avr.c: Move definition of TARGET macros to end of file.
[gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "except.h"
40 #include "intl.h"
41 #include "obstack.h"
42 #include "hashtab.h"
43 #include "params.h"
44 #include "target.h"
45 #include "timevar.h"
46 #include "tree-pass.h"
47 #include "dbgcnt.h"
48
49 /* The following code implements gcse after reload, the purpose of this
50 pass is to cleanup redundant loads generated by reload and other
51 optimizations that come after gcse. It searches for simple inter-block
52 redundancies and tries to eliminate them by adding moves and loads
53 in cold places.
54
55 Perform partially redundant load elimination, try to eliminate redundant
56 loads created by the reload pass. We try to look for full or partial
57 redundant loads fed by one or more loads/stores in predecessor BBs,
58 and try adding loads to make them fully redundant. We also check if
59 it's worth adding loads to be able to delete the redundant load.
60
61 Algorithm:
62 1. Build available expressions hash table:
63 For each load/store instruction, if the loaded/stored memory didn't
64 change until the end of the basic block add this memory expression to
65 the hash table.
66 2. Perform Redundancy elimination:
67 For each load instruction do the following:
68 perform partial redundancy elimination, check if it's worth adding
69 loads to make the load fully redundant. If so add loads and
70 register copies and delete the load.
71 3. Delete instructions made redundant in step 2.
72
73 Future enhancement:
74 If the loaded register is used/defined between load and some store,
75 look for some other free register between load and all its stores,
76 and replace the load with a copy from this register to the loaded
77 register.
78 */
79 \f
80
81 /* Keep statistics of this pass. */
82 static struct
83 {
84 int moves_inserted;
85 int copies_inserted;
86 int insns_deleted;
87 } stats;
88
89 /* We need to keep a hash table of expressions. The table entries are of
90 type 'struct expr', and for each expression there is a single linked
91 list of occurrences. */
92
93 /* The table itself. */
94 static htab_t expr_table;
95
96 /* Expression elements in the hash table. */
97 struct expr
98 {
99 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
100 rtx expr;
101
102 /* The same hash for this entry. */
103 hashval_t hash;
104
105 /* List of available occurrence in basic blocks in the function. */
106 struct occr *avail_occr;
107 };
108
109 static struct obstack expr_obstack;
110
111 /* Occurrence of an expression.
112 There is at most one occurrence per basic block. If a pattern appears
113 more than once, the last appearance is used. */
114
115 struct occr
116 {
117 /* Next occurrence of this expression. */
118 struct occr *next;
119 /* The insn that computes the expression. */
120 rtx insn;
121 /* Nonzero if this [anticipatable] occurrence has been deleted. */
122 char deleted_p;
123 };
124
125 static struct obstack occr_obstack;
126
127 /* The following structure holds the information about the occurrences of
128 the redundant instructions. */
129 struct unoccr
130 {
131 struct unoccr *next;
132 edge pred;
133 rtx insn;
134 };
135
136 static struct obstack unoccr_obstack;
137
138 /* Array where each element is the CUID if the insn that last set the hard
139 register with the number of the element, since the start of the current
140 basic block.
141
142 This array is used during the building of the hash table (step 1) to
143 determine if a reg is killed before the end of a basic block.
144
145 It is also used when eliminating partial redundancies (step 2) to see
146 if a reg was modified since the start of a basic block. */
147 static int *reg_avail_info;
148
149 /* A list of insns that may modify memory within the current basic block. */
150 struct modifies_mem
151 {
152 rtx insn;
153 struct modifies_mem *next;
154 };
155 static struct modifies_mem *modifies_mem_list;
156
157 /* The modifies_mem structs also go on an obstack, only this obstack is
158 freed each time after completing the analysis or transformations on
159 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
160 object on the obstack to keep track of the bottom of the obstack. */
161 static struct obstack modifies_mem_obstack;
162 static struct modifies_mem *modifies_mem_obstack_bottom;
163
164 /* Mapping of insn UIDs to CUIDs.
