expr.c (var_rtx): Remove.
[gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
51
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
54
55 See expr.h for documentation of these optabs. */
56
57 optab optab_table[OTI_MAX];
58
59 rtx libfunc_table[LTI_MAX];
60
61 /* Tables of patterns for converting one mode to another. */
62 convert_optab convert_optab_table[CTI_MAX];
63
64 /* Contains the optab used for each rtx code. */
65 optab code_to_optab[NUM_RTX_CODE + 1];
66
67 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
69
70 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
71
72 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
75
76 enum insn_code setcc_gen_code[NUM_RTX_CODE];
77
78 #ifdef HAVE_conditional_move
79 /* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
83
84 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85 #endif
86
87 /* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90 static GTY(()) rtx trap_rtx;
91
92 static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93 static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95 static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99 static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102 static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105 static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107 static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
108 static optab new_optab (void);
109 static convert_optab new_convert_optab (void);
110 static inline optab init_optab (enum rtx_code);
111 static inline optab init_optabv (enum rtx_code);
112 static inline convert_optab init_convert_optab (enum rtx_code);
113 static void init_libfuncs (optab, int, int, const char *, int);
114 static void init_integral_libfuncs (optab, const char *, int);
115 static void init_floating_libfuncs (optab, const char *, int);
116 static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118 static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
120 static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124 static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126 static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127 static rtx widen_clz (enum machine_mode, rtx, rtx);
128 static rtx expand_parity (enum machine_mode, rtx, rtx);
129
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
134 \f
135 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
138
139 If the last insn does not set TARGET, don't do anything, but return 1.
140
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
144
145 static int
146 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
147 {
148 rtx last_insn, insn, set;
149 rtx note;
150
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
155
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
161 return 1;
162
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
165
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
169 ;
170
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
174
175 if (! rtx_equal_p (SET_DEST (set), target)
176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
179 return 1;
180
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
185 {
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
188 {
189 if (reg_set_p (target, insn))
190 return 0;
191
192 insn = PREV_INSN (insn);
193 }
194 }
195
196 if (GET_RTX_CLASS (code) == RTX_UNARY)
197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
198 else
199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
200
201 set_unique_reg_note (last_insn, REG_EQUAL, note);
202
203 return 1;
204 }
205 \f
206 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
208 not actually do a sign-extend or zero-extend, but can leave the
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
211
212 static rtx
213 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
215 {
216 rtx result;
217
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
221
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
225 if (! no_extend
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
228 return convert_modes (mode, oldmode, op, unsignedp);
229
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
234
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
237
238 result = gen_reg_rtx (mode);
239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
242 }
243 \f
244 /* Generate code to perform a straightforward complex divide. */
245
246 static int
247 expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
251 {
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
260
261 if (binoptab == sdivv_optab)
262 {
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
267 }
268
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
272
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
275
276 imag1 = force_reg (submode, imag1);
277
278 /* Divisor: c*c + d*d. */
279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
280 NULL_RTX, unsignedp, methods);
281
282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
283 NULL_RTX, unsignedp, methods);
284
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
287
288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
292
293 if (imag0 == 0)
294 {
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
297
298 /* Calculate the dividend. */
299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
300 NULL_RTX, unsignedp, methods);
301
302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
303 NULL_RTX, unsignedp, methods);
304
305 if (real_t == 0 || imag_t == 0)
306 return 0;
307
308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
309 NULL_RTX, unsignedp);
310 }
311 else
312 {
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
316 NULL_RTX, unsignedp, methods);
317
318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
319 NULL_RTX, unsignedp, methods);
320
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
323
324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
325 NULL_RTX, unsignedp, methods);
326
327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
328 NULL_RTX, unsignedp, methods);
329
330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
331 NULL_RTX, unsignedp, methods);
332
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
335
336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
337 NULL_RTX, unsignedp, methods);
338
339 if (real_t == 0 || imag_t == 0)
340 return 0;
341 }
342
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
349
350 if (res == 0)
351 return 0;
352
353 if (res != realr)
354 emit_move_insn (realr, res);
355
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
362
363 if (res == 0)
364 return 0;
365
366 if (res != imagr)
367 emit_move_insn (imagr, res);
368
369 return 1;
370 }
371 \f
372 /* Generate code to perform a wide-input-range-acceptable complex divide. */
373
374 static int
375 expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
379 {
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
384 rtx res;
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
389
390 if (binoptab == sdivv_optab)
391 {
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
396 }
397
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
401
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
404
405 imag1 = force_reg (submode, imag1);
406
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
409 {
410 temp1 = real1;
411 temp2 = imag1;
412 }
413 else
414 {
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
417 }
418
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
421
422 mode = GET_MODE (temp1);
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
425 mode, unsignedp, lab1);
426
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
428
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
435
436 if (ratio == 0)
437 return 0;
438
439 /* Calculate divisor. */
440
441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
442 NULL_RTX, unsignedp, methods);
443
444 if (temp1 == 0)
445 return 0;
446
447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
448 NULL_RTX, unsignedp, methods);
449
450 if (divisor == 0)
451 return 0;
452
453 /* Calculate dividend. */
454
455 if (imag0 == 0)
456 {
457 real_t = real0;
458
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
460
461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
462 NULL_RTX, unsignedp, methods);
463
464 if (imag_t == 0)
465 return 0;
466
467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
468 NULL_RTX, unsignedp);
469
470 if (real_t == 0 || imag_t == 0)
471 return 0;
472 }
473 else
474 {
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
477
478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
479 NULL_RTX, unsignedp, methods);
480
481 if (temp1 == 0)
482 return 0;
483
484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
485 NULL_RTX, unsignedp, methods);
486
487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
488 NULL_RTX, unsignedp, methods);
489
490 if (temp1 == 0)
491 return 0;
492
493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
494 NULL_RTX, unsignedp, methods);
495
496 if (real_t == 0 || imag_t == 0)
497 return 0;
498 }
499
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
506
507 if (res == 0)
508 return 0;
509
510 if (res != realr)
511 emit_move_insn (realr, res);
512
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
519
520 if (res == 0)
521 return 0;
522
523 if (res != imagr)
524 emit_move_insn (imagr, res);
525
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
529
530 emit_label (lab1);
531
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
533
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
540
541 if (ratio == 0)
542 return 0;
543
544 /* Calculate divisor. */
545
546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
547 NULL_RTX, unsignedp, methods);
548
549 if (temp1 == 0)
550 return 0;
551
552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
553 NULL_RTX, unsignedp, methods);
554
555 if (divisor == 0)
556 return 0;
557
558 /* Calculate dividend. */
559
560 if (imag0 == 0)
561 {
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
563
564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
565 NULL_RTX, unsignedp, methods);
566
567 imag_t = expand_unop (submode, this_neg_optab, real0,
568 NULL_RTX, unsignedp);
569
570 if (real_t == 0 || imag_t == 0)
571 return 0;
572 }
573 else
574 {
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
577
578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
579 NULL_RTX, unsignedp, methods);
580
581 if (temp1 == 0)
582 return 0;
583
584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
585 NULL_RTX, unsignedp, methods);
586
587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
588 NULL_RTX, unsignedp, methods);
589
590 if (temp1 == 0)
591 return 0;
592
593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
594 NULL_RTX, unsignedp, methods);
595
596 if (real_t == 0 || imag_t == 0)
597 return 0;
598 }
599
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
606
607 if (res == 0)
608 return 0;
609
610 if (res != realr)
611 emit_move_insn (realr, res);
612
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
619
620 if (res == 0)
621 return 0;
622
623 if (res != imagr)
624 emit_move_insn (imagr, res);
625
626 emit_label (lab2);
627
628 return 1;
629 }
630 \f
631 /* Return the optab used for computing the operation given by
632 the tree code, CODE. This function is not always usable (for
633 example, it cannot give complete results for multiplication
634 or division) but probably ought to be relied on more widely
635 throughout the expander. */
636 optab
637 optab_for_tree_code (enum tree_code code, tree type)
638 {
639 bool trapv;
640 switch (code)
641 {
642 case BIT_AND_EXPR:
643 return and_optab;
644
645 case BIT_IOR_EXPR:
646 return ior_optab;
647
648 case BIT_NOT_EXPR:
649 return one_cmpl_optab;
650
651 case BIT_XOR_EXPR:
652 return xor_optab;
653
654 case TRUNC_MOD_EXPR:
655 case CEIL_MOD_EXPR:
656 case FLOOR_MOD_EXPR:
657 case ROUND_MOD_EXPR:
658 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
659
660 case RDIV_EXPR:
661 case TRUNC_DIV_EXPR:
662 case CEIL_DIV_EXPR:
663 case FLOOR_DIV_EXPR:
664 case ROUND_DIV_EXPR:
665 case EXACT_DIV_EXPR:
666 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
667
668 case LSHIFT_EXPR:
669 return ashl_optab;
670
671 case RSHIFT_EXPR:
672 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
673
674 case LROTATE_EXPR:
675 return rotl_optab;
676
677 case RROTATE_EXPR:
678 return rotr_optab;
679
680 case MAX_EXPR:
681 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
682
683 case MIN_EXPR:
684 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
685
686 default:
687 break;
688 }
689
690 trapv = flag_trapv && INTEGRAL_TYPE_P (type) && !TYPE_UNSIGNED (type);
691 switch (code)
692 {
693 case PLUS_EXPR:
694 return trapv ? addv_optab : add_optab;
695
696 case MINUS_EXPR:
697 return trapv ? subv_optab : sub_optab;
698
699 case MULT_EXPR:
700 return trapv ? smulv_optab : smul_optab;
701
702 case NEGATE_EXPR:
703 return trapv ? negv_optab : neg_optab;
704
705 case ABS_EXPR:
706 return trapv ? absv_optab : abs_optab;
707
708 default:
709 return NULL;
710 }
711 }
712
713 \f
714 /* Wrapper around expand_binop which takes an rtx code to specify
715 the operation to perform, not an optab pointer. All other
716 arguments are the same. */
717 rtx
718 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
719 rtx op1, rtx target, int unsignedp,
720 enum optab_methods methods)
721 {
722 optab binop = code_to_optab[(int) code];
723 if (binop == 0)
724 abort ();
725
726 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
727 }
728
729 /* Generate code to perform an operation specified by BINOPTAB
730 on operands OP0 and OP1, with result having machine-mode MODE.
731
732 UNSIGNEDP is for the case where we have to widen the operands
733 to perform the operation. It says to use zero-extension.
734
735 If TARGET is nonzero, the value
736 is generated there, if it is convenient to do so.
737 In all cases an rtx is returned for the locus of the value;
738 this may or may not be TARGET. */
739
740 rtx
741 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
742 rtx target, int unsignedp, enum optab_methods methods)
743 {
744 enum optab_methods next_methods
745 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
746 ? OPTAB_WIDEN : methods);
747 enum mode_class class;
748 enum machine_mode wider_mode;
749 rtx temp;
750 int commutative_op = 0;
751 int shift_op = (binoptab->code == ASHIFT
752 || binoptab->code == ASHIFTRT
753 || binoptab->code == LSHIFTRT
754 || binoptab->code == ROTATE
755 || binoptab->code == ROTATERT);
756 rtx entry_last = get_last_insn ();
757 rtx last;
758
759 class = GET_MODE_CLASS (mode);
760
761 if (flag_force_mem)
762 {
763 /* Load duplicate non-volatile operands once. */
764 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
765 {
766 op0 = force_not_mem (op0);
767 op1 = op0;
768 }
769 else
770 {
771 op0 = force_not_mem (op0);
772 op1 = force_not_mem (op1);
773 }
774 }
775
776 /* If subtracting an integer constant, convert this into an addition of
777 the negated constant. */
778
779 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
780 {
781 op1 = negate_rtx (mode, op1);
782 binoptab = add_optab;
783 }
784
785 /* If we are inside an appropriately-short loop and one operand is an
786 expensive constant, force it into a register. */
787 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
788 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
789 op0 = force_reg (mode, op0);
790
791 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
792 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
793 op1 = force_reg (mode, op1);
794
795 /* Record where to delete back to if we backtrack. */
796 last = get_last_insn ();
797
798 /* If operation is commutative,
799 try to make the first operand a register.
800 Even better, try to make it the same as the target.
801 Also try to make the last operand a constant. */
802 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
803 || binoptab == smul_widen_optab
804 || binoptab == umul_widen_optab
805 || binoptab == smul_highpart_optab
806 || binoptab == umul_highpart_optab)
807 {
808 commutative_op = 1;
809
810 if (((target == 0 || REG_P (target))
811 ? ((REG_P (op1)
812 && !REG_P (op0))
813 || target == op1)
814 : rtx_equal_p (op1, target))
815 || GET_CODE (op0) == CONST_INT)
816 {
817 temp = op1;
818 op1 = op0;
819 op0 = temp;
820 }
821 }
822
823 /* If we can do it with a three-operand insn, do so. */
824
825 if (methods != OPTAB_MUST_WIDEN
826 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
827 {
828 int icode = (int) binoptab->handlers[(int) mode].insn_code;
829 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
830 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
831 rtx pat;
832 rtx xop0 = op0, xop1 = op1;
833
834 if (target)
835 temp = target;
836 else
837 temp = gen_reg_rtx (mode);
838
839 /* If it is a commutative operator and the modes would match
840 if we would swap the operands, we can save the conversions. */
841 if (commutative_op)
842 {
843 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
844 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
845 {
846 rtx tmp;
847
848 tmp = op0; op0 = op1; op1 = tmp;
849 tmp = xop0; xop0 = xop1; xop1 = tmp;
850 }
851 }
852
853 /* In case the insn wants input operands in modes different from
854 those of the actual operands, convert the operands. It would
855 seem that we don't need to convert CONST_INTs, but we do, so
856 that they're properly zero-extended, sign-extended or truncated
857 for their mode. */
858
859 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
860 xop0 = convert_modes (mode0,
861 GET_MODE (op0) != VOIDmode
862 ? GET_MODE (op0)
863 : mode,
864 xop0, unsignedp);
865
866 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
867 xop1 = convert_modes (mode1,
868 GET_MODE (op1) != VOIDmode
869 ? GET_MODE (op1)
870 : mode,
871 xop1, unsignedp);
872
873 /* Now, if insn's predicates don't allow our operands, put them into
874 pseudo regs. */
875
876 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
877 && mode0 != VOIDmode)
878 xop0 = copy_to_mode_reg (mode0, xop0);
879
880 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
881 && mode1 != VOIDmode)
882 xop1 = copy_to_mode_reg (mode1, xop1);
883
884 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
885 temp = gen_reg_rtx (mode);
886
887 pat = GEN_FCN (icode) (temp, xop0, xop1);
888 if (pat)
889 {
890 /* If PAT is composed of more than one insn, try to add an appropriate
891 REG_EQUAL note to it. If we can't because TEMP conflicts with an
892 operand, call ourselves again, this time without a target. */
893 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
894 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
895 {
896 delete_insns_since (last);
897 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
898 unsignedp, methods);
899 }
900
901 emit_insn (pat);
902 return temp;
903 }
904 else
905 delete_insns_since (last);
906 }
907
908 /* If this is a multiply, see if we can do a widening operation that
909 takes operands of this mode and makes a wider mode. */
910
911 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
912 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
913 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
914 != CODE_FOR_nothing))
915 {
916 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
917 unsignedp ? umul_widen_optab : smul_widen_optab,
918 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
919
920 if (temp != 0)
921 {
922 if (GET_MODE_CLASS (mode) == MODE_INT)
923 return gen_lowpart (mode, temp);
924 else
925 return convert_to_mode (mode, temp, unsignedp);
926 }
927 }
928
929 /* Look for a wider mode of the same class for which we think we
930 can open-code the operation. Check for a widening multiply at the
931 wider mode as well. */
932
933 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
934 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
935 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
936 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
937 {
938 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
939 || (binoptab == smul_optab
940 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
941 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
942 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
943 != CODE_FOR_nothing)))
944 {
945 rtx xop0 = op0, xop1 = op1;
946 int no_extend = 0;
947
948 /* For certain integer operations, we need not actually extend
949 the narrow operands, as long as we will truncate
950 the results to the same narrowness. */
951
952 if ((binoptab == ior_optab || binoptab == and_optab
953 || binoptab == xor_optab
954 || binoptab == add_optab || binoptab == sub_optab
955 || binoptab == smul_optab || binoptab == ashl_optab)
956 && class == MODE_INT)
957 no_extend = 1;
958
959 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
960
961 /* The second operand of a shift must always be extended. */
962 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
963 no_extend && binoptab != ashl_optab);
964
965 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
966 unsignedp, OPTAB_DIRECT);
967 if (temp)
968 {
969 if (class != MODE_INT)
970 {
971 if (target == 0)
972 target = gen_reg_rtx (mode);
973 convert_move (target, temp, 0);
974 return target;
975 }
976 else
977 return gen_lowpart (mode, temp);
978 }
979 else
980 delete_insns_since (last);
981 }
982 }
983
984 /* These can be done a word at a time. */
985 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
986 && class == MODE_INT
987 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
988 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
989 {
990 int i;
991 rtx insns;
992 rtx equiv_value;
993
994 /* If TARGET is the same as one of the operands, the REG_EQUAL note
995 won't be accurate, so use a new target. */
996 if (target == 0 || target == op0 || target == op1)
997 target = gen_reg_rtx (mode);
998
999 start_sequence ();
1000
1001 /* Do the actual arithmetic. */
1002 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1003 {
1004 rtx target_piece = operand_subword (target, i, 1, mode);
1005 rtx x = expand_binop (word_mode, binoptab,
1006 operand_subword_force (op0, i, mode),
1007 operand_subword_force (op1, i, mode),
1008 target_piece, unsignedp, next_methods);
1009
1010 if (x == 0)
1011 break;
1012
1013 if (target_piece != x)
1014 emit_move_insn (target_piece, x);
1015 }
1016
1017 insns = get_insns ();
1018 end_sequence ();
1019
1020 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1021 {
1022 if (binoptab->code != UNKNOWN)
1023 equiv_value
1024 = gen_rtx_fmt_ee (binoptab->code, mode,
1025 copy_rtx (op0), copy_rtx (op1));
1026 else
1027 equiv_value = 0;
1028
1029 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1030 return target;
1031 }
1032 }
1033
1034 /* Synthesize double word shifts from single word shifts. */
1035 if ((binoptab == lshr_optab || binoptab == ashl_optab
1036 || binoptab == ashr_optab)
1037 && class == MODE_INT
1038 && GET_CODE (op1) == CONST_INT
1039 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1040 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1041 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1042 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1043 {
1044 rtx insns, inter, equiv_value;
1045 rtx into_target, outof_target;
1046 rtx into_input, outof_input;
1047 int shift_count, left_shift, outof_word;
1048
1049 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1050 won't be accurate, so use a new target. */
1051 if (target == 0 || target == op0 || target == op1)
1052 target = gen_reg_rtx (mode);
1053
1054 start_sequence ();
1055
1056 shift_count = INTVAL (op1);
1057
1058 /* OUTOF_* is the word we are shifting bits away from, and
1059 INTO_* is the word that we are shifting bits towards, thus
1060 they differ depending on the direction of the shift and
