (targetm.libfunc_gnu_prefix)
6240 {
6241 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6242 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6243 }
6244 else
6245 {
6246 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6247 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6248 }
6249
6250 /* Use cabs for double complex abs, since systems generally have cabs.
6251 Don't define any libcall for float complex, so that cabs will be used. */
6252 if (complex_double_type_node)
6253 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6254 "cabs");
6255
6256 abort_libfunc = init_one_libfunc ("abort");
6257 memcpy_libfunc = init_one_libfunc ("memcpy");
6258 memmove_libfunc = init_one_libfunc ("memmove");
6259 memcmp_libfunc = init_one_libfunc ("memcmp");
6260 memset_libfunc = init_one_libfunc ("memset");
6261 setbits_libfunc = init_one_libfunc ("__setbits");
6262
6263 #ifndef DONT_USE_BUILTIN_SETJMP
6264 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6265 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6266 #else
6267 setjmp_libfunc = init_one_libfunc ("setjmp");
6268 longjmp_libfunc = init_one_libfunc ("longjmp");
6269 #endif
6270 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6271 unwind_sjlj_unregister_libfunc
6272 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6273
6274 /* For function entry/exit instrumentation. */
6275 profile_function_entry_libfunc
6276 = init_one_libfunc ("__cyg_profile_func_enter");
6277 profile_function_exit_libfunc
6278 = init_one_libfunc ("__cyg_profile_func_exit");
6279
6280 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6281
6282 /* Allow the target to add more libcalls or rename some, etc. */
6283 targetm.init_libfuncs ();
6284 }
6285
6286 /* Use the current target and options to initialize
6287 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6288
6289 void
6290 init_tree_optimization_optabs (tree optnode)
6291 {
6292 /* Quick exit if we have already computed optabs for this target. */
6293 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6294 return;
6295
6296 /* Forget any previous information and set up for the current target. */
6297 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6298 struct target_optabs *tmp_optabs = (struct target_optabs *)
6299 TREE_OPTIMIZATION_OPTABS (optnode);
6300 if (tmp_optabs)
6301 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6302 else
6303 tmp_optabs = ggc_alloc<target_optabs> ();
6304
6305 /* Generate a new set of optabs into tmp_optabs. */
6306 init_all_optabs (tmp_optabs);
6307
6308 /* If the optabs changed, record it. */
6309 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6310 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
6311 else
6312 {
6313 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6314 ggc_free (tmp_optabs);
6315 }
6316 }
6317
6318 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6319 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6320
6321 static void
6322 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6323 {
6324 enum machine_mode mode;
6325 char buf[64];
6326 size_t len = strlen (base);
6327 int i;
6328
6329 gcc_assert (max <= 8);
6330 gcc_assert (len + 3 < sizeof (buf));
6331
6332 memcpy (buf, base, len);
6333 buf[len] = '_';
6334 buf[len + 1] = '0';
6335 buf[len + 2] = '\0';
6336
6337 mode = QImode;
6338 for (i = 1; i <= max; i *= 2)
6339 {
6340 buf[len + 1] = '0' + i;
6341 set_optab_libfunc (tab, mode, buf);
6342 mode = GET_MODE_2XWIDER_MODE (mode);
6343 }
6344 }
6345
6346 void
6347 init_sync_libfuncs (int max)
6348 {
6349 if (!flag_sync_libcalls)
6350 return;
6351
6352 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6353 "__sync_val_compare_and_swap", max);
6354 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6355 "__sync_lock_test_and_set", max);
6356
6357 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6358 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6359 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6360 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6361 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6362 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6363
6364 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6365 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6366 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6367 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6368 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6369 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6370 }
6371
6372 /* Print information about the current contents of the optabs on
6373 STDERR. */
6374
6375 DEBUG_FUNCTION void
6376 debug_optab_libfuncs (void)
6377 {
6378 int i, j, k;
6379
6380 /* Dump the arithmetic optabs. */
6381 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6382 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6383 {
6384 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6385 if (l)
6386 {
6387 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6388 fprintf (stderr, "%s\t%s:\t%s\n",
6389 GET_RTX_NAME (optab_to_code ((optab) i)),
6390 GET_MODE_NAME (j),
6391 XSTR (l, 0));
6392 }
6393 }
6394
6395 /* Dump the conversion optabs. */
6396 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6397 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6398 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6399 {
6400 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6401 (enum machine_mode) k);
6402 if (l)
6403 {
6404 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6405 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6406 GET_RTX_NAME (optab_to_code ((optab) i)),
6407 GET_MODE_NAME (j),
6408 GET_MODE_NAME (k),
6409 XSTR (l, 0));
6410 }
6411 }
6412 }
6413
6414 \f
6415 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6416 CODE. Return 0 on failure. */
6417
6418 rtx
6419 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6420 {
6421 enum machine_mode mode = GET_MODE (op1);
6422 enum insn_code icode;
6423 rtx insn;
6424 rtx trap_rtx;
6425
6426 if (mode == VOIDmode)
6427 return 0;
6428
6429 icode = optab_handler (ctrap_optab, mode);
6430 if (icode == CODE_FOR_nothing)
6431 return 0;
6432
6433 /* Some targets only accept a zero trap code. */
6434 if (!insn_operand_matches (icode, 3, tcode))
6435 return 0;
6436
6437 do_pending_stack_adjust ();
6438 start_sequence ();
6439 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6440 &trap_rtx, &mode);
6441 if (!trap_rtx)
6442 insn = NULL_RTX;
6443 else
6444 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6445 tcode);
6446
6447 /* If that failed, then give up. */
6448 if (insn == 0)
6449 {
6450 end_sequence ();
6451 return 0;
6452 }
6453
6454 emit_insn (insn);
6455 insn = get_insns ();
6456 end_sequence ();
6457 return insn;
6458 }
6459
6460 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6461 or unsigned operation code. */
6462
6463 static enum rtx_code
6464 get_rtx_code (enum tree_code tcode, bool unsignedp)
6465 {
6466 enum rtx_code code;
6467 switch (tcode)
6468 {
6469 case EQ_EXPR:
6470 code = EQ;
6471 break;
6472 case NE_EXPR:
6473 code = NE;
6474 break;
6475 case LT_EXPR:
6476 code = unsignedp ? LTU : LT;
6477 break;
6478 case LE_EXPR:
6479 code = unsignedp ? LEU : LE;
6480 break;
6481 case GT_EXPR:
6482 code = unsignedp ? GTU : GT;
6483 break;
6484 case GE_EXPR:
6485 code = unsignedp ? GEU : GE;
6486 break;
6487
6488 case UNORDERED_EXPR:
6489 code = UNORDERED;
6490 break;
6491 case ORDERED_EXPR:
6492 code = ORDERED;
6493 break;
6494 case UNLT_EXPR:
6495 code = UNLT;
6496 break;
6497 case UNLE_EXPR:
6498 code = UNLE;
6499 break;
6500 case UNGT_EXPR:
6501 code = UNGT;
6502 break;
6503 case UNGE_EXPR:
6504 code = UNGE;
6505 break;
6506 case UNEQ_EXPR:
6507 code = UNEQ;
6508 break;
6509 case LTGT_EXPR:
6510 code = LTGT;
6511 break;
6512
6513 default:
6514 gcc_unreachable ();
6515 }
6516 return code;
6517 }
6518
6519 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6520 unsigned operators. Do not generate compare instruction. */
6521
6522 static rtx
6523 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6524 bool unsignedp, enum insn_code icode)
6525 {
6526 struct expand_operand ops[2];
6527 rtx rtx_op0, rtx_op1;
6528 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6529
6530 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6531
6532 /* Expand operands. */
6533 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6534 EXPAND_STACK_PARM);
6535 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6536 EXPAND_STACK_PARM);
6537
6538 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6539 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6540 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6541 gcc_unreachable ();
6542 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6543 }
6544
6545 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6546 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6547
6548 bool
6549 can_vec_perm_p (enum machine_mode mode, bool variable,
6550 const unsigned char *sel)
6551 {
6552 enum machine_mode qimode;
6553
6554 /* If the target doesn't implement a vector mode for the vector type,
6555 then no operations are supported. */
6556 if (!VECTOR_MODE_P (mode))
6557 return false;
6558
6559 if (!variable)
6560 {
6561 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6562 && (sel == NULL
6563 || targetm.vectorize.vec_perm_const_ok == NULL
6564 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6565 return true;
6566 }
6567
6568 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6569 return true;
6570
6571 /* We allow fallback to a QI vector mode, and adjust the mask. */
6572 if (GET_MODE_INNER (mode) == QImode)
6573 return false;
6574 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6575 if (!VECTOR_MODE_P (qimode))
6576 return false;
6577
6578 /* ??? For completeness, we ought to check the QImode version of
6579 vec_perm_const_optab. But all users of this implicit lowering
6580 feature implement the variable vec_perm_optab. */
6581 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6582 return false;
6583
6584 /* In order to support the lowering of variable permutations,
6585 we need to support shifts and adds. */
6586 if (variable)
6587 {
6588 if (GET_MODE_UNIT_SIZE (mode) > 2
6589 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6590 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6591 return false;
6592 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6593 return false;
6594 }
6595
6596 return true;
6597 }
6598
6599 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6600
6601 static rtx
6602 expand_vec_perm_1 (enum insn_code icode, rtx target,
6603 rtx v0, rtx v1, rtx sel)
6604 {
6605 enum machine_mode tmode = GET_MODE (target);
6606 enum machine_mode smode = GET_MODE (sel);
6607 struct expand_operand ops[4];
6608
6609 create_output_operand (&ops[0], target, tmode);
6610 create_input_operand (&ops[3], sel, smode);
6611
6612 /* Make an effort to preserve v0 == v1. The target expander is able to
6613 rely on this to determine if we're permuting a single input operand. */
6614 if (rtx_equal_p (v0, v1))
6615 {
6616 if (!insn_operand_matches (icode, 1, v0))
6617 v0 = force_reg (tmode, v0);
6618 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6619 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6620
6621 create_fixed_operand (&ops[1], v0);
6622 create_fixed_operand (&ops[2], v0);
6623 }
6624 else
6625 {
6626 create_input_operand (&ops[1], v0, tmode);
6627 create_input_operand (&ops[2], v1, tmode);
6628 }
6629
6630 if (maybe_expand_insn (icode, 4, ops))
6631 return ops[0].value;
6632 return NULL_RTX;
6633 }
6634
6635 /* Generate instructions for vec_perm optab given its mode
6636 and three operands. */
6637
6638 rtx
6639 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6640 {
6641 enum insn_code icode;
6642 enum machine_mode qimode;
6643 unsigned int i, w, e, u;
6644 rtx tmp, sel_qi = NULL;
6645 rtvec vec;
6646
6647 if (!target || GET_MODE (target) != mode)
6648 target = gen_reg_rtx (mode);
6649
6650 w = GET_MODE_SIZE (mode);
6651 e = GET_MODE_NUNITS (mode);
6652 u = GET_MODE_UNIT_SIZE (mode);
6653
6654 /* Set QIMODE to a different vector mode with byte elements.