165 CUIDs are like UIDs except they increase monotonically in each basic
166 block, have no gaps, and only apply to real insns. */
167 static int *uid_cuid;
168 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
169 \f
170
171 /* Helpers for memory allocation/freeing. */
172 static void alloc_mem (void);
173 static void free_mem (void);
174
175 /* Support for hash table construction and transformations. */
176 static bool oprs_unchanged_p (rtx, rtx, bool);
177 static void record_last_reg_set_info (rtx, rtx);
178 static void record_last_reg_set_info_regno (rtx, int);
179 static void record_last_mem_set_info (rtx);
180 static void record_last_set_info (rtx, const_rtx, void *);
181 static void record_opr_changes (rtx);
182
183 static void find_mem_conflicts (rtx, const_rtx, void *);
184 static int load_killed_in_block_p (int, rtx, bool);
185 static void reset_opr_set_tables (void);
186
187 /* Hash table support. */
188 static hashval_t hash_expr (rtx, int *);
189 static hashval_t hash_expr_for_htab (const void *);
190 static int expr_equiv_p (const void *, const void *);
191 static void insert_expr_in_table (rtx, rtx);
192 static struct expr *lookup_expr_in_table (rtx);
193 static int dump_hash_table_entry (void **, void *);
194 static void dump_hash_table (FILE *);
195
196 /* Helpers for eliminate_partially_redundant_load. */
197 static bool reg_killed_on_edge (rtx, edge);
198 static bool reg_used_on_edge (rtx, edge);
199
200 static rtx get_avail_load_store_reg (rtx);
201
202 static bool bb_has_well_behaved_predecessors (basic_block);
203 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
204 static void hash_scan_set (rtx);
205 static void compute_hash_table (void);
206
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block,
209 rtx,
210 struct expr *);
211 static void eliminate_partially_redundant_loads (void);
212 \f
213
214 /* Allocate memory for the CUID mapping array and register/memory
215 tracking tables. */
216
217 static void
218 alloc_mem (void)
219 {
220 int i;
221 basic_block bb;
222 rtx insn;
223
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
226 i = 1;
227 FOR_EACH_BB (bb)
228 FOR_BB_INSNS (bb, insn)
229 {
230 if (INSN_P (insn))
231 uid_cuid[INSN_UID (insn)] = i++;
232 else
233 uid_cuid[INSN_UID (insn)] = i;
234 }
235
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table = htab_create (MAX (i / 4, 13),
241 hash_expr_for_htab, expr_equiv_p, NULL);
242
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack);
246 gcc_obstack_init (&occr_obstack);
247 gcc_obstack_init (&unoccr_obstack);
248 gcc_obstack_init (&modifies_mem_obstack);
249
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
253
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom =
257 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
258 sizeof (struct modifies_mem));
259 }
260
261 /* Free memory allocated by alloc_mem. */
262
263 static void
264 free_mem (void)
265 {
266 free (uid_cuid);
267
268 htab_delete (expr_table);
269
270 obstack_free (&expr_obstack, NULL);
271 obstack_free (&occr_obstack, NULL);
272 obstack_free (&unoccr_obstack, NULL);
273 obstack_free (&modifies_mem_obstack, NULL);
274
275 free (reg_avail_info);
276 }
277 \f
278
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
282 table. */
283
284 static hashval_t
285 hash_expr (rtx x, int *do_not_record_p)
286 {
287 *do_not_record_p = 0;
288 return hash_rtx (x, GET_MODE (x), do_not_record_p,
289 NULL, /*have_reg_qty=*/false);
290 }
291
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
295
296 static hashval_t
297 hash_expr_for_htab (const void *expp)
298 {
299 const struct expr *const exp = (const struct expr *) expp;
300 return exp->hash;
301 }
302
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
305
306 static int
307 expr_equiv_p (const void *exp1p, const void *exp2p)
308 {
309 const struct expr *const exp1 = (const struct expr *) exp1p;
310 const struct expr *const exp2 = (const struct expr *) exp2p;
311 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
312
313 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
314 return equiv_p;
315 }
316 \f
317
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
321
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
324 {
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
329
330 hash = hash_expr (x, &do_not_record_p);
331
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
337
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
348
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
351
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
356 {
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
361 }
362
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr
366 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
367 {
368 /* If an occurrence isn't found, save a pointer to the end of
369 the list. */
370 last_occr = avail_occr;
371 avail_occr = avail_occr->next;
372 }
373
374 if (avail_occr)
375 /* Found another instance of the expression in the same basic block.
376 Prefer this occurrence to the currently recorded one. We want
377 the last one in the block and the block is scanned from start
378 to end. */
379 avail_occr->insn = insn;
380 else
381 {
382 /* First occurrence of this expression in this basic block. */
383 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
384 sizeof (struct occr));
385
386 /* First occurrence of this expression in any block? */
387 if (cur_expr->avail_occr == NULL)
388 cur_expr->avail_occr = avail_occr;
389 else
390 last_occr->next = avail_occr;
391
392 avail_occr->insn = insn;
393 avail_occr->next = NULL;
394 avail_occr->deleted_p = 0;
395 }
396 }
397 \f
398
399 /* Lookup pattern PAT in the expression hash table.