1061 WORDS_BIG_ENDIAN. */
1062
1063 left_shift = binoptab == ashl_optab;
1064 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1065
1066 outof_target = operand_subword (target, outof_word, 1, mode);
1067 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1068
1069 outof_input = operand_subword_force (op0, outof_word, mode);
1070 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1071
1072 if (shift_count >= BITS_PER_WORD)
1073 {
1074 inter = expand_binop (word_mode, binoptab,
1075 outof_input,
1076 GEN_INT (shift_count - BITS_PER_WORD),
1077 into_target, unsignedp, next_methods);
1078
1079 if (inter != 0 && inter != into_target)
1080 emit_move_insn (into_target, inter);
1081
1082 /* For a signed right shift, we must fill the word we are shifting
1083 out of with copies of the sign bit. Otherwise it is zeroed. */
1084 if (inter != 0 && binoptab != ashr_optab)
1085 inter = CONST0_RTX (word_mode);
1086 else if (inter != 0)
1087 inter = expand_binop (word_mode, binoptab,
1088 outof_input,
1089 GEN_INT (BITS_PER_WORD - 1),
1090 outof_target, unsignedp, next_methods);
1091
1092 if (inter != 0 && inter != outof_target)
1093 emit_move_insn (outof_target, inter);
1094 }
1095 else
1096 {
1097 rtx carries;
1098 optab reverse_unsigned_shift, unsigned_shift;
1099
1100 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1101 we must do a logical shift in the opposite direction of the
1102 desired shift. */
1103
1104 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1105
1106 /* For a shift of less than BITS_PER_WORD, to compute the word
1107 shifted towards, we need to unsigned shift the orig value of
1108 that word. */
1109
1110 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1111
1112 carries = expand_binop (word_mode, reverse_unsigned_shift,
1113 outof_input,
1114 GEN_INT (BITS_PER_WORD - shift_count),
1115 0, unsignedp, next_methods);
1116
1117 if (carries == 0)
1118 inter = 0;
1119 else
1120 inter = expand_binop (word_mode, unsigned_shift, into_input,
1121 op1, 0, unsignedp, next_methods);
1122
1123 if (inter != 0)
1124 inter = expand_binop (word_mode, ior_optab, carries, inter,
1125 into_target, unsignedp, next_methods);
1126
1127 if (inter != 0 && inter != into_target)
1128 emit_move_insn (into_target, inter);
1129
1130 if (inter != 0)
1131 inter = expand_binop (word_mode, binoptab, outof_input,
1132 op1, outof_target, unsignedp, next_methods);
1133
1134 if (inter != 0 && inter != outof_target)
1135 emit_move_insn (outof_target, inter);
1136 }
1137
1138 insns = get_insns ();
1139 end_sequence ();
1140
1141 if (inter != 0)
1142 {
1143 if (binoptab->code != UNKNOWN)
1144 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1145 else
1146 equiv_value = 0;
1147
1148 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1149 return target;
1150 }
1151 }
1152
1153 /* Synthesize double word rotates from single word shifts. */
1154 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1155 && class == MODE_INT
1156 && GET_CODE (op1) == CONST_INT
1157 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1158 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1159 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1160 {
1161 rtx insns, equiv_value;
1162 rtx into_target, outof_target;
1163 rtx into_input, outof_input;
1164 rtx inter;
1165 int shift_count, left_shift, outof_word;
1166
1167 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1168 won't be accurate, so use a new target. Do this also if target is not
1169 a REG, first because having a register instead may open optimization
1170 opportunities, and second because if target and op0 happen to be MEMs
1171 designating the same location, we would risk clobbering it too early
1172 in the code sequence we generate below. */
1173 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1174 target = gen_reg_rtx (mode);
1175
1176 start_sequence ();
1177
1178 shift_count = INTVAL (op1);
1179
1180 /* OUTOF_* is the word we are shifting bits away from, and
1181 INTO_* is the word that we are shifting bits towards, thus
1182 they differ depending on the direction of the shift and
1183 WORDS_BIG_ENDIAN. */
1184
1185 left_shift = (binoptab == rotl_optab);
1186 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1187
1188 outof_target = operand_subword (target, outof_word, 1, mode);
1189 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1190
1191 outof_input = operand_subword_force (op0, outof_word, mode);
1192 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1193
1194 if (shift_count == BITS_PER_WORD)
1195 {
1196 /* This is just a word swap. */
1197 emit_move_insn (outof_target, into_input);
1198 emit_move_insn (into_target, outof_input);
1199 inter = const0_rtx;
1200 }
1201 else
1202 {
1203 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1204 rtx first_shift_count, second_shift_count;
1205 optab reverse_unsigned_shift, unsigned_shift;
1206
1207 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1208 ? lshr_optab : ashl_optab);
1209
1210 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1211 ? ashl_optab : lshr_optab);
1212
1213 if (shift_count > BITS_PER_WORD)
1214 {
1215 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1216 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1217 }
1218 else
1219 {
1220 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1221 second_shift_count = GEN_INT (shift_count);
1222 }
1223
1224 into_temp1 = expand_binop (word_mode, unsigned_shift,
1225 outof_input, first_shift_count,
1226 NULL_RTX, unsignedp, next_methods);
1227 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1228 into_input, second_shift_count,
1229 NULL_RTX, unsignedp, next_methods);
1230
1231 if (into_temp1 != 0 && into_temp2 != 0)
1232 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1233 into_target, unsignedp, next_methods);
1234 else
1235 inter = 0;
1236
1237 if (inter != 0 && inter != into_target)
1238 emit_move_insn (into_target, inter);
1239
1240 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1241 into_input, first_shift_count,
1242 NULL_RTX, unsignedp, next_methods);
1243 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1244 outof_input, second_shift_count,
1245 NULL_RTX, unsignedp, next_methods);
1246
1247 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1248 inter = expand_binop (word_mode, ior_optab,
1249 outof_temp1, outof_temp2,
1250 outof_target, unsignedp, next_methods);
1251
1252 if (inter != 0 && inter != outof_target)
1253 emit_move_insn (outof_target, inter);
1254 }
1255
1256 insns = get_insns ();
1257 end_sequence ();
1258
1259 if (inter != 0)
1260 {
1261 if (binoptab->code != UNKNOWN)
1262 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1263 else
1264 equiv_value = 0;
1265
1266 /* We can't make this a no conflict block if this is a word swap,
1267 because the word swap case fails if the input and output values
1268 are in the same register. */
1269 if (shift_count != BITS_PER_WORD)
1270 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1271 else
1272 emit_insn (insns);
1273
1274
1275 return target;
1276 }
1277 }
1278
1279 /* These can be done a word at a time by propagating carries. */
1280 if ((binoptab == add_optab || binoptab == sub_optab)
1281 && class == MODE_INT
1282 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1283 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1284 {
1285 unsigned int i;
1286 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1287 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1288 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1289 rtx xop0, xop1, xtarget;
1290
1291 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1292 value is one of those, use it. Otherwise, use 1 since it is the
1293 one easiest to get. */
1294 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1295 int normalizep = STORE_FLAG_VALUE;
1296 #else
1297 int normalizep = 1;
1298 #endif
1299
1300 /* Prepare the operands. */
1301 xop0 = force_reg (mode, op0);
1302 xop1 = force_reg (mode, op1);
1303
1304 xtarget = gen_reg_rtx (mode);
1305
1306 if (target == 0 || !REG_P (target))
1307 target = xtarget;
1308
1309 /* Indicate for flow that the entire target reg is being set. */
1310 if (REG_P (target))
1311 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1312
1313 /* Do the actual arithmetic. */
1314 for (i = 0; i < nwords; i++)
1315 {
1316 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1317 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1318 rtx op0_piece = operand_subword_force (xop0, index, mode);
1319 rtx op1_piece = operand_subword_force (xop1, index, mode);
1320 rtx x;
1321
1322 /* Main add/subtract of the input operands. */
1323 x = expand_binop (word_mode, binoptab,
1324 op0_piece, op1_piece,
1325 target_piece, unsignedp, next_methods);
1326 if (x == 0)
1327 break;
1328
1329 if (i + 1 < nwords)
1330 {
1331 /* Store carry from main add/subtract. */
1332 carry_out = gen_reg_rtx (word_mode);
1333 carry_out = emit_store_flag_force (carry_out,
1334 (binoptab == add_optab
1335 ? LT : GT),
1336 x, op0_piece,
1337 word_mode, 1, normalizep);
1338 }
1339
1340 if (i > 0)
1341 {
1342 rtx newx;
1343
1344 /* Add/subtract previous carry to main result. */
1345 newx = expand_binop (word_mode,
1346 normalizep == 1 ? binoptab : otheroptab,
1347 x, carry_in,
1348 NULL_RTX, 1, next_methods);
1349
1350 if (i + 1 < nwords)
1351 {
1352 /* Get out carry from adding/subtracting carry in. */
1353 rtx carry_tmp = gen_reg_rtx (word_mode);
1354 carry_tmp = emit_store_flag_force (carry_tmp,
1355 (binoptab == add_optab
1356 ? LT : GT),
1357 newx, x,
1358 word_mode, 1, normalizep);
1359
1360 /* Logical-ior the two poss. carry together. */
1361 carry_out = expand_binop (word_mode, ior_optab,
1362 carry_out, carry_tmp,
1363 carry_out, 0, next_methods);
1364 if (carry_out == 0)
1365 break;
1366 }
1367 emit_move_insn (target_piece, newx);
1368 }
1369
1370 carry_in = carry_out;
1371 }
1372
1373 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1374 {
1375 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1376 || ! rtx_equal_p (target, xtarget))
1377 {
1378 rtx temp = emit_move_insn (target, xtarget);
1379
1380 set_unique_reg_note (temp,
1381 REG_EQUAL,
1382 gen_rtx_fmt_ee (binoptab->code, mode,
1383 copy_rtx (xop0),
1384 copy_rtx (xop1)));
1385 }
1386 else
1387 target = xtarget;
1388
1389 return target;
1390 }
1391
1392 else
1393 delete_insns_since (last);
1394 }
1395
1396 /* If we want to multiply two two-word values and have normal and widening
1397 multiplies of single-word values, we can do this with three smaller
1398 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1399 because we are not operating on one word at a time.
1400
1401 The multiplication proceeds as follows:
1402 _______________________
1403 [__op0_high_|__op0_low__]
1404 _______________________
1405 * [__op1_high_|__op1_low__]
1406 _______________________________________________
1407 _______________________
1408 (1) [__op0_low__*__op1_low__]
1409 _______________________
1410 (2a) [__op0_low__*__op1_high_]
1411 _______________________
1412 (2b) [__op0_high_*__op1_low__]
1413 _______________________
1414 (3) [__op0_high_*__op1_high_]
1415
1416
1417 This gives a 4-word result. Since we are only interested in the
1418 lower 2 words, partial result (3) and the upper words of (2a) and
1419 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1420 calculated using non-widening multiplication.
1421
1422 (1), however, needs to be calculated with an unsigned widening
1423 multiplication. If this operation is not directly supported we
1424 try using a signed widening multiplication and adjust the result.
1425 This adjustment works as follows:
1426
1427 If both operands are positive then no adjustment is needed.
1428
1429 If the operands have different signs, for example op0_low < 0 and
1430 op1_low >= 0, the instruction treats the most significant bit of
1431 op0_low as a sign bit instead of a bit with significance
1432 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1433 with 2**BITS_PER_WORD - op0_low, and two's complements the
1434 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1435 the result.
1436
1437 Similarly, if both operands are negative, we need to add
1438 (op0_low + op1_low) * 2**BITS_PER_WORD.
1439
1440 We use a trick to adjust quickly. We logically shift op0_low right
1441 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1442 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1443 logical shift exists, we do an arithmetic right shift and subtract
1444 the 0 or -1. */
1445
1446 if (binoptab == smul_optab
1447 && class == MODE_INT
1448 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1449 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1450 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1451 && ((umul_widen_optab->handlers[(int) mode].insn_code
1452 != CODE_FOR_nothing)
1453 || (smul_widen_optab->handlers[(int) mode].insn_code
1454 != CODE_FOR_nothing)))
1455 {
1456 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1457 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1458 rtx op0_high = operand_subword_force (op0, high, mode);
1459 rtx op0_low = operand_subword_force (op0, low, mode);
1460 rtx op1_high = operand_subword_force (op1, high, mode);
1461 rtx op1_low = operand_subword_force (op1, low, mode);
1462 rtx product = 0;
1463 rtx op0_xhigh = NULL_RTX;
1464 rtx op1_xhigh = NULL_RTX;
1465
1466 /* If the target is the same as one of the inputs, don't use it. This
1467 prevents problems with the REG_EQUAL note. */
1468 if (target == op0 || target == op1
1469 || (target != 0 && !REG_P (target)))
1470 target = 0;
1471
1472 /* Multiply the two lower words to get a double-word product.
1473 If unsigned widening multiplication is available, use that;
1474 otherwise use the signed form and compensate. */
1475
1476 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1477 {
1478 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1479 target, 1, OPTAB_DIRECT);
1480
1481 /* If we didn't succeed, delete everything we did so far. */
1482 if (product == 0)
1483 delete_insns_since (last);
1484 else
1485 op0_xhigh = op0_high, op1_xhigh = op1_high;
1486 }
1487
1488 if (product == 0
1489 && smul_widen_optab->handlers[(int) mode].insn_code
1490 != CODE_FOR_nothing)
1491 {
1492 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1493 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1494 target, 1, OPTAB_DIRECT);
1495 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1496 NULL_RTX, 1, next_methods);
1497 if (op0_xhigh)
1498 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1499 op0_xhigh, op0_xhigh, 0, next_methods);
1500 else
1501 {
1502 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1503 NULL_RTX, 0, next_methods);
1504 if (op0_xhigh)
1505 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1506 op0_xhigh, op0_xhigh, 0,
1507 next_methods);
1508 }
1509
1510 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1511 NULL_RTX, 1, next_methods);
1512 if (op1_xhigh)
1513 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1514 op1_xhigh, op1_xhigh, 0, next_methods);
1515 else
1516 {
1517 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1518 NULL_RTX, 0, next_methods);
1519 if (op1_xhigh)
1520 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1521 op1_xhigh, op1_xhigh, 0,
1522 next_methods);
1523 }
1524 }
1525
1526 /* If we have been able to directly compute the product of the
1527 low-order words of the operands and perform any required adjustments
1528 of the operands, we proceed by trying two more multiplications
1529 and then computing the appropriate sum.
1530
1531 We have checked above that the required addition is provided.
1532 Full-word addition will normally always succeed, especially if
1533 it is provided at all, so we don't worry about its failure. The
1534 multiplication may well fail, however, so we do handle that. */
1535
1536 if (product && op0_xhigh && op1_xhigh)
1537 {
1538 rtx product_high = operand_subword (product, high, 1, mode);
1539 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1540 NULL_RTX, 0, OPTAB_DIRECT);
1541
1542 if (!REG_P (product_high))
1543 product_high = force_reg (word_mode, product_high);
1544
1545 if (temp != 0)
1546 temp = expand_binop (word_mode, add_optab, temp, product_high,
1547 product_high, 0, next_methods);
1548
1549 if (temp != 0 && temp != product_high)
1550 emit_move_insn (product_high, temp);
1551
1552 if (temp != 0)
1553 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1554 NULL_RTX, 0, OPTAB_DIRECT);
1555
1556 if (temp != 0)
1557 temp = expand_binop (word_mode, add_optab, temp,
1558 product_high, product_high,
1559 0, next_methods);
1560
1561 if (temp != 0 && temp != product_high)
1562 emit_move_insn (product_high, temp);
1563
1564 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1565
1566 if (temp != 0)
1567 {
1568 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1569 {
1570 temp = emit_move_insn (product, product);
1571 set_unique_reg_note (temp,
1572 REG_EQUAL,
1573 gen_rtx_fmt_ee (MULT, mode,
1574 copy_rtx (op0),
1575 copy_rtx (op1)));
1576 }
1577
1578 return product;
1579 }
1580 }
1581
1582 /* If we get here, we couldn't do it for some reason even though we
1583 originally thought we could. Delete anything we've emitted in
1584 trying to do it. */
1585
1586 delete_insns_since (last);
1587 }
1588
1589 /* Open-code the vector operations if we have no hardware support
1590 for them. */
1591 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1592 return expand_vector_binop (mode, binoptab, op0, op1, target,
1593 unsignedp, methods);
1594
1595 /* We need to open-code the complex type operations: '+, -, * and /' */
1596
1597 /* At this point we allow operations between two similar complex
1598 numbers, and also if one of the operands is not a complex number
1599 but rather of MODE_FLOAT or MODE_INT. However, the caller
1600 must make sure that the MODE of the non-complex operand matches
1601 the SUBMODE of the complex operand. */
1602
1603 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1604 {
1605 rtx real0 = 0, imag0 = 0;
1606 rtx real1 = 0, imag1 = 0;
1607 rtx realr, imagr, res;
1608 rtx seq, result;
1609 int ok = 0;
1610
1611 /* Find the correct mode for the real and imaginary parts. */
1612 enum machine_mode submode = GET_MODE_INNER (mode);
1613
1614 if (submode == BLKmode)
1615 abort ();
1616
1617 start_sequence ();
1618
1619 if (GET_MODE (op0) == mode)
1620 {
1621 real0 = gen_realpart (submode, op0);
1622 imag0 = gen_imagpart (submode, op0);
1623 }
1624 else
1625 real0 = op0;
1626
1627 if (GET_MODE (op1) == mode)
1628 {
1629 real1 = gen_realpart (submode, op1);
1630 imag1 = gen_imagpart (submode, op1);
1631 }
1632 else
1633 real1 = op1;
1634
1635 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1636 abort ();
1637
1638 result = gen_reg_rtx (mode);
1639 realr = gen_realpart (submode, result);
1640 imagr = gen_imagpart (submode, result);
1641
1642 switch (binoptab->code)
1643 {
1644 case PLUS:
1645 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1646 case MINUS:
1647 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1648 res = expand_binop (submode, binoptab, real0, real1,
1649 realr, unsignedp, methods);
1650
1651 if (res == 0)
1652 break;
1653 else if (res != realr)
1654 emit_move_insn (realr, res);
1655
1656 if (imag0 != 0 && imag1 != 0)
1657 res = expand_binop (submode, binoptab, imag0, imag1,
1658 imagr, unsignedp, methods);
1659 else if (imag0 != 0)
1660 res = imag0;
1661 else if (binoptab->code == MINUS)
1662 res = expand_unop (submode,
1663 binoptab == subv_optab ? negv_optab : neg_optab,
1664 imag1, imagr, unsignedp);
1665 else
1666 res = imag1;
1667
1668 if (res == 0)
1669 break;
1670 else if (res != imagr)
1671 emit_move_insn (imagr, res);
1672
1673 ok = 1;
1674 break;
1675
1676 case MULT:
1677 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1678
1679 if (imag0 != 0 && imag1 != 0)
1680 {
1681 rtx temp1, temp2;
1682
1683 /* Don't fetch these from memory more than once. */
1684 real0 = force_reg (submode, real0);
1685 real1 = force_reg (submode, real1);
1686 imag0 = force_reg (submode, imag0);
1687 imag1 = force_reg (submode, imag1);
1688
1689 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1690 unsignedp, methods);
1691
1692 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1693 unsignedp, methods);
1694
1695 if (temp1 == 0 || temp2 == 0)
1696 break;
1697
1698 res = (expand_binop
1699 (submode,
1700 binoptab == smulv_optab ? subv_optab : sub_optab,
1701 temp1, temp2, realr, unsignedp, methods));
1702
1703 if (res == 0)
1704 break;
1705 else if (res != realr)
1706 emit_move_insn (realr, res);
1707
1708 temp1 = expand_binop (submode, binoptab, real0, imag1,
1709 NULL_RTX, unsignedp, methods);
1710
1711 /* Avoid expanding redundant multiplication for the common
1712 case of squaring a complex number. */
1713 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1714 temp2 = temp1;
1715 else
1716 temp2 = expand_binop (submode, binoptab, real1, imag0,
1717 NULL_RTX, unsignedp, methods);
1718
1719 if (temp1 == 0 || temp2 == 0)
1720 break;
1721
1722 res = (expand_binop
1723 (submode,
1724 binoptab == smulv_optab ? addv_optab : add_optab,
1725 temp1, temp2, imagr, unsignedp, methods));
1726
1727 if (res == 0)
1728 break;
1729 else if (res != imagr)
1730 emit_move_insn (imagr, res);
1731
1732 ok = 1;
1733 }
1734 else
1735 {
1736 /* Don't fetch these from memory more than once. */
1737 real0 = force_reg (submode, real0);
1738 real1 = force_reg (submode, real1);
1739
1740 res = expand_binop (submode, binoptab, real0, real1,
1741 realr, unsignedp, methods);
1742 if (res == 0)
1743 break;
1744 else if (res != realr)
1745 emit_move_insn (realr, res);
1746
1747 if (imag0 != 0)
1748 res = expand_binop (submode, binoptab,
1749 real1, imag0, imagr, unsignedp, methods);
1750 else
1751 res = expand_binop (submode, binoptab,
1752 real0, imag1, imagr, unsignedp, methods);
1753
1754 if (res == 0)
1755 break;
1756 else if (res != imagr)
1757 emit_move_insn (imagr, res);
1758
1759 ok = 1;
1760 }
1761 break;
1762
1763 case DIV:
1764 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1765
1766 if (imag1 == 0)
1767 {
1768 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1769
1770 /* Don't fetch these from memory more than once. */
1771 real1 = force_reg (submode, real1);
1772
1773 /* Simply divide the real and imaginary parts by `c' */
1774 if (class == MODE_COMPLEX_FLOAT)
1775 res = expand_binop (submode, binoptab, real0, real1,
1776 realr, unsignedp, methods);
1777 else
1778 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1779 real0, real1, realr, unsignedp);
1780
1781 if (res == 0)
1782 break;
1783 else if (res != realr)
1784 emit_move_insn (realr, res);
1785
1786 if (class == MODE_COMPLEX_FLOAT)
1787 res = expand_binop (submode, binoptab, imag0, real1,
1788 imagr, unsignedp, methods);
1789 else
1790 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1791 imag0, real1, imagr, unsignedp);
1792
1793 if (res == 0)
1794 break;
1795 else if (res != imagr)
1796 emit_move_insn (imagr, res);
1797
1798 ok = 1;
1799 }
1800 else
1801 {
1802 switch (flag_complex_divide_method)
1803 {
1804 case 0:
1805 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1806 realr, imagr, submode,
1807 unsignedp, methods,
1808 class, binoptab);
1809 break;
1810
1811 case 1:
1812 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1813 realr, imagr, submode,
1814 unsignedp, methods,
1815 class, binoptab);
1816 break;
1817
1818 default:
1819 abort ();
1820 }
1821 }
1822 break;
1823
1824 default:
1825 abort ();
1826 }
1827
1828 seq = get_insns ();
1829 end_sequence ();
1830
1831 if (ok)
1832 {
1833 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1834 copy_rtx (op0), copy_rtx (op1));
1835 emit_no_conflict_block (seq, result, op0, op1, equiv);
1836 return result;
1837 }
1838 }
1839
1840 /* It can't be open-coded in this mode.