6655 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6656 qimode = VOIDmode;
6657 if (GET_MODE_INNER (mode) != QImode)
6658 {
6659 qimode = mode_for_vector (QImode, w);
6660 if (!VECTOR_MODE_P (qimode))
6661 qimode = VOIDmode;
6662 }
6663
6664 /* If the input is a constant, expand it specially. */
6665 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6666 if (GET_CODE (sel) == CONST_VECTOR)
6667 {
6668 icode = direct_optab_handler (vec_perm_const_optab, mode);
6669 if (icode != CODE_FOR_nothing)
6670 {
6671 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6672 if (tmp)
6673 return tmp;
6674 }
6675
6676 /* Fall back to a constant byte-based permutation. */
6677 if (qimode != VOIDmode)
6678 {
6679 vec = rtvec_alloc (w);
6680 for (i = 0; i < e; ++i)
6681 {
6682 unsigned int j, this_e;
6683
6684 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6685 this_e &= 2 * e - 1;
6686 this_e *= u;
6687
6688 for (j = 0; j < u; ++j)
6689 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6690 }
6691 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6692
6693 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6694 if (icode != CODE_FOR_nothing)
6695 {
6696 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6697 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6698 gen_lowpart (qimode, v1), sel_qi);
6699 if (tmp)
6700 return gen_lowpart (mode, tmp);
6701 }
6702 }
6703 }
6704
6705 /* Otherwise expand as a fully variable permuation. */
6706 icode = direct_optab_handler (vec_perm_optab, mode);
6707 if (icode != CODE_FOR_nothing)
6708 {
6709 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6710 if (tmp)
6711 return tmp;
6712 }
6713
6714 /* As a special case to aid several targets, lower the element-based
6715 permutation to a byte-based permutation and try again. */
6716 if (qimode == VOIDmode)
6717 return NULL_RTX;
6718 icode = direct_optab_handler (vec_perm_optab, qimode);
6719 if (icode == CODE_FOR_nothing)
6720 return NULL_RTX;
6721
6722 if (sel_qi == NULL)
6723 {
6724 /* Multiply each element by its byte size. */
6725 enum machine_mode selmode = GET_MODE (sel);
6726 if (u == 2)
6727 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6728 sel, 0, OPTAB_DIRECT);
6729 else
6730 sel = expand_simple_binop (selmode, ASHIFT, sel,
6731 GEN_INT (exact_log2 (u)),
6732 sel, 0, OPTAB_DIRECT);
6733 gcc_assert (sel != NULL);
6734
6735 /* Broadcast the low byte each element into each of its bytes. */
6736 vec = rtvec_alloc (w);
6737 for (i = 0; i < w; ++i)
6738 {
6739 int this_e = i / u * u;
6740 if (BYTES_BIG_ENDIAN)
6741 this_e += u - 1;
6742 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6743 }
6744 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6745 sel = gen_lowpart (qimode, sel);
6746 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6747 gcc_assert (sel != NULL);
6748
6749 /* Add the byte offset to each byte element. */
6750 /* Note that the definition of the indicies here is memory ordering,
6751 so there should be no difference between big and little endian. */
6752 vec = rtvec_alloc (w);
6753 for (i = 0; i < w; ++i)
6754 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6755 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6756 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6757 sel, 0, OPTAB_DIRECT);
6758 gcc_assert (sel_qi != NULL);
6759 }
6760
6761 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6762 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6763 gen_lowpart (qimode, v1), sel_qi);
6764 if (tmp)
6765 tmp = gen_lowpart (mode, tmp);
6766 return tmp;
6767 }
6768
6769 /* Return insn code for a conditional operator with a comparison in
6770 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6771
6772 static inline enum insn_code
6773 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6774 {
6775 enum insn_code icode = CODE_FOR_nothing;
6776 if (uns)
6777 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6778 else
6779 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6780 return icode;
6781 }
6782
6783 /* Return TRUE iff, appropriate vector insns are available
6784 for vector cond expr with vector type VALUE_TYPE and a comparison
6785 with operand vector types in CMP_OP_TYPE. */
6786
6787 bool
6788 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6789 {
6790 enum machine_mode value_mode = TYPE_MODE (value_type);
6791 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6792 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6793 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6794 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6795 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6796 return false;
6797 return true;
6798 }
6799
6800 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6801 three operands. */
6802
6803 rtx
6804 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6805 rtx target)
6806 {
6807 struct expand_operand ops[6];
6808 enum insn_code icode;
6809 rtx comparison, rtx_op1, rtx_op2;
6810 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6811 enum machine_mode cmp_op_mode;
6812 bool unsignedp;
6813 tree op0a, op0b;
6814 enum tree_code tcode;
6815
6816 if (COMPARISON_CLASS_P (op0))
6817 {
6818 op0a = TREE_OPERAND (op0, 0);
6819 op0b = TREE_OPERAND (op0, 1);
6820 tcode = TREE_CODE (op0);
6821 }
6822 else
6823 {
6824 /* Fake op0 < 0. */
6825 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6826 op0a = op0;
6827 op0b = build_zero_cst (TREE_TYPE (op0));
6828 tcode = LT_EXPR;
6829 }
6830 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6831 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6832
6833
6834 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6835 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6836
6837 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6838 if (icode == CODE_FOR_nothing)
6839 return 0;
6840
6841 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6842 rtx_op1 = expand_normal (op1);
6843 rtx_op2 = expand_normal (op2);
6844
6845 create_output_operand (&ops[0], target, mode);
6846 create_input_operand (&ops[1], rtx_op1, mode);
6847 create_input_operand (&ops[2], rtx_op2, mode);
6848 create_fixed_operand (&ops[3], comparison);
6849 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6850 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6851 expand_insn (icode, 6, ops);
6852 return ops[0].value;
6853 }
6854
6855 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6856 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6857 2 for even/odd widening, and 3 for hi/lo widening. */
6858
6859 int
6860 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6861 {
6862 optab op;
6863 unsigned char *sel;
6864 unsigned i, nunits;
6865
6866 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6867 if (optab_handler (op, mode) != CODE_FOR_nothing)
6868 return 1;
6869
6870 /* If the mode is an integral vector, synth from widening operations. */
6871 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6872 return 0;
6873
6874 nunits = GET_MODE_NUNITS (mode);
6875 sel = XALLOCAVEC (unsigned char, nunits);
6876
6877 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6878 if (optab_handler (op, mode) != CODE_FOR_nothing)
6879 {
6880 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6881 if (optab_handler (op, mode) != CODE_FOR_nothing)
6882 {
6883 for (i = 0; i < nunits; ++i)
6884 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6885 if (can_vec_perm_p (mode, false, sel))
6886 return 2;
6887 }
6888 }
6889
6890 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6891 if (optab_handler (op, mode) != CODE_FOR_nothing)
6892 {
6893 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6894 if (optab_handler (op, mode) != CODE_FOR_nothing)
6895 {
6896 for (i = 0; i < nunits; ++i)
6897 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6898 if (can_vec_perm_p (mode, false, sel))
6899 return 3;
6900 }
6901 }
6902
6903 return 0;
6904 }