400 The result is a pointer to the table entry, or NULL if not found. */
401
402 static struct expr *
403 lookup_expr_in_table (rtx pat)
404 {
405 int do_not_record_p;
406 struct expr **slot, *tmp_expr;
407 hashval_t hash = hash_expr (pat, &do_not_record_p);
408
409 if (do_not_record_p)
410 return NULL;
411
412 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
413 sizeof (struct expr));
414 tmp_expr->expr = pat;
415 tmp_expr->hash = hash;
416 tmp_expr->avail_occr = NULL;
417
418 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
419 hash, INSERT);
420 obstack_free (&expr_obstack, tmp_expr);
421
422 if (!slot)
423 return NULL;
424 else
425 return (*slot);
426 }
427 \f
428
429 /* Dump all expressions and occurrences that are currently in the
430 expression hash table to FILE. */
431
432 /* This helper is called via htab_traverse. */
433 static int
434 dump_hash_table_entry (void **slot, void *filep)
435 {
436 struct expr *expr = (struct expr *) *slot;
437 FILE *file = (FILE *) filep;
438 struct occr *occr;
439
440 fprintf (file, "expr: ");
441 print_rtl (file, expr->expr);
442 fprintf (file,"\nhashcode: %u\n", expr->hash);
443 fprintf (file,"list of occurrences:\n");
444 occr = expr->avail_occr;
445 while (occr)
446 {
447 rtx insn = occr->insn;
448 print_rtl_single (file, insn);
449 fprintf (file, "\n");
450 occr = occr->next;
451 }
452 fprintf (file, "\n");
453 return 1;
454 }
455
456 static void
457 dump_hash_table (FILE *file)
458 {
459 fprintf (file, "\n\nexpression hash table\n");
460 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
461 (long) htab_size (expr_table),
462 (long) htab_elements (expr_table),
463 htab_collisions (expr_table));
464 if (htab_elements (expr_table) > 0)
465 {
466 fprintf (file, "\n\ntable entries:\n");
467 htab_traverse (expr_table, dump_hash_table_entry, file);
468 }
469 fprintf (file, "\n");
470 }
471 \f
472 /* Return true if register X is recorded as being set by an instruction
473 whose CUID is greater than the one given. */
474
475 static bool
476 reg_changed_after_insn_p (rtx x, int cuid)
477 {
478 unsigned int regno, end_regno;
479
480 regno = REGNO (x);
481 end_regno = END_HARD_REGNO (x);
482 do
483 if (reg_avail_info[regno] > cuid)
484 return true;
485 while (++regno < end_regno);
486 return false;
487 }
488
489 /* Return nonzero if the operands of expression X are unchanged
490 1) from the start of INSN's basic block up to but not including INSN
491 if AFTER_INSN is false, or
492 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
493
494 static bool
495 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
496 {
497 int i, j;
498 enum rtx_code code;
499 const char *fmt;
500
501 if (x == 0)
502 return 1;
503
504 code = GET_CODE (x);
505 switch (code)
506 {
507 case REG:
508 /* We are called after register allocation. */
509 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
510 if (after_insn)
511 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
512 else
513 return !reg_changed_after_insn_p (x, 0);
514
515 case MEM:
516 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
517 return 0;
518 else
519 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
520
521 case PC:
522 case CC0: /*FIXME*/
523 case CONST:
524 case CONST_INT:
525 case CONST_DOUBLE:
526 case CONST_FIXED:
527 case CONST_VECTOR:
528 case SYMBOL_REF:
529 case LABEL_REF:
530 case ADDR_VEC:
531 case ADDR_DIFF_VEC:
532 return 1;
533
534 case PRE_DEC:
535 case PRE_INC:
536 case POST_DEC:
537 case POST_INC:
538 case PRE_MODIFY:
539 case POST_MODIFY:
540 if (after_insn)
541 return 0;
542 break;
543
544 default:
545 break;
546 }
547
548 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
549 {
550 if (fmt[i] == 'e')
551 {
552 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
553 return 0;
554 }
555 else if (fmt[i] == 'E')
556 for (j = 0; j < XVECLEN (x, i); j++)
557 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
558 return 0;
559 }
560
561 return 1;
562 }
563 \f
564
565 /* Used for communication between find_mem_conflicts and
566 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
567 conflict between two memory references.
