real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
46
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
52
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
58
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
70
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
76 */
77 \f
78
79 /* Keep statistics of this pass. */
80 static struct
81 {
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85 } stats;
86
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
90
91 /* The table itself. */
92 static htab_t expr_table;
93
94 /* Expression elements in the hash table. */
95 struct expr
96 {
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
98 rtx expr;
99
100 /* The same hash for this entry. */
101 hashval_t hash;
102
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr *avail_occr;
105 };
106
107 static struct obstack expr_obstack;
108
109 /* Occurrence of an expression.
110 There is at most one occurrence per basic block. If a pattern appears
111 more than once, the last appearance is used. */
112
113 struct occr
114 {
115 /* Next occurrence of this expression. */
116 struct occr *next;
117 /* The insn that computes the expression. */
118 rtx insn;
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
120 char deleted_p;
121 };
122
123 static struct obstack occr_obstack;
124
125 /* The following structure holds the information about the occurrences of
126 the redundant instructions. */
127 struct unoccr
128 {
129 struct unoccr *next;
130 edge pred;
131 rtx insn;
132 };
133
134 static struct obstack unoccr_obstack;
135
136 /* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
138 basic block.
139
140 This array is used during the building of the hash table (step 1) to
141 determine if a reg is killed before the end of a basic block.
142
143 It is also used when eliminating partial redundancies (step 2) to see
144 if a reg was modified since the start of a basic block. */
145 static int *reg_avail_info;
146
147 /* A list of insns that may modify memory within the current basic block. */
148 struct modifies_mem
149 {
150 rtx insn;
151 struct modifies_mem *next;
152 };
153 static struct modifies_mem *modifies_mem_list;
154
155 /* The modifies_mem structs also go on an obstack, only this obstack is
156 freed each time after completing the analysis or transformations on
157 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
158 object on the obstack to keep track of the bottom of the obstack. */
159 static struct obstack modifies_mem_obstack;
160 static struct modifies_mem *modifies_mem_obstack_bottom;
161
162 /* Mapping of insn UIDs to CUIDs.
163 CUIDs are like UIDs except they increase monotonically in each basic
164 block, have no gaps, and only apply to real insns. */
165 static int *uid_cuid;
166 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
167 \f
168
169 /* Helpers for memory allocation/freeing. */
170 static void alloc_mem (void);
171 static void free_mem (void);
172
173 /* Support for hash table construction and transformations. */
174 static bool oprs_unchanged_p (rtx, rtx, bool);
175 static void record_last_reg_set_info (rtx, int);
176 static void record_last_mem_set_info (rtx);
177 static void record_last_set_info (rtx, rtx, void *);
178 static void record_opr_changes (rtx);
179
180 static void find_mem_conflicts (rtx, rtx, void *);
181 static int load_killed_in_block_p (int, rtx, bool);
182 static void reset_opr_set_tables (void);
183
184 /* Hash table support. */
185 static hashval_t hash_expr (rtx, int *);
186 static hashval_t hash_expr_for_htab (const void *);
187 static int expr_equiv_p (const void *, const void *);
188 static void insert_expr_in_table (rtx, rtx);
189 static struct expr *lookup_expr_in_table (rtx);
190 static int dump_hash_table_entry (void **, void *);
191 static void dump_hash_table (FILE *);
192
193 /* Helpers for eliminate_partially_redundant_load. */
194 static bool reg_killed_on_edge (rtx, edge);
195 static bool reg_used_on_edge (rtx, edge);
196
197 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
198 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
199 static rtx get_avail_load_store_reg (rtx);
200
201 static bool bb_has_well_behaved_predecessors (basic_block);
202 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
203 static void hash_scan_set (rtx);
204 static void compute_hash_table (void);
205
206 /* The work horses of this pass. */
207 static void eliminate_partially_redundant_load (basic_block,
208 rtx,
209 struct expr *);
210 static void eliminate_partially_redundant_loads (void);