6905
6906 /* Expand a highpart multiply. */
6907
6908 rtx
6909 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6910 rtx target, bool uns_p)
6911 {
6912 struct expand_operand eops[3];
6913 enum insn_code icode;
6914 int method, i, nunits;
6915 enum machine_mode wmode;
6916 rtx m1, m2, perm;
6917 optab tab1, tab2;
6918 rtvec v;
6919
6920 method = can_mult_highpart_p (mode, uns_p);
6921 switch (method)
6922 {
6923 case 0:
6924 return NULL_RTX;
6925 case 1:
6926 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6927 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6928 OPTAB_LIB_WIDEN);
6929 case 2:
6930 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6931 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6932 break;
6933 case 3:
6934 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6935 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6936 if (BYTES_BIG_ENDIAN)
6937 {
6938 optab t = tab1;
6939 tab1 = tab2;
6940 tab2 = t;
6941 }
6942 break;
6943 default:
6944 gcc_unreachable ();
6945 }
6946
6947 icode = optab_handler (tab1, mode);
6948 nunits = GET_MODE_NUNITS (mode);
6949 wmode = insn_data[icode].operand[0].mode;
6950 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6951 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6952
6953 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6954 create_input_operand (&eops[1], op0, mode);
6955 create_input_operand (&eops[2], op1, mode);
6956 expand_insn (icode, 3, eops);
6957 m1 = gen_lowpart (mode, eops[0].value);
6958
6959 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6960 create_input_operand (&eops[1], op0, mode);
6961 create_input_operand (&eops[2], op1, mode);
6962 expand_insn (optab_handler (tab2, mode), 3, eops);
6963 m2 = gen_lowpart (mode, eops[0].value);
6964
6965 v = rtvec_alloc (nunits);
6966 if (method == 2)
6967 {
6968 for (i = 0; i < nunits; ++i)
6969 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6970 + ((i & 1) ? nunits : 0));
6971 }
6972 else
6973 {
6974 for (i = 0; i < nunits; ++i)
6975 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6976 }
6977 perm = gen_rtx_CONST_VECTOR (mode, v);
6978
6979 return expand_vec_perm (mode, m1, m2, perm, target);
6980 }
6981
6982 /* Return true if target supports vector masked load/store for mode. */
6983 bool
6984 can_vec_mask_load_store_p (enum machine_mode mode, bool is_load)
6985 {
6986 optab op = is_load ? maskload_optab : maskstore_optab;
6987 enum machine_mode vmode;
6988 unsigned int vector_sizes;
6989
6990 /* If mode is vector mode, check it directly. */
6991 if (VECTOR_MODE_P (mode))
6992 return optab_handler (op, mode) != CODE_FOR_nothing;
6993
6994 /* Otherwise, return true if there is some vector mode with
6995 the mask load/store supported. */
6996
6997 /* See if there is any chance the mask load or store might be
6998 vectorized. If not, punt. */
6999 vmode = targetm.vectorize.preferred_simd_mode (mode);
7000 if (!VECTOR_MODE_P (vmode))
7001 return false;
7002
7003 if (optab_handler (op, vmode) != CODE_FOR_nothing)
7004 return true;
7005
7006 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
7007 while (vector_sizes != 0)
7008 {
7009 unsigned int cur = 1 << floor_log2 (vector_sizes);
7010 vector_sizes &= ~cur;
7011 if (cur <= GET_MODE_SIZE (mode))
7012 continue;
7013 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
7014 if (VECTOR_MODE_P (vmode)
7015 && optab_handler (op, vmode) != CODE_FOR_nothing)
7016 return true;
7017 }
7018 return false;
7019 }
7020 \f
7021 /* Return true if there is a compare_and_swap pattern. */
7022
7023 bool
7024 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
7025 {
7026 enum insn_code icode;
7027
7028 /* Check for __atomic_compare_and_swap. */
7029 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7030 if (icode != CODE_FOR_nothing)
7031 return true;
7032
7033 /* Check for __sync_compare_and_swap. */
7034 icode = optab_handler (sync_compare_and_swap_optab, mode);
7035 if (icode != CODE_FOR_nothing)
7036 return true;
7037 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7038 return true;
7039
7040 /* No inline compare and swap. */
7041 return false;
7042 }
7043
7044 /* Return true if an atomic exchange can be performed. */
7045
7046 bool
7047 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
7048 {
7049 enum insn_code icode;
7050
7051 /* Check for __atomic_exchange. */
7052 icode = direct_optab_handler (atomic_exchange_optab, mode);
7053 if (icode != CODE_FOR_nothing)
7054 return true;
7055
7056 /* Don't check __sync_test_and_set, as on some platforms that
7057 has reduced functionality. Targets that really do support
7058 a proper exchange should simply be updated to the __atomics. */
7059
7060 return can_compare_and_swap_p (mode, allow_libcall);
7061 }
7062
7063
7064 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7065 pattern. */
7066
7067 static void
7068 find_cc_set (rtx x, const_rtx pat, void *data)
7069 {
7070 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7071 && GET_CODE (pat) == SET)
7072 {
7073 rtx *p_cc_reg = (rtx *) data;
7074 gcc_assert (!*p_cc_reg);
7075 *p_cc_reg = x;
7076 }
7077 }
7078
7079 /* This is a helper function for the other atomic operations. This function
7080 emits a loop that contains SEQ that iterates until a compare-and-swap
7081 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7082 a set of instructions that takes a value from OLD_REG as an input and
7083 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7084 set to the current contents of MEM. After SEQ, a compare-and-swap will
7085 attempt to update MEM with NEW_REG. The function returns true when the
7086 loop was generated successfully. */
7087
7088 static bool
7089 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7090 {
7091 enum machine_mode mode = GET_MODE (mem);
7092 rtx label, cmp_reg, success, oldval;
7093
7094 /* The loop we want to generate looks like
7095
7096 cmp_reg = mem;
7097 label:
7098 old_reg = cmp_reg;
7099 seq;
7100 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7101 if (success)
7102 goto label;
7103
7104 Note that we only do the plain load from memory once. Subsequent
7105 iterations use the value loaded by the compare-and-swap pattern. */
7106
7107 label = gen_label_rtx ();
7108 cmp_reg = gen_reg_rtx (mode);
7109
7110 emit_move_insn (cmp_reg, mem);
7111 emit_label (label);
7112 emit_move_insn (old_reg, cmp_reg);
7113 if (seq)
7114 emit_insn (seq);
7115
7116 success = NULL_RTX;
7117 oldval = cmp_reg;
7118 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7119 new_reg, false, MEMMODEL_SEQ_CST,
7120 MEMMODEL_RELAXED))
7121 return false;
7122
7123 if (oldval != cmp_reg)
7124 emit_move_insn (cmp_reg, oldval);
7125
7126 /* Mark this jump predicted not taken. */
7127 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7128 GET_MODE (success), 1, label, 0);
7129 return true;
7130 }
7131
7132
7133 /* This function tries to emit an atomic_exchange intruction. VAL is written
7134 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7135 using TARGET if possible. */
7136
7137 static rtx
7138 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7139 {
7140 enum machine_mode mode = GET_MODE (mem);
7141 enum insn_code icode;
7142
7143 /* If the target supports the exchange directly, great. */
7144 icode = direct_optab_handler (atomic_exchange_optab, mode);
7145 if (icode != CODE_FOR_nothing)
7146 {
7147 struct expand_operand ops[4];
7148
7149 create_output_operand (&ops[0], target, mode);
7150 create_fixed_operand (&ops[1], mem);
7151 create_input_operand (&ops[2], val, mode);
7152 create_integer_operand (&ops[3], model);
7153 if (maybe_expand_insn (icode, 4, ops))
7154 return ops[0].value;
7155 }
7156
7157 return NULL_RTX;
7158 }
7159
7160 /* This function tries to implement an atomic exchange operation using
7161 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7162 The previous contents of *MEM are returned, using TARGET if possible.