568 This is a bit of a hack to work around the limitations of note_stores. */
569 static int mems_conflict_p;
570
571 /* DEST is the output of an instruction. If it is a memory reference, and
572 possibly conflicts with the load found in DATA, then set mems_conflict_p
573 to a nonzero value. */
574
575 static void
576 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
577 void *data)
578 {
579 rtx mem_op = (rtx) data;
580
581 while (GET_CODE (dest) == SUBREG
582 || GET_CODE (dest) == ZERO_EXTRACT
583 || GET_CODE (dest) == STRICT_LOW_PART)
584 dest = XEXP (dest, 0);
585
586 /* If DEST is not a MEM, then it will not conflict with the load. Note
587 that function calls are assumed to clobber memory, but are handled
588 elsewhere. */
589 if (! MEM_P (dest))
590 return;
591
592 if (true_dependence (dest, GET_MODE (dest), mem_op))
593 mems_conflict_p = 1;
594 }
595 \f
596
597 /* Return nonzero if the expression in X (a memory reference) is killed
598 in the current basic block before (if AFTER_INSN is false) or after
599 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
600
601 This function assumes that the modifies_mem table is flushed when
602 the hash table construction or redundancy elimination phases start
603 processing a new basic block. */
604
605 static int
606 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
607 {
608 struct modifies_mem *list_entry = modifies_mem_list;
609
610 while (list_entry)
611 {
612 rtx setter = list_entry->insn;
613
614 /* Ignore entries in the list that do not apply. */
615 if ((after_insn
616 && INSN_CUID (setter) < uid_limit)
617 || (! after_insn
618 && INSN_CUID (setter) > uid_limit))
619 {
620 list_entry = list_entry->next;
621 continue;
622 }
623
624 /* If SETTER is a call everything is clobbered. Note that calls
625 to pure functions are never put on the list, so we need not
626 worry about them. */
627 if (CALL_P (setter))
628 return 1;
629
630 /* SETTER must be an insn of some kind that sets memory. Call
631 note_stores to examine each hunk of memory that is modified.
632 It will set mems_conflict_p to nonzero if there may be a
633 conflict between X and SETTER. */
634 mems_conflict_p = 0;
635 note_stores (PATTERN (setter), find_mem_conflicts, x);
636 if (mems_conflict_p)
637 return 1;
638
639 list_entry = list_entry->next;
640 }
641 return 0;
642 }
643 \f
644
645 /* Record register first/last/block set information for REGNO in INSN. */
646
647 static inline void
648 record_last_reg_set_info (rtx insn, rtx reg)
649 {
650 unsigned int regno, end_regno;
651
652 regno = REGNO (reg);
653 end_regno = END_HARD_REGNO (reg);
654 do
655 reg_avail_info[regno] = INSN_CUID (insn);
656 while (++regno < end_regno);
657 }
658
659 static inline void
660 record_last_reg_set_info_regno (rtx insn, int regno)
661 {
662 reg_avail_info[regno] = INSN_CUID (insn);
663 }
664
665
666 /* Record memory modification information for INSN. We do not actually care
667 about the memory location(s) that are set, or even how they are set (consider
668 a CALL_INSN). We merely need to record which insns modify memory. */
669
670 static void
671 record_last_mem_set_info (rtx insn)
672 {
673 struct modifies_mem *list_entry;
674
675 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
676 sizeof (struct modifies_mem));
677 list_entry->insn = insn;
678 list_entry->next = modifies_mem_list;
679 modifies_mem_list = list_entry;
680 }
681
682 /* Called from compute_hash_table via note_stores to handle one
683 SET or CLOBBER in an insn. DATA is really the instruction in which
684 the SET is taking place. */
685
686 static void
687 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
688 {
689 rtx last_set_insn = (rtx) data;
690
691 if (GET_CODE (dest) == SUBREG)
692 dest = SUBREG_REG (dest);
693
694 if (REG_P (dest))
695 record_last_reg_set_info (last_set_insn, dest);
696 else if (MEM_P (dest))
697 {
698 /* Ignore pushes, they don't clobber memory. They may still
699 clobber the stack pointer though. Some targets do argument
700 pushes without adding REG_INC notes. See e.g. PR25196,
701 where a pushsi2 on i386 doesn't have REG_INC notes. Note
702 such changes here too. */
703 if (! push_operand (dest, GET_MODE (dest)))
704 record_last_mem_set_info (last_set_insn);
705 else
706 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
707 }
708 }
709
710
711 /* Reset tables used to keep track of what's still available since the
712 start of the block. */
713
714 static void
715 reset_opr_set_tables (void)
716 {
717 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
718 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
719 modifies_mem_list = NULL;
720 }
721 \f
722
723 /* Record things set by INSN.