211 \f
212
213 /* Allocate memory for the CUID mapping array and register/memory
214 tracking tables. */
215
216 static void
217 alloc_mem (void)
218 {
219 int i;
220 basic_block bb;
221 rtx insn;
222
223 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
224 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
225 i = 0;
226 FOR_EACH_BB (bb)
227 FOR_BB_INSNS (bb, insn)
228 {
229 if (INSN_P (insn))
230 uid_cuid[INSN_UID (insn)] = i++;
231 else
232 uid_cuid[INSN_UID (insn)] = i;
233 }
234
235 /* Allocate the available expressions hash table. We don't want to
236 make the hash table too small, but unnecessarily making it too large
237 also doesn't help. The i/4 is a gcse.c relic, and seems like a
238 reasonable choice. */
239 expr_table = htab_create (MAX (i / 4, 13),
240 hash_expr_for_htab, expr_equiv_p, NULL);
241
242 /* We allocate everything on obstacks because we often can roll back
243 the whole obstack to some point. Freeing obstacks is very fast. */
244 gcc_obstack_init (&expr_obstack);
245 gcc_obstack_init (&occr_obstack);
246 gcc_obstack_init (&unoccr_obstack);
247 gcc_obstack_init (&modifies_mem_obstack);
248
249 /* Working array used to track the last set for each register
250 in the current block. */
251 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
252
253 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
254 can roll it back in reset_opr_set_tables. */
255 modifies_mem_obstack_bottom =
256 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
257 sizeof (struct modifies_mem));
258 }
259
260 /* Free memory allocated by alloc_mem. */
261
262 static void
263 free_mem (void)
264 {
265 free (uid_cuid);
266
267 htab_delete (expr_table);
268
269 obstack_free (&expr_obstack, NULL);
270 obstack_free (&occr_obstack, NULL);
271 obstack_free (&unoccr_obstack, NULL);
272 obstack_free (&modifies_mem_obstack, NULL);
273
274 free (reg_avail_info);
275 }
276 \f
277
278 /* Hash expression X.
279 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
280 or if the expression contains something we don't want to insert in the
281 table. */
282
283 static hashval_t
284 hash_expr (rtx x, int *do_not_record_p)
285 {
286 *do_not_record_p = 0;
287 return hash_rtx (x, GET_MODE (x), do_not_record_p,
288 NULL, /*have_reg_qty=*/false);
289 }
290
291 /* Callback for hashtab.
292 Return the hash value for expression EXP. We don't actually hash
293 here, we just return the cached hash value. */
294
295 static hashval_t
296 hash_expr_for_htab (const void *expp)
297 {
298 struct expr *exp = (struct expr *) expp;
299 return exp->hash;
300 }
301
302 /* Callbach for hashtab.
303 Return nonzero if exp1 is equivalent to exp2. */
304
305 static int
306 expr_equiv_p (const void *exp1p, const void *exp2p)
307 {
308 struct expr *exp1 = (struct expr *) exp1p;
309 struct expr *exp2 = (struct expr *) exp2p;
310 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
311 if (equiv_p
312 && exp1->hash != exp2->hash)
313 abort ();
314 return equiv_p;
315 }
316 \f
317
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
321
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
324 {
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
329
330 hash = hash_expr (x, &do_not_record_p);
331
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
337
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
348
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
351
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
356 {
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
361 }
362
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
366 {
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
371 }
372
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
380 {
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
384
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
390
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
394 }
395 }
396 \f
397
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
400
401 static struct expr *
402 lookup_expr_in_table (rtx pat)
403 {
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
407
408 if (do_not_record_p)
409 return NULL;
410
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
416
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
420
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
425 }
426 \f
427
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
430
431 /* This helper is called via htab_traverse. */
432 static int
433 dump_hash_table_entry (void **slot, void *filep)
434 {
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