7163 Since this instructionn is an acquire barrier only, stronger memory
7164 models may require additional barriers to be emitted. */
7165
7166 static rtx
7167 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7168 enum memmodel model)
7169 {
7170 enum machine_mode mode = GET_MODE (mem);
7171 enum insn_code icode;
7172 rtx last_insn = get_last_insn ();
7173
7174 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7175
7176 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7177 exists, and the memory model is stronger than acquire, add a release
7178 barrier before the instruction. */
7179
7180 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7181 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7182 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7183 expand_mem_thread_fence (model);
7184
7185 if (icode != CODE_FOR_nothing)
7186 {
7187 struct expand_operand ops[3];
7188 create_output_operand (&ops[0], target, mode);
7189 create_fixed_operand (&ops[1], mem);
7190 create_input_operand (&ops[2], val, mode);
7191 if (maybe_expand_insn (icode, 3, ops))
7192 return ops[0].value;
7193 }
7194
7195 /* If an external test-and-set libcall is provided, use that instead of
7196 any external compare-and-swap that we might get from the compare-and-
7197 swap-loop expansion later. */
7198 if (!can_compare_and_swap_p (mode, false))
7199 {
7200 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7201 if (libfunc != NULL)
7202 {
7203 rtx addr;
7204
7205 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7206 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7207 mode, 2, addr, ptr_mode,
7208 val, mode);
7209 }
7210 }
7211
7212 /* If the test_and_set can't be emitted, eliminate any barrier that might
7213 have been emitted. */
7214 delete_insns_since (last_insn);
7215 return NULL_RTX;
7216 }
7217
7218 /* This function tries to implement an atomic exchange operation using a
7219 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7220 *MEM are returned, using TARGET if possible. No memory model is required
7221 since a compare_and_swap loop is seq-cst. */
7222
7223 static rtx
7224 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7225 {
7226 enum machine_mode mode = GET_MODE (mem);
7227
7228 if (can_compare_and_swap_p (mode, true))
7229 {
7230 if (!target || !register_operand (target, mode))
7231 target = gen_reg_rtx (mode);
7232 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7233 return target;
7234 }
7235
7236 return NULL_RTX;
7237 }
7238
7239 /* This function tries to implement an atomic test-and-set operation
7240 using the atomic_test_and_set instruction pattern. A boolean value
7241 is returned from the operation, using TARGET if possible. */
7242
7243 #ifndef HAVE_atomic_test_and_set
7244 #define HAVE_atomic_test_and_set 0
7245 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7246 #endif
7247
7248 static rtx
7249 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7250 {
7251 enum machine_mode pat_bool_mode;
7252 struct expand_operand ops[3];
7253
7254 if (!HAVE_atomic_test_and_set)
7255 return NULL_RTX;
7256
7257 /* While we always get QImode from __atomic_test_and_set, we get
7258 other memory modes from __sync_lock_test_and_set. Note that we
7259 use no endian adjustment here. This matches the 4.6 behavior
7260 in the Sparc backend. */
7261 gcc_checking_assert
7262 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7263 if (GET_MODE (mem) != QImode)
7264 mem = adjust_address_nv (mem, QImode, 0);
7265
7266 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7267 create_output_operand (&ops[0], target, pat_bool_mode);
7268 create_fixed_operand (&ops[1], mem);
7269 create_integer_operand (&ops[2], model);
7270
7271 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7272 return ops[0].value;
7273 return NULL_RTX;
7274 }
7275
7276 /* This function expands the legacy _sync_lock test_and_set operation which is
7277 generally an atomic exchange. Some limited targets only allow the
7278 constant 1 to be stored. This is an ACQUIRE operation.
7279
7280 TARGET is an optional place to stick the return value.
7281 MEM is where VAL is stored. */
7282
7283 rtx
7284 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7285 {
7286 rtx ret;
7287
7288 /* Try an atomic_exchange first. */
7289 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7290 if (ret)
7291 return ret;
7292
7293 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7294 if (ret)
7295 return ret;
7296
7297 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7298 if (ret)
7299 return ret;
7300
7301 /* If there are no other options, try atomic_test_and_set if the value
7302 being stored is 1. */
7303 if (val == const1_rtx)
7304 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7305
7306 return ret;
7307 }
7308
7309 /* This function expands the atomic test_and_set operation:
7310 atomically store a boolean TRUE into MEM and return the previous value.
7311
7312 MEMMODEL is the memory model variant to use.
7313 TARGET is an optional place to stick the return value. */
7314
7315 rtx
7316 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7317 {
7318 enum machine_mode mode = GET_MODE (mem);
7319 rtx ret, trueval, subtarget;
7320
7321 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7322 if (ret)
7323 return ret;
7324
7325 /* Be binary compatible with non-default settings of trueval, and different
7326 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7327 another only has atomic-exchange. */
7328 if (targetm.atomic_test_and_set_trueval == 1)
7329 {
7330 trueval = const1_rtx;
7331 subtarget = target ? target : gen_reg_rtx (mode);
7332 }
7333 else
7334 {
7335 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7336 subtarget = gen_reg_rtx (mode);
7337 }
7338
7339 /* Try the atomic-exchange optab... */
7340 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7341
7342 /* ... then an atomic-compare-and-swap loop ... */
7343 if (!ret)
7344 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7345
7346 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7347 if (!ret)
7348 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7349
7350 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7351 things with the value 1. Thus we try again without trueval. */
7352 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7353 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7354
7355 /* Failing all else, assume a single threaded environment and simply
7356 perform the operation. */
7357 if (!ret)
7358 {
7359 /* If the result is ignored skip the move to target. */
7360 if (subtarget != const0_rtx)
7361 emit_move_insn (subtarget, mem);
7362
7363 emit_move_insn (mem, trueval);
7364 ret = subtarget;
7365 }
7366
7367 /* Recall that have to return a boolean value; rectify if trueval
7368 is not exactly one. */
7369 if (targetm.atomic_test_and_set_trueval != 1)
7370 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7371
7372 return ret;
7373 }
7374
7375 /* This function expands the atomic exchange operation:
7376 atomically store VAL in MEM and return the previous value in MEM.
7377
7378 MEMMODEL is the memory model variant to use.
7379 TARGET is an optional place to stick the return value. */
7380
7381 rtx
7382 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7383 {
7384 rtx ret;
7385
7386 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7387
7388 /* Next try a compare-and-swap loop for the exchange. */
7389 if (!ret)
7390 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7391
7392 return ret;
7393 }
7394
7395 /* This function expands the atomic compare exchange operation:
7396
7397 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7398 *PTARGET_OVAL is an optional place to store the old value from memory.
7399 Both target parameters may be NULL to indicate that we do not care about
7400 that return value. Both target parameters are updated on success to
7401 the actual location of the corresponding result.
7402
7403 MEMMODEL is the memory model variant to use.
7404
7405 The return value of the function is true for success. */
7406
7407 bool
7408 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7409 rtx mem, rtx expected, rtx desired,
7410 bool is_weak, enum memmodel succ_model,
7411 enum memmodel fail_model)
7412 {
7413 enum machine_mode mode = GET_MODE (mem);
7414 struct expand_operand ops[8];
7415 enum insn_code icode;
7416 rtx target_oval, target_bool = NULL_RTX;
7417 rtx libfunc;
7418
7419 /* Load expected into a register for the compare and swap. */
7420 if (MEM_P (expected))
7421 expected = copy_to_reg (expected);
7422
7423 /* Make sure we always have some place to put the return oldval.