1841 Use a library call if one is available and caller says that's ok. */
1842
1843 if (binoptab->handlers[(int) mode].libfunc
1844 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1845 {
1846 rtx insns;
1847 rtx op1x = op1;
1848 enum machine_mode op1_mode = mode;
1849 rtx value;
1850
1851 start_sequence ();
1852
1853 if (shift_op)
1854 {
1855 op1_mode = word_mode;
1856 /* Specify unsigned here,
1857 since negative shift counts are meaningless. */
1858 op1x = convert_to_mode (word_mode, op1, 1);
1859 }
1860
1861 if (GET_MODE (op0) != VOIDmode
1862 && GET_MODE (op0) != mode)
1863 op0 = convert_to_mode (mode, op0, unsignedp);
1864
1865 /* Pass 1 for NO_QUEUE so we don't lose any increments
1866 if the libcall is cse'd or moved. */
1867 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1868 NULL_RTX, LCT_CONST, mode, 2,
1869 op0, mode, op1x, op1_mode);
1870
1871 insns = get_insns ();
1872 end_sequence ();
1873
1874 target = gen_reg_rtx (mode);
1875 emit_libcall_block (insns, target, value,
1876 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1877
1878 return target;
1879 }
1880
1881 delete_insns_since (last);
1882
1883 /* It can't be done in this mode. Can we do it in a wider mode? */
1884
1885 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1886 || methods == OPTAB_MUST_WIDEN))
1887 {
1888 /* Caller says, don't even try. */
1889 delete_insns_since (entry_last);
1890 return 0;
1891 }
1892
1893 /* Compute the value of METHODS to pass to recursive calls.
1894 Don't allow widening to be tried recursively. */
1895
1896 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1897
1898 /* Look for a wider mode of the same class for which it appears we can do
1899 the operation. */
1900
1901 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1902 {
1903 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1904 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1905 {
1906 if ((binoptab->handlers[(int) wider_mode].insn_code
1907 != CODE_FOR_nothing)
1908 || (methods == OPTAB_LIB
1909 && binoptab->handlers[(int) wider_mode].libfunc))
1910 {
1911 rtx xop0 = op0, xop1 = op1;
1912 int no_extend = 0;
1913
1914 /* For certain integer operations, we need not actually extend
1915 the narrow operands, as long as we will truncate
1916 the results to the same narrowness. */
1917
1918 if ((binoptab == ior_optab || binoptab == and_optab
1919 || binoptab == xor_optab
1920 || binoptab == add_optab || binoptab == sub_optab
1921 || binoptab == smul_optab || binoptab == ashl_optab)
1922 && class == MODE_INT)
1923 no_extend = 1;
1924
1925 xop0 = widen_operand (xop0, wider_mode, mode,
1926 unsignedp, no_extend);
1927
1928 /* The second operand of a shift must always be extended. */
1929 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1930 no_extend && binoptab != ashl_optab);
1931
1932 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1933 unsignedp, methods);
1934 if (temp)
1935 {
1936 if (class != MODE_INT)
1937 {
1938 if (target == 0)
1939 target = gen_reg_rtx (mode);
1940 convert_move (target, temp, 0);
1941 return target;
1942 }
1943 else
1944 return gen_lowpart (mode, temp);
1945 }
1946 else
1947 delete_insns_since (last);
1948 }
1949 }
1950 }
1951
1952 delete_insns_since (entry_last);
1953 return 0;
1954 }
1955
1956 /* Like expand_binop, but for open-coding vectors binops. */
1957
1958 static rtx
1959 expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1960 rtx op1, rtx target, int unsignedp,
1961 enum optab_methods methods)
1962 {
1963 enum machine_mode submode, tmode;
1964 int size, elts, subsize, subbitsize, i;
1965 rtx t, a, b, res, seq;
1966 enum mode_class class;
1967
1968 class = GET_MODE_CLASS (mode);
1969
1970 size = GET_MODE_SIZE (mode);
1971 submode = GET_MODE_INNER (mode);
1972
1973 /* Search for the widest vector mode with the same inner mode that is
1974 still narrower than MODE and that allows to open-code this operator.
1975 Note, if we find such a mode and the handler later decides it can't
1976 do the expansion, we'll be called recursively with the narrower mode. */
1977 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1978 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1979 tmode = GET_MODE_WIDER_MODE (tmode))
1980 {
1981 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1982 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1983 submode = tmode;
1984 }
1985
1986 switch (binoptab->code)
1987 {
1988 case AND:
1989 case IOR:
1990 case XOR:
1991 tmode = int_mode_for_mode (mode);
1992 if (tmode != BLKmode)
1993 submode = tmode;
1994 case PLUS:
1995 case MINUS:
1996 case MULT:
1997 case DIV:
1998 subsize = GET_MODE_SIZE (submode);
1999 subbitsize = GET_MODE_BITSIZE (submode);
2000 elts = size / subsize;
2001
2002 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
2003 but that we operate on more than one element at a time. */
2004 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
2005 return 0;
2006
2007 start_sequence ();
2008
2009 /* Errors can leave us with a const0_rtx as operand. */
2010 if (GET_MODE (op0) != mode)
2011 op0 = copy_to_mode_reg (mode, op0);
2012 if (GET_MODE (op1) != mode)
2013 op1 = copy_to_mode_reg (mode, op1);
2014
2015 if (!target)
2016 target = gen_reg_rtx (mode);
2017
2018 for (i = 0; i < elts; ++i)
2019 {
2020 /* If this is part of a register, and not the first item in the
2021 word, we can't store using a SUBREG - that would clobber
2022 previous results.
2023 And storing with a SUBREG is only possible for the least
2024 significant part, hence we can't do it for big endian
2025 (unless we want to permute the evaluation order. */
2026 if (REG_P (target)
2027 && (BYTES_BIG_ENDIAN
2028 ? subsize < UNITS_PER_WORD
2029 : ((i * subsize) % UNITS_PER_WORD) != 0))
2030 t = NULL_RTX;
2031 else
2032 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2033 if (CONSTANT_P (op0))
2034 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2035 else
2036 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2037 NULL_RTX, submode, submode);
2038 if (CONSTANT_P (op1))
2039 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
2040 else
2041 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
2042 NULL_RTX, submode, submode);
2043
2044 if (binoptab->code == DIV)
2045 {
2046 if (class == MODE_VECTOR_FLOAT)
2047 res = expand_binop (submode, binoptab, a, b, t,
2048 unsignedp, methods);
2049 else
2050 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
2051 a, b, t, unsignedp);
2052 }
2053 else
2054 res = expand_binop (submode, binoptab, a, b, t,
2055 unsignedp, methods);
2056
2057 if (res == 0)
2058 break;
2059
2060 if (t)
2061 emit_move_insn (t, res);
2062 else
2063 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2064 }
2065 break;
2066
2067 default:
2068 abort ();
2069 }
2070
2071 seq = get_insns ();
2072 end_sequence ();
2073 emit_insn (seq);
2074
2075 return target;
2076 }
2077
2078 /* Like expand_unop but for open-coding vector unops. */
2079
2080 static rtx
2081 expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
2082 rtx target, int unsignedp)
2083 {
2084 enum machine_mode submode, tmode;
2085 int size, elts, subsize, subbitsize, i;
2086 rtx t, a, res, seq;
2087
2088 size = GET_MODE_SIZE (mode);
2089 submode = GET_MODE_INNER (mode);
2090
2091 /* Search for the widest vector mode with the same inner mode that is
2092 still narrower than MODE and that allows to open-code this operator.
2093 Note, if we find such a mode and the handler later decides it can't
2094 do the expansion, we'll be called recursively with the narrower mode. */
2095 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2096 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2097 tmode = GET_MODE_WIDER_MODE (tmode))
2098 {
2099 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2100 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2101 submode = tmode;
2102 }
2103 /* If there is no negate operation, try doing a subtract from zero. */
2104 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2105 /* Avoid infinite recursion when an
2106 error has left us with the wrong mode. */
2107 && GET_MODE (op0) == mode)
2108 {
2109 rtx temp;
2110 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2111 target, unsignedp, OPTAB_DIRECT);
2112 if (temp)
2113 return temp;
2114 }
2115
2116 if (unoptab == one_cmpl_optab)
2117 {
2118 tmode = int_mode_for_mode (mode);
2119 if (tmode != BLKmode)
2120 submode = tmode;
2121 }
2122
2123 subsize = GET_MODE_SIZE (submode);
2124 subbitsize = GET_MODE_BITSIZE (submode);
2125 elts = size / subsize;
2126
2127 /* Errors can leave us with a const0_rtx as operand. */
2128 if (GET_MODE (op0) != mode)
2129 op0 = copy_to_mode_reg (mode, op0);
2130
2131 if (!target)
2132 target = gen_reg_rtx (mode);
2133
2134 start_sequence ();
2135
2136 for (i = 0; i < elts; ++i)
2137 {
2138 /* If this is part of a register, and not the first item in the
2139 word, we can't store using a SUBREG - that would clobber
2140 previous results.
2141 And storing with a SUBREG is only possible for the least
2142 significant part, hence we can't do it for big endian
2143 (unless we want to permute the evaluation order. */
2144 if (REG_P (target)
2145 && (BYTES_BIG_ENDIAN
2146 ? subsize < UNITS_PER_WORD
2147 : ((i * subsize) % UNITS_PER_WORD) != 0))
2148 t = NULL_RTX;
2149 else
2150 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2151 if (CONSTANT_P (op0))
2152 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2153 else
2154 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2155 t, submode, submode);
2156
2157 res = expand_unop (submode, unoptab, a, t, unsignedp);
2158
2159 if (t)
2160 emit_move_insn (t, res);
2161 else
2162 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2163 }
2164
2165 seq = get_insns ();
2166 end_sequence ();
2167 emit_insn (seq);
2168
2169 return target;
2170 }
2171 \f
2172 /* Expand a binary operator which has both signed and unsigned forms.
2173 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2174 signed operations.
2175
2176 If we widen unsigned operands, we may use a signed wider operation instead
2177 of an unsigned wider operation, since the result would be the same. */
2178
2179 rtx
2180 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2181 rtx op0, rtx op1, rtx target, int unsignedp,
2182 enum optab_methods methods)
2183 {
2184 rtx temp;
2185 optab direct_optab = unsignedp ? uoptab : soptab;
2186 struct optab wide_soptab;
2187
2188 /* Do it without widening, if possible. */
2189 temp = expand_binop (mode, direct_optab, op0, op1, target,
2190 unsignedp, OPTAB_DIRECT);
2191 if (temp || methods == OPTAB_DIRECT)
2192 return temp;
2193
2194 /* Try widening to a signed int. Make a fake signed optab that
2195 hides any signed insn for direct use. */
2196 wide_soptab = *soptab;
2197 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2198 wide_soptab.handlers[(int) mode].libfunc = 0;
2199
2200 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2201 unsignedp, OPTAB_WIDEN);
2202
2203 /* For unsigned operands, try widening to an unsigned int. */
2204 if (temp == 0 && unsignedp)
2205 temp = expand_binop (mode, uoptab, op0, op1, target,
2206 unsignedp, OPTAB_WIDEN);
2207 if (temp || methods == OPTAB_WIDEN)
2208 return temp;
2209
2210 /* Use the right width lib call if that exists. */
2211 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2212 if (temp || methods == OPTAB_LIB)
2213 return temp;
2214
2215 /* Must widen and use a lib call, use either signed or unsigned. */
2216 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2217 unsignedp, methods);
2218 if (temp != 0)
2219 return temp;
2220 if (unsignedp)
2221 return expand_binop (mode, uoptab, op0, op1, target,
2222 unsignedp, methods);
2223 return 0;
2224 }
2225 \f
2226 /* Generate code to perform an operation specified by UNOPPTAB
2227 on operand OP0, with two results to TARG0 and TARG1.
2228 We assume that the order of the operands for the instruction
2229 is TARG0, TARG1, OP0.
2230
2231 Either TARG0 or TARG1 may be zero, but what that means is that
2232 the result is not actually wanted. We will generate it into
2233 a dummy pseudo-reg and discard it. They may not both be zero.
2234
2235 Returns 1 if this operation can be performed; 0 if not. */
2236
2237 int
2238 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2239 int unsignedp)
2240 {
2241 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2242 enum mode_class class;
2243 enum machine_mode wider_mode;
2244 rtx entry_last = get_last_insn ();
2245 rtx last;
2246
2247 class = GET_MODE_CLASS (mode);
2248
2249 if (flag_force_mem)
2250 op0 = force_not_mem (op0);
2251
2252 if (!targ0)
2253 targ0 = gen_reg_rtx (mode);
2254 if (!targ1)
2255 targ1 = gen_reg_rtx (mode);
2256
2257 /* Record where to go back to if we fail. */
2258 last = get_last_insn ();
2259
2260 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2261 {
2262 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2263 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2264 rtx pat;
2265 rtx xop0 = op0;
2266
2267 if (GET_MODE (xop0) != VOIDmode
2268 && GET_MODE (xop0) != mode0)
2269 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2270
2271 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2272 if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
2273 xop0 = copy_to_mode_reg (mode0, xop0);
2274
2275 /* We could handle this, but we should always be called with a pseudo
2276 for our targets and all insns should take them as outputs. */
2277 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2278 || ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
2279 abort ();
2280
2281 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2282 if (pat)
2283 {
2284 emit_insn (pat);
2285 return 1;
2286 }
2287 else
2288 delete_insns_since (last);
2289 }
2290
2291 /* It can't be done in this mode. Can we do it in a wider mode? */
2292
2293 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2294 {
2295 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2296 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2297 {
2298 if (unoptab->handlers[(int) wider_mode].insn_code
2299 != CODE_FOR_nothing)
2300 {
2301 rtx t0 = gen_reg_rtx (wider_mode);
2302 rtx t1 = gen_reg_rtx (wider_mode);
2303 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2304
2305 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2306 {
2307 convert_move (targ0, t0, unsignedp);
2308 convert_move (targ1, t1, unsignedp);
2309 return 1;
2310 }
2311 else
2312 delete_insns_since (last);
2313 }
2314 }
2315 }
2316
2317 delete_insns_since (entry_last);
2318 return 0;
2319 }
2320 \f
2321 /* Generate code to perform an operation specified by BINOPTAB
2322 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2323 We assume that the order of the operands for the instruction
2324 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2325 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2326
2327 Either TARG0 or TARG1 may be zero, but what that means is that
2328 the result is not actually wanted. We will generate it into
2329 a dummy pseudo-reg and discard it. They may not both be zero.