438
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
442 fprintf (file,"list of occurences:\n");
443 occr = expr->avail_occr;
444 while (occr)
445 {
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
450 }
451 fprintf (file, "\n");
452 return 1;
453 }
454
455 static void
456 dump_hash_table (FILE *file)
457 {
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
464 {
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
467 }
468 fprintf (file, "\n");
469 }
470 \f
471
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
476
477 static bool
478 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
479 {
480 int i, j;
481 enum rtx_code code;
482 const char *fmt;
483
484 if (x == 0)
485 return 1;
486
487 code = GET_CODE (x);
488 switch (code)
489 {
490 case REG:
491 #ifdef ENABLE_CHECKING
492 /* We are called after register allocation. */
493 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
494 abort ();
495 #endif
496 if (after_insn)
497 /* If the last CUID setting the insn is less than the CUID of
498 INSN, then reg X is not changed in or after INSN. */
499 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
500 else
501 /* Reg X is not set before INSN in the current basic block if
502 we have not yet recorded the CUID of an insn that touches
503 the reg. */
504 return reg_avail_info[REGNO (x)] == 0;
505
506 case MEM:
507 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
508 return 0;
509 else
510 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
511
512 case PC:
513 case CC0: /*FIXME*/
514 case CONST:
515 case CONST_INT:
516 case CONST_DOUBLE:
517 case CONST_VECTOR:
518 case SYMBOL_REF:
519 case LABEL_REF:
520 case ADDR_VEC:
521 case ADDR_DIFF_VEC:
522 return 1;
523
524 case PRE_DEC:
525 case PRE_INC:
526 case POST_DEC:
527 case POST_INC:
528 case PRE_MODIFY:
529 case POST_MODIFY:
530 if (after_insn)
531 return 0;
532 break;
533
534 default:
535 break;
536 }
537
538 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
539 {
540 if (fmt[i] == 'e')
541 {
542 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
543 return 0;
544 }
545 else if (fmt[i] == 'E')
546 for (j = 0; j < XVECLEN (x, i); j++)
547 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
548 return 0;
549 }
550
551 return 1;
552 }
553 \f
554
555 /* Used for communication between find_mem_conflicts and
556 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
557 conflict between two memory references.
558 This is a bit of a hack to work around the limitations of note_stores. */
559 static int mems_conflict_p;
560
561 /* DEST is the output of an instruction. If it is a memory reference, and
562 possibly conflicts with the load found in DATA, then set mems_conflict_p
563 to a nonzero value. */
564
565 static void
566 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
567 void *data)
568 {
569 rtx mem_op = (rtx) data;
570
571 while (GET_CODE (dest) == SUBREG
572 || GET_CODE (dest) == ZERO_EXTRACT
573 || GET_CODE (dest) == STRICT_LOW_PART)
574 dest = XEXP (dest, 0);
575
576 /* If DEST is not a MEM, then it will not conflict with the load. Note
577 that function calls are assumed to clobber memory, but are handled
578 elsewhere. */
579 if (! MEM_P (dest))
580 return;
581
582 if (true_dependence (dest, GET_MODE (dest), mem_op,
583 rtx_addr_varies_p))
584 mems_conflict_p = 1;
585 }
586 \f
587
588 /* Return nonzero if the expression in X (a memory reference) is killed
589 in the current basic block before (if AFTER_INSN is false) or after
590 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
591
592 This function assumes that the modifies_mem table is flushed when
593 the hash table construction or redundancy elimination phases start
594 processing a new basic block. */
595
596 static int
597 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
598 {
599 struct modifies_mem *list_entry = modifies_mem_list;
600
601 while (list_entry)
602 {
603 rtx setter = list_entry->insn;
604
605 /* Ignore entries in the list that do not apply. */
606 if ((after_insn
607 && INSN_CUID (setter) < uid_limit)
608 || (! after_insn
609 && INSN_CUID (setter) > uid_limit))
610 {
611 list_entry = list_entry->next;
612 continue;
613 }
614
615 /* If SETTER is a call everything is clobbered. Note that calls
616 to pure functions are never put on the list, so we need not
617 worry about them. */
618 if (CALL_P (setter))
619 return 1;
620
621 /* SETTER must be an insn of some kind that sets memory. Call
622 note_stores to examine each hunk of memory that is modified.