7424 Further, make sure that place is distinct from the input expected,
7425 just in case we need that path down below. */
7426 if (ptarget_oval == NULL
7427 || (target_oval = *ptarget_oval) == NULL
7428 || reg_overlap_mentioned_p (expected, target_oval))
7429 target_oval = gen_reg_rtx (mode);
7430
7431 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7432 if (icode != CODE_FOR_nothing)
7433 {
7434 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7435
7436 /* Make sure we always have a place for the bool operand. */
7437 if (ptarget_bool == NULL
7438 || (target_bool = *ptarget_bool) == NULL
7439 || GET_MODE (target_bool) != bool_mode)
7440 target_bool = gen_reg_rtx (bool_mode);
7441
7442 /* Emit the compare_and_swap. */
7443 create_output_operand (&ops[0], target_bool, bool_mode);
7444 create_output_operand (&ops[1], target_oval, mode);
7445 create_fixed_operand (&ops[2], mem);
7446 create_input_operand (&ops[3], expected, mode);
7447 create_input_operand (&ops[4], desired, mode);
7448 create_integer_operand (&ops[5], is_weak);
7449 create_integer_operand (&ops[6], succ_model);
7450 create_integer_operand (&ops[7], fail_model);
7451 if (maybe_expand_insn (icode, 8, ops))
7452 {
7453 /* Return success/failure. */
7454 target_bool = ops[0].value;
7455 target_oval = ops[1].value;
7456 goto success;
7457 }
7458 }
7459
7460 /* Otherwise fall back to the original __sync_val_compare_and_swap
7461 which is always seq-cst. */
7462 icode = optab_handler (sync_compare_and_swap_optab, mode);
7463 if (icode != CODE_FOR_nothing)
7464 {
7465 rtx cc_reg;
7466
7467 create_output_operand (&ops[0], target_oval, mode);
7468 create_fixed_operand (&ops[1], mem);
7469 create_input_operand (&ops[2], expected, mode);
7470 create_input_operand (&ops[3], desired, mode);
7471 if (!maybe_expand_insn (icode, 4, ops))
7472 return false;
7473
7474 target_oval = ops[0].value;
7475
7476 /* If the caller isn't interested in the boolean return value,
7477 skip the computation of it. */
7478 if (ptarget_bool == NULL)
7479 goto success;
7480
7481 /* Otherwise, work out if the compare-and-swap succeeded. */
7482 cc_reg = NULL_RTX;
7483 if (have_insn_for (COMPARE, CCmode))
7484 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7485 if (cc_reg)
7486 {
7487 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7488 const0_rtx, VOIDmode, 0, 1);
7489 goto success;
7490 }
7491 goto success_bool_from_val;
7492 }
7493
7494 /* Also check for library support for __sync_val_compare_and_swap. */
7495 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7496 if (libfunc != NULL)
7497 {
7498 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7499 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7500 mode, 3, addr, ptr_mode,
7501 expected, mode, desired, mode);
7502
7503 /* Compute the boolean return value only if requested. */
7504 if (ptarget_bool)
7505 goto success_bool_from_val;
7506 else
7507 goto success;
7508 }
7509
7510 /* Failure. */
7511 return false;
7512
7513 success_bool_from_val:
7514 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7515 expected, VOIDmode, 1, 1);
7516 success:
7517 /* Make sure that the oval output winds up where the caller asked. */
7518 if (ptarget_oval)
7519 *ptarget_oval = target_oval;
7520 if (ptarget_bool)
7521 *ptarget_bool = target_bool;
7522 return true;
7523 }
7524
7525 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7526
7527 static void
7528 expand_asm_memory_barrier (void)
7529 {
7530 rtx asm_op, clob;
7531
7532 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7533 rtvec_alloc (0), rtvec_alloc (0),
7534 rtvec_alloc (0), UNKNOWN_LOCATION);
7535 MEM_VOLATILE_P (asm_op) = 1;
7536
7537 clob = gen_rtx_SCRATCH (VOIDmode);
7538 clob = gen_rtx_MEM (BLKmode, clob);
7539 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7540
7541 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7542 }
7543
7544 /* This routine will either emit the mem_thread_fence pattern or issue a
7545 sync_synchronize to generate a fence for memory model MEMMODEL. */
7546
7547 #ifndef HAVE_mem_thread_fence
7548 # define HAVE_mem_thread_fence 0
7549 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7550 #endif
7551 #ifndef HAVE_memory_barrier
7552 # define HAVE_memory_barrier 0
7553 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7554 #endif
7555
7556 void
7557 expand_mem_thread_fence (enum memmodel model)
7558 {
7559 if (HAVE_mem_thread_fence)
7560 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7561 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7562 {
7563 if (HAVE_memory_barrier)
7564 emit_insn (gen_memory_barrier ());
7565 else if (synchronize_libfunc != NULL_RTX)
7566 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7567 else
7568 expand_asm_memory_barrier ();
7569 }
7570 }
7571
7572 /* This routine will either emit the mem_signal_fence pattern or issue a
7573 sync_synchronize to generate a fence for memory model MEMMODEL. */
7574
7575 #ifndef HAVE_mem_signal_fence
7576 # define HAVE_mem_signal_fence 0
7577 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7578 #endif
7579
7580 void
7581 expand_mem_signal_fence (enum memmodel model)
7582 {
7583 if (HAVE_mem_signal_fence)
7584 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7585 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7586 {
7587 /* By default targets are coherent between a thread and the signal
7588 handler running on the same thread. Thus this really becomes a
7589 compiler barrier, in that stores must not be sunk past
7590 (or raised above) a given point. */
7591 expand_asm_memory_barrier ();
7592 }
7593 }
7594
7595 /* This function expands the atomic load operation:
7596 return the atomically loaded value in MEM.
7597
7598 MEMMODEL is the memory model variant to use.
7599 TARGET is an option place to stick the return value. */
7600
7601 rtx
7602 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7603 {
7604 enum machine_mode mode = GET_MODE (mem);
7605 enum insn_code icode;
7606
7607 /* If the target supports the load directly, great. */
7608 icode = direct_optab_handler (atomic_load_optab, mode);
7609 if (icode != CODE_FOR_nothing)
7610 {
7611 struct expand_operand ops[3];
7612
7613 create_output_operand (&ops[0], target, mode);
7614 create_fixed_operand (&ops[1], mem);
7615 create_integer_operand (&ops[2], model);
7616 if (maybe_expand_insn (icode, 3, ops))
7617 return ops[0].value;
7618 }
7619
7620 /* If the size of the object is greater than word size on this target,
7621 then we assume that a load will not be atomic. */
7622 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7623 {
7624 /* Issue val = compare_and_swap (mem, 0, 0).
7625 This may cause the occasional harmless store of 0 when the value is
7626 already 0, but it seems to be OK according to the standards guys. */
7627 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7628 const0_rtx, false, model, model))
7629 return target;
7630 else
7631 /* Otherwise there is no atomic load, leave the library call. */
7632 return NULL_RTX;
7633 }
7634
7635 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7636 if (!target || target == const0_rtx)
7637 target = gen_reg_rtx (mode);
7638
7639 /* For SEQ_CST, emit a barrier before the load. */
7640 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7641 expand_mem_thread_fence (model);
7642
7643 emit_move_insn (target, mem);
7644
7645 /* Emit the appropriate barrier after the load. */
7646 expand_mem_thread_fence (model);
7647
7648 return target;
7649 }
7650
7651 /* This function expands the atomic store operation:
7652 Atomically store VAL in MEM.
7653 MEMMODEL is the memory model variant to use.
7654 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7655 function returns const0_rtx if a pattern was emitted. */
7656
7657 rtx
7658 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7659 {
7660 enum machine_mode mode = GET_MODE (mem);
7661 enum insn_code icode;
7662 struct expand_operand ops[3];
7663
7664 /* If the target supports the store directly, great. */
7665 icode = direct_optab_handler (atomic_store_optab, mode);
7666 if (icode != CODE_FOR_nothing)
7667 {
7668 create_fixed_operand (&ops[0], mem);
7669 create_input_operand (&ops[1], val, mode);
7670 create_integer_operand (&ops[2], model);
7671 if (maybe_expand_insn (icode, 3, ops))
7672 return const0_rtx;
7673 }
7674
7675 /* If using __sync_lock_release is a viable alternative, try it. */
7676 if (use_release)
7677 {
7678 icode = direct_optab_handler (sync_lock_release_optab, mode);
7679 if (icode != CODE_FOR_nothing)
7680 {
7681 create_fixed_operand (&ops[0], mem);
7682 create_input_operand (&ops[1], const0_rtx, mode);
7683 if (maybe_expand_insn (icode, 2, ops))
7684 {
7685 /* lock_release is only a release barrier. */
7686 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7687 expand_mem_thread_fence (model);
7688 return const0_rtx;
7689 }
7690 }
7691 }
7692
7693 /* If the size of the object is greater than word size on this target,
7694 a default store will not be atomic, Try a mem_exchange and throw away
7695 the result. If that doesn't work, don't do anything. */
7696 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7697 {
7698 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7699 if (!target)
7700 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7701 if (target)
7702 return const0_rtx;
7703 else
7704 return NULL_RTX;
7705 }
7706
7707 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7708 expand_mem_thread_fence (model);
7709
7710 emit_move_insn (mem, val);
7711
7712 /* For SEQ_CST, also emit a barrier after the store. */
7713 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7714 expand_mem_thread_fence (model);
7715
7716 return const0_rtx;
7717 }
7718
7719
7720 /* Structure containing the pointers and values required to process the
7721 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7722
7723 struct atomic_op_functions
7724 {
7725 direct_optab mem_fetch_before;
7726 direct_optab mem_fetch_after;
7727 direct_optab mem_no_result;
7728 optab fetch_before;
7729 optab fetch_after;
7730 direct_optab no_result;
7731 enum rtx_code reverse_code;
7732 };
7733
7734
7735 /* Fill in structure pointed to by OP with the various optab entries for an
7736 operation of type CODE. */
7737
7738 static void
7739 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7740 {
7741 gcc_assert (op!= NULL);
7742
7743 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7744 in the source code during compilation, and the optab entries are not
7745 computable until runtime. Fill in the values at runtime. */
7746 switch (code)
7747 {
7748 case PLUS:
7749 op->mem_fetch_before = atomic_fetch_add_optab;
7750 op->mem_fetch_after = atomic_add_fetch_optab;
7751 op->mem_no_result = atomic_add_optab;
7752 op->fetch_before = sync_old_add_optab;
7753 op->fetch_after = sync_new_add_optab;
7754 op->no_result = sync_add_optab;
7755 op->reverse_code = MINUS;
7756 break;
7757 case MINUS:
7758 op->mem_fetch_before = atomic_fetch_sub_optab;
7759 op->mem_fetch_after = atomic_sub_fetch_optab;
7760 op->mem_no_result = atomic_sub_optab;
7761 op->fetch_before = sync_old_sub_optab;
7762 op->fetch_after = sync_new_sub_optab;
7763 op->no_result = sync_sub_optab;
7764 op->reverse_code = PLUS;
7765 break;
7766 case XOR:
7767 op->mem_fetch_before = atomic_fetch_xor_optab;
7768 op->mem_fetch_after = atomic_xor_fetch_optab;
7769 op->mem_no_result = atomic_xor_optab;
7770 op->fetch_before = sync_old_xor_optab;
7771 op->fetch_after = sync_new_xor_optab;
7772 op->no_result = sync_xor_optab;
7773 op->reverse_code = XOR;
7774 break;
7775 case AND:
7776 op->mem_fetch_before = atomic_fetch_and_optab;
7777 op->mem_fetch_after = atomic_and_fetch_optab;
7778 op->mem_no_result = atomic_and_optab;
7779 op->fetch_before = sync_old_and_optab;
7780 op->fetch_after = sync_new_and_optab;
7781 op->no_result = sync_and_optab;
7782 op->reverse_code = UNKNOWN;
7783 break;
7784 case IOR:
7785 op->mem_fetch_before = atomic_fetch_or_optab;
7786 op->mem_fetch_after = atomic_or_fetch_optab;
7787 op->mem_no_result = atomic_or_optab;
7788 op->fetch_before = sync_old_ior_optab;
7789 op->fetch_after = sync_new_ior_optab;
7790 op->no_result = sync_ior_optab;
7791 op->reverse_code = UNKNOWN;
7792 break;
7793 case NOT:
7794 op->mem_fetch_before = atomic_fetch_nand_optab;
7795 op->mem_fetch_after = atomic_nand_fetch_optab;
7796 op->mem_no_result = atomic_nand_optab;
7797 op->fetch_before = sync_old_nand_optab;
7798 op->fetch_after = sync_new_nand_optab;
7799 op->no_result = sync_nand_optab;
7800 op->reverse_code = UNKNOWN;
7801 break;
7802 default:
7803 gcc_unreachable ();
7804 }
7805 }
7806
7807 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7808 using memory order MODEL. If AFTER is true the operation needs to return
7809 the value of *MEM after the operation, otherwise the previous value.
