9c7b07fcdb49862939aa64621cbc1858a0cbf785
[gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25
26 #include "hash-table.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "basic-block.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "except.h"
39 #include "intl.h"
40 #include "obstack.h"
41 #include "hashtab.h"
42 #include "params.h"
43 #include "target.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
52
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
58
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
70
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
76 */
77 \f
78
79 /* Keep statistics of this pass. */
80 static struct
81 {
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85 } stats;
86
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
90
91 /* Expression elements in the hash table. */
92 struct expr
93 {
94 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
95 rtx expr;
96
97 /* The same hash for this entry. */
98 hashval_t hash;
99
100 /* List of available occurrence in basic blocks in the function. */
101 struct occr *avail_occr;
102 };
103
104 /* Hashtable helpers. */
105
106 struct expr_hasher : typed_noop_remove <expr>
107 {
108 typedef expr value_type;
109 typedef expr compare_type;
110 static inline hashval_t hash (const value_type *);
111 static inline bool equal (const value_type *, const compare_type *);
112 };
113
114
115 /* Hash expression X.
116 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
117 or if the expression contains something we don't want to insert in the
118 table. */
119
120 static hashval_t
121 hash_expr (rtx x, int *do_not_record_p)
122 {
123 *do_not_record_p = 0;
124 return hash_rtx (x, GET_MODE (x), do_not_record_p,
125 NULL, /*have_reg_qty=*/false);
126 }
127
128 /* Callback for hashtab.
129 Return the hash value for expression EXP. We don't actually hash
130 here, we just return the cached hash value. */
131
132 inline hashval_t
133 expr_hasher::hash (const value_type *exp)
134 {
135 return exp->hash;
136 }
137
138 /* Callback for hashtab.
139 Return nonzero if exp1 is equivalent to exp2. */
140
141 inline bool
142 expr_hasher::equal (const value_type *exp1, const compare_type *exp2)
143 {
144 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
145
146 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
147 return equiv_p;
148 }
149
150 /* The table itself. */
151 static hash_table<expr_hasher> *expr_table;
152 \f
153
154 static struct obstack expr_obstack;
155
156 /* Occurrence of an expression.
157 There is at most one occurrence per basic block. If a pattern appears
158 more than once, the last appearance is used. */
159
160 struct occr
161 {
162 /* Next occurrence of this expression. */
163 struct occr *next;
164 /* The insn that computes the expression. */
165 rtx_insn *insn;
166 /* Nonzero if this [anticipatable] occurrence has been deleted. */
167 char deleted_p;
168 };
169
170 static struct obstack occr_obstack;
171
172 /* The following structure holds the information about the occurrences of
173 the redundant instructions. */
174 struct unoccr
175 {
176 struct unoccr *next;
177 edge pred;
178 rtx_insn *insn;
179 };
180
181 static struct obstack unoccr_obstack;
182
183 /* Array where each element is the CUID if the insn that last set the hard
184 register with the number of the element, since the start of the current
185 basic block.
186
187 This array is used during the building of the hash table (step 1) to
188 determine if a reg is killed before the end of a basic block.
189
190 It is also used when eliminating partial redundancies (step 2) to see
191 if a reg was modified since the start of a basic block. */
192 static int *reg_avail_info;
193
194 /* A list of insns that may modify memory within the current basic block. */
195 struct modifies_mem
196 {
197 rtx_insn *insn;
198 struct modifies_mem *next;
199 };
200 static struct modifies_mem *modifies_mem_list;
201
202 /* The modifies_mem structs also go on an obstack, only this obstack is
203 freed each time after completing the analysis or transformations on
204 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
205 object on the obstack to keep track of the bottom of the obstack. */
206 static struct obstack modifies_mem_obstack;
207 static struct modifies_mem *modifies_mem_obstack_bottom;
208
209 /* Mapping of insn UIDs to CUIDs.