623 It will set mems_conflict_p to nonzero if there may be a
624 conflict between X and SETTER. */
625 mems_conflict_p = 0;
626 note_stores (PATTERN (setter), find_mem_conflicts, x);
627 if (mems_conflict_p)
628 return 1;
629
630 list_entry = list_entry->next;
631 }
632 return 0;
633 }
634 \f
635
636 /* Record register first/last/block set information for REGNO in INSN. */
637
638 static inline void
639 record_last_reg_set_info (rtx insn, int regno)
640 {
641 reg_avail_info[regno] = INSN_CUID (insn);
642 }
643
644
645 /* Record memory modification information for INSN. We do not actually care
646 about the memory location(s) that are set, or even how they are set (consider
647 a CALL_INSN). We merely need to record which insns modify memory. */
648
649 static void
650 record_last_mem_set_info (rtx insn)
651 {
652 struct modifies_mem *list_entry;
653
654 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
655 sizeof (struct modifies_mem));
656 list_entry->insn = insn;
657 list_entry->next = modifies_mem_list;
658 modifies_mem_list = list_entry;
659 }
660
661 /* Called from compute_hash_table via note_stores to handle one
662 SET or CLOBBER in an insn. DATA is really the instruction in which
663 the SET is taking place. */
664
665 static void
666 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
667 {
668 rtx last_set_insn = (rtx) data;
669
670 if (GET_CODE (dest) == SUBREG)
671 dest = SUBREG_REG (dest);
672
673 if (REG_P (dest))
674 record_last_reg_set_info (last_set_insn, REGNO (dest));
675 else if (MEM_P (dest)
676 /* Ignore pushes, they clobber nothing. */
677 && ! push_operand (dest, GET_MODE (dest)))
678 record_last_mem_set_info (last_set_insn);
679 }
680
681
682 /* Reset tables used to keep track of what's still available since the
683 start of the block. */
684
685 static void
686 reset_opr_set_tables (void)
687 {
688 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
689 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
690 modifies_mem_list = NULL;
691 }
692 \f
693
694 /* Record things set by INSN.
695 This data is used by oprs_unchanged_p. */
696
697 static void
698 record_opr_changes (rtx insn)
699 {
700 rtx note;
701
702 /* Find all stores and record them. */
703 note_stores (PATTERN (insn), record_last_set_info, insn);
704
705 /* Also record autoincremented REGs for this insn as changed. */
706 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
707 if (REG_NOTE_KIND (note) == REG_INC)
708 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
709
710 /* Finally, if this is a call, record all call clobbers. */
711 if (CALL_P (insn))
712 {
713 unsigned int regno;
714
715 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
716 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
717 record_last_reg_set_info (insn, regno);
718
719 if (! CONST_OR_PURE_CALL_P (insn))
720 record_last_mem_set_info (insn);
721 }
722 }
723 \f
724
725 /* Scan the pattern of INSN and add an entry to the hash TABLE.
726 After reload we are interested in loads/stores only. */
727
728 static void
729 hash_scan_set (rtx insn)
730 {
731 rtx pat = PATTERN (insn);
732 rtx src = SET_SRC (pat);
733 rtx dest = SET_DEST (pat);
734
735 /* We are only interested in loads and stores. */
736 if (! MEM_P (src) && ! MEM_P (dest))
737 return;
738
739 /* Don't mess with jumps and nops. */
740 if (JUMP_P (insn) || set_noop_p (pat))
741 return;
742
743 #ifdef ENABLE_CHEKCING
744 /* We shouldn't have any EH_REGION notes post reload. */
745 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
746 abort ();
747 #endif
748
749 if (REG_P (dest))
750 {
751 if (/* Don't CSE something if we can't do a reg/reg copy. */
752 can_copy_p (GET_MODE (dest))
753 /* Is SET_SRC something we want to gcse? */
754 && general_operand (src, GET_MODE (src))
755 /* An expression is not available if its operands are
756 subsequently modified, including this insn. */
757 && oprs_unchanged_p (src, insn, true))
758 {
759 insert_expr_in_table (src, insn);
760 }
761 }
762 else if (REG_P (src))
763 {
764 /* Only record sets of pseudo-regs in the hash table. */
765 if (/* Don't CSE something if we can't do a reg/reg copy. */
766 can_copy_p (GET_MODE (src))
767 /* Is SET_DEST something we want to gcse? */
768 && general_operand (dest, GET_MODE (dest))
769 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
770 /* Check if the memory expression is killed after insn. */
771 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
772 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
773 {
774 insert_expr_in_table (dest, insn);
775 }
776 }
777 }
778 \f
779
780 /* Create hash table of memory expressions available at end of basic
781 blocks. Basically you should think of this hash table as the
782 representation of AVAIL_OUT. This is the set of expressions that
783 is generated in a basic block and not killed before the end of the
784 same basic block. Notice that this is really a local computation. */
785
786 static void
787 compute_hash_table (void)
788 {
789 basic_block bb;
790
791 FOR_EACH_BB (bb)
792 {
793 rtx insn;
794
795 /* First pass over the instructions records information used to
796 determine when registers and memory are last set.