724 This data is used by oprs_unchanged_p. */
725
726 static void
727 record_opr_changes (rtx insn)
728 {
729 rtx note;
730
731 /* Find all stores and record them. */
732 note_stores (PATTERN (insn), record_last_set_info, insn);
733
734 /* Also record autoincremented REGs for this insn as changed. */
735 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
736 if (REG_NOTE_KIND (note) == REG_INC)
737 record_last_reg_set_info (insn, XEXP (note, 0));
738
739 /* Finally, if this is a call, record all call clobbers. */
740 if (CALL_P (insn))
741 {
742 unsigned int regno;
743 rtx link, x;
744
745 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
746 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
747 record_last_reg_set_info_regno (insn, regno);
748
749 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
750 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
751 {
752 x = XEXP (XEXP (link, 0), 0);
753 if (REG_P (x))
754 {
755 gcc_assert (HARD_REGISTER_P (x));
756 record_last_reg_set_info (insn, x);
757 }
758 }
759
760 if (! RTL_CONST_OR_PURE_CALL_P (insn))
761 record_last_mem_set_info (insn);
762 }
763 }
764 \f
765
766 /* Scan the pattern of INSN and add an entry to the hash TABLE.
767 After reload we are interested in loads/stores only. */
768
769 static void
770 hash_scan_set (rtx insn)
771 {
772 rtx pat = PATTERN (insn);
773 rtx src = SET_SRC (pat);
774 rtx dest = SET_DEST (pat);
775
776 /* We are only interested in loads and stores. */
777 if (! MEM_P (src) && ! MEM_P (dest))
778 return;
779
780 /* Don't mess with jumps and nops. */
781 if (JUMP_P (insn) || set_noop_p (pat))
782 return;
783
784 if (REG_P (dest))
785 {
786 if (/* Don't CSE something if we can't do a reg/reg copy. */
787 can_copy_p (GET_MODE (dest))
788 /* Is SET_SRC something we want to gcse? */
789 && general_operand (src, GET_MODE (src))
790 #ifdef STACK_REGS
791 /* Never consider insns touching the register stack. It may
792 create situations that reg-stack cannot handle (e.g. a stack
793 register live across an abnormal edge). */
794 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
795 #endif
796 /* An expression is not available if its operands are
797 subsequently modified, including this insn. */
798 && oprs_unchanged_p (src, insn, true))
799 {
800 insert_expr_in_table (src, insn);
801 }
802 }
803 else if (REG_P (src))
804 {
805 /* Only record sets of pseudo-regs in the hash table. */
806 if (/* Don't CSE something if we can't do a reg/reg copy. */
807 can_copy_p (GET_MODE (src))
808 /* Is SET_DEST something we want to gcse? */
809 && general_operand (dest, GET_MODE (dest))
810 #ifdef STACK_REGS
811 /* As above for STACK_REGS. */
812 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
813 #endif
814 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
815 /* Check if the memory expression is killed after insn. */
816 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
817 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
818 {
819 insert_expr_in_table (dest, insn);
820 }
821 }
822 }
823 \f
824
825 /* Create hash table of memory expressions available at end of basic
826 blocks. Basically you should think of this hash table as the
827 representation of AVAIL_OUT. This is the set of expressions that
828 is generated in a basic block and not killed before the end of the
829 same basic block. Notice that this is really a local computation. */
830
831 static void
832 compute_hash_table (void)
833 {
834 basic_block bb;
835
836 FOR_EACH_BB (bb)
837 {
838 rtx insn;
839
840 /* First pass over the instructions records information used to
841 determine when registers and memory are last set.
842 Since we compute a "local" AVAIL_OUT, reset the tables that
843 help us keep track of what has been modified since the start
844 of the block. */
845 reset_opr_set_tables ();
846 FOR_BB_INSNS (bb, insn)
847 {
848 if (INSN_P (insn))
849 record_opr_changes (insn);
850 }
851
852 /* The next pass actually builds the hash table. */
853 FOR_BB_INSNS (bb, insn)
854 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
855 hash_scan_set (insn);
856 }
857 }
858 \f
859
860 /* Check if register REG is killed in any insn waiting to be inserted on
861 edge E. This function is required to check that our data flow analysis
862 is still valid prior to commit_edge_insertions. */
863
864 static bool
865 reg_killed_on_edge (rtx reg, edge e)
866 {
867 rtx insn;
868
869 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
870 if (INSN_P (insn) && reg_set_p (reg, insn))
871 return true;
872
873 return false;
874 }
875
876 /* Similar to above - check if register REG is used in any insn waiting
877 to be inserted on edge E.