210 CUIDs are like UIDs except they increase monotonically in each basic
211 block, have no gaps, and only apply to real insns. */
212 static int *uid_cuid;
213 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
214 \f
215
216 /* Helpers for memory allocation/freeing. */
217 static void alloc_mem (void);
218 static void free_mem (void);
219
220 /* Support for hash table construction and transformations. */
221 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
222 static void record_last_reg_set_info (rtx_insn *, rtx);
223 static void record_last_reg_set_info_regno (rtx_insn *, int);
224 static void record_last_mem_set_info (rtx_insn *);
225 static void record_last_set_info (rtx, const_rtx, void *);
226 static void record_opr_changes (rtx_insn *);
227
228 static void find_mem_conflicts (rtx, const_rtx, void *);
229 static int load_killed_in_block_p (int, rtx, bool);
230 static void reset_opr_set_tables (void);
231
232 /* Hash table support. */
233 static hashval_t hash_expr (rtx, int *);
234 static void insert_expr_in_table (rtx, rtx_insn *);
235 static struct expr *lookup_expr_in_table (rtx);
236 static void dump_hash_table (FILE *);
237
238 /* Helpers for eliminate_partially_redundant_load. */
239 static bool reg_killed_on_edge (rtx, edge);
240 static bool reg_used_on_edge (rtx, edge);
241
242 static rtx get_avail_load_store_reg (rtx_insn *);
243
244 static bool bb_has_well_behaved_predecessors (basic_block);
245 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
246 static void hash_scan_set (rtx_insn *);
247 static void compute_hash_table (void);
248
249 /* The work horses of this pass. */
250 static void eliminate_partially_redundant_load (basic_block,
251 rtx_insn *,
252 struct expr *);
253 static void eliminate_partially_redundant_loads (void);
254 \f
255
256 /* Allocate memory for the CUID mapping array and register/memory
257 tracking tables. */
258
259 static void
260 alloc_mem (void)
261 {
262 int i;
263 basic_block bb;
264 rtx_insn *insn;
265
266 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
267 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
268 i = 1;
269 FOR_EACH_BB_FN (bb, cfun)
270 FOR_BB_INSNS (bb, insn)
271 {
272 if (INSN_P (insn))
273 uid_cuid[INSN_UID (insn)] = i++;
274 else
275 uid_cuid[INSN_UID (insn)] = i;
276 }
277
278 /* Allocate the available expressions hash table. We don't want to
279 make the hash table too small, but unnecessarily making it too large
280 also doesn't help. The i/4 is a gcse.c relic, and seems like a
281 reasonable choice. */
282 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
283
284 /* We allocate everything on obstacks because we often can roll back
285 the whole obstack to some point. Freeing obstacks is very fast. */
286 gcc_obstack_init (&expr_obstack);
287 gcc_obstack_init (&occr_obstack);
288 gcc_obstack_init (&unoccr_obstack);
289 gcc_obstack_init (&modifies_mem_obstack);
290
291 /* Working array used to track the last set for each register
292 in the current block. */
293 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
294
295 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
296 can roll it back in reset_opr_set_tables. */
297 modifies_mem_obstack_bottom =
298 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
299 sizeof (struct modifies_mem));
300 }
301
302 /* Free memory allocated by alloc_mem. */
303
304 static void
305 free_mem (void)
306 {
307 free (uid_cuid);
308
309 delete expr_table;
310 expr_table = NULL;
311
312 obstack_free (&expr_obstack, NULL);
313 obstack_free (&occr_obstack, NULL);
314 obstack_free (&unoccr_obstack, NULL);
315 obstack_free (&modifies_mem_obstack, NULL);
316
317 free (reg_avail_info);
318 }
319 \f
320
321 /* Insert expression X in INSN in the hash TABLE.
322 If it is already present, record it as the last occurrence in INSN's
323 basic block. */
324
325 static void
326 insert_expr_in_table (rtx x, rtx_insn *insn)
327 {
328 int do_not_record_p;
329 hashval_t hash;
330 struct expr *cur_expr, **slot;
331 struct occr *avail_occr, *last_occr = NULL;
332
333 hash = hash_expr (x, &do_not_record_p);
334
335 /* Do not insert expression in the table if it contains volatile operands,
336 or if hash_expr determines the expression is something we don't want
337 to or can't handle. */
338 if (do_not_record_p)
339 return;
340
341 /* We anticipate that redundant expressions are rare, so for convenience
342 allocate a new hash table element here already and set its fields.