2330
2331 Returns 1 if this operation can be performed; 0 if not. */
2332
2333 int
2334 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2335 int unsignedp)
2336 {
2337 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2338 enum mode_class class;
2339 enum machine_mode wider_mode;
2340 rtx entry_last = get_last_insn ();
2341 rtx last;
2342
2343 class = GET_MODE_CLASS (mode);
2344
2345 if (flag_force_mem)
2346 {
2347 op0 = force_not_mem (op0);
2348 op1 = force_not_mem (op1);
2349 }
2350
2351 /* If we are inside an appropriately-short loop and one operand is an
2352 expensive constant, force it into a register. */
2353 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2354 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2355 op0 = force_reg (mode, op0);
2356
2357 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2358 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2359 op1 = force_reg (mode, op1);
2360
2361 if (!targ0)
2362 targ0 = gen_reg_rtx (mode);
2363 if (!targ1)
2364 targ1 = gen_reg_rtx (mode);
2365
2366 /* Record where to go back to if we fail. */
2367 last = get_last_insn ();
2368
2369 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2370 {
2371 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2372 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2373 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2374 rtx pat;
2375 rtx xop0 = op0, xop1 = op1;
2376
2377 /* In case the insn wants input operands in modes different from
2378 those of the actual operands, convert the operands. It would
2379 seem that we don't need to convert CONST_INTs, but we do, so
2380 that they're properly zero-extended, sign-extended or truncated
2381 for their mode. */
2382
2383 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2384 xop0 = convert_modes (mode0,
2385 GET_MODE (op0) != VOIDmode
2386 ? GET_MODE (op0)
2387 : mode,
2388 xop0, unsignedp);
2389
2390 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2391 xop1 = convert_modes (mode1,
2392 GET_MODE (op1) != VOIDmode
2393 ? GET_MODE (op1)
2394 : mode,
2395 xop1, unsignedp);
2396
2397 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2398 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2399 xop0 = copy_to_mode_reg (mode0, xop0);
2400
2401 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2402 xop1 = copy_to_mode_reg (mode1, xop1);
2403
2404 /* We could handle this, but we should always be called with a pseudo
2405 for our targets and all insns should take them as outputs. */
2406 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2407 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2408 abort ();
2409
2410 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2411 if (pat)
2412 {
2413 emit_insn (pat);
2414 return 1;
2415 }
2416 else
2417 delete_insns_since (last);
2418 }
2419
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2421
2422 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2423 {
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2425 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2426 {
2427 if (binoptab->handlers[(int) wider_mode].insn_code
2428 != CODE_FOR_nothing)
2429 {
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2434
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2437 {
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2441 }
2442 else
2443 delete_insns_since (last);
2444 }
2445 }
2446 }
2447
2448 delete_insns_since (entry_last);
2449 return 0;
2450 }
2451 \f
2452 /* Wrapper around expand_unop which takes an rtx code to specify
2453 the operation to perform, not an optab pointer. All other
2454 arguments are the same. */
2455 rtx
2456 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2457 rtx target, int unsignedp)
2458 {
2459 optab unop = code_to_optab[(int) code];
2460 if (unop == 0)
2461 abort ();
2462
2463 return expand_unop (mode, unop, op0, target, unsignedp);
2464 }
2465
2466 /* Try calculating
2467 (clz:narrow x)
2468 as
2469 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2470 static rtx
2471 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2472 {
2473 enum mode_class class = GET_MODE_CLASS (mode);
2474 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2475 {
2476 enum machine_mode wider_mode;
2477 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2478 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2479 {
2480 if (clz_optab->handlers[(int) wider_mode].insn_code
2481 != CODE_FOR_nothing)
2482 {
2483 rtx xop0, temp, last;
2484
2485 last = get_last_insn ();
2486
2487 if (target == 0)
2488 target = gen_reg_rtx (mode);
2489 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2490 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2491 if (temp != 0)
2492 temp = expand_binop (wider_mode, sub_optab, temp,
2493 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2494 - GET_MODE_BITSIZE (mode)),
2495 target, true, OPTAB_DIRECT);
2496 if (temp == 0)
2497 delete_insns_since (last);
2498
2499 return temp;
2500 }
2501 }
2502 }
2503 return 0;
2504 }
2505
2506 /* Try calculating (parity x) as (and (popcount x) 1), where
2507 popcount can also be done in a wider mode. */
2508 static rtx
2509 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2510 {
2511 enum mode_class class = GET_MODE_CLASS (mode);
2512 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2513 {
2514 enum machine_mode wider_mode;
2515 for (wider_mode = mode; wider_mode != VOIDmode;
2516 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2517 {
2518 if (popcount_optab->handlers[(int) wider_mode].insn_code
2519 != CODE_FOR_nothing)
2520 {
2521 rtx xop0, temp, last;
2522
2523 last = get_last_insn ();
2524
2525 if (target == 0)
2526 target = gen_reg_rtx (mode);
2527 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2528 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2529 true);
2530 if (temp != 0)
2531 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2532 target, true, OPTAB_DIRECT);
2533 if (temp == 0)
2534 delete_insns_since (last);
2535
2536 return temp;
2537 }
2538 }
2539 }
2540 return 0;
2541 }
2542
2543 /* Generate code to perform an operation specified by UNOPTAB
2544 on operand OP0, with result having machine-mode MODE.
2545
2546 UNSIGNEDP is for the case where we have to widen the operands
2547 to perform the operation. It says to use zero-extension.
2548
2549 If TARGET is nonzero, the value
2550 is generated there, if it is convenient to do so.
2551 In all cases an rtx is returned for the locus of the value;
2552 this may or may not be TARGET. */
2553
2554 rtx
2555 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2556 int unsignedp)
2557 {
2558 enum mode_class class;
2559 enum machine_mode wider_mode;
2560 rtx temp;
2561 rtx last = get_last_insn ();
2562 rtx pat;
2563
2564 class = GET_MODE_CLASS (mode);
2565
2566 if (flag_force_mem)
2567 op0 = force_not_mem (op0);
2568
2569 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2570 {
2571 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2572 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2573 rtx xop0 = op0;
2574
2575 if (target)
2576 temp = target;
2577 else
2578 temp = gen_reg_rtx (mode);
2579
2580 if (GET_MODE (xop0) != VOIDmode
2581 && GET_MODE (xop0) != mode0)
2582 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2583
2584 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2585
2586 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2587 xop0 = copy_to_mode_reg (mode0, xop0);
2588
2589 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2590 temp = gen_reg_rtx (mode);
2591
2592 pat = GEN_FCN (icode) (temp, xop0);
2593 if (pat)
2594 {
2595 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2596 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2597 {
2598 delete_insns_since (last);
2599 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2600 }
2601
2602 emit_insn (pat);
2603
2604 return temp;
2605 }
2606 else
2607 delete_insns_since (last);
2608 }
2609
2610 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2611
2612 /* Widening clz needs special treatment. */
2613 if (unoptab == clz_optab)
2614 {
2615 temp = widen_clz (mode, op0, target);
2616 if (temp)
2617 return temp;
2618 else
2619 goto try_libcall;
2620 }
2621
2622 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2623 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2624 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2625 {
2626 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2627 {
2628 rtx xop0 = op0;
2629
2630 /* For certain operations, we need not actually extend
2631 the narrow operand, as long as we will truncate the
2632 results to the same narrowness. */
2633
2634 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2635 (unoptab == neg_optab
2636 || unoptab == one_cmpl_optab)
2637 && class == MODE_INT);
2638
2639 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2640 unsignedp);
2641
2642 if (temp)
2643 {
2644 if (class != MODE_INT)
2645 {
2646 if (target == 0)
2647 target = gen_reg_rtx (mode);
2648 convert_move (target, temp, 0);
2649 return target;
2650 }
2651 else
2652 return gen_lowpart (mode, temp);
2653 }
2654 else
2655 delete_insns_since (last);
2656 }
2657 }
2658
2659 /* These can be done a word at a time. */
2660 if (unoptab == one_cmpl_optab
2661 && class == MODE_INT
2662 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2663 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2664 {
2665 int i;
2666 rtx insns;
2667
2668 if (target == 0 || target == op0)
2669 target = gen_reg_rtx (mode);
2670
2671 start_sequence ();
2672
2673 /* Do the actual arithmetic. */
2674 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2675 {
2676 rtx target_piece = operand_subword (target, i, 1, mode);
2677 rtx x = expand_unop (word_mode, unoptab,
2678 operand_subword_force (op0, i, mode),
2679 target_piece, unsignedp);
2680
2681 if (target_piece != x)
2682 emit_move_insn (target_piece, x);
2683 }
2684
2685 insns = get_insns ();
2686 end_sequence ();
2687
2688 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2689 gen_rtx_fmt_e (unoptab->code, mode,
2690 copy_rtx (op0)));
2691 return target;
2692 }
2693
2694 /* Open-code the complex negation operation. */
2695 else if (unoptab->code == NEG
2696 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2697 {
2698 rtx target_piece;
2699 rtx x;
2700 rtx seq;
2701
2702 /* Find the correct mode for the real and imaginary parts. */
2703 enum machine_mode submode = GET_MODE_INNER (mode);
2704
2705 if (submode == BLKmode)
2706 abort ();
2707
2708 if (target == 0)
2709 target = gen_reg_rtx (mode);
2710
2711 start_sequence ();
2712
2713 target_piece = gen_imagpart (submode, target);
2714 x = expand_unop (submode, unoptab,
2715 gen_imagpart (submode, op0),
2716 target_piece, unsignedp);
2717 if (target_piece != x)
2718 emit_move_insn (target_piece, x);
2719
2720 target_piece = gen_realpart (submode, target);
2721 x = expand_unop (submode, unoptab,
2722 gen_realpart (submode, op0),
2723 target_piece, unsignedp);
2724 if (target_piece != x)
2725 emit_move_insn (target_piece, x);
2726
2727 seq = get_insns ();
2728 end_sequence ();
2729
2730 emit_no_conflict_block (seq, target, op0, 0,
2731 gen_rtx_fmt_e (unoptab->code, mode,
2732 copy_rtx (op0)));
2733 return target;
2734 }
2735
2736 /* Try negating floating point values by flipping the sign bit. */
2737 if (unoptab->code == NEG && class == MODE_FLOAT
2738 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2739 {
2740 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2741 enum machine_mode imode = int_mode_for_mode (mode);
2742 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2743
2744 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2745 {
2746 HOST_WIDE_INT hi, lo;
2747 rtx last = get_last_insn ();
2748
2749 /* Handle targets with different FP word orders. */
2750 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2751 {
2752 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2753 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2754 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2755 }
2756
2757 if (bitpos < HOST_BITS_PER_WIDE_INT)
2758 {
2759 hi = 0;
2760 lo = (HOST_WIDE_INT) 1 << bitpos;
2761 }
2762 else
2763 {
2764 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2765 lo = 0;
2766 }
2767 temp = expand_binop (imode, xor_optab,
2768 gen_lowpart (imode, op0),
2769 immed_double_const (lo, hi, imode),
2770 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2771 if (temp != 0)
2772 {
2773 rtx insn;
2774 if (target == 0)
2775 target = gen_reg_rtx (mode);
2776 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2777 set_unique_reg_note (insn, REG_EQUAL,
2778 gen_rtx_fmt_e (NEG, mode,
2779 copy_rtx (op0)));
2780 return target;
2781 }
2782 delete_insns_since (last);
2783 }
2784 }
2785
2786 /* Try calculating parity (x) as popcount (x) % 2. */
2787 if (unoptab == parity_optab)
2788 {
2789 temp = expand_parity (mode, op0, target);
2790 if (temp)
2791 return temp;
2792 }
2793
2794 /* If there is no negation pattern, try subtracting from zero. */
2795 if (unoptab == neg_optab && class == MODE_INT)
2796 {
2797 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2798 target, unsignedp, OPTAB_DIRECT);
2799 if (temp)
2800 return temp;
2801 }
2802
2803 try_libcall:
2804 /* Now try a library call in this mode. */
2805 if (unoptab->handlers[(int) mode].libfunc)
2806 {
2807 rtx insns;
2808 rtx value;
2809 enum machine_mode outmode = mode;
2810
2811 /* All of these functions return small values. Thus we choose to
2812 have them return something that isn't a double-word. */
2813 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2814 || unoptab == popcount_optab || unoptab == parity_optab)
2815 outmode
2816 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
2817
2818 start_sequence ();
2819
2820 /* Pass 1 for NO_QUEUE so we don't lose any increments
2821 if the libcall is cse'd or moved. */
2822 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2823 NULL_RTX, LCT_CONST, outmode,
2824 1, op0, mode);
2825 insns = get_insns ();
2826 end_sequence ();
2827
2828 target = gen_reg_rtx (outmode);
2829 emit_libcall_block (insns, target, value,
2830 gen_rtx_fmt_e (unoptab->code, mode, op0));
2831
2832 return target;
2833 }
2834
2835 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2836 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2837
2838 /* It can't be done in this mode. Can we do it in a wider mode? */
2839
2840 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2841 {
2842 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2843 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2844 {
2845 if ((unoptab->handlers[(int) wider_mode].insn_code
2846 != CODE_FOR_nothing)
2847 || unoptab->handlers[(int) wider_mode].libfunc)
2848 {
2849 rtx xop0 = op0;
2850
2851 /* For certain operations, we need not actually extend
2852 the narrow operand, as long as we will truncate the
2853 results to the same narrowness. */
2854
2855 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2856 (unoptab == neg_optab
2857 || unoptab == one_cmpl_optab)
2858 && class == MODE_INT);
2859
2860 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2861 unsignedp);
2862
2863 /* If we are generating clz using wider mode, adjust the
2864 result. */
2865 if (unoptab == clz_optab && temp != 0)
2866 temp = expand_binop (wider_mode, sub_optab, temp,
2867 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2868 - GET_MODE_BITSIZE (mode)),
2869 target, true, OPTAB_DIRECT);
2870
2871 if (temp)
2872 {
2873 if (class != MODE_INT)
2874 {
2875 if (target == 0)
2876 target = gen_reg_rtx (mode);
2877 convert_move (target, temp, 0);
2878 return target;
2879 }
2880 else
2881 return gen_lowpart (mode, temp);
2882 }
2883 else
2884 delete_insns_since (last);
2885 }
2886 }
2887 }
2888
2889 /* If there is no negate operation, try doing a subtract from zero.
2890 The US Software GOFAST library needs this. FIXME: This is *wrong*
2891 for floating-point operations due to negative zeros! */
2892 if (unoptab->code == NEG)
2893 {
2894 rtx temp;
2895 temp = expand_binop (mode,
2896 unoptab == negv_optab ? subv_optab : sub_optab,
2897 CONST0_RTX (mode), op0,
2898 target, unsignedp, OPTAB_LIB_WIDEN);
2899 if (temp)
2900 return temp;
2901 }
2902
2903 return 0;
2904 }
2905 \f
2906 /* Emit code to compute the absolute value of OP0, with result to
2907 TARGET if convenient. (TARGET may be 0.) The return value says
2908 where the result actually is to be found.
2909
2910 MODE is the mode of the operand; the mode of the result is
2911 different but can be deduced from MODE.
2912
2913 */
2914
2915 rtx
2916 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2917 int result_unsignedp)
2918 {
2919 rtx temp;
2920
2921 if (! flag_trapv)
2922 result_unsignedp = 1;
2923
2924 /* First try to do it with a special abs instruction. */
2925 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2926 op0, target, 0);
2927 if (temp != 0)
2928 return temp;
2929
2930 /* For floating point modes, try clearing the sign bit. */
2931 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2932 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2933 {
2934 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2935 enum machine_mode imode = int_mode_for_mode (mode);
2936 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2937
2938 if (imode != BLKmode && bitpos >= 0)
2939 {
2940 HOST_WIDE_INT hi, lo;
2941 rtx last = get_last_insn ();
2942
2943 /* Handle targets with different FP word orders. */
2944 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2945 {
2946 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2947 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2948 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2949 }
2950
2951 if (bitpos < HOST_BITS_PER_WIDE_INT)
2952 {
2953 hi = 0;
2954 lo = (HOST_WIDE_INT) 1 << bitpos;
2955 }
2956 else
2957 {
2958 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2959 lo = 0;
2960 }
2961 temp = expand_binop (imode, and_optab,
2962 gen_lowpart (imode, op0),
2963 immed_double_const (~lo, ~hi, imode),
2964 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2965 if (temp != 0)
2966 {
2967 rtx insn;
2968 if (target == 0)
2969 target = gen_reg_rtx (mode);
2970 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2971 set_unique_reg_note (insn, REG_EQUAL,
2972 gen_rtx_fmt_e (ABS, mode,
2973 copy_rtx (op0)));
2974 return target;
2975 }
2976 delete_insns_since (last);
2977 }
2978 }
2979
2980 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2981 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2982 {
2983 rtx last = get_last_insn ();
2984
2985 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2986 if (temp != 0)
2987 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2988 OPTAB_WIDEN);
2989
2990 if (temp != 0)
2991 return temp;
2992
2993 delete_insns_since (last);
2994 }
2995
2996 /* If this machine has expensive jumps, we can do integer absolute
2997 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2998 where W is the width of MODE. */
2999
3000 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
3001 {
3002 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3003 size_int (GET_MODE_BITSIZE (mode) - 1),
3004 NULL_RTX, 0);
3005
3006 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3007 OPTAB_LIB_WIDEN);
3008 if (temp != 0)
3009 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3010 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3011
3012 if (temp != 0)
3013 return temp;
3014 }
3015
3016 return NULL_RTX;
3017 }
3018
3019 rtx
3020 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3021 int result_unsignedp, int safe)
3022 {
3023 rtx temp, op1;
3024
3025 if (! flag_trapv)
3026 result_unsignedp = 1;
3027
3028 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3029 if (temp != 0)
3030 return temp;
3031
3032 /* If that does not win, use conditional jump and negate. */
3033
3034 /* It is safe to use the target if it is the same
3035 as the source if this is also a pseudo register */
3036 if (op0 == target && REG_P (op0)
3037 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3038 safe = 1;
3039
3040 op1 = gen_label_rtx ();
3041 if (target == 0 || ! safe
3042 || GET_MODE (target) != mode
3043 || (MEM_P (target) && MEM_VOLATILE_P (target))
3044 || (REG_P (target)
3045 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3046 target = gen_reg_rtx (mode);
3047
3048 emit_move_insn (target, op0);
3049 NO_DEFER_POP;
3050
3051 /* If this mode is an integer too wide to compare properly,
3052 compare word by word. Rely on CSE to optimize constant cases. */
3053 if (GET_MODE_CLASS (mode) == MODE_INT
3054 && ! can_compare_p (GE, mode, ccp_jump))
3055 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
3056 NULL_RTX, op1);
3057 else
3058 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3059 NULL_RTX, NULL_RTX, op1);
3060
3061 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3062 target, target, 0);
3063 if (op0 != target)
3064 emit_move_insn (target, op0);
3065 emit_label (op1);
3066 OK_DEFER_POP;
3067 return target;
3068 }
3069 \f
3070 /* Emit code to compute the absolute value of OP0, with result to
3071 TARGET if convenient. (TARGET may be 0.) The return value says
3072 where the result actually is to be found.
3073
3074 MODE is the mode of the operand; the mode of the result is
3075 different but can be deduced from MODE.