797 Since we compute a "local" AVAIL_OUT, reset the tables that
798 help us keep track of what has been modified since the start
799 of the block. */
800 reset_opr_set_tables ();
801 FOR_BB_INSNS (bb, insn)
802 {
803 if (INSN_P (insn))
804 record_opr_changes (insn);
805 }
806
807 /* The next pass actually builds the hash table. */
808 FOR_BB_INSNS (bb, insn)
809 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
810 hash_scan_set (insn);
811 }
812 }
813 \f
814
815 /* Check if register REG is killed in any insn waiting to be inserted on
816 edge E. This function is required to check that our data flow analysis
817 is still valid prior to commit_edge_insertions. */
818
819 static bool
820 reg_killed_on_edge (rtx reg, edge e)
821 {
822 rtx insn;
823
824 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
825 if (INSN_P (insn) && reg_set_p (reg, insn))
826 return true;
827
828 return false;
829 }
830
831 /* Similar to above - check if register REG is used in any insn waiting
832 to be inserted on edge E.
833 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
834 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
835
836 static bool
837 reg_used_on_edge (rtx reg, edge e)
838 {
839 rtx insn;
840
841 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
842 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
843 return true;
844
845 return false;
846 }
847 \f
848
849 /* Return the insn that sets register REG or clobbers it in between
850 FROM_INSN and TO_INSN (exclusive of those two).
851 Just like reg_set_between but for hard registers and not pseudos. */
852
853 static rtx
854 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
855 {
856 rtx insn;
857
858 #ifdef ENABLE_CHECKING
859 /* We are called after register allocation. */
860 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
861 abort ();
862 #endif
863
864 if (from_insn == to_insn)
865 return NULL_RTX;
866
867 for (insn = NEXT_INSN (from_insn);
868 insn != to_insn;
869 insn = NEXT_INSN (insn))
870 if (INSN_P (insn))
871 {
872 if (set_of (reg, insn) != NULL_RTX)
873 return insn;
874 if ((CALL_P (insn)
875 && call_used_regs[REGNO (reg)])
876 || find_reg_fusage (insn, CLOBBER, reg))
877 return insn;
878
879 if (FIND_REG_INC_NOTE (insn, reg))
880 return insn;
881 }
882
883 return NULL_RTX;
884 }
885
886 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
887 (exclusive of those two). Similar to reg_used_between but for hard
888 registers and not pseudos. */
889
890 static rtx
891 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
892 {
893 rtx insn;
894
895 #ifdef ENABLE_CHECKING
896 /* We are called after register allocation. */
897 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
898 abort ();
899 #endif
900
901 if (from_insn == to_insn)
902 return NULL_RTX;
903
904 for (insn = NEXT_INSN (from_insn);
905 insn != to_insn;
906 insn = NEXT_INSN (insn))
907 if (INSN_P (insn))
908 {
909 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
910 || (CALL_P (insn)
911 && call_used_regs[REGNO (reg)])
912 || find_reg_fusage (insn, USE, reg)
913 || find_reg_fusage (insn, CLOBBER, reg))
914 return insn;
915
916 if (FIND_REG_INC_NOTE (insn, reg))
917 return insn;
918 }
919
920 return NULL_RTX;
921 }
922
923 /* Return true if REG is used, set, or killed between the beginning of
924 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
925
926 static bool
927 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
928 {
929 rtx insn, start = PREV_INSN (BB_HEAD (bb));
930
931 if (reg_avail_info[REGNO (reg)] != 0)
932 return true;
933
934 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
935 if (! insn)