343 If we don't do this, we need a hack with a static struct expr. Anyway,
344 obstack_free is really fast and one more obstack_alloc doesn't hurt if
345 we're going to see more expressions later on. */
346 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
347 sizeof (struct expr));
348 cur_expr->expr = x;
349 cur_expr->hash = hash;
350 cur_expr->avail_occr = NULL;
351
352 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
353
354 if (! (*slot))
355 /* The expression isn't found, so insert it. */
356 *slot = cur_expr;
357 else
358 {
359 /* The expression is already in the table, so roll back the
360 obstack and use the existing table entry. */
361 obstack_free (&expr_obstack, cur_expr);
362 cur_expr = *slot;
363 }
364
365 /* Search for another occurrence in the same basic block. */
366 avail_occr = cur_expr->avail_occr;
367 while (avail_occr
368 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
369 {
370 /* If an occurrence isn't found, save a pointer to the end of
371 the list. */
372 last_occr = avail_occr;
373 avail_occr = avail_occr->next;
374 }
375
376 if (avail_occr)
377 /* Found another instance of the expression in the same basic block.
378 Prefer this occurrence to the currently recorded one. We want
379 the last one in the block and the block is scanned from start
380 to end. */
381 avail_occr->insn = insn;
382 else
383 {
384 /* First occurrence of this expression in this basic block. */
385 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
386 sizeof (struct occr));
387
388 /* First occurrence of this expression in any block? */
389 if (cur_expr->avail_occr == NULL)
390 cur_expr->avail_occr = avail_occr;
391 else
392 last_occr->next = avail_occr;
393
394 avail_occr->insn = insn;
395 avail_occr->next = NULL;
396 avail_occr->deleted_p = 0;
397 }
398 }
399 \f
400
401 /* Lookup pattern PAT in the expression hash table.
402 The result is a pointer to the table entry, or NULL if not found. */
403
404 static struct expr *
405 lookup_expr_in_table (rtx pat)
406 {
407 int do_not_record_p;
408 struct expr **slot, *tmp_expr;
409 hashval_t hash = hash_expr (pat, &do_not_record_p);
410
411 if (do_not_record_p)
412 return NULL;
413
414 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
415 sizeof (struct expr));
416 tmp_expr->expr = pat;
417 tmp_expr->hash = hash;
418 tmp_expr->avail_occr = NULL;
419
420 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
421 obstack_free (&expr_obstack, tmp_expr);
422
423 if (!slot)
424 return NULL;
425 else
426 return (*slot);
427 }
428 \f
429
430 /* Dump all expressions and occurrences that are currently in the
431 expression hash table to FILE. */
432
433 /* This helper is called via htab_traverse. */
434 int
435 dump_expr_hash_table_entry (expr **slot, FILE *file)
436 {
437 struct expr *exprs = *slot;
438 struct occr *occr;
439
440 fprintf (file, "expr: ");
441 print_rtl (file, exprs->expr);
442 fprintf (file,"\nhashcode: %u\n", exprs->hash);
443 fprintf (file,"list of occurrences:\n");
444 occr = exprs->avail_occr;
445 while (occr)
446 {
447 rtx_insn *insn = occr->insn;
448 print_rtl_single (file, insn);
449 fprintf (file, "\n");
450 occr = occr->next;
451 }
452 fprintf (file, "\n");
453 return 1;
454 }
455
456 static void
457 dump_hash_table (FILE *file)
458 {
459 fprintf (file, "\n\nexpression hash table\n");
460 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
461 (long) expr_table->size (),
462 (long) expr_table->elements (),
463 expr_table->collisions ());
464 if (expr_table->elements () > 0)
465 {
466 fprintf (file, "\n\ntable entries:\n");
467 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
468 }
469 fprintf (file, "\n");
470 }
471 \f
472 /* Return true if register X is recorded as being set by an instruction
473 whose CUID is greater than the one given. */
474
475 static bool
476 reg_changed_after_insn_p (rtx x, int cuid)
477 {
478 unsigned int regno, end_regno;
479
480 regno = REGNO (x);
481 end_regno = END_HARD_REGNO (x);