878 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
879 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
880
881 static bool
882 reg_used_on_edge (rtx reg, edge e)
883 {
884 rtx insn;
885
886 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
887 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
888 return true;
889
890 return false;
891 }
892 \f
893 /* Return the loaded/stored register of a load/store instruction. */
894
895 static rtx
896 get_avail_load_store_reg (rtx insn)
897 {
898 if (REG_P (SET_DEST (PATTERN (insn))))
899 /* A load. */
900 return SET_DEST(PATTERN(insn));
901 else
902 {
903 /* A store. */
904 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
905 return SET_SRC (PATTERN (insn));
906 }
907 }
908
909 /* Return nonzero if the predecessors of BB are "well behaved". */
910
911 static bool
912 bb_has_well_behaved_predecessors (basic_block bb)
913 {
914 edge pred;
915 edge_iterator ei;
916
917 if (EDGE_COUNT (bb->preds) == 0)
918 return false;
919
920 FOR_EACH_EDGE (pred, ei, bb->preds)
921 {
922 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
923 return false;
924
925 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
926 return false;
927
928 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
929 return false;
930 }
931 return true;
932 }
933
934
935 /* Search for the occurrences of expression in BB. */
936
937 static struct occr*
938 get_bb_avail_insn (basic_block bb, struct occr *occr)
939 {
940 for (; occr != NULL; occr = occr->next)
941 if (BLOCK_FOR_INSN (occr->insn) == bb)
942 return occr;
943 return NULL;
944 }
945
946
947 /* This handles the case where several stores feed a partially redundant
948 load. It checks if the redundancy elimination is possible and if it's
949 worth it.
950
951 Redundancy elimination is possible if,
952 1) None of the operands of an insn have been modified since the start
953 of the current basic block.
954 2) In any predecessor of the current basic block, the same expression
955 is generated.
956
957 See the function body for the heuristics that determine if eliminating
958 a redundancy is also worth doing, assuming it is possible. */
959
960 static void
961 eliminate_partially_redundant_load (basic_block bb, rtx insn,
962 struct expr *expr)
963 {
964 edge pred;
965 rtx avail_insn = NULL_RTX;
966 rtx avail_reg;
967 rtx dest, pat;
968 struct occr *a_occr;
969 struct unoccr *occr, *avail_occrs = NULL;
970 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
971 int npred_ok = 0;
972 gcov_type ok_count = 0; /* Redundant load execution count. */
973 gcov_type critical_count = 0; /* Execution count of critical edges. */
974 edge_iterator ei;
975 bool critical_edge_split = false;
976
977 /* The execution count of the loads to be added to make the
978 load fully redundant. */
979 gcov_type not_ok_count = 0;
980 basic_block pred_bb;
981
982 pat = PATTERN (insn);
983 dest = SET_DEST (pat);
984
985 /* Check that the loaded register is not used, set, or killed from the
986 beginning of the block. */
987 if (reg_changed_after_insn_p (dest, 0)
988 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
989 return;
990
991 /* Check potential for replacing load with copy for predecessors. */
992 FOR_EACH_EDGE (pred, ei, bb->preds)
993 {
994 rtx next_pred_bb_end;
995
996 avail_insn = NULL_RTX;
997 avail_reg = NULL_RTX;
998 pred_bb = pred->src;
999 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1000 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1001 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1002 {
1003 /* Check if the loaded register is not used. */
1004 avail_insn = a_occr->insn;
1005 avail_reg = get_avail_load_store_reg (avail_insn);
1006 gcc_assert (avail_reg);
1007
1008 /* Make sure we can generate a move from register avail_reg to
1009 dest. */
1010 extract_insn (gen_move_insn (copy_rtx (dest),
1011 copy_rtx (avail_reg)));
1012 if (! constrain_operands (1)
1013 || reg_killed_on_edge (avail_reg, pred)
1014 || reg_used_on_edge (dest, pred))
1015 {
1016 avail_insn = NULL;
1017 continue;
1018 }
1019 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1020 /* AVAIL_INSN remains non-null. */
1021 break;
1022 else
1023 avail_insn = NULL;
1024 }
1025
1026 if (EDGE_CRITICAL_P (pred))
1027 critical_count += pred->count;
1028
1029 if (avail_insn != NULL_RTX)
1030 {
1031 npred_ok++;
1032 ok_count += pred->count;
1033 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1034 copy_rtx (avail_reg)))))