7810 TARGET is an optional place to place the result. The result is unused if
7811 it is const0_rtx.
7812 Return the result if there is a better sequence, otherwise NULL_RTX. */
7813
7814 static rtx
7815 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7816 enum memmodel model, bool after)
7817 {
7818 /* If the value is prefetched, or not used, it may be possible to replace
7819 the sequence with a native exchange operation. */
7820 if (!after || target == const0_rtx)
7821 {
7822 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7823 if (code == AND && val == const0_rtx)
7824 {
7825 if (target == const0_rtx)
7826 target = gen_reg_rtx (GET_MODE (mem));
7827 return maybe_emit_atomic_exchange (target, mem, val, model);
7828 }
7829
7830 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7831 if (code == IOR && val == constm1_rtx)
7832 {
7833 if (target == const0_rtx)
7834 target = gen_reg_rtx (GET_MODE (mem));
7835 return maybe_emit_atomic_exchange (target, mem, val, model);
7836 }
7837 }
7838
7839 return NULL_RTX;
7840 }
7841
7842 /* Try to emit an instruction for a specific operation varaition.
7843 OPTAB contains the OP functions.
7844 TARGET is an optional place to return the result. const0_rtx means unused.
7845 MEM is the memory location to operate on.
7846 VAL is the value to use in the operation.
7847 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7848 MODEL is the memory model, if used.
7849 AFTER is true if the returned result is the value after the operation. */
7850
7851 static rtx
7852 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7853 rtx val, bool use_memmodel, enum memmodel model, bool after)
7854 {
7855 enum machine_mode mode = GET_MODE (mem);
7856 struct expand_operand ops[4];
7857 enum insn_code icode;
7858 int op_counter = 0;
7859 int num_ops;
7860
7861 /* Check to see if there is a result returned. */
7862 if (target == const0_rtx)
7863 {
7864 if (use_memmodel)
7865 {
7866 icode = direct_optab_handler (optab->mem_no_result, mode);
7867 create_integer_operand (&ops[2], model);
7868 num_ops = 3;
7869 }
7870 else
7871 {
7872 icode = direct_optab_handler (optab->no_result, mode);
7873 num_ops = 2;
7874 }
7875 }
7876 /* Otherwise, we need to generate a result. */
7877 else
7878 {
7879 if (use_memmodel)
7880 {
7881 icode = direct_optab_handler (after ? optab->mem_fetch_after
7882 : optab->mem_fetch_before, mode);
7883 create_integer_operand (&ops[3], model);
7884 num_ops = 4;
7885 }
7886 else
7887 {
7888 icode = optab_handler (after ? optab->fetch_after
7889 : optab->fetch_before, mode);
7890 num_ops = 3;
7891 }
7892 create_output_operand (&ops[op_counter++], target, mode);
7893 }
7894 if (icode == CODE_FOR_nothing)
7895 return NULL_RTX;
7896
7897 create_fixed_operand (&ops[op_counter++], mem);
7898 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7899 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7900
7901 if (maybe_expand_insn (icode, num_ops, ops))
7902 return (target == const0_rtx ? const0_rtx : ops[0].value);
7903
7904 return NULL_RTX;
7905 }
7906
7907
7908 /* This function expands an atomic fetch_OP or OP_fetch operation:
7909 TARGET is an option place to stick the return value. const0_rtx indicates
7910 the result is unused.
7911 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7912 CODE is the operation being performed (OP)
7913 MEMMODEL is the memory model variant to use.
7914 AFTER is true to return the result of the operation (OP_fetch).
7915 AFTER is false to return the value before the operation (fetch_OP).
7916
7917 This function will *only* generate instructions if there is a direct
7918 optab. No compare and swap loops or libcalls will be generated. */
7919
7920 static rtx
7921 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7922 enum rtx_code code, enum memmodel model,
7923 bool after)
7924 {
7925 enum machine_mode mode = GET_MODE (mem);
7926 struct atomic_op_functions optab;
7927 rtx result;
7928 bool unused_result = (target == const0_rtx);
7929
7930 get_atomic_op_for_code (&optab, code);
7931
7932 /* Check to see if there are any better instructions. */
7933 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7934 if (result)
7935 return result;
7936
7937 /* Check for the case where the result isn't used and try those patterns. */
7938 if (unused_result)
7939 {
7940 /* Try the memory model variant first. */
7941 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7942 if (result)
7943 return result;
7944
7945 /* Next try the old style withuot a memory model. */
7946 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7947 if (result)
7948 return result;
7949
7950 /* There is no no-result pattern, so try patterns with a result. */
7951 target = NULL_RTX;
7952 }
7953
7954 /* Try the __atomic version. */
7955 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7956 if (result)
7957 return result;
7958
7959 /* Try the older __sync version. */
7960 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7961 if (result)
7962 return result;
7963
7964 /* If the fetch value can be calculated from the other variation of fetch,
7965 try that operation. */
7966 if (after || unused_result || optab.reverse_code != UNKNOWN)
7967 {
7968 /* Try the __atomic version, then the older __sync version. */
7969 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7970 if (!result)
7971 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7972
7973 if (result)
7974 {
7975 /* If the result isn't used, no need to do compensation code. */
7976 if (unused_result)
7977 return result;
7978
7979 /* Issue compensation code. Fetch_after == fetch_before OP val.
7980 Fetch_before == after REVERSE_OP val. */
7981 if (!after)
7982 code = optab.reverse_code;
7983 if (code == NOT)
7984 {
7985 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7986 true, OPTAB_LIB_WIDEN);
7987 result = expand_simple_unop (mode, NOT, result, target, true);
7988 }
7989 else
7990 result = expand_simple_binop (mode, code, result, val, target,
7991 true, OPTAB_LIB_WIDEN);
7992 return result;
7993 }
7994 }
7995
7996 /* No direct opcode can be generated. */
7997 return NULL_RTX;
7998 }
7999
8000
8001
8002 /* This function expands an atomic fetch_OP or OP_fetch operation:
8003 TARGET is an option place to stick the return value. const0_rtx indicates
8004 the result is unused.
8005 atomically fetch MEM, perform the operation with VAL and return it to MEM.