482 do
483 if (reg_avail_info[regno] > cuid)
484 return true;
485 while (++regno < end_regno);
486 return false;
487 }
488
489 /* Return nonzero if the operands of expression X are unchanged
490 1) from the start of INSN's basic block up to but not including INSN
491 if AFTER_INSN is false, or
492 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
493
494 static bool
495 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
496 {
497 int i, j;
498 enum rtx_code code;
499 const char *fmt;
500
501 if (x == 0)
502 return 1;
503
504 code = GET_CODE (x);
505 switch (code)
506 {
507 case REG:
508 /* We are called after register allocation. */
509 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
510 if (after_insn)
511 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
512 else
513 return !reg_changed_after_insn_p (x, 0);
514
515 case MEM:
516 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
517 return 0;
518 else
519 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
520
521 case PC:
522 case CC0: /*FIXME*/
523 case CONST:
524 CASE_CONST_ANY:
525 case SYMBOL_REF:
526 case LABEL_REF:
527 case ADDR_VEC:
528 case ADDR_DIFF_VEC:
529 return 1;
530
531 case PRE_DEC:
532 case PRE_INC:
533 case POST_DEC:
534 case POST_INC:
535 case PRE_MODIFY:
536 case POST_MODIFY:
537 if (after_insn)
538 return 0;
539 break;
540
541 default:
542 break;
543 }
544
545 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
546 {
547 if (fmt[i] == 'e')
548 {
549 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
550 return 0;
551 }
552 else if (fmt[i] == 'E')
553 for (j = 0; j < XVECLEN (x, i); j++)
554 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
555 return 0;
556 }
557
558 return 1;
559 }
560 \f
561
562 /* Used for communication between find_mem_conflicts and
563 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
564 conflict between two memory references.
565 This is a bit of a hack to work around the limitations of note_stores. */
566 static int mems_conflict_p;
567
568 /* DEST is the output of an instruction. If it is a memory reference, and
569 possibly conflicts with the load found in DATA, then set mems_conflict_p
570 to a nonzero value. */
571
572 static void
573 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
574 void *data)
575 {
576 rtx mem_op = (rtx) data;
577
578 while (GET_CODE (dest) == SUBREG
579 || GET_CODE (dest) == ZERO_EXTRACT
580 || GET_CODE (dest) == STRICT_LOW_PART)
581 dest = XEXP (dest, 0);
582
583 /* If DEST is not a MEM, then it will not conflict with the load. Note
584 that function calls are assumed to clobber memory, but are handled
585 elsewhere. */
586 if (! MEM_P (dest))
587 return;
588
589 if (true_dependence (dest, GET_MODE (dest), mem_op))
590 mems_conflict_p = 1;
591 }
592 \f
593
594 /* Return nonzero if the expression in X (a memory reference) is killed
595 in the current basic block before (if AFTER_INSN is false) or after
596 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
597
598 This function assumes that the modifies_mem table is flushed when
599 the hash table construction or redundancy elimination phases start
600 processing a new basic block. */
601
602 static int
603 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
604 {
605 struct modifies_mem *list_entry = modifies_mem_list;
606
607 while (list_entry)
608 {
609 rtx_insn *setter = list_entry->insn;
610
611 /* Ignore entries in the list that do not apply. */
612 if ((after_insn
613 && INSN_CUID (setter) < uid_limit)
614 || (! after_insn
615 && INSN_CUID (setter) > uid_limit))
616 {
617 list_entry = list_entry->next;
618 continue;
619 }
620
621 /* If SETTER is a call everything is clobbered. Note that calls
622 to pure functions are never put on the list, so we need not
623 worry about them. */
624 if (CALL_P (setter))
625 return 1;
626
627 /* SETTER must be an insn of some kind that sets memory. Call
628 note_stores to examine each hunk of memory that is modified.