1035 {
1036 /* Check if there is going to be a split. */
1037 if (EDGE_CRITICAL_P (pred))
1038 critical_edge_split = true;
1039 }
1040 else /* Its a dead move no need to generate. */
1041 continue;
1042 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1043 sizeof (struct unoccr));
1044 occr->insn = avail_insn;
1045 occr->pred = pred;
1046 occr->next = avail_occrs;
1047 avail_occrs = occr;
1048 if (! rollback_unoccr)
1049 rollback_unoccr = occr;
1050 }
1051 else
1052 {
1053 /* Adding a load on a critical edge will cause a split. */
1054 if (EDGE_CRITICAL_P (pred))
1055 critical_edge_split = true;
1056 not_ok_count += pred->count;
1057 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1058 sizeof (struct unoccr));
1059 unoccr->insn = NULL_RTX;
1060 unoccr->pred = pred;
1061 unoccr->next = unavail_occrs;
1062 unavail_occrs = unoccr;
1063 if (! rollback_unoccr)
1064 rollback_unoccr = unoccr;
1065 }
1066 }
1067
1068 if (/* No load can be replaced by copy. */
1069 npred_ok == 0
1070 /* Prevent exploding the code. */
1071 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1072 /* If we don't have profile information we cannot tell if splitting
1073 a critical edge is profitable or not so don't do it. */
1074 || ((! profile_info || ! flag_branch_probabilities
1075 || targetm.cannot_modify_jumps_p ())
1076 && critical_edge_split))
1077 goto cleanup;
1078
1079 /* Check if it's worth applying the partial redundancy elimination. */
1080 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1081 goto cleanup;
1082 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1083 goto cleanup;
1084
1085 /* Generate moves to the loaded register from where
1086 the memory is available. */
1087 for (occr = avail_occrs; occr; occr = occr->next)
1088 {
1089 avail_insn = occr->insn;
1090 pred = occr->pred;
1091 /* Set avail_reg to be the register having the value of the
1092 memory. */
1093 avail_reg = get_avail_load_store_reg (avail_insn);
1094 gcc_assert (avail_reg);
1095
1096 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1097 copy_rtx (avail_reg)),
1098 pred);
1099 stats.moves_inserted++;
1100
1101 if (dump_file)
1102 fprintf (dump_file,
1103 "generating move from %d to %d on edge from %d to %d\n",
1104 REGNO (avail_reg),
1105 REGNO (dest),
1106 pred->src->index,
1107 pred->dest->index);
1108 }
1109
1110 /* Regenerate loads where the memory is unavailable. */
1111 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1112 {
1113 pred = unoccr->pred;
1114 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1115 stats.copies_inserted++;
1116
1117 if (dump_file)
1118 {
1119 fprintf (dump_file,
1120 "generating on edge from %d to %d a copy of load: ",
1121 pred->src->index,
1122 pred->dest->index);
1123 print_rtl (dump_file, PATTERN (insn));
1124 fprintf (dump_file, "\n");
1125 }
1126 }
1127
1128 /* Delete the insn if it is not available in this block and mark it
1129 for deletion if it is available. If insn is available it may help
1130 discover additional redundancies, so mark it for later deletion. */
1131 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1132 a_occr && (a_occr->insn != insn);
1133 a_occr = get_bb_avail_insn (bb, a_occr->next))
1134 ;
1135
1136 if (!a_occr)
1137 {
1138 stats.insns_deleted++;
1139
1140 if (dump_file)
1141 {
1142 fprintf (dump_file, "deleting insn:\n");
1143 print_rtl_single (dump_file, insn);
1144 fprintf (dump_file, "\n");
1145 }
1146 delete_insn (insn);
1147 }
1148 else
1149 a_occr->deleted_p = 1;
1150
1151 cleanup:
1152 if (rollback_unoccr)
1153 obstack_free (&unoccr_obstack, rollback_unoccr);
1154 }
1155
1156 /* Performing the redundancy elimination as described before. */
1157
1158 static void
1159 eliminate_partially_redundant_loads (void)
1160 {
1161 rtx insn;
1162 basic_block bb;
1163
1164 /* Note we start at block 1. */
1165
1166 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1167 return;
1168
1169 FOR_BB_BETWEEN (bb,
1170 ENTRY_BLOCK_PTR->next_bb->next_bb,
1171 EXIT_BLOCK_PTR,
1172 next_bb)
1173 {
1174 /* Don't try anything on basic blocks with strange predecessors. */
1175 if (! bb_has_well_behaved_predecessors (bb))
1176 continue;
1177
1178 /* Do not try anything on cold basic blocks. */
1179 if (optimize_bb_for_size_p (bb))
1180 continue;
1181
1182 /* Reset the table of things changed since the start of the current
1183 basic block. */
1184 reset_opr_set_tables ();
1185