3076
3077 UNSIGNEDP is relevant for complex integer modes. */
3078
3079 rtx
3080 expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
3081 int unsignedp)
3082 {
3083 enum mode_class class = GET_MODE_CLASS (mode);
3084 enum machine_mode wider_mode;
3085 rtx temp;
3086 rtx entry_last = get_last_insn ();
3087 rtx last;
3088 rtx pat;
3089 optab this_abs_optab;
3090
3091 /* Find the correct mode for the real and imaginary parts. */
3092 enum machine_mode submode = GET_MODE_INNER (mode);
3093
3094 if (submode == BLKmode)
3095 abort ();
3096
3097 if (flag_force_mem)
3098 op0 = force_not_mem (op0);
3099
3100 last = get_last_insn ();
3101
3102 this_abs_optab = ! unsignedp && flag_trapv
3103 && (GET_MODE_CLASS(mode) == MODE_INT)
3104 ? absv_optab : abs_optab;
3105
3106 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3107 {
3108 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
3109 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3110 rtx xop0 = op0;
3111
3112 if (target)
3113 temp = target;
3114 else
3115 temp = gen_reg_rtx (submode);
3116
3117 if (GET_MODE (xop0) != VOIDmode
3118 && GET_MODE (xop0) != mode0)
3119 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3120
3121 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3122
3123 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
3124 xop0 = copy_to_mode_reg (mode0, xop0);
3125
3126 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
3127 temp = gen_reg_rtx (submode);
3128
3129 pat = GEN_FCN (icode) (temp, xop0);
3130 if (pat)
3131 {
3132 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3133 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
3134 NULL_RTX))
3135 {
3136 delete_insns_since (last);
3137 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
3138 unsignedp);
3139 }
3140
3141 emit_insn (pat);
3142
3143 return temp;
3144 }
3145 else
3146 delete_insns_since (last);
3147 }
3148
3149 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3150
3151 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3152 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3153 {
3154 if (this_abs_optab->handlers[(int) wider_mode].insn_code
3155 != CODE_FOR_nothing)
3156 {
3157 rtx xop0 = op0;
3158
3159 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3160 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3161
3162 if (temp)
3163 {
3164 if (class != MODE_COMPLEX_INT)
3165 {
3166 if (target == 0)
3167 target = gen_reg_rtx (submode);
3168 convert_move (target, temp, 0);
3169 return target;
3170 }
3171 else
3172 return gen_lowpart (submode, temp);
3173 }
3174 else
3175 delete_insns_since (last);
3176 }
3177 }
3178
3179 /* Open-code the complex absolute-value operation
3180 if we can open-code sqrt. Otherwise it's not worth while. */
3181 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3182 && ! flag_trapv)
3183 {
3184 rtx real, imag, total;
3185
3186 real = gen_realpart (submode, op0);
3187 imag = gen_imagpart (submode, op0);
3188
3189 /* Square both parts. */
3190 real = expand_mult (submode, real, real, NULL_RTX, 0);
3191 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3192
3193 /* Sum the parts. */
3194 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3195 0, OPTAB_LIB_WIDEN);
3196
3197 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3198 target = expand_unop (submode, sqrt_optab, total, target, 0);
3199 if (target == 0)
3200 delete_insns_since (last);
3201 else
3202 return target;
3203 }
3204
3205 /* Now try a library call in this mode. */
3206 if (this_abs_optab->handlers[(int) mode].libfunc)
3207 {
3208 rtx insns;
3209 rtx value;
3210
3211 start_sequence ();
3212
3213 /* Pass 1 for NO_QUEUE so we don't lose any increments
3214 if the libcall is cse'd or moved. */
3215 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3216 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3217 insns = get_insns ();
3218 end_sequence ();
3219
3220 target = gen_reg_rtx (submode);
3221 emit_libcall_block (insns, target, value,
3222 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3223
3224 return target;
3225 }
3226
3227 /* It can't be done in this mode. Can we do it in a wider mode? */
3228
3229 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3230 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3231 {
3232 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3233 != CODE_FOR_nothing)
3234 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3235 {
3236 rtx xop0 = op0;
3237
3238 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3239
3240 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3241
3242 if (temp)
3243 {
3244 if (class != MODE_COMPLEX_INT)
3245 {
3246 if (target == 0)
3247 target = gen_reg_rtx (submode);
3248 convert_move (target, temp, 0);
3249 return target;
3250 }
3251 else
3252 return gen_lowpart (submode, temp);
3253 }
3254 else
3255 delete_insns_since (last);
3256 }
3257 }
3258
3259 delete_insns_since (entry_last);
3260 return 0;
3261 }
3262 \f
3263 /* Generate an instruction whose insn-code is INSN_CODE,
3264 with two operands: an output TARGET and an input OP0.
3265 TARGET *must* be nonzero, and the output is always stored there.
3266 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3267 the value that is stored into TARGET. */
3268
3269 void
3270 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3271 {
3272 rtx temp;
3273 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3274 rtx pat;
3275
3276 temp = target;
3277
3278 /* Sign and zero extension from memory is often done specially on
3279 RISC machines, so forcing into a register here can pessimize
3280 code. */
3281 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3282 op0 = force_not_mem (op0);
3283
3284 /* Now, if insn does not accept our operands, put them into pseudos. */
3285
3286 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3287 op0 = copy_to_mode_reg (mode0, op0);
3288
3289 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3290 || (flag_force_mem && MEM_P (temp)))
3291 temp = gen_reg_rtx (GET_MODE (temp));
3292
3293 pat = GEN_FCN (icode) (temp, op0);
3294
3295 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3296 add_equal_note (pat, temp, code, op0, NULL_RTX);
3297
3298 emit_insn (pat);
3299
3300 if (temp != target)
3301 emit_move_insn (target, temp);
3302 }
3303 \f
3304 /* Emit code to perform a series of operations on a multi-word quantity, one
3305 word at a time.
3306
3307 Such a block is preceded by a CLOBBER of the output, consists of multiple
3308 insns, each setting one word of the output, and followed by a SET copying
3309 the output to itself.
3310
3311 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3312 note indicating that it doesn't conflict with the (also multi-word)
3313 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3314 notes.
3315
3316 INSNS is a block of code generated to perform the operation, not including
3317 the CLOBBER and final copy. All insns that compute intermediate values
3318 are first emitted, followed by the block as described above.
3319
3320 TARGET, OP0, and OP1 are the output and inputs of the operations,
3321 respectively. OP1 may be zero for a unary operation.
3322
3323 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3324 on the last insn.
3325
3326 If TARGET is not a register, INSNS is simply emitted with no special
3327 processing. Likewise if anything in INSNS is not an INSN or if
3328 there is a libcall block inside INSNS.
3329
3330 The final insn emitted is returned. */
3331
3332 rtx
3333 emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
3334 {
3335 rtx prev, next, first, last, insn;
3336
3337 if (!REG_P (target) || reload_in_progress)
3338 return emit_insn (insns);
3339 else
3340 for (insn = insns; insn; insn = NEXT_INSN (insn))
3341 if (!NONJUMP_INSN_P (insn)
3342 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3343 return emit_insn (insns);
3344
3345 /* First emit all insns that do not store into words of the output and remove
3346 these from the list. */
3347 for (insn = insns; insn; insn = next)
3348 {
3349 rtx set = 0, note;
3350 int i;
3351
3352 next = NEXT_INSN (insn);
3353
3354 /* Some ports (cris) create a libcall regions at their own. We must
3355 avoid any potential nesting of LIBCALLs. */
3356 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3357 remove_note (insn, note);
3358 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3359 remove_note (insn, note);
3360
3361 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3362 || GET_CODE (PATTERN (insn)) == CLOBBER)
3363 set = PATTERN (insn);
3364 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3365 {
3366 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3367 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3368 {
3369 set = XVECEXP (PATTERN (insn), 0, i);
3370 break;
3371 }
3372 }
3373
3374 if (set == 0)
3375 abort ();
3376
3377 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3378 {
3379 if (PREV_INSN (insn))
3380 NEXT_INSN (PREV_INSN (insn)) = next;
3381 else
3382 insns = next;
3383
3384 if (next)
3385 PREV_INSN (next) = PREV_INSN (insn);
3386
3387 add_insn (insn);
3388 }
3389 }
3390
3391 prev = get_last_insn ();
3392
3393 /* Now write the CLOBBER of the output, followed by the setting of each
3394 of the words, followed by the final copy. */
3395 if (target != op0 && target != op1)
3396 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3397
3398 for (insn = insns; insn; insn = next)
3399 {
3400 next = NEXT_INSN (insn);
3401 add_insn (insn);
3402
3403 if (op1 && REG_P (op1))
3404 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3405 REG_NOTES (insn));
3406
3407 if (op0 && REG_P (op0))
3408 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3409 REG_NOTES (insn));
3410 }
3411
3412 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3413 != CODE_FOR_nothing)
3414 {
3415 last = emit_move_insn (target, target);
3416 if (equiv)
3417 set_unique_reg_note (last, REG_EQUAL, equiv);
3418 }
3419 else
3420 {
3421 last = get_last_insn ();
3422
3423 /* Remove any existing REG_EQUAL note from "last", or else it will
3424 be mistaken for a note referring to the full contents of the
3425 alleged libcall value when found together with the REG_RETVAL
3426 note added below. An existing note can come from an insn
3427 expansion at "last". */
3428 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3429 }
3430
3431 if (prev == 0)
3432 first = get_insns ();
3433 else
3434 first = NEXT_INSN (prev);
3435
3436 /* Encapsulate the block so it gets manipulated as a unit. */
3437 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3438 REG_NOTES (first));
3439 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3440
3441 return last;
3442 }
3443 \f
3444 /* Emit code to make a call to a constant function or a library call.
3445
3446 INSNS is a list containing all insns emitted in the call.
3447 These insns leave the result in RESULT. Our block is to copy RESULT
3448 to TARGET, which is logically equivalent to EQUIV.
3449
3450 We first emit any insns that set a pseudo on the assumption that these are
3451 loading constants into registers; doing so allows them to be safely cse'ed
3452 between blocks. Then we emit all the other insns in the block, followed by
3453 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3454 note with an operand of EQUIV.
3455
3456 Moving assignments to pseudos outside of the block is done to improve
3457 the generated code, but is not required to generate correct code,
3458 hence being unable to move an assignment is not grounds for not making
3459 a libcall block. There are two reasons why it is safe to leave these
3460 insns inside the block: First, we know that these pseudos cannot be
3461 used in generated RTL outside the block since they are created for
3462 temporary purposes within the block. Second, CSE will not record the
3463 values of anything set inside a libcall block, so we know they must
3464 be dead at the end of the block.
3465
3466 Except for the first group of insns (the ones setting pseudos), the
3467 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3468
3469 void
3470 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3471 {
3472 rtx final_dest = target;
3473 rtx prev, next, first, last, insn;
3474
3475 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3476 into a MEM later. Protect the libcall block from this change. */
3477 if (! REG_P (target) || REG_USERVAR_P (target))
3478 target = gen_reg_rtx (GET_MODE (target));
3479
3480 /* If we're using non-call exceptions, a libcall corresponding to an
3481 operation that may trap may also trap. */
3482 if (flag_non_call_exceptions && may_trap_p (equiv))
3483 {
3484 for (insn = insns; insn; insn = NEXT_INSN (insn))
3485 if (CALL_P (insn))
3486 {
3487 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3488
3489 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3490 remove_note (insn, note);
3491 }
3492 }
3493 else
3494 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3495 reg note to indicate that this call cannot throw or execute a nonlocal
3496 goto (unless there is already a REG_EH_REGION note, in which case
3497 we update it). */
3498 for (insn = insns; insn; insn = NEXT_INSN (insn))
3499 if (CALL_P (insn))
3500 {
3501 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3502
3503 if (note != 0)
3504 XEXP (note, 0) = constm1_rtx;
3505 else
3506 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3507 REG_NOTES (insn));
3508 }
3509
3510 /* First emit all insns that set pseudos. Remove them from the list as
3511 we go. Avoid insns that set pseudos which were referenced in previous
3512 insns. These can be generated by move_by_pieces, for example,
3513 to update an address. Similarly, avoid insns that reference things
3514 set in previous insns. */
3515
3516 for (insn = insns; insn; insn = next)
3517 {
3518 rtx set = single_set (insn);
3519 rtx note;
3520
3521 /* Some ports (cris) create a libcall regions at their own. We must
3522 avoid any potential nesting of LIBCALLs. */
3523 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3524 remove_note (insn, note);
3525 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3526 remove_note (insn, note);
3527
3528 next = NEXT_INSN (insn);
3529
3530 if (set != 0 && REG_P (SET_DEST (set))
3531 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3532 && (insn == insns
3533 || ((! INSN_P(insns)
3534 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3535 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3536 && ! modified_in_p (SET_SRC (set), insns)
3537 && ! modified_between_p (SET_SRC (set), insns, insn))))
3538 {
3539 if (PREV_INSN (insn))
3540 NEXT_INSN (PREV_INSN (insn)) = next;
3541 else
3542 insns = next;
3543
3544 if (next)
3545 PREV_INSN (next) = PREV_INSN (insn);
3546
3547 add_insn (insn);
3548 }
3549
3550 /* Some ports use a loop to copy large arguments onto the stack.
3551 Don't move anything outside such a loop. */
3552 if (LABEL_P (insn))
3553 break;
3554 }
3555
3556 prev = get_last_insn ();
3557
3558 /* Write the remaining insns followed by the final copy. */
3559
3560 for (insn = insns; insn; insn = next)
3561 {
3562 next = NEXT_INSN (insn);
3563
3564 add_insn (insn);
3565 }
3566
3567 last = emit_move_insn (target, result);
3568 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3569 != CODE_FOR_nothing)
3570 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3571 else
3572 {
3573 /* Remove any existing REG_EQUAL note from "last", or else it will
3574 be mistaken for a note referring to the full contents of the
3575 libcall value when found together with the REG_RETVAL note added
3576 below. An existing note can come from an insn expansion at
3577 "last". */
3578 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3579 }
3580
3581 if (final_dest != target)
3582 emit_move_insn (final_dest, target);
3583
3584 if (prev == 0)
3585 first = get_insns ();
3586 else
3587 first = NEXT_INSN (prev);
3588
3589 /* Encapsulate the block so it gets manipulated as a unit. */
3590 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3591 {
3592 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3593 when the encapsulated region would not be in one basic block,
3594 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3595 */
3596 bool attach_libcall_retval_notes = true;
3597 next = NEXT_INSN (last);
3598 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3599 if (control_flow_insn_p (insn))
3600 {
3601 attach_libcall_retval_notes = false;
3602 break;
3603 }
3604
3605 if (attach_libcall_retval_notes)
3606 {
3607 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3608 REG_NOTES (first));
3609 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3610 REG_NOTES (last));
3611 }
3612 }
3613 }
3614 \f
3615 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3616 PURPOSE describes how this comparison will be used. CODE is the rtx
3617 comparison code we will be using.
3618
3619 ??? Actually, CODE is slightly weaker than that. A target is still
3620 required to implement all of the normal bcc operations, but not
3621 required to implement all (or any) of the unordered bcc operations. */
3622
3623 int
3624 can_compare_p (enum rtx_code code, enum machine_mode mode,
3625 enum can_compare_purpose purpose)
3626 {
3627 do
3628 {
3629 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3630 {
3631 if (purpose == ccp_jump)
3632 return bcc_gen_fctn[(int) code] != NULL;
3633 else if (purpose == ccp_store_flag)
3634 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3635 else
3636 /* There's only one cmov entry point, and it's allowed to fail. */
3637 return 1;
3638 }
3639 if (purpose == ccp_jump
3640 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3641 return 1;
3642 if (purpose == ccp_cmov
3643 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3644 return 1;
3645 if (purpose == ccp_store_flag
3646 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3647 return 1;
3648
3649 mode = GET_MODE_WIDER_MODE (mode);
3650 }
3651 while (mode != VOIDmode);
3652
3653 return 0;
3654 }
3655
3656 /* This function is called when we are going to emit a compare instruction that
3657 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3658
3659 *PMODE is the mode of the inputs (in case they are const_int).
3660 *PUNSIGNEDP nonzero says that the operands are unsigned;
3661 this matters if they need to be widened.
3662
3663 If they have mode BLKmode, then SIZE specifies the size of both operands.
3664
3665 This function performs all the setup necessary so that the caller only has
3666 to emit a single comparison insn. This setup can involve doing a BLKmode
3667 comparison or emitting a library call to perform the comparison if no insn
3668 is available to handle it.
3669 The values which are passed in through pointers can be modified; the caller
3670 should perform the comparison on the modified values. */
3671
3672 static void
3673 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3674 enum machine_mode *pmode, int *punsignedp,
3675 enum can_compare_purpose purpose)
3676 {
3677 enum machine_mode mode = *pmode;
3678 rtx x = *px, y = *py;
3679 int unsignedp = *punsignedp;
3680 enum mode_class class;
3681
3682 class = GET_MODE_CLASS (mode);
3683
3684 /* They could both be VOIDmode if both args are immediate constants,
3685 but we should fold that at an earlier stage.
3686 With no special code here, this will call abort,
3687 reminding the programmer to implement such folding. */
3688
3689 if (mode != BLKmode && flag_force_mem)
3690 {
3691 /* Load duplicate non-volatile operands once. */
3692 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3693 {
3694 x = force_not_mem (x);
3695 y = x;
3696 }
3697 else
3698 {
3699 x = force_not_mem (x);
3700 y = force_not_mem (y);
3701 }
3702 }
3703
3704 /* If we are inside an appropriately-short loop and one operand is an
3705 expensive constant, force it into a register. */
3706 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3707 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3708 x = force_reg (mode, x);
3709
3710 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3711 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3712 y = force_reg (mode, y);
3713
3714 #ifdef HAVE_cc0
3715 /* Abort if we have a non-canonical comparison. The RTL documentation
3716 states that canonical comparisons are required only for targets which
3717 have cc0. */
3718 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3719 abort ();
3720 #endif
3721
3722 /* Don't let both operands fail to indicate the mode. */
3723 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3724 x = force_reg (mode, x);
3725
3726 /* Handle all BLKmode compares. */
3727
3728 if (mode == BLKmode)
3729 {
3730 enum machine_mode cmp_mode, result_mode;
3731 enum insn_code cmp_code;
3732 tree length_type;
3733 rtx libfunc;
3734 rtx result;
3735 rtx opalign
3736 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3737
3738 if (size == 0)
3739 abort ();
3740
3741 /* Try to use a memory block compare insn - either cmpstr
3742 or cmpmem will do. */
3743 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3744 cmp_mode != VOIDmode;
3745 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3746 {
3747 cmp_code = cmpmem_optab[cmp_mode];
3748 if (cmp_code == CODE_FOR_nothing)
3749 cmp_code = cmpstr_optab[cmp_mode];
3750 if (cmp_code == CODE_FOR_nothing)
3751 continue;
3752
3753 /* Must make sure the size fits the insn's mode. */
3754 if ((GET_CODE (size) == CONST_INT
3755 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3756 || (GET_MODE_BITSIZE (GET_MODE (size))
3757 > GET_MODE_BITSIZE (cmp_mode)))
3758 continue;
3759
3760 result_mode = insn_data[cmp_code].operand[0].mode;
3761 result = gen_reg_rtx (result_mode);
3762 size = convert_to_mode (cmp_mode, size, 1);
3763 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3764
3765 *px = result;
3766 *py = const0_rtx;
3767 *pmode = result_mode;
3768 return;
3769 }
3770
3771 /* Otherwise call a library function, memcmp. */
3772 libfunc = memcmp_libfunc;
3773 length_type = sizetype;
3774 result_mode = TYPE_MODE (integer_type_node);
3775 cmp_mode = TYPE_MODE (length_type);
3776 size = convert_to_mode (TYPE_MODE (length_type), size,
3777 TYPE_UNSIGNED (length_type));
3778
3779 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3780 result_mode, 3,
3781 XEXP (x, 0), Pmode,
3782 XEXP (y, 0), Pmode,
3783 size, cmp_mode);
3784 *px = result;
3785 *py = const0_rtx;
3786 *pmode = result_mode;
3787 return;
3788 }
3789
3790 /* Don't allow operands to the compare to trap, as that can put the
3791 compare and branch in different basic blocks. */
3792 if (flag_non_call_exceptions)
3793 {
3794 if (may_trap_p (x))
3795 x = force_reg (mode, x);
3796 if (may_trap_p (y))
3797 y = force_reg (mode, y);
3798 }
3799
3800 *px = x;
3801 *py = y;
3802 if (can_compare_p (*pcomparison, mode, purpose))
3803 return;
3804
3805 /* Handle a lib call just for the mode we are using. */
3806
3807 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3808 {
3809 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3810 rtx result;
3811
3812 /* If we want unsigned, and this mode has a distinct unsigned
3813 comparison routine, use that. */
3814 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3815 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3816
3817 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3818 word_mode, 2, x, mode, y, mode);
3819
3820 /* Integer comparison returns a result that must be compared against 1,
3821 so that even if we do an unsigned compare afterward,
3822 there is still a value that can represent the result "less than". */
3823 *px = result;
3824 *py = const1_rtx;
3825 *pmode = word_mode;
3826 return;
3827 }
3828
3829 if (class == MODE_FLOAT)
3830 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3831
3832 else
3833 abort ();
3834 }
3835
3836 /* Before emitting an insn with code ICODE, make sure that X, which is going
3837 to be used for operand OPNUM of the insn, is converted from mode MODE to
3838 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3839 that it is accepted by the operand predicate. Return the new value. */
3840
3841 rtx
3842 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3843 enum machine_mode wider_mode, int unsignedp)
3844 {
3845 if (mode != wider_mode)
3846 x = convert_modes (wider_mode, mode, x, unsignedp);
3847
3848 if (! (*insn_data[icode].operand[opnum].predicate)
3849 (x, insn_data[icode].operand[opnum].mode))
3850 {
3851 if (no_new_pseudos)
3852 return NULL_RTX;
3853 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3854 }
3855
3856 return x;
3857 }
3858
3859 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3860 we can do the comparison.