629 It will set mems_conflict_p to nonzero if there may be a
630 conflict between X and SETTER. */
631 mems_conflict_p = 0;
632 note_stores (PATTERN (setter), find_mem_conflicts, x);
633 if (mems_conflict_p)
634 return 1;
635
636 list_entry = list_entry->next;
637 }
638 return 0;
639 }
640 \f
641
642 /* Record register first/last/block set information for REGNO in INSN. */
643
644 static inline void
645 record_last_reg_set_info (rtx_insn *insn, rtx reg)
646 {
647 unsigned int regno, end_regno;
648
649 regno = REGNO (reg);
650 end_regno = END_HARD_REGNO (reg);
651 do
652 reg_avail_info[regno] = INSN_CUID (insn);
653 while (++regno < end_regno);
654 }
655
656 static inline void
657 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
658 {
659 reg_avail_info[regno] = INSN_CUID (insn);
660 }
661
662
663 /* Record memory modification information for INSN. We do not actually care
664 about the memory location(s) that are set, or even how they are set (consider
665 a CALL_INSN). We merely need to record which insns modify memory. */
666
667 static void
668 record_last_mem_set_info (rtx_insn *insn)
669 {
670 struct modifies_mem *list_entry;
671
672 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
673 sizeof (struct modifies_mem));
674 list_entry->insn = insn;
675 list_entry->next = modifies_mem_list;
676 modifies_mem_list = list_entry;
677 }
678
679 /* Called from compute_hash_table via note_stores to handle one
680 SET or CLOBBER in an insn. DATA is really the instruction in which
681 the SET is taking place. */
682
683 static void
684 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
685 {
686 rtx_insn *last_set_insn = (rtx_insn *) data;
687
688 if (GET_CODE (dest) == SUBREG)
689 dest = SUBREG_REG (dest);
690
691 if (REG_P (dest))
692 record_last_reg_set_info (last_set_insn, dest);
693 else if (MEM_P (dest))
694 {
695 /* Ignore pushes, they don't clobber memory. They may still
696 clobber the stack pointer though. Some targets do argument
697 pushes without adding REG_INC notes. See e.g. PR25196,
698 where a pushsi2 on i386 doesn't have REG_INC notes. Note
699 such changes here too. */
700 if (! push_operand (dest, GET_MODE (dest)))
701 record_last_mem_set_info (last_set_insn);
702 else
703 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
704 }
705 }
706
707
708 /* Reset tables used to keep track of what's still available since the
709 start of the block. */
710
711 static void
712 reset_opr_set_tables (void)
713 {
714 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
715 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
716 modifies_mem_list = NULL;
717 }
718 \f
719
720 /* Record things set by INSN.
721 This data is used by oprs_unchanged_p. */
722
723 static void
724 record_opr_changes (rtx_insn *insn)
725 {
726 rtx note;
727
728 /* Find all stores and record them. */
729 note_stores (PATTERN (insn), record_last_set_info, insn);
730
731 /* Also record autoincremented REGs for this insn as changed. */
732 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
733 if (REG_NOTE_KIND (note) == REG_INC)
734 record_last_reg_set_info (insn, XEXP (note, 0));
735
736 /* Finally, if this is a call, record all call clobbers. */
737 if (CALL_P (insn))
738 {
739 unsigned int regno;
740 rtx link, x;
741 hard_reg_set_iterator hrsi;
742 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
743 record_last_reg_set_info_regno (insn, regno);
744
745 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
746 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
747 {
748 x = XEXP (XEXP (link, 0), 0);
749 if (REG_P (x))
750 {
751 gcc_assert (HARD_REGISTER_P (x));
752 record_last_reg_set_info (insn, x);
753 }
754 }
755
756 if (! RTL_CONST_OR_PURE_CALL_P (insn))
757 record_last_mem_set_info (insn);
758 }
759 }
760 \f
761
762 /* Scan the pattern of INSN and add an entry to the hash TABLE.