1186 /* Look at all insns in the current basic block and see if there are
1187 any loads in it that we can record. */
1188 FOR_BB_INSNS (bb, insn)
1189 {
1190 /* Is it a load - of the form (set (reg) (mem))? */
1191 if (NONJUMP_INSN_P (insn)
1192 && GET_CODE (PATTERN (insn)) == SET
1193 && REG_P (SET_DEST (PATTERN (insn)))
1194 && MEM_P (SET_SRC (PATTERN (insn))))
1195 {
1196 rtx pat = PATTERN (insn);
1197 rtx src = SET_SRC (pat);
1198 struct expr *expr;
1199
1200 if (!MEM_VOLATILE_P (src)
1201 && GET_MODE (src) != BLKmode
1202 && general_operand (src, GET_MODE (src))
1203 /* Are the operands unchanged since the start of the
1204 block? */
1205 && oprs_unchanged_p (src, insn, false)
1206 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1207 && !side_effects_p (src)
1208 /* Is the expression recorded? */
1209 && (expr = lookup_expr_in_table (src)) != NULL)
1210 {
1211 /* We now have a load (insn) and an available memory at
1212 its BB start (expr). Try to remove the loads if it is
1213 redundant. */
1214 eliminate_partially_redundant_load (bb, insn, expr);
1215 }
1216 }
1217
1218 /* Keep track of everything modified by this insn, so that we
1219 know what has been modified since the start of the current
1220 basic block. */
1221 if (INSN_P (insn))
1222 record_opr_changes (insn);
1223 }
1224 }
1225
1226 commit_edge_insertions ();
1227 }
1228
1229 /* Go over the expression hash table and delete insns that were
1230 marked for later deletion. */
1231
1232 /* This helper is called via htab_traverse. */
1233 static int
1234 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1235 {
1236 struct expr *expr = (struct expr *) *slot;
1237 struct occr *occr;
1238
1239 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1240 {
1241 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1242 {
1243 delete_insn (occr->insn);
1244 stats.insns_deleted++;
1245
1246 if (dump_file)
1247 {
1248 fprintf (dump_file, "deleting insn:\n");
1249 print_rtl_single (dump_file, occr->insn);
1250 fprintf (dump_file, "\n");
1251 }
1252 }
1253 }
1254
1255 return 1;
1256 }
1257
1258 static void
1259 delete_redundant_insns (void)
1260 {
1261 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1262 if (dump_file)
1263 fprintf (dump_file, "\n");
1264 }
1265
1266 /* Main entry point of the GCSE after reload - clean some redundant loads
1267 due to spilling. */
1268
1269 static void
1270 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1271 {
1272
1273 memset (&stats, 0, sizeof (stats));
1274
1275 /* Allocate memory for this pass.
1276 Also computes and initializes the insns' CUIDs. */
1277 alloc_mem ();
1278
1279 /* We need alias analysis. */
1280 init_alias_analysis ();
1281
1282 compute_hash_table ();
1283
1284 if (dump_file)
1285 dump_hash_table (dump_file);
1286
1287 if (htab_elements (expr_table) > 0)
1288 {
1289 eliminate_partially_redundant_loads ();
1290 delete_redundant_insns ();
1291
1292 if (dump_file)
1293 {
1294 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1295 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1296 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1297 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1298 fprintf (dump_file, "\n\n");
1299 }
1300
1301 statistics_counter_event (cfun, "copies inserted",
1302 stats.copies_inserted);
1303 statistics_counter_event (cfun, "moves inserted",
1304 stats.moves_inserted);
1305 statistics_counter_event (cfun, "insns deleted",
1306 stats.insns_deleted);
1307 }
1308
1309 /* We are finished with alias. */
1310 end_alias_analysis ();
1311
1312 free_mem ();
1313 }
1314
1315 \f
1316 static bool
1317 gate_handle_gcse2 (void)
1318 {
1319 return (optimize > 0 && flag_gcse_after_reload
1320 && optimize_function_for_speed_p (cfun));
1321 }
1322
1323
1324 static unsigned int
1325 rest_of_handle_gcse2 (void)
1326 {
1327 gcse_after_reload_main (get_insns ());
1328 rebuild_jump_labels (get_insns ());
1329 return 0;
1330 }
1331
1332 struct rtl_opt_pass pass_gcse2 =
1333 {
1334 {
1335 RTL_PASS,
1336 "gcse2", /* name */
1337 gate_handle_gcse2, /* gate */
1338 rest_of_handle_gcse2, /* execute */
1339 NULL, /* sub */
1340 NULL, /* next */
1341 0, /* static_pass_number */
1342 TV_GCSE_AFTER_RELOAD, /* tv_id */
1343 0, /* properties_required */
1344 0, /* properties_provided */
1345 0, /* properties_destroyed */
1346 0, /* todo_flags_start */
1347 TODO_verify_rtl_sharing
1348 | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
1349 }
1350 };