8006 CODE is the operation being performed (OP)
8007 MEMMODEL is the memory model variant to use.
8008 AFTER is true to return the result of the operation (OP_fetch).
8009 AFTER is false to return the value before the operation (fetch_OP). */
8010 rtx
8011 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
8012 enum memmodel model, bool after)
8013 {
8014 enum machine_mode mode = GET_MODE (mem);
8015 rtx result;
8016 bool unused_result = (target == const0_rtx);
8017
8018 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
8019 after);
8020
8021 if (result)
8022 return result;
8023
8024 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8025 if (code == PLUS || code == MINUS)
8026 {
8027 rtx tmp;
8028 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
8029
8030 start_sequence ();
8031 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
8032 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
8033 model, after);
8034 if (result)
8035 {
8036 /* PLUS worked so emit the insns and return. */
8037 tmp = get_insns ();
8038 end_sequence ();
8039 emit_insn (tmp);
8040 return result;
8041 }
8042
8043 /* PLUS did not work, so throw away the negation code and continue. */
8044 end_sequence ();
8045 }
8046
8047 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8048 if (!can_compare_and_swap_p (mode, false))
8049 {
8050 rtx libfunc;
8051 bool fixup = false;
8052 enum rtx_code orig_code = code;
8053 struct atomic_op_functions optab;
8054
8055 get_atomic_op_for_code (&optab, code);
8056 libfunc = optab_libfunc (after ? optab.fetch_after
8057 : optab.fetch_before, mode);
8058 if (libfunc == NULL
8059 && (after || unused_result || optab.reverse_code != UNKNOWN))
8060 {
8061 fixup = true;
8062 if (!after)
8063 code = optab.reverse_code;
8064 libfunc = optab_libfunc (after ? optab.fetch_before
8065 : optab.fetch_after, mode);
8066 }
8067 if (libfunc != NULL)
8068 {
8069 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8070 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8071 2, addr, ptr_mode, val, mode);
8072
8073 if (!unused_result && fixup)
8074 result = expand_simple_binop (mode, code, result, val, target,
8075 true, OPTAB_LIB_WIDEN);
8076 return result;
8077 }
8078
8079 /* We need the original code for any further attempts. */
8080 code = orig_code;
8081 }
8082
8083 /* If nothing else has succeeded, default to a compare and swap loop. */
8084 if (can_compare_and_swap_p (mode, true))
8085 {
8086 rtx insn;
8087 rtx t0 = gen_reg_rtx (mode), t1;
8088
8089 start_sequence ();
8090
8091 /* If the result is used, get a register for it. */
8092 if (!unused_result)
8093 {
8094 if (!target || !register_operand (target, mode))
8095 target = gen_reg_rtx (mode);
8096 /* If fetch_before, copy the value now. */
8097 if (!after)
8098 emit_move_insn (target, t0);
8099 }
8100 else
8101 target = const0_rtx;
8102
8103 t1 = t0;
8104 if (code == NOT)
8105 {
8106 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8107 true, OPTAB_LIB_WIDEN);
8108 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8109 }
8110 else
8111 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8112 OPTAB_LIB_WIDEN);
8113
8114 /* For after, copy the value now. */
8115 if (!unused_result && after)
8116 emit_move_insn (target, t1);
8117 insn = get_insns ();
8118 end_sequence ();
8119
8120 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8121 return target;
8122 }
8123
8124 return NULL_RTX;
8125 }
8126 \f
8127 /* Return true if OPERAND is suitable for operand number OPNO of
8128 instruction ICODE. */
8129
8130 bool
8131 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8132 {
8133 return (!insn_data[(int) icode].operand[opno].predicate
8134 || (insn_data[(int) icode].operand[opno].predicate
8135 (operand, insn_data[(int) icode].operand[opno].mode)));
8136 }
8137 \f
8138 /* TARGET is a target of a multiword operation that we are going to
8139 implement as a series of word-mode operations. Return true if
8140 TARGET is suitable for this purpose. */
8141
8142 bool
8143 valid_multiword_target_p (rtx target)
8144 {
8145 enum machine_mode mode;
8146 int i;
8147
8148 mode = GET_MODE (target);
8149 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8150 if (!validate_subreg (word_mode, mode, target, i))
8151 return false;
8152 return true;
8153 }
8154
8155 /* Like maybe_legitimize_operand, but do not change the code of the
8156 current rtx value. */
8157
8158 static bool
8159 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8160 struct expand_operand *op)
8161 {
8162 /* See if the operand matches in its current form. */
8163 if (insn_operand_matches (icode, opno, op->value))
8164 return true;
8165
8166 /* If the operand is a memory whose address has no side effects,
8167 try forcing the address into a non-virtual pseudo register.
8168 The check for side effects is important because copy_to_mode_reg
8169 cannot handle things like auto-modified addresses. */
8170 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8171 {
8172 rtx addr, mem;
8173
8174 mem = op->value;
8175 addr = XEXP (mem, 0);
8176 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8177 && !side_effects_p (addr))
8178 {
8179 rtx last;
8180 enum machine_mode mode;
8181
8182 last = get_last_insn ();
8183 mode = get_address_mode (mem);
8184 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8185 if (insn_operand_matches (icode, opno, mem))
8186 {
8187 op->value = mem;
8188 return true;
8189 }
8190 delete_insns_since (last);
8191 }
8192 }
8193
8194 return false;
8195 }
8196
8197 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8198 on success, storing the new operand value back in OP. */
8199
8200 static bool
8201 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8202 struct expand_operand *op)
8203 {
8204 enum machine_mode mode, imode;
8205 bool old_volatile_ok, result;
8206
8207 mode = op->mode;
8208 switch (op->type)
8209 {
8210 case EXPAND_FIXED:
8211 old_volatile_ok = volatile_ok;
8212 volatile_ok = true;
8213 result = maybe_legitimize_operand_same_code (icode, opno, op);
8214 volatile_ok = old_volatile_ok;
8215 return result;
8216
8217 case EXPAND_OUTPUT:
8218 gcc_assert (mode != VOIDmode);
8219 if (op->value
8220 && op->value != const0_rtx
8221 && GET_MODE (op->value) == mode
8222 && maybe_legitimize_operand_same_code (icode, opno, op))
8223 return true;
8224
8225 op->value = gen_reg_rtx (mode);
8226 break;
8227
8228 case EXPAND_INPUT:
8229 input:
8230 gcc_assert (mode != VOIDmode);
8231 gcc_assert (GET_MODE (op->value) == VOIDmode
8232 || GET_MODE (op->value) == mode);
8233 if (maybe_legitimize_operand_same_code (icode, opno, op))
8234 return true;
8235
8236 op->value = copy_to_mode_reg (mode, op->value);
8237 break;
8238
8239 case EXPAND_CONVERT_TO:
8240 gcc_assert (mode != VOIDmode);
8241 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8242 goto input;
8243
8244 case EXPAND_CONVERT_FROM:
8245 if (GET_MODE (op->value) != VOIDmode)
8246 mode = GET_MODE (op->value);
8247 else
8248 /* The caller must tell us what mode this value has. */
8249 gcc_assert (mode != VOIDmode);
8250
8251 imode = insn_data[(int) icode].operand[opno].mode;
8252 if (imode != VOIDmode && imode != mode)
8253 {
8254 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8255 mode = imode;
8256 }
8257 goto input;
8258
8259 case EXPAND_ADDRESS:
8260 gcc_assert (mode != VOIDmode);
8261 op->value = convert_memory_address (mode, op->value);
8262 goto input;
8263
8264 case EXPAND_INTEGER:
8265 mode = insn_data[(int) icode].operand[opno].mode;
8266 if (mode != VOIDmode && const_int_operand (op->value, mode))
8267 goto input;
8268 break;
8269 }
8270 return insn_operand_matches (icode, opno, op->value);
8271 }
8272
8273 /* Make OP describe an input operand that should have the same value
8274 as VALUE, after any mode conversion that the target might request.