763 After reload we are interested in loads/stores only. */
764
765 static void
766 hash_scan_set (rtx_insn *insn)
767 {
768 rtx pat = PATTERN (insn);
769 rtx src = SET_SRC (pat);
770 rtx dest = SET_DEST (pat);
771
772 /* We are only interested in loads and stores. */
773 if (! MEM_P (src) && ! MEM_P (dest))
774 return;
775
776 /* Don't mess with jumps and nops. */
777 if (JUMP_P (insn) || set_noop_p (pat))
778 return;
779
780 if (REG_P (dest))
781 {
782 if (/* Don't CSE something if we can't do a reg/reg copy. */
783 can_copy_p (GET_MODE (dest))
784 /* Is SET_SRC something we want to gcse? */
785 && general_operand (src, GET_MODE (src))
786 #ifdef STACK_REGS
787 /* Never consider insns touching the register stack. It may
788 create situations that reg-stack cannot handle (e.g. a stack
789 register live across an abnormal edge). */
790 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
791 #endif
792 /* An expression is not available if its operands are
793 subsequently modified, including this insn. */
794 && oprs_unchanged_p (src, insn, true))
795 {
796 insert_expr_in_table (src, insn);
797 }
798 }
799 else if (REG_P (src))
800 {
801 /* Only record sets of pseudo-regs in the hash table. */
802 if (/* Don't CSE something if we can't do a reg/reg copy. */
803 can_copy_p (GET_MODE (src))
804 /* Is SET_DEST something we want to gcse? */
805 && general_operand (dest, GET_MODE (dest))
806 #ifdef STACK_REGS
807 /* As above for STACK_REGS. */
808 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
809 #endif
810 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
811 /* Check if the memory expression is killed after insn. */
812 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
813 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
814 {
815 insert_expr_in_table (dest, insn);
816 }
817 }
818 }
819 \f
820
821 /* Create hash table of memory expressions available at end of basic
822 blocks. Basically you should think of this hash table as the
823 representation of AVAIL_OUT. This is the set of expressions that
824 is generated in a basic block and not killed before the end of the
825 same basic block. Notice that this is really a local computation. */
826
827 static void
828 compute_hash_table (void)
829 {
830 basic_block bb;
831
832 FOR_EACH_BB_FN (bb, cfun)
833 {
834 rtx_insn *insn;
835
836 /* First pass over the instructions records information used to
837 determine when registers and memory are last set.
838 Since we compute a "local" AVAIL_OUT, reset the tables that
839 help us keep track of what has been modified since the start
840 of the block. */
841 reset_opr_set_tables ();
842 FOR_BB_INSNS (bb, insn)
843 {
844 if (INSN_P (insn))
845 record_opr_changes (insn);
846 }
847
848 /* The next pass actually builds the hash table. */
849 FOR_BB_INSNS (bb, insn)
850 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
851 hash_scan_set (insn);
852 }
853 }
854 \f
855
856 /* Check if register REG is killed in any insn waiting to be inserted on
857 edge E. This function is required to check that our data flow analysis
858 is still valid prior to commit_edge_insertions. */
859
860 static bool
861 reg_killed_on_edge (rtx reg, edge e)
862 {
863 rtx_insn *insn;
864
865 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
866 if (INSN_P (insn) && reg_set_p (reg, insn))
867 return true;
868
869 return false;
870 }
871
872 /* Similar to above - check if register REG is used in any insn waiting
873 to be inserted on edge E.
874 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
875 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
876
877 static bool
878 reg_used_on_edge (rtx reg, edge e)
879 {
880 rtx_insn *insn;
881
882 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
883 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
884 return true;
885
886 return false;
887 }
888 \f
889 /* Return the loaded/stored register of a load/store instruction. */
890
891 static rtx
892 get_avail_load_store_reg (rtx_insn *insn)
893 {
894 if (REG_P (SET_DEST (PATTERN (insn))))
895 /* A load. */
896 return SET_DEST (PATTERN (insn));
897 else
898 {
899 /* A store. */
900 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
901 return SET_SRC (PATTERN (insn));
902 }
903 }
904
905 /* Return nonzero if the predecessors of BB are "well behaved". */
906
907 static bool
908 bb_has_well_behaved_predecessors (basic_block bb)
909 {
910 edge pred;
911 edge_iterator ei;
912
913 if (EDGE_COUNT (bb->preds) == 0)
914 return false;
915
916 FOR_EACH_EDGE (pred, ei, bb->preds)
917 {
918 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
919 return false;
920
921 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
922 return false;
923
924 if (tablejump_p (BB_END (pred->src), NULL, NULL))
925 return false;
926 }
927 return true;
928 }
929
930
931 /* Search for the occurrences of expression in BB. */
932
933 static struct occr*
934 get_bb_avail_insn (basic_block bb, struct occr *occr)
935 {
936 for (; occr != NULL; occr = occr->next)
937 if (BLOCK_FOR_INSN (occr->insn) == bb)
938 return occr;
939 return NULL;
940 }
941
942
943 /* This handles the case where several stores feed a partially redundant
944 load. It checks if the redundancy elimination is possible and if it's
945 worth it.
946
947 Redundancy elimination is possible if,
948 1) None of the operands of an insn have been modified since the start
949 of the current basic block.
950 2) In any predecessor of the current basic block, the same expression
951 is generated.