3861 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3862 be NULL_RTX which indicates that only a comparison is to be generated. */
3863
3864 static void
3865 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3866 enum rtx_code comparison, int unsignedp, rtx label)
3867 {
3868 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3869 enum mode_class class = GET_MODE_CLASS (mode);
3870 enum machine_mode wider_mode = mode;
3871
3872 /* Try combined insns first. */
3873 do
3874 {
3875 enum insn_code icode;
3876 PUT_MODE (test, wider_mode);
3877
3878 if (label)
3879 {
3880 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3881
3882 if (icode != CODE_FOR_nothing
3883 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3884 {
3885 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3886 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3887 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3888 return;
3889 }
3890 }
3891
3892 /* Handle some compares against zero. */
3893 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3894 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3895 {
3896 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3897 emit_insn (GEN_FCN (icode) (x));
3898 if (label)
3899 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3900 return;
3901 }
3902
3903 /* Handle compares for which there is a directly suitable insn. */
3904
3905 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3906 if (icode != CODE_FOR_nothing)
3907 {
3908 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3909 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3910 emit_insn (GEN_FCN (icode) (x, y));
3911 if (label)
3912 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3913 return;
3914 }
3915
3916 if (class != MODE_INT && class != MODE_FLOAT
3917 && class != MODE_COMPLEX_FLOAT)
3918 break;
3919
3920 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3921 }
3922 while (wider_mode != VOIDmode);
3923
3924 abort ();
3925 }
3926
3927 /* Generate code to compare X with Y so that the condition codes are
3928 set and to jump to LABEL if the condition is true. If X is a
3929 constant and Y is not a constant, then the comparison is swapped to
3930 ensure that the comparison RTL has the canonical form.
3931
3932 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3933 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3934 the proper branch condition code.
3935
3936 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3937
3938 MODE is the mode of the inputs (in case they are const_int).
3939
3940 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3941 be passed unchanged to emit_cmp_insn, then potentially converted into an
3942 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3943
3944 void
3945 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3946 enum machine_mode mode, int unsignedp, rtx label)
3947 {
3948 rtx op0 = x, op1 = y;
3949
3950 /* Swap operands and condition to ensure canonical RTL. */
3951 if (swap_commutative_operands_p (x, y))
3952 {
3953 /* If we're not emitting a branch, this means some caller
3954 is out of sync. */
3955 if (! label)
3956 abort ();
3957
3958 op0 = y, op1 = x;
3959 comparison = swap_condition (comparison);
3960 }
3961
3962 #ifdef HAVE_cc0
3963 /* If OP0 is still a constant, then both X and Y must be constants. Force
3964 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3965 RTL. */
3966 if (CONSTANT_P (op0))
3967 op0 = force_reg (mode, op0);
3968 #endif
3969
3970 if (unsignedp)
3971 comparison = unsigned_condition (comparison);
3972
3973 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3974 ccp_jump);
3975 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3976 }
3977
3978 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3979
3980 void
3981 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3982 enum machine_mode mode, int unsignedp)
3983 {
3984 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3985 }
3986 \f
3987 /* Emit a library call comparison between floating point X and Y.
3988 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3989
3990 static void
3991 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
3992 enum machine_mode *pmode, int *punsignedp)
3993 {
3994 enum rtx_code comparison = *pcomparison;
3995 enum rtx_code swapped = swap_condition (comparison);
3996 rtx x = *px;
3997 rtx y = *py;
3998 enum machine_mode orig_mode = GET_MODE (x);
3999 enum machine_mode mode;
4000 rtx value, target, insns, equiv;
4001 rtx libfunc = 0;
4002
4003 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
4004 {
4005 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
4006 break;
4007
4008 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
4009 {
4010 rtx tmp;
4011 tmp = x; x = y; y = tmp;
4012 comparison = swapped;
4013 break;
4014 }
4015 }
4016
4017 if (mode == VOIDmode)
4018 abort ();
4019
4020 if (mode != orig_mode)
4021 {
4022 x = convert_to_mode (mode, x, 0);
4023 y = convert_to_mode (mode, y, 0);
4024 }
4025
4026 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4027 the RTL. The allows the RTL optimizers to delete the libcall if the
4028 condition can be determined at compile-time. */
4029 if (comparison == UNORDERED)
4030 {
4031 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
4032 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
4033 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4034 temp, const_true_rtx, equiv);
4035 }
4036 else
4037 {
4038 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
4039 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4040 {
4041 rtx true_rtx, false_rtx;
4042
4043 switch (comparison)
4044 {
4045 case EQ:
4046 true_rtx = const0_rtx;
4047 false_rtx = const_true_rtx;
4048 break;
4049
4050 case NE:
4051 true_rtx = const_true_rtx;
4052 false_rtx = const0_rtx;
4053 break;
4054
4055 case GT:
4056 true_rtx = const1_rtx;
4057 false_rtx = const0_rtx;
4058 break;
4059
4060 case GE:
4061 true_rtx = const0_rtx;
4062 false_rtx = constm1_rtx;
4063 break;
4064
4065 case LT:
4066 true_rtx = constm1_rtx;
4067 false_rtx = const0_rtx;
4068 break;
4069
4070 case LE:
4071 true_rtx = const0_rtx;
4072 false_rtx = const1_rtx;
4073 break;
4074
4075 default:
4076 abort ();
4077 }
4078 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4079 equiv, true_rtx, false_rtx);
4080 }
4081 }
4082
4083 start_sequence ();
4084 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4085 word_mode, 2, x, mode, y, mode);
4086 insns = get_insns ();
4087 end_sequence ();
4088
4089 target = gen_reg_rtx (word_mode);
4090 emit_libcall_block (insns, target, value, equiv);
4091
4092
4093 if (comparison == UNORDERED
4094 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4095 comparison = NE;
4096
4097 *px = target;
4098 *py = const0_rtx;
4099 *pmode = word_mode;
4100 *pcomparison = comparison;
4101 *punsignedp = 0;
4102 }
4103 \f
4104 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4105
4106 void
4107 emit_indirect_jump (rtx loc)
4108 {
4109 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4110 (loc, Pmode)))
4111 loc = copy_to_mode_reg (Pmode, loc);
4112
4113 emit_jump_insn (gen_indirect_jump (loc));
4114 emit_barrier ();
4115 }
4116 \f
4117 #ifdef HAVE_conditional_move
4118
4119 /* Emit a conditional move instruction if the machine supports one for that
4120 condition and machine mode.
4121
4122 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4123 the mode to use should they be constants. If it is VOIDmode, they cannot
4124 both be constants.
4125
4126 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4127 should be stored there. MODE is the mode to use should they be constants.
4128 If it is VOIDmode, they cannot both be constants.
4129
4130 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4131 is not supported. */
4132
4133 rtx
4134 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4135 enum machine_mode cmode, rtx op2, rtx op3,
4136 enum machine_mode mode, int unsignedp)
4137 {
4138 rtx tem, subtarget, comparison, insn;
4139 enum insn_code icode;
4140 enum rtx_code reversed;
4141
4142 /* If one operand is constant, make it the second one. Only do this
4143 if the other operand is not constant as well. */
4144
4145 if (swap_commutative_operands_p (op0, op1))
4146 {
4147 tem = op0;
4148 op0 = op1;
4149 op1 = tem;
4150 code = swap_condition (code);
4151 }
4152
4153 /* get_condition will prefer to generate LT and GT even if the old
4154 comparison was against zero, so undo that canonicalization here since
4155 comparisons against zero are cheaper. */
4156 if (code == LT && op1 == const1_rtx)
4157 code = LE, op1 = const0_rtx;
4158 else if (code == GT && op1 == constm1_rtx)
4159 code = GE, op1 = const0_rtx;
4160
4161 if (cmode == VOIDmode)
4162 cmode = GET_MODE (op0);
4163
4164 if (swap_commutative_operands_p (op2, op3)
4165 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4166 != UNKNOWN))
4167 {
4168 tem = op2;
4169 op2 = op3;
4170 op3 = tem;
4171 code = reversed;
4172 }
4173
4174 if (mode == VOIDmode)
4175 mode = GET_MODE (op2);
4176
4177 icode = movcc_gen_code[mode];
4178
4179 if (icode == CODE_FOR_nothing)
4180 return 0;
4181
4182 if (flag_force_mem)
4183 {
4184 op2 = force_not_mem (op2);
4185 op3 = force_not_mem (op3);
4186 }
4187
4188 if (!target)
4189 target = gen_reg_rtx (mode);
4190
4191 subtarget = target;
4192
4193 /* If the insn doesn't accept these operands, put them in pseudos. */
4194
4195 if (! (*insn_data[icode].operand[0].predicate)
4196 (subtarget, insn_data[icode].operand[0].mode))
4197 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4198
4199 if (! (*insn_data[icode].operand[2].predicate)
4200 (op2, insn_data[icode].operand[2].mode))
4201 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4202
4203 if (! (*insn_data[icode].operand[3].predicate)
4204 (op3, insn_data[icode].operand[3].mode))
4205 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4206
4207 /* Everything should now be in the suitable form, so emit the compare insn
4208 and then the conditional move. */
4209
4210 comparison
4211 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4212
4213 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4214 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4215 return NULL and let the caller figure out how best to deal with this
4216 situation. */
4217 if (GET_CODE (comparison) != code)
4218 return NULL_RTX;
4219
4220 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4221
4222 /* If that failed, then give up. */
4223 if (insn == 0)
4224 return 0;
4225
4226 emit_insn (insn);
4227
4228 if (subtarget != target)
4229 convert_move (target, subtarget, 0);
4230
4231 return target;
4232 }
4233
4234 /* Return nonzero if a conditional move of mode MODE is supported.
4235
4236 This function is for combine so it can tell whether an insn that looks
4237 like a conditional move is actually supported by the hardware. If we
4238 guess wrong we lose a bit on optimization, but that's it. */
4239 /* ??? sparc64 supports conditionally moving integers values based on fp
4240 comparisons, and vice versa. How do we handle them? */
4241
4242 int
4243 can_conditionally_move_p (enum machine_mode mode)
4244 {
4245 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4246 return 1;
4247
4248 return 0;
4249 }
4250
4251 #endif /* HAVE_conditional_move */
4252
4253 /* Emit a conditional addition instruction if the machine supports one for that
4254 condition and machine mode.
4255
4256 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4257 the mode to use should they be constants. If it is VOIDmode, they cannot
4258 both be constants.
4259
4260 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4261 should be stored there. MODE is the mode to use should they be constants.
4262 If it is VOIDmode, they cannot both be constants.
4263
4264 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4265 is not supported. */
4266
4267 rtx
4268 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4269 enum machine_mode cmode, rtx op2, rtx op3,
4270 enum machine_mode mode, int unsignedp)
4271 {
4272 rtx tem, subtarget, comparison, insn;
4273 enum insn_code icode;
4274 enum rtx_code reversed;
4275
4276 /* If one operand is constant, make it the second one. Only do this
4277 if the other operand is not constant as well. */
4278
4279 if (swap_commutative_operands_p (op0, op1))
4280 {
4281 tem = op0;
4282 op0 = op1;
4283 op1 = tem;
4284 code = swap_condition (code);
4285 }
4286
4287 /* get_condition will prefer to generate LT and GT even if the old
4288 comparison was against zero, so undo that canonicalization here since
4289 comparisons against zero are cheaper. */
4290 if (code == LT && op1 == const1_rtx)
4291 code = LE, op1 = const0_rtx;
4292 else if (code == GT && op1 == constm1_rtx)
4293 code = GE, op1 = const0_rtx;
4294
4295 if (cmode == VOIDmode)
4296 cmode = GET_MODE (op0);
4297
4298 if (swap_commutative_operands_p (op2, op3)
4299 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4300 != UNKNOWN))
4301 {
4302 tem = op2;
4303 op2 = op3;
4304 op3 = tem;
4305 code = reversed;
4306 }
4307
4308 if (mode == VOIDmode)
4309 mode = GET_MODE (op2);
4310
4311 icode = addcc_optab->handlers[(int) mode].insn_code;
4312
4313 if (icode == CODE_FOR_nothing)
4314 return 0;
4315
4316 if (flag_force_mem)
4317 {
4318 op2 = force_not_mem (op2);
4319 op3 = force_not_mem (op3);
4320 }
4321
4322 if (!target)
4323 target = gen_reg_rtx (mode);
4324
4325 /* If the insn doesn't accept these operands, put them in pseudos. */
4326
4327 if (! (*insn_data[icode].operand[0].predicate)
4328 (target, insn_data[icode].operand[0].mode))
4329 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4330 else
4331 subtarget = target;
4332
4333 if (! (*insn_data[icode].operand[2].predicate)
4334 (op2, insn_data[icode].operand[2].mode))
4335 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4336
4337 if (! (*insn_data[icode].operand[3].predicate)
4338 (op3, insn_data[icode].operand[3].mode))
4339 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4340
4341 /* Everything should now be in the suitable form, so emit the compare insn
4342 and then the conditional move. */
4343
4344 comparison
4345 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4346
4347 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4348 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4349 return NULL and let the caller figure out how best to deal with this
4350 situation. */
4351 if (GET_CODE (comparison) != code)
4352 return NULL_RTX;
4353
4354 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4355
4356 /* If that failed, then give up. */
4357 if (insn == 0)
4358 return 0;
4359
4360 emit_insn (insn);
4361
4362 if (subtarget != target)
4363 convert_move (target, subtarget, 0);
4364
4365 return target;
4366 }
4367 \f
4368 /* These functions attempt to generate an insn body, rather than
4369 emitting the insn, but if the gen function already emits them, we
4370 make no attempt to turn them back into naked patterns. */
4371
4372 /* Generate and return an insn body to add Y to X. */
4373
4374 rtx
4375 gen_add2_insn (rtx x, rtx y)
4376 {
4377 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4378
4379 if (! ((*insn_data[icode].operand[0].predicate)
4380 (x, insn_data[icode].operand[0].mode))
4381 || ! ((*insn_data[icode].operand[1].predicate)
4382 (x, insn_data[icode].operand[1].mode))
4383 || ! ((*insn_data[icode].operand[2].predicate)
4384 (y, insn_data[icode].operand[2].mode)))
4385 abort ();
4386
4387 return (GEN_FCN (icode) (x, x, y));
4388 }
4389
4390 /* Generate and return an insn body to add r1 and c,
4391 storing the result in r0. */
4392 rtx
4393 gen_add3_insn (rtx r0, rtx r1, rtx c)
4394 {
4395 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4396
4397 if (icode == CODE_FOR_nothing
4398 || ! ((*insn_data[icode].operand[0].predicate)
4399 (r0, insn_data[icode].operand[0].mode))
4400 || ! ((*insn_data[icode].operand[1].predicate)
4401 (r1, insn_data[icode].operand[1].mode))
4402 || ! ((*insn_data[icode].operand[2].predicate)
4403 (c, insn_data[icode].operand[2].mode)))
4404 return NULL_RTX;
4405
4406 return (GEN_FCN (icode) (r0, r1, c));
4407 }
4408
4409 int
4410 have_add2_insn (rtx x, rtx y)
4411 {
4412 int icode;
4413
4414 if (GET_MODE (x) == VOIDmode)
4415 abort ();
4416
4417 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4418
4419 if (icode == CODE_FOR_nothing)
4420 return 0;
4421
4422 if (! ((*insn_data[icode].operand[0].predicate)
4423 (x, insn_data[icode].operand[0].mode))
4424 || ! ((*insn_data[icode].operand[1].predicate)
4425 (x, insn_data[icode].operand[1].mode))
4426 || ! ((*insn_data[icode].operand[2].predicate)
4427 (y, insn_data[icode].operand[2].mode)))
4428 return 0;
4429
4430 return 1;
4431 }
4432
4433 /* Generate and return an insn body to subtract Y from X. */
4434
4435 rtx
4436 gen_sub2_insn (rtx x, rtx y)
4437 {
4438 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4439
4440 if (! ((*insn_data[icode].operand[0].predicate)
4441 (x, insn_data[icode].operand[0].mode))
4442 || ! ((*insn_data[icode].operand[1].predicate)
4443 (x, insn_data[icode].operand[1].mode))
4444 || ! ((*insn_data[icode].operand[2].predicate)
4445 (y, insn_data[icode].operand[2].mode)))
4446 abort ();
4447
4448 return (GEN_FCN (icode) (x, x, y));
4449 }
4450
4451 /* Generate and return an insn body to subtract r1 and c,
4452 storing the result in r0. */
4453 rtx
4454 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4455 {
4456 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4457
4458 if (icode == CODE_FOR_nothing
4459 || ! ((*insn_data[icode].operand[0].predicate)
4460 (r0, insn_data[icode].operand[0].mode))
4461 || ! ((*insn_data[icode].operand[1].predicate)
4462 (r1, insn_data[icode].operand[1].mode))
4463 || ! ((*insn_data[icode].operand[2].predicate)
4464 (c, insn_data[icode].operand[2].mode)))
4465 return NULL_RTX;
4466
4467 return (GEN_FCN (icode) (r0, r1, c));
4468 }
4469
4470 int
4471 have_sub2_insn (rtx x, rtx y)
4472 {
4473 int icode;
4474
4475 if (GET_MODE (x) == VOIDmode)
4476 abort ();
4477
4478 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4479
4480 if (icode == CODE_FOR_nothing)
4481 return 0;
4482
4483 if (! ((*insn_data[icode].operand[0].predicate)
4484 (x, insn_data[icode].operand[0].mode))
4485 || ! ((*insn_data[icode].operand[1].predicate)
4486 (x, insn_data[icode].operand[1].mode))
4487 || ! ((*insn_data[icode].operand[2].predicate)
4488 (y, insn_data[icode].operand[2].mode)))
4489 return 0;
4490
4491 return 1;
4492 }
4493
4494 /* Generate the body of an instruction to copy Y into X.