8275 TYPE is the type of VALUE. */
8276
8277 void
8278 create_convert_operand_from_type (struct expand_operand *op,
8279 rtx value, tree type)
8280 {
8281 create_convert_operand_from (op, value, TYPE_MODE (type),
8282 TYPE_UNSIGNED (type));
8283 }
8284
8285 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8286 of instruction ICODE. Return true on success, leaving the new operand
8287 values in the OPS themselves. Emit no code on failure. */
8288
8289 bool
8290 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8291 unsigned int nops, struct expand_operand *ops)
8292 {
8293 rtx last;
8294 unsigned int i;
8295
8296 last = get_last_insn ();
8297 for (i = 0; i < nops; i++)
8298 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8299 {
8300 delete_insns_since (last);
8301 return false;
8302 }
8303 return true;
8304 }
8305
8306 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8307 as its operands. Return the instruction pattern on success,
8308 and emit any necessary set-up code. Return null and emit no
8309 code on failure. */
8310
8311 rtx
8312 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8313 struct expand_operand *ops)
8314 {
8315 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8316 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8317 return NULL_RTX;
8318
8319 switch (nops)
8320 {
8321 case 1:
8322 return GEN_FCN (icode) (ops[0].value);
8323 case 2:
8324 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8325 case 3:
8326 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8327 case 4:
8328 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8329 ops[3].value);
8330 case 5:
8331 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8332 ops[3].value, ops[4].value);
8333 case 6:
8334 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8335 ops[3].value, ops[4].value, ops[5].value);
8336 case 7:
8337 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8338 ops[3].value, ops[4].value, ops[5].value,
8339 ops[6].value);
8340 case 8:
8341 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8342 ops[3].value, ops[4].value, ops[5].value,
8343 ops[6].value, ops[7].value);
8344 case 9:
8345 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8346 ops[3].value, ops[4].value, ops[5].value,
8347 ops[6].value, ops[7].value, ops[8].value);
8348 }
8349 gcc_unreachable ();
8350 }
8351
8352 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8353 as its operands. Return true on success and emit no code on failure. */
8354
8355 bool
8356 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8357 struct expand_operand *ops)
8358 {
8359 rtx pat = maybe_gen_insn (icode, nops, ops);
8360 if (pat)
8361 {
8362 emit_insn (pat);
8363 return true;
8364 }
8365 return false;
8366 }
8367
8368 /* Like maybe_expand_insn, but for jumps. */
8369
8370 bool
8371 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8372 struct expand_operand *ops)
8373 {
8374 rtx pat = maybe_gen_insn (icode, nops, ops);
8375 if (pat)
8376 {
8377 emit_jump_insn (pat);
8378 return true;
8379 }
8380 return false;
8381 }
8382
8383 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8384 as its operands. */
8385
8386 void
8387 expand_insn (enum insn_code icode, unsigned int nops,
8388 struct expand_operand *ops)
8389 {
8390 if (!maybe_expand_insn (icode, nops, ops))
8391 gcc_unreachable ();
8392 }
8393
8394 /* Like expand_insn, but for jumps. */
8395
8396 void
8397 expand_jump_insn (enum insn_code icode, unsigned int nops,
8398 struct expand_operand *ops)
8399 {
8400 if (!maybe_expand_jump_insn (icode, nops, ops))
8401 gcc_unreachable ();
8402 }
8403
8404 /* Reduce conditional compilation elsewhere. */
8405 #ifndef HAVE_insv
8406 #define HAVE_insv 0
8407 #define CODE_FOR_insv CODE_FOR_nothing
8408 #endif
8409 #ifndef HAVE_extv
8410 #define HAVE_extv 0
8411 #define CODE_FOR_extv CODE_FOR_nothing
8412 #endif
8413 #ifndef HAVE_extzv
8414 #define HAVE_extzv 0
8415 #define CODE_FOR_extzv CODE_FOR_nothing
8416 #endif
8417
8418 /* Enumerates the possible types of structure operand to an
8419 extraction_insn. */
8420 enum extraction_type { ET_unaligned_mem, ET_reg };
8421
8422 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8423 insertion or extraction of type TYPE on a structure of mode MODE.
8424 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8425 operand number of the structure (the first sign_extract or zero_extract
8426 operand) and FIELD_OP is the operand number of the field (the other
8427 side of the set from the sign_extract or zero_extract). */
8428
8429 static bool
8430 get_traditional_extraction_insn (extraction_insn *insn,
8431 enum extraction_type type,
8432 enum machine_mode mode,
8433 enum insn_code icode,
8434 int struct_op, int field_op)
8435 {
8436 const struct insn_data_d *data = &insn_data[icode];
8437
8438 enum machine_mode struct_mode = data->operand[struct_op].mode;
8439 if (struct_mode == VOIDmode)
8440 struct_mode = word_mode;
8441 if (mode != struct_mode)
8442 return false;
8443
8444 enum machine_mode field_mode = data->operand[field_op].mode;
8445 if (field_mode == VOIDmode)
8446 field_mode = word_mode;
8447
8448 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8449 if (pos_mode == VOIDmode)
8450 pos_mode = word_mode;
8451
8452 insn->icode = icode;
8453 insn->field_mode = field_mode;
8454 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8455 insn->pos_mode = pos_mode;
8456 return true;
8457 }
8458
8459 /* Return true if an optab exists to perform an insertion or extraction
8460 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8461
8462 REG_OPTAB is the optab to use for register structures and
8463 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8464 POS_OP is the operand number of the bit position. */
8465
8466 static bool
8467 get_optab_extraction_insn (struct extraction_insn *insn,
8468 enum extraction_type type,
8469 enum machine_mode mode, direct_optab reg_optab,
8470 direct_optab misalign_optab, int pos_op)
8471 {
8472 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8473 enum insn_code icode = direct_optab_handler (optab, mode);
8474 if (icode == CODE_FOR_nothing)
8475 return false;
8476
8477 const struct insn_data_d *data = &insn_data[icode];
8478
8479 insn->icode = icode;
8480 insn->field_mode = mode;
8481 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8482 insn->pos_mode = data->operand[pos_op].mode;
8483 if (insn->pos_mode == VOIDmode)
8484 insn->pos_mode = word_mode;
8485 return true;
8486 }
8487
8488 /* Return true if an instruction exists to perform an insertion or
8489 extraction (PATTERN says which) of type TYPE in mode MODE.
8490 Describe the instruction in *INSN if so. */
8491
8492 static bool
8493 get_extraction_insn (extraction_insn *insn,
8494 enum extraction_pattern pattern,
8495 enum extraction_type type,
8496 enum machine_mode mode)
8497 {
8498 switch (pattern)
8499 {
8500 case EP_insv:
8501 if (HAVE_insv
8502 && get_traditional_extraction_insn (insn, type, mode,
8503 CODE_FOR_insv, 0, 3))
8504 return true;
8505 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8506 insvmisalign_optab, 2);
8507
8508 case EP_extv:
8509 if (HAVE_extv
8510 && get_traditional_extraction_insn (insn, type, mode,
8511 CODE_FOR_extv, 1, 0))
8512 return true;
8513 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8514 extvmisalign_optab, 3);
8515
8516 case EP_extzv:
8517 if (HAVE_extzv
8518 && get_traditional_extraction_insn (insn, type, mode,
8519 CODE_FOR_extzv, 1, 0))
8520 return true;
8521 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8522 extzvmisalign_optab, 3);
8523
8524 default:
8525 gcc_unreachable ();
8526 }
8527 }
8528
8529 /* Return true if an instruction exists to access a field of mode
8530 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8531 Describe the "best" such instruction in *INSN if so. PATTERN and
8532 TYPE describe the type of insertion or extraction we want to perform.
8533
8534 For an insertion, the number of significant structure bits includes
8535 all bits of the target. For an extraction, it need only include the
8536 most significant bit of the field. Larger widths are acceptable
8537 in both cases. */
8538
8539 static bool
8540 get_best_extraction_insn (extraction_insn *insn,
8541 enum extraction_pattern pattern,
8542 enum extraction_type type,
8543 unsigned HOST_WIDE_INT struct_bits,
8544 enum machine_mode field_mode)
8545 {
8546 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8547 while (mode != VOIDmode)
8548 {
8549 if (get_extraction_insn (insn, pattern, type, mode))
8550 {
8551 while (mode != VOIDmode
8552 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8553 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8554 field_mode))
8555 {
8556 get_extraction_insn (insn, pattern, type, mode);
8557 mode = GET_MODE_WIDER_MODE (mode);
8558 }
8559 return true;
8560 }
8561 mode = GET_MODE_WIDER_MODE (mode);
8562 }
8563 return false;
8564 }
8565
8566 /* Return true if an instruction exists to access a field of mode
8567 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8568 Describe the "best" such instruction in *INSN if so. PATTERN describes
8569 the type of insertion or extraction we want to perform.
8570
8571 For an insertion, the number of significant structure bits includes
8572 all bits of the target. For an extraction, it need only include the
8573 most significant bit of the field. Larger widths are acceptable
8574 in both cases. */
8575
8576 bool
8577 get_best_reg_extraction_insn (extraction_insn *insn,
8578 enum extraction_pattern pattern,
8579 unsigned HOST_WIDE_INT struct_bits,
8580 enum machine_mode field_mode)
8581 {
8582 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8583 field_mode);
8584 }
8585
8586 /* Return true if an instruction exists to access a field of BITSIZE
8587 bits starting BITNUM bits into a memory structure. Describe the
8588 "best" such instruction in *INSN if so. PATTERN describes the type
8589 of insertion or extraction we want to perform and FIELDMODE is the
8590 natural mode of the extracted field.
8591
8592 The instructions considered here only access bytes that overlap
8593 the bitfield; they do not touch any surrounding bytes. */
8594
8595 bool
8596 get_best_mem_extraction_insn (extraction_insn *insn,
8597 enum extraction_pattern pattern,
8598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8599 enum machine_mode field_mode)
8600 {
8601 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8602 + bitsize
8603 + BITS_PER_UNIT - 1);
8604 struct_bits -= struct_bits % BITS_PER_UNIT;
8605 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8606 struct_bits, field_mode);
8607 }
8608
8609 #include "gt-optabs.h"