936 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
937
938 if (insn)
939 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
940
941 return insn != NULL_RTX;
942 }
943
944 /* Return the loaded/stored register of a load/store instruction. */
945
946 static rtx
947 get_avail_load_store_reg (rtx insn)
948 {
949 if (REG_P (SET_DEST (PATTERN (insn)))) /* A load. */
950 return SET_DEST(PATTERN(insn));
951 if (REG_P (SET_SRC (PATTERN (insn)))) /* A store. */
952 return SET_SRC (PATTERN (insn));
953 abort ();
954 }
955
956 /* Return nonzero if the predecessors of BB are "well behaved". */
957
958 static bool
959 bb_has_well_behaved_predecessors (basic_block bb)
960 {
961 edge pred;
962 edge_iterator ei;
963
964 if (EDGE_COUNT (bb->preds) == 0)
965 return false;
966
967 FOR_EACH_EDGE (pred, ei, bb->preds)
968 {
969 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
970 return false;
971
972 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
973 return false;
974 }
975 return true;
976 }
977
978
979 /* Search for the occurrences of expression in BB. */
980
981 static struct occr*
982 get_bb_avail_insn (basic_block bb, struct occr *occr)
983 {
984 for (; occr != NULL; occr = occr->next)
985 if (BLOCK_FOR_INSN (occr->insn) == bb)
986 return occr;
987 return NULL;
988 }
989
990
991 /* This handles the case where several stores feed a partially redundant
992 load. It checks if the redundancy elimination is possible and if it's
993 worth it.
994
995 Redundancy elimination is possible if,
996 1) None of the operands of an insn have been modified since the start
997 of the current basic block.
998 2) In any predecessor of the current basic block, the same expression
999 is generated.
1000
1001 See the function body for the heuristics that determine if eliminating
1002 a redundancy is also worth doing, assuming it is possible. */
1003
1004 static void
1005 eliminate_partially_redundant_load (basic_block bb, rtx insn,
1006 struct expr *expr)
1007 {
1008 edge pred;
1009 rtx avail_insn = NULL_RTX;
1010 rtx avail_reg;
1011 rtx dest, pat;
1012 struct occr *a_occr;
1013 struct unoccr *occr, *avail_occrs = NULL;
1014 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1015 int npred_ok = 0;
1016 gcov_type ok_count = 0; /* Redundant load execution count. */
1017 gcov_type critical_count = 0; /* Execution count of critical edges. */
1018 edge_iterator ei;
1019
1020 /* The execution count of the loads to be added to make the
1021 load fully redundant. */
1022 gcov_type not_ok_count = 0;
1023 basic_block pred_bb;
1024
1025 pat = PATTERN (insn);
1026 dest = SET_DEST (pat);
1027
1028 /* Check that the loaded register is not used, set, or killed from the
1029 beginning of the block. */
1030 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1031 return;
1032
1033 /* Check potential for replacing load with copy for predecessors. */
1034 FOR_EACH_EDGE (pred, ei, bb->preds)
1035 {
1036 rtx next_pred_bb_end;
1037
1038 avail_insn = NULL_RTX;
1039 pred_bb = pred->src;
1040 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1041 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1042 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1043 {
1044 /* Check if the loaded register is not used. */
1045 avail_insn = a_occr->insn;
1046 if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
1047 abort ();
1048 /* Make sure we can generate a move from register avail_reg to
1049 dest. */
1050 extract_insn (gen_move_insn (copy_rtx (dest),
1051 copy_rtx (avail_reg)));
1052 if (! constrain_operands (1)
1053 || reg_killed_on_edge (avail_reg, pred)
1054 || reg_used_on_edge (dest, pred))