4495 It may be a list of insns, if one insn isn't enough. */
4496
4497 rtx
4498 gen_move_insn (rtx x, rtx y)
4499 {
4500 rtx seq;
4501
4502 start_sequence ();
4503 emit_move_insn_1 (x, y);
4504 seq = get_insns ();
4505 end_sequence ();
4506 return seq;
4507 }
4508 \f
4509 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4510 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4511 no such operation exists, CODE_FOR_nothing will be returned. */
4512
4513 enum insn_code
4514 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4515 int unsignedp)
4516 {
4517 convert_optab tab;
4518 #ifdef HAVE_ptr_extend
4519 if (unsignedp < 0)
4520 return CODE_FOR_ptr_extend;
4521 #endif
4522
4523 tab = unsignedp ? zext_optab : sext_optab;
4524 return tab->handlers[to_mode][from_mode].insn_code;
4525 }
4526
4527 /* Generate the body of an insn to extend Y (with mode MFROM)
4528 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4529
4530 rtx
4531 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4532 enum machine_mode mfrom, int unsignedp)
4533 {
4534 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4535 return GEN_FCN (icode) (x, y);
4536 }
4537 \f
4538 /* can_fix_p and can_float_p say whether the target machine
4539 can directly convert a given fixed point type to
4540 a given floating point type, or vice versa.
4541 The returned value is the CODE_FOR_... value to use,
4542 or CODE_FOR_nothing if these modes cannot be directly converted.
4543
4544 *TRUNCP_PTR is set to 1 if it is necessary to output
4545 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4546
4547 static enum insn_code
4548 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4549 int unsignedp, int *truncp_ptr)
4550 {
4551 convert_optab tab;
4552 enum insn_code icode;
4553
4554 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4555 icode = tab->handlers[fixmode][fltmode].insn_code;
4556 if (icode != CODE_FOR_nothing)
4557 {
4558 *truncp_ptr = 0;
4559 return icode;
4560 }
4561
4562 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4563 for this to work. We need to rework the fix* and ftrunc* patterns
4564 and documentation. */
4565 tab = unsignedp ? ufix_optab : sfix_optab;
4566 icode = tab->handlers[fixmode][fltmode].insn_code;
4567 if (icode != CODE_FOR_nothing
4568 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
4569 {
4570 *truncp_ptr = 1;
4571 return icode;
4572 }
4573
4574 *truncp_ptr = 0;
4575 return CODE_FOR_nothing;
4576 }
4577
4578 static enum insn_code
4579 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4580 int unsignedp)
4581 {
4582 convert_optab tab;
4583
4584 tab = unsignedp ? ufloat_optab : sfloat_optab;
4585 return tab->handlers[fltmode][fixmode].insn_code;
4586 }
4587 \f
4588 /* Generate code to convert FROM to floating point
4589 and store in TO. FROM must be fixed point and not VOIDmode.
4590 UNSIGNEDP nonzero means regard FROM as unsigned.
4591 Normally this is done by correcting the final value
4592 if it is negative. */
4593
4594 void
4595 expand_float (rtx to, rtx from, int unsignedp)
4596 {
4597 enum insn_code icode;
4598 rtx target = to;
4599 enum machine_mode fmode, imode;
4600
4601 /* Crash now, because we won't be able to decide which mode to use. */
4602 if (GET_MODE (from) == VOIDmode)
4603 abort ();
4604
4605 /* Look for an insn to do the conversion. Do it in the specified
4606 modes if possible; otherwise convert either input, output or both to
4607 wider mode. If the integer mode is wider than the mode of FROM,
4608 we can do the conversion signed even if the input is unsigned. */
4609
4610 for (fmode = GET_MODE (to); fmode != VOIDmode;
4611 fmode = GET_MODE_WIDER_MODE (fmode))
4612 for (imode = GET_MODE (from); imode != VOIDmode;
4613 imode = GET_MODE_WIDER_MODE (imode))
4614 {
4615 int doing_unsigned = unsignedp;
4616
4617 if (fmode != GET_MODE (to)
4618 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4619 continue;
4620
4621 icode = can_float_p (fmode, imode, unsignedp);
4622 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4623 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4624
4625 if (icode != CODE_FOR_nothing)
4626 {
4627 if (imode != GET_MODE (from))
4628 from = convert_to_mode (imode, from, unsignedp);
4629
4630 if (fmode != GET_MODE (to))
4631 target = gen_reg_rtx (fmode);
4632
4633 emit_unop_insn (icode, target, from,
4634 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4635
4636 if (target != to)
4637 convert_move (to, target, 0);
4638 return;
4639 }
4640 }
4641
4642 /* Unsigned integer, and no way to convert directly.
4643 Convert as signed, then conditionally adjust the result. */
4644 if (unsignedp)
4645 {
4646 rtx label = gen_label_rtx ();
4647 rtx temp;
4648 REAL_VALUE_TYPE offset;
4649
4650 if (flag_force_mem)
4651 from = force_not_mem (from);
4652
4653 /* Look for a usable floating mode FMODE wider than the source and at
4654 least as wide as the target. Using FMODE will avoid rounding woes
4655 with unsigned values greater than the signed maximum value. */
4656
4657 for (fmode = GET_MODE (to); fmode != VOIDmode;
4658 fmode = GET_MODE_WIDER_MODE (fmode))
4659 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4660 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4661 break;
4662
4663 if (fmode == VOIDmode)
4664 {
4665 /* There is no such mode. Pretend the target is wide enough. */
4666 fmode = GET_MODE (to);
4667
4668 /* Avoid double-rounding when TO is narrower than FROM. */
4669 if ((significand_size (fmode) + 1)
4670 < GET_MODE_BITSIZE (GET_MODE (from)))
4671 {
4672 rtx temp1;
4673 rtx neglabel = gen_label_rtx ();
4674
4675 /* Don't use TARGET if it isn't a register, is a hard register,
4676 or is the wrong mode. */
4677 if (!REG_P (target)
4678 || REGNO (target) < FIRST_PSEUDO_REGISTER
4679 || GET_MODE (target) != fmode)
4680 target = gen_reg_rtx (fmode);
4681
4682 imode = GET_MODE (from);
4683 do_pending_stack_adjust ();
4684
4685 /* Test whether the sign bit is set. */
4686 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4687 0, neglabel);
4688
4689 /* The sign bit is not set. Convert as signed. */
4690 expand_float (target, from, 0);
4691 emit_jump_insn (gen_jump (label));
4692 emit_barrier ();
4693
4694 /* The sign bit is set.
4695 Convert to a usable (positive signed) value by shifting right
4696 one bit, while remembering if a nonzero bit was shifted
4697 out; i.e., compute (from & 1) | (from >> 1). */
4698
4699 emit_label (neglabel);
4700 temp = expand_binop (imode, and_optab, from, const1_rtx,
4701 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4702 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4703 NULL_RTX, 1);
4704 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4705 OPTAB_LIB_WIDEN);
4706 expand_float (target, temp, 0);
4707
4708 /* Multiply by 2 to undo the shift above. */
4709 temp = expand_binop (fmode, add_optab, target, target,
4710 target, 0, OPTAB_LIB_WIDEN);
4711 if (temp != target)
4712 emit_move_insn (target, temp);
4713
4714 do_pending_stack_adjust ();
4715 emit_label (label);
4716 goto done;
4717 }
4718 }
4719
4720 /* If we are about to do some arithmetic to correct for an
4721 unsigned operand, do it in a pseudo-register. */
4722
4723 if (GET_MODE (to) != fmode
4724 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4725 target = gen_reg_rtx (fmode);
4726
4727 /* Convert as signed integer to floating. */
4728 expand_float (target, from, 0);
4729
4730 /* If FROM is negative (and therefore TO is negative),
4731 correct its value by 2**bitwidth. */
4732
4733 do_pending_stack_adjust ();
4734 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4735 0, label);
4736
4737
4738 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4739 temp = expand_binop (fmode, add_optab, target,
4740 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4741 target, 0, OPTAB_LIB_WIDEN);
4742 if (temp != target)
4743 emit_move_insn (target, temp);
4744
4745 do_pending_stack_adjust ();
4746 emit_label (label);
4747 goto done;
4748 }
4749
4750 /* No hardware instruction available; call a library routine. */
4751 {
4752 rtx libfunc;
4753 rtx insns;
4754 rtx value;
4755 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4756
4757 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4758 from = convert_to_mode (SImode, from, unsignedp);
4759
4760 if (flag_force_mem)
4761 from = force_not_mem (from);
4762
4763 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4764 if (!libfunc)
4765 abort ();
4766
4767 start_sequence ();
4768
4769 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4770 GET_MODE (to), 1, from,
4771 GET_MODE (from));
4772 insns = get_insns ();
4773 end_sequence ();
4774
4775 emit_libcall_block (insns, target, value,
4776 gen_rtx_FLOAT (GET_MODE (to), from));
4777 }
4778
4779 done:
4780
4781 /* Copy result to requested destination
4782 if we have been computing in a temp location. */
4783
4784 if (target != to)
4785 {
4786 if (GET_MODE (target) == GET_MODE (to))
4787 emit_move_insn (to, target);
4788 else
4789 convert_move (to, target, 0);
4790 }
4791 }
4792 \f
4793 /* Generate code to convert FROM to fixed point and store in TO. FROM
4794 must be floating point. */
4795
4796 void
4797 expand_fix (rtx to, rtx from, int unsignedp)
4798 {
4799 enum insn_code icode;
4800 rtx target = to;
4801 enum machine_mode fmode, imode;
4802 int must_trunc = 0;
4803
4804 /* We first try to find a pair of modes, one real and one integer, at
4805 least as wide as FROM and TO, respectively, in which we can open-code
4806 this conversion. If the integer mode is wider than the mode of TO,
4807 we can do the conversion either signed or unsigned. */
4808
4809 for (fmode = GET_MODE (from); fmode != VOIDmode;
4810 fmode = GET_MODE_WIDER_MODE (fmode))
4811 for (imode = GET_MODE (to); imode != VOIDmode;
4812 imode = GET_MODE_WIDER_MODE (imode))
4813 {
4814 int doing_unsigned = unsignedp;
4815
4816 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4817 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4818 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4819
4820 if (icode != CODE_FOR_nothing)
4821 {
4822 if (fmode != GET_MODE (from))
4823 from = convert_to_mode (fmode, from, 0);
4824
4825 if (must_trunc)
4826 {
4827 rtx temp = gen_reg_rtx (GET_MODE (from));
4828 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4829 temp, 0);
4830 }
4831
4832 if (imode != GET_MODE (to))
4833 target = gen_reg_rtx (imode);
4834
4835 emit_unop_insn (icode, target, from,
4836 doing_unsigned ? UNSIGNED_FIX : FIX);
4837 if (target != to)
4838 convert_move (to, target, unsignedp);
4839 return;
4840 }
4841 }
4842
4843 /* For an unsigned conversion, there is one more way to do it.
4844 If we have a signed conversion, we generate code that compares
4845 the real value to the largest representable positive number. If if
4846 is smaller, the conversion is done normally. Otherwise, subtract
4847 one plus the highest signed number, convert, and add it back.
4848
4849 We only need to check all real modes, since we know we didn't find
4850 anything with a wider integer mode.
4851
4852 This code used to extend FP value into mode wider than the destination.
4853 This is not needed. Consider, for instance conversion from SFmode
4854 into DImode.
4855
4856 The hot path trought the code is dealing with inputs smaller than 2^63
4857 and doing just the conversion, so there is no bits to lose.
4858
4859 In the other path we know the value is positive in the range 2^63..2^64-1
4860 inclusive. (as for other imput overflow happens and result is undefined)
4861 So we know that the most important bit set in mantissa corresponds to
4862 2^63. The subtraction of 2^63 should not generate any rounding as it
4863 simply clears out that bit. The rest is trivial. */
4864
4865 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4866 for (fmode = GET_MODE (from); fmode != VOIDmode;
4867 fmode = GET_MODE_WIDER_MODE (fmode))
4868 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4869 &must_trunc))
4870 {
4871 int bitsize;
4872 REAL_VALUE_TYPE offset;
4873 rtx limit, lab1, lab2, insn;
4874
4875 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4876 real_2expN (&offset, bitsize - 1);
4877 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4878 lab1 = gen_label_rtx ();
4879 lab2 = gen_label_rtx ();
4880
4881 if (flag_force_mem)
4882 from = force_not_mem (from);
4883
4884 if (fmode != GET_MODE (from))
4885 from = convert_to_mode (fmode, from, 0);
4886
4887 /* See if we need to do the subtraction. */
4888 do_pending_stack_adjust ();
4889 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4890 0, lab1);
4891
4892 /* If not, do the signed "fix" and branch around fixup code. */
4893 expand_fix (to, from, 0);
4894 emit_jump_insn (gen_jump (lab2));
4895 emit_barrier ();
4896
4897 /* Otherwise, subtract 2**(N-1), convert to signed number,
4898 then add 2**(N-1). Do the addition using XOR since this
4899 will often generate better code. */
4900 emit_label (lab1);
4901 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4902 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4903 expand_fix (to, target, 0);
4904 target = expand_binop (GET_MODE (to), xor_optab, to,
4905 gen_int_mode
4906 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4907 GET_MODE (to)),
4908 to, 1, OPTAB_LIB_WIDEN);
4909
4910 if (target != to)
4911 emit_move_insn (to, target);
4912
4913 emit_label (lab2);
4914
4915 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4916 != CODE_FOR_nothing)
4917 {
4918 /* Make a place for a REG_NOTE and add it. */
4919 insn = emit_move_insn (to, to);
4920 set_unique_reg_note (insn,
4921 REG_EQUAL,
4922 gen_rtx_fmt_e (UNSIGNED_FIX,
4923 GET_MODE (to),
4924 copy_rtx (from)));
4925 }
4926
4927 return;
4928 }
4929
4930 /* We can't do it with an insn, so use a library call. But first ensure
4931 that the mode of TO is at least as wide as SImode, since those are the
4932 only library calls we know about. */
4933
4934 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4935 {
4936 target = gen_reg_rtx (SImode);
4937
4938 expand_fix (target, from, unsignedp);
4939 }
4940 else
4941 {
4942 rtx insns;
4943 rtx value;
4944 rtx libfunc;
4945
4946 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4947 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4948 if (!libfunc)
4949 abort ();
4950
4951 if (flag_force_mem)
4952 from = force_not_mem (from);
4953
4954 start_sequence ();
4955
4956 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4957 GET_MODE (to), 1, from,
4958 GET_MODE (from));
4959 insns = get_insns ();
4960 end_sequence ();
4961
4962 emit_libcall_block (insns, target, value,
4963 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4964 GET_MODE (to), from));
4965 }
4966
4967 if (target != to)
4968 {
4969 if (GET_MODE (to) == GET_MODE (target))
4970 emit_move_insn (to, target);
4971 else
4972 convert_move (to, target, 0);
4973 }
4974 }
4975 \f
4976 /* Report whether we have an instruction to perform the operation
4977 specified by CODE on operands of mode MODE. */
4978 int
4979 have_insn_for (enum rtx_code code, enum machine_mode mode)
4980 {
4981 return (code_to_optab[(int) code] != 0
4982 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4983 != CODE_FOR_nothing));
4984 }
4985
4986 /* Create a blank optab. */
4987 static optab
4988 new_optab (void)
4989 {
4990 int i;
4991 optab op = ggc_alloc (sizeof (struct optab));
4992 for (i = 0; i < NUM_MACHINE_MODES; i++)
4993 {
4994 op->handlers[i].insn_code = CODE_FOR_nothing;
4995 op->handlers[i].libfunc = 0;
4996 }
4997
4998 return op;
4999 }
5000
5001 static convert_optab
5002 new_convert_optab (void)
5003 {
5004 int i, j;
5005 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
5006 for (i = 0; i < NUM_MACHINE_MODES; i++)
5007 for (j = 0; j < NUM_MACHINE_MODES; j++)
5008 {
5009 op->handlers[i][j].insn_code = CODE_FOR_nothing;
5010 op->handlers[i][j].libfunc = 0;
5011 }
5012 return op;
5013 }
5014
5015 /* Same, but fill in its code as CODE, and write it into the
5016 code_to_optab table. */
5017 static inline optab
5018 init_optab (enum rtx_code code)
5019 {
5020 optab op = new_optab ();
5021 op->code = code;
5022 code_to_optab[(int) code] = op;
5023 return op;
5024 }
5025
5026 /* Same, but fill in its code as CODE, and do _not_ write it into
5027 the code_to_optab table. */
5028 static inline optab
5029 init_optabv (enum rtx_code code)
5030 {
5031 optab op = new_optab ();
5032 op->code = code;
5033 return op;
5034 }
5035
5036 /* Conversion optabs never go in the code_to_optab table. */
5037 static inline convert_optab
5038 init_convert_optab (enum rtx_code code)
5039 {
5040 convert_optab op = new_convert_optab ();
5041 op->code = code;
5042 return op;
5043 }
5044
5045 /* Initialize the libfunc fields of an entire group of entries in some
5046 optab. Each entry is set equal to a string consisting of a leading
5047 pair of underscores followed by a generic operation name followed by
5048 a mode name (downshifted to lowercase) followed by a single character
5049 representing the number of operands for the given operation (which is
5050 usually one of the characters '2', '3', or '4').
5051
5052 OPTABLE is the table in which libfunc fields are to be initialized.
5053 FIRST_MODE is the first machine mode index in the given optab to
5054 initialize.
5055 LAST_MODE is the last machine mode index in the given optab to
5056 initialize.
5057 OPNAME is the generic (string) name of the operation.
5058 SUFFIX is the character which specifies the number of operands for
5059 the given generic operation.