1055 {
1056 avail_insn = NULL;
1057 continue;
1058 }
1059 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1060 next_pred_bb_end))
1061 /* AVAIL_INSN remains non-null. */
1062 break;
1063 else
1064 avail_insn = NULL;
1065 }
1066
1067 if (EDGE_CRITICAL_P (pred))
1068 critical_count += pred->count;
1069
1070 if (avail_insn != NULL_RTX)
1071 {
1072 npred_ok++;
1073 ok_count += pred->count;
1074 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1075 sizeof (struct occr));
1076 occr->insn = avail_insn;
1077 occr->pred = pred;
1078 occr->next = avail_occrs;
1079 avail_occrs = occr;
1080 if (! rollback_unoccr)
1081 rollback_unoccr = occr;
1082 }
1083 else
1084 {
1085 not_ok_count += pred->count;
1086 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1087 sizeof (struct unoccr));
1088 unoccr->insn = NULL_RTX;
1089 unoccr->pred = pred;
1090 unoccr->next = unavail_occrs;
1091 unavail_occrs = unoccr;
1092 if (! rollback_unoccr)
1093 rollback_unoccr = unoccr;
1094 }
1095 }
1096
1097 if (/* No load can be replaced by copy. */
1098 npred_ok == 0
1099 /* Prevent exploding the code. */
1100 || (optimize_size && npred_ok > 1))
1101 goto cleanup;
1102
1103 /* Check if it's worth applying the partial redundancy elimination. */
1104 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1105 goto cleanup;
1106 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1107 goto cleanup;
1108
1109 /* Generate moves to the loaded register from where
1110 the memory is available. */
1111 for (occr = avail_occrs; occr; occr = occr->next)
1112 {
1113 avail_insn = occr->insn;
1114 pred = occr->pred;
1115 /* Set avail_reg to be the register having the value of the
1116 memory. */
1117 avail_reg = get_avail_load_store_reg (avail_insn);
1118 if (! avail_reg)
1119 abort ();
1120
1121 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1122 copy_rtx (avail_reg)),
1123 pred);
1124 stats.moves_inserted++;
1125
1126 if (dump_file)
1127 fprintf (dump_file,
1128 "generating move from %d to %d on edge from %d to %d\n",
1129 REGNO (avail_reg),
1130 REGNO (dest),
1131 pred->src->index,
1132 pred->dest->index);
1133 }
1134
1135 /* Regenerate loads where the memory is unavailable. */
1136 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1137 {
1138 pred = unoccr->pred;
1139 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1140 stats.copies_inserted++;
1141
1142 if (dump_file)
1143 {
1144 fprintf (dump_file,
1145 "generating on edge from %d to %d a copy of load: ",
1146 pred->src->index,
1147 pred->dest->index);
1148 print_rtl (dump_file, PATTERN (insn));
1149 fprintf (dump_file, "\n");
1150 }
1151 }
1152
1153 /* Delete the insn if it is not available in this block and mark it
1154 for deletion if it is available. If insn is available it may help
1155 discover additional redundancies, so mark it for later deletion. */
1156 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1157 a_occr && (a_occr->insn != insn);
1158 a_occr = get_bb_avail_insn (bb, a_occr->next));
1159
1160 if (!a_occr)
1161 delete_insn (insn);
1162 else
1163 a_occr->deleted_p = 1;
1164
1165 cleanup:
1166 if (rollback_unoccr)
1167 obstack_free (&unoccr_obstack, rollback_unoccr);
1168 }
1169
1170 /* Performing the redundancy elimination as described before. */
1171
1172 static void
1173 eliminate_partially_redundant_loads (void)
1174 {
1175 rtx insn;
1176 basic_block bb;
1177
1178 /* Note we start at block 1. */
1179
1180 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1181 return;
1182
1183 FOR_BB_BETWEEN (bb,
1184 ENTRY_BLOCK_PTR->next_bb->next_bb,
1185 EXIT_BLOCK_PTR,
1186 next_bb)
1187 {