5060 */
5061
5062 static void
5063 init_libfuncs (optab optable, int first_mode, int last_mode,
5064 const char *opname, int suffix)
5065 {
5066 int mode;
5067 unsigned opname_len = strlen (opname);
5068
5069 for (mode = first_mode; (int) mode <= (int) last_mode;
5070 mode = (enum machine_mode) ((int) mode + 1))
5071 {
5072 const char *mname = GET_MODE_NAME (mode);
5073 unsigned mname_len = strlen (mname);
5074 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5075 char *p;
5076 const char *q;
5077
5078 p = libfunc_name;
5079 *p++ = '_';
5080 *p++ = '_';
5081 for (q = opname; *q; )
5082 *p++ = *q++;
5083 for (q = mname; *q; q++)
5084 *p++ = TOLOWER (*q);
5085 *p++ = suffix;
5086 *p = '\0';
5087
5088 optable->handlers[(int) mode].libfunc
5089 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5090 }
5091 }
5092
5093 /* Initialize the libfunc fields of an entire group of entries in some
5094 optab which correspond to all integer mode operations. The parameters
5095 have the same meaning as similarly named ones for the `init_libfuncs'
5096 routine. (See above). */
5097
5098 static void
5099 init_integral_libfuncs (optab optable, const char *opname, int suffix)
5100 {
5101 int maxsize = 2*BITS_PER_WORD;
5102 if (maxsize < LONG_LONG_TYPE_SIZE)
5103 maxsize = LONG_LONG_TYPE_SIZE;
5104 init_libfuncs (optable, word_mode,
5105 mode_for_size (maxsize, MODE_INT, 0),
5106 opname, suffix);
5107 }
5108
5109 /* Initialize the libfunc fields of an entire group of entries in some
5110 optab which correspond to all real mode operations. The parameters
5111 have the same meaning as similarly named ones for the `init_libfuncs'
5112 routine. (See above). */
5113
5114 static void
5115 init_floating_libfuncs (optab optable, const char *opname, int suffix)
5116 {
5117 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
5118 }
5119
5120 /* Initialize the libfunc fields of an entire group of entries of an
5121 inter-mode-class conversion optab. The string formation rules are
5122 similar to the ones for init_libfuncs, above, but instead of having
5123 a mode name and an operand count these functions have two mode names
5124 and no operand count. */
5125 static void
5126 init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5127 enum mode_class from_class,
5128 enum mode_class to_class)
5129 {
5130 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5131 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5132 size_t opname_len = strlen (opname);
5133 size_t max_mname_len = 0;
5134
5135 enum machine_mode fmode, tmode;
5136 const char *fname, *tname;
5137 const char *q;
5138 char *libfunc_name, *suffix;
5139 char *p;
5140
5141 for (fmode = first_from_mode;
5142 fmode != VOIDmode;
5143 fmode = GET_MODE_WIDER_MODE (fmode))
5144 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5145
5146 for (tmode = first_to_mode;
5147 tmode != VOIDmode;
5148 tmode = GET_MODE_WIDER_MODE (tmode))
5149 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5150
5151 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5152 libfunc_name[0] = '_';
5153 libfunc_name[1] = '_';
5154 memcpy (&libfunc_name[2], opname, opname_len);
5155 suffix = libfunc_name + opname_len + 2;
5156
5157 for (fmode = first_from_mode; fmode != VOIDmode;
5158 fmode = GET_MODE_WIDER_MODE (fmode))
5159 for (tmode = first_to_mode; tmode != VOIDmode;
5160 tmode = GET_MODE_WIDER_MODE (tmode))
5161 {
5162 fname = GET_MODE_NAME (fmode);
5163 tname = GET_MODE_NAME (tmode);
5164
5165 p = suffix;
5166 for (q = fname; *q; p++, q++)
5167 *p = TOLOWER (*q);
5168 for (q = tname; *q; p++, q++)
5169 *p = TOLOWER (*q);
5170
5171 *p = '\0';
5172
5173 tab->handlers[tmode][fmode].libfunc
5174 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5175 p - libfunc_name));
5176 }
5177 }
5178
5179 /* Initialize the libfunc fields of an entire group of entries of an
5180 intra-mode-class conversion optab. The string formation rules are
5181 similar to the ones for init_libfunc, above. WIDENING says whether
5182 the optab goes from narrow to wide modes or vice versa. These functions
5183 have two mode names _and_ an operand count. */
5184 static void
5185 init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5186 enum mode_class class, bool widening)
5187 {
5188 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5189 size_t opname_len = strlen (opname);
5190 size_t max_mname_len = 0;
5191
5192 enum machine_mode nmode, wmode;
5193 const char *nname, *wname;
5194 const char *q;
5195 char *libfunc_name, *suffix;
5196 char *p;
5197
5198 for (nmode = first_mode; nmode != VOIDmode;
5199 nmode = GET_MODE_WIDER_MODE (nmode))
5200 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5201
5202 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5203 libfunc_name[0] = '_';
5204 libfunc_name[1] = '_';
5205 memcpy (&libfunc_name[2], opname, opname_len);
5206 suffix = libfunc_name + opname_len + 2;
5207
5208 for (nmode = first_mode; nmode != VOIDmode;
5209 nmode = GET_MODE_WIDER_MODE (nmode))
5210 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5211 wmode = GET_MODE_WIDER_MODE (wmode))
5212 {
5213 nname = GET_MODE_NAME (nmode);
5214 wname = GET_MODE_NAME (wmode);
5215
5216 p = suffix;
5217 for (q = widening ? nname : wname; *q; p++, q++)
5218 *p = TOLOWER (*q);
5219 for (q = widening ? wname : nname; *q; p++, q++)
5220 *p = TOLOWER (*q);
5221
5222 *p++ = '2';
5223 *p = '\0';
5224
5225 tab->handlers[widening ? wmode : nmode]
5226 [widening ? nmode : wmode].libfunc
5227 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5228 p - libfunc_name));
5229 }
5230 }
5231
5232
5233 rtx
5234 init_one_libfunc (const char *name)
5235 {
5236 rtx symbol;
5237
5238 /* Create a FUNCTION_DECL that can be passed to
5239 targetm.encode_section_info. */
5240 /* ??? We don't have any type information except for this is
5241 a function. Pretend this is "int foo()". */
5242 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5243 build_function_type (integer_type_node, NULL_TREE));
5244 DECL_ARTIFICIAL (decl) = 1;
5245 DECL_EXTERNAL (decl) = 1;
5246 TREE_PUBLIC (decl) = 1;
5247
5248 symbol = XEXP (DECL_RTL (decl), 0);
5249
5250 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5251 are the flags assigned by targetm.encode_section_info. */
5252 SYMBOL_REF_DECL (symbol) = 0;
5253
5254 return symbol;
5255 }
5256
5257 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5258 MODE to NAME, which should be either 0 or a string constant. */
5259 void
5260 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5261 {
5262 if (name)
5263 optable->handlers[mode].libfunc = init_one_libfunc (name);
5264 else
5265 optable->handlers[mode].libfunc = 0;
5266 }
5267
5268 /* Call this to reset the function entry for one conversion optab
5269 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5270 either 0 or a string constant. */
5271 void
5272 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5273 enum machine_mode fmode, const char *name)
5274 {
5275 if (name)
5276 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5277 else
5278 optable->handlers[tmode][fmode].libfunc = 0;
5279 }
5280
5281 /* Call this once to initialize the contents of the optabs
5282 appropriately for the current target machine. */
5283
5284 void
5285 init_optabs (void)
5286 {
5287 unsigned int i;
5288
5289 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5290
5291 for (i = 0; i < NUM_RTX_CODE; i++)
5292 setcc_gen_code[i] = CODE_FOR_nothing;
5293
5294 #ifdef HAVE_conditional_move
5295 for (i = 0; i < NUM_MACHINE_MODES; i++)
5296 movcc_gen_code[i] = CODE_FOR_nothing;
5297 #endif
5298
5299 add_optab = init_optab (PLUS);
5300 addv_optab = init_optabv (PLUS);
5301 sub_optab = init_optab (MINUS);
5302 subv_optab = init_optabv (MINUS);
5303 smul_optab = init_optab (MULT);
5304 smulv_optab = init_optabv (MULT);
5305 smul_highpart_optab = init_optab (UNKNOWN);
5306 umul_highpart_optab = init_optab (UNKNOWN);
5307 smul_widen_optab = init_optab (UNKNOWN);
5308 umul_widen_optab = init_optab (UNKNOWN);
5309 sdiv_optab = init_optab (DIV);
5310 sdivv_optab = init_optabv (DIV);
5311 sdivmod_optab = init_optab (UNKNOWN);
5312 udiv_optab = init_optab (UDIV);
5313 udivmod_optab = init_optab (UNKNOWN);
5314 smod_optab = init_optab (MOD);
5315 umod_optab = init_optab (UMOD);
5316 fmod_optab = init_optab (UNKNOWN);
5317 drem_optab = init_optab (UNKNOWN);
5318 ftrunc_optab = init_optab (UNKNOWN);
5319 and_optab = init_optab (AND);
5320 ior_optab = init_optab (IOR);
5321 xor_optab = init_optab (XOR);
5322 ashl_optab = init_optab (ASHIFT);
5323 ashr_optab = init_optab (ASHIFTRT);
5324 lshr_optab = init_optab (LSHIFTRT);
5325 rotl_optab = init_optab (ROTATE);
5326 rotr_optab = init_optab (ROTATERT);
5327 smin_optab = init_optab (SMIN);
5328 smax_optab = init_optab (SMAX);
5329 umin_optab = init_optab (UMIN);
5330 umax_optab = init_optab (UMAX);
5331 pow_optab = init_optab (UNKNOWN);
5332 atan2_optab = init_optab (UNKNOWN);
5333
5334 /* These three have codes assigned exclusively for the sake of
5335 have_insn_for. */
5336 mov_optab = init_optab (SET);
5337 movstrict_optab = init_optab (STRICT_LOW_PART);
5338 cmp_optab = init_optab (COMPARE);
5339
5340 ucmp_optab = init_optab (UNKNOWN);
5341 tst_optab = init_optab (UNKNOWN);
5342
5343 eq_optab = init_optab (EQ);
5344 ne_optab = init_optab (NE);
5345 gt_optab = init_optab (GT);
5346 ge_optab = init_optab (GE);
5347 lt_optab = init_optab (LT);
5348 le_optab = init_optab (LE);
5349 unord_optab = init_optab (UNORDERED);
5350
5351 neg_optab = init_optab (NEG);
5352 negv_optab = init_optabv (NEG);
5353 abs_optab = init_optab (ABS);
5354 absv_optab = init_optabv (ABS);
5355 addcc_optab = init_optab (UNKNOWN);
5356 one_cmpl_optab = init_optab (NOT);
5357 ffs_optab = init_optab (FFS);
5358 clz_optab = init_optab (CLZ);
5359 ctz_optab = init_optab (CTZ);
5360 popcount_optab = init_optab (POPCOUNT);
5361 parity_optab = init_optab (PARITY);
5362 sqrt_optab = init_optab (SQRT);
5363 floor_optab = init_optab (UNKNOWN);
5364 ceil_optab = init_optab (UNKNOWN);
5365 round_optab = init_optab (UNKNOWN);
5366 btrunc_optab = init_optab (UNKNOWN);
5367 nearbyint_optab = init_optab (UNKNOWN);
5368 sincos_optab = init_optab (UNKNOWN);
5369 sin_optab = init_optab (UNKNOWN);
5370 asin_optab = init_optab (UNKNOWN);
5371 cos_optab = init_optab (UNKNOWN);
5372 acos_optab = init_optab (UNKNOWN);
5373 exp_optab = init_optab (UNKNOWN);
5374 exp10_optab = init_optab (UNKNOWN);
5375 exp2_optab = init_optab (UNKNOWN);
5376 expm1_optab = init_optab (UNKNOWN);
5377 logb_optab = init_optab (UNKNOWN);
5378 ilogb_optab = init_optab (UNKNOWN);
5379 log_optab = init_optab (UNKNOWN);
5380 log10_optab = init_optab (UNKNOWN);
5381 log2_optab = init_optab (UNKNOWN);
5382 log1p_optab = init_optab (UNKNOWN);
5383 tan_optab = init_optab (UNKNOWN);
5384 atan_optab = init_optab (UNKNOWN);
5385 strlen_optab = init_optab (UNKNOWN);
5386 cbranch_optab = init_optab (UNKNOWN);
5387 cmov_optab = init_optab (UNKNOWN);
5388 cstore_optab = init_optab (UNKNOWN);
5389 push_optab = init_optab (UNKNOWN);
5390
5391 vec_extract_optab = init_optab (UNKNOWN);
5392 vec_set_optab = init_optab (UNKNOWN);
5393 vec_init_optab = init_optab (UNKNOWN);
5394 /* Conversions. */
5395 sext_optab = init_convert_optab (SIGN_EXTEND);
5396 zext_optab = init_convert_optab (ZERO_EXTEND);
5397 trunc_optab = init_convert_optab (TRUNCATE);
5398 sfix_optab = init_convert_optab (FIX);
5399 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5400 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5401 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5402 sfloat_optab = init_convert_optab (FLOAT);
5403 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5404
5405 for (i = 0; i < NUM_MACHINE_MODES; i++)
5406 {
5407 movmem_optab[i] = CODE_FOR_nothing;
5408 clrmem_optab[i] = CODE_FOR_nothing;
5409 cmpstr_optab[i] = CODE_FOR_nothing;
5410 cmpmem_optab[i] = CODE_FOR_nothing;
5411
5412 #ifdef HAVE_SECONDARY_RELOADS
5413 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5414 #endif
5415 }
5416
5417 /* Fill in the optabs with the insns we support. */
5418 init_all_optabs ();
5419
5420 /* Initialize the optabs with the names of the library functions. */
5421 init_integral_libfuncs (add_optab, "add", '3');
5422 init_floating_libfuncs (add_optab, "add", '3');
5423 init_integral_libfuncs (addv_optab, "addv", '3');
5424 init_floating_libfuncs (addv_optab, "add", '3');
5425 init_integral_libfuncs (sub_optab, "sub", '3');
5426 init_floating_libfuncs (sub_optab, "sub", '3');
5427 init_integral_libfuncs (subv_optab, "subv", '3');
5428 init_floating_libfuncs (subv_optab, "sub", '3');
5429 init_integral_libfuncs (smul_optab, "mul", '3');
5430 init_floating_libfuncs (smul_optab, "mul", '3');
5431 init_integral_libfuncs (smulv_optab, "mulv", '3');
5432 init_floating_libfuncs (smulv_optab, "mul", '3');
5433 init_integral_libfuncs (sdiv_optab, "div", '3');
5434 init_floating_libfuncs (sdiv_optab, "div", '3');
5435 init_integral_libfuncs (sdivv_optab, "divv", '3');
5436 init_integral_libfuncs (udiv_optab, "udiv", '3');
5437 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5438 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5439 init_integral_libfuncs (smod_optab, "mod", '3');
5440 init_integral_libfuncs (umod_optab, "umod", '3');
5441 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5442 init_integral_libfuncs (and_optab, "and", '3');
5443 init_integral_libfuncs (ior_optab, "ior", '3');
5444 init_integral_libfuncs (xor_optab, "xor", '3');
5445 init_integral_libfuncs (ashl_optab, "ashl", '3');
5446 init_integral_libfuncs (ashr_optab, "ashr", '3');
5447 init_integral_libfuncs (lshr_optab, "lshr", '3');
5448 init_integral_libfuncs (smin_optab, "min", '3');
5449 init_floating_libfuncs (smin_optab, "min", '3');
5450 init_integral_libfuncs (smax_optab, "max", '3');
5451 init_floating_libfuncs (smax_optab, "max", '3');
5452 init_integral_libfuncs (umin_optab, "umin", '3');
5453 init_integral_libfuncs (umax_optab, "umax", '3');
5454 init_integral_libfuncs (neg_optab, "neg", '2');
5455 init_floating_libfuncs (neg_optab, "neg", '2');
5456 init_integral_libfuncs (negv_optab, "negv", '2');
5457 init_floating_libfuncs (negv_optab, "neg", '2');
5458 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5459 init_integral_libfuncs (ffs_optab, "ffs", '2');
5460 init_integral_libfuncs (clz_optab, "clz", '2');
5461 init_integral_libfuncs (ctz_optab, "ctz", '2');
5462 init_integral_libfuncs (popcount_optab, "popcount", '2');
5463 init_integral_libfuncs (parity_optab, "parity", '2');
5464
5465 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5466 init_integral_libfuncs (cmp_optab, "cmp", '2');
5467 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5468 init_floating_libfuncs (cmp_optab, "cmp", '2');
5469
5470 /* EQ etc are floating point only. */
5471 init_floating_libfuncs (eq_optab, "eq", '2');
5472 init_floating_libfuncs (ne_optab, "ne", '2');
5473 init_floating_libfuncs (gt_optab, "gt", '2');
5474 init_floating_libfuncs (ge_optab, "ge", '2');
5475 init_floating_libfuncs (lt_optab, "lt", '2');
5476 init_floating_libfuncs (le_optab, "le", '2');
5477 init_floating_libfuncs (unord_optab, "unord", '2');
5478
5479 /* Conversions. */
5480 init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT);
5481 init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT);
5482 init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT);
5483
5484 /* sext_optab is also used for FLOAT_EXTEND. */
5485 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5486 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
5487
5488 /* Use cabs for double complex abs, since systems generally have cabs.
5489 Don't define any libcall for float complex, so that cabs will be used. */
5490 if (complex_double_type_node)
5491 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5492 = init_one_libfunc ("cabs");
5493
5494 /* The ffs function operates on `int'. */
5495 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5496 = init_one_libfunc ("ffs");
5497
5498 abort_libfunc = init_one_libfunc ("abort");
5499 memcpy_libfunc = init_one_libfunc ("memcpy");
5500 memmove_libfunc = init_one_libfunc ("memmove");
5501 memcmp_libfunc = init_one_libfunc ("memcmp");
5502 memset_libfunc = init_one_libfunc ("memset");
5503 setbits_libfunc = init_one_libfunc ("__setbits");
5504
5505 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5506 ? "_Unwind_SjLj_Resume"
5507 : "_Unwind_Resume");
5508 #ifndef DONT_USE_BUILTIN_SETJMP
5509 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5510 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5511 #else
5512 setjmp_libfunc = init_one_libfunc ("setjmp");
5513 longjmp_libfunc = init_one_libfunc ("longjmp");
5514 #endif
5515 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5516 unwind_sjlj_unregister_libfunc
5517 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5518
5519 /* For function entry/exit instrumentation. */
5520 profile_function_entry_libfunc
5521 = init_one_libfunc ("__cyg_profile_func_enter");
5522 profile_function_exit_libfunc
5523 = init_one_libfunc ("__cyg_profile_func_exit");
5524
5525 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5526
5527 if (HAVE_conditional_trap)
5528 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5529
5530 /* Allow the target to add more libcalls or rename some, etc. */
5531 targetm.init_libfuncs ();
5532 }
5533 \f
5534 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5535 CODE. Return 0 on failure. */
5536
5537 rtx
5538 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5539 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
5540 {
5541 enum machine_mode mode = GET_MODE (op1);
5542 enum insn_code icode;
5543 rtx insn;
5544
5545 if (!HAVE_conditional_trap)
5546 return 0;
5547
5548 if (mode == VOIDmode)
5549 return 0;
5550
5551 icode = cmp_optab->handlers[(int) mode].insn_code;
5552 if (icode == CODE_FOR_nothing)
5553 return 0;
5554
5555 start_sequence ();
5556 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5557 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5558 if (!op1 || !op2)
5559 {
5560 end_sequence ();
5561 return 0;
5562 }
5563 emit_insn (GEN_FCN (icode) (op1, op2));
5564
5565 PUT_CODE (trap_rtx, code);
5566 insn = gen_conditional_trap (trap_rtx, tcode);
5567 if (insn)
5568 {
5569 emit_insn (insn);
5570 insn = get_insns ();
5571 }
5572 end_sequence ();
5573
5574 return insn;
5575 }
5576
5577 #include "gt-optabs.h"