1188 /* Don't try anything on basic blocks with strange predecessors. */
1189 if (! bb_has_well_behaved_predecessors (bb))
1190 continue;
1191
1192 /* Do not try anything on cold basic blocks. */
1193 if (probably_cold_bb_p (bb))
1194 continue;
1195
1196 /* Reset the table of things changed since the start of the current
1197 basic block. */
1198 reset_opr_set_tables ();
1199
1200 /* Look at all insns in the current basic block and see if there are
1201 any loads in it that we can record. */
1202 FOR_BB_INSNS (bb, insn)
1203 {
1204 /* Is it a load - of the form (set (reg) (mem))? */
1205 if (NONJUMP_INSN_P (insn)
1206 && GET_CODE (PATTERN (insn)) == SET
1207 && REG_P (SET_DEST (PATTERN (insn)))
1208 && MEM_P (SET_SRC (PATTERN (insn))))
1209 {
1210 rtx pat = PATTERN (insn);
1211 rtx src = SET_SRC (pat);
1212 struct expr *expr;
1213
1214 if (!MEM_VOLATILE_P (src)
1215 && GET_MODE (src) != BLKmode
1216 && general_operand (src, GET_MODE (src))
1217 /* Are the operands unchanged since the start of the
1218 block? */
1219 && oprs_unchanged_p (src, insn, false)
1220 && !(flag_non_call_exceptions && may_trap_p (src))
1221 && !side_effects_p (src)
1222 /* Is the expression recorded? */
1223 && (expr = lookup_expr_in_table (src)) != NULL)
1224 {
1225 /* We now have a load (insn) and an available memory at
1226 its BB start (expr). Try to remove the loads if it is
1227 redundant. */
1228 eliminate_partially_redundant_load (bb, insn, expr);
1229 }
1230 }
1231
1232 /* Keep track of everything modified by this insn, so that we
1233 know what has been modified since the start of the current
1234 basic block. */
1235 if (INSN_P (insn))
1236 record_opr_changes (insn);
1237 }
1238 }
1239
1240 commit_edge_insertions ();
1241 }
1242
1243 /* Go over the expression hash table and delete insns that were
1244 marked for later deletion. */
1245
1246 /* This helper is called via htab_traverse. */
1247 static int
1248 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1249 {
1250 struct expr *expr = (struct expr *) *slot;
1251 struct occr *occr;
1252
1253 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1254 {
1255 if (occr->deleted_p)
1256 {
1257 delete_insn (occr->insn);
1258 stats.insns_deleted++;
1259
1260 if (dump_file)
1261 {
1262 fprintf (dump_file, "deleting insn:\n");
1263 print_rtl_single (dump_file, occr->insn);
1264 fprintf (dump_file, "\n");
1265 }
1266 }
1267 }
1268
1269 return 1;
1270 }
1271
1272 static void
1273 delete_redundant_insns (void)
1274 {
1275 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1276 if (dump_file)
1277 fprintf (dump_file, "\n");
1278 }
1279
1280 /* Main entry point of the GCSE after reload - clean some redundant loads
1281 due to spilling. */
1282
1283 void
1284 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1285 {
1286 memset (&stats, 0, sizeof (stats));
1287
1288 /* Allocate ememory for this pass.
1289 Also computes and initializes the insns' CUIDs. */
1290 alloc_mem ();
1291
1292 /* We need alias analysis. */
1293 init_alias_analysis ();
1294
1295 compute_hash_table ();
1296
1297 if (dump_file)
1298 dump_hash_table (dump_file);
1299
1300 if (htab_elements (expr_table) > 0)
1301 {
1302 eliminate_partially_redundant_loads ();
1303 delete_redundant_insns ();
1304
1305 if (dump_file)
1306 {
1307 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1308 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1309 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1310 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1311 fprintf (dump_file, "\n\n");
1312 }
1313 }
1314
1315 /* We are finished with alias. */
1316 end_alias_analysis ();
1317
1318 free_mem ();
1319 }
1320