952
953 See the function body for the heuristics that determine if eliminating
954 a redundancy is also worth doing, assuming it is possible. */
955
956 static void
957 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
958 struct expr *expr)
959 {
960 edge pred;
961 rtx_insn *avail_insn = NULL;
962 rtx avail_reg;
963 rtx dest, pat;
964 struct occr *a_occr;
965 struct unoccr *occr, *avail_occrs = NULL;
966 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
967 int npred_ok = 0;
968 gcov_type ok_count = 0; /* Redundant load execution count. */
969 gcov_type critical_count = 0; /* Execution count of critical edges. */
970 edge_iterator ei;
971 bool critical_edge_split = false;
972
973 /* The execution count of the loads to be added to make the
974 load fully redundant. */
975 gcov_type not_ok_count = 0;
976 basic_block pred_bb;
977
978 pat = PATTERN (insn);
979 dest = SET_DEST (pat);
980
981 /* Check that the loaded register is not used, set, or killed from the
982 beginning of the block. */
983 if (reg_changed_after_insn_p (dest, 0)
984 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
985 return;
986
987 /* Check potential for replacing load with copy for predecessors. */
988 FOR_EACH_EDGE (pred, ei, bb->preds)
989 {
990 rtx_insn *next_pred_bb_end;
991
992 avail_insn = NULL;
993 avail_reg = NULL_RTX;
994 pred_bb = pred->src;
995 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
996 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
997 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
998 {
999 /* Check if the loaded register is not used. */
1000 avail_insn = a_occr->insn;
1001 avail_reg = get_avail_load_store_reg (avail_insn);
1002 gcc_assert (avail_reg);
1003
1004 /* Make sure we can generate a move from register avail_reg to
1005 dest. */
1006 extract_insn (gen_move_insn (copy_rtx (dest),
1007 copy_rtx (avail_reg)));
1008 if (! constrain_operands (1)
1009 || reg_killed_on_edge (avail_reg, pred)
1010 || reg_used_on_edge (dest, pred))
1011 {
1012 avail_insn = NULL;
1013 continue;
1014 }
1015 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1016 /* AVAIL_INSN remains non-null. */
1017 break;
1018 else
1019 avail_insn = NULL;
1020 }
1021
1022 if (EDGE_CRITICAL_P (pred))
1023 critical_count += pred->count;
1024
1025 if (avail_insn != NULL_RTX)
1026 {
1027 npred_ok++;
1028 ok_count += pred->count;
1029 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1030 copy_rtx (avail_reg)))))
1031 {
1032 /* Check if there is going to be a split. */
1033 if (EDGE_CRITICAL_P (pred))
1034 critical_edge_split = true;
1035 }
1036 else /* Its a dead move no need to generate. */
1037 continue;
1038 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1039 sizeof (struct unoccr));
1040 occr->insn = avail_insn;
1041 occr->pred = pred;
1042 occr->next = avail_occrs;
1043 avail_occrs = occr;
1044 if (! rollback_unoccr)
1045 rollback_unoccr = occr;
1046 }
1047 else
1048 {
1049 /* Adding a load on a critical edge will cause a split. */
1050 if (EDGE_CRITICAL_P (pred))
1051 critical_edge_split = true;
1052 not_ok_count += pred->count;
1053 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1054 sizeof (struct unoccr));
1055 unoccr->insn = NULL;
1056 unoccr->pred = pred;
1057 unoccr->next = unavail_occrs;
1058 unavail_occrs = unoccr;
1059 if (! rollback_unoccr)
1060 rollback_unoccr = unoccr;
1061 }
1062 }
1063
1064 if (/* No load can be replaced by copy. */
1065 npred_ok == 0
1066 /* Prevent exploding the code. */
1067 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1068 /* If we don't have profile information we cannot tell if splitting
1069 a critical edge is profitable or not so don't do it. */
1070 || ((! profile_info || ! flag_branch_probabilities
1071 || targetm.cannot_modify_jumps_p ())
1072 && critical_edge_split))
1073 goto cleanup;
1074
1075 /* Check if it's worth applying the partial redundancy elimination. */
1076 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1077 goto cleanup;
1078 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1079 goto cleanup;
1080
1081 /* Generate moves to the loaded register from where
1082 the memory is available. */
1083 for (occr = avail_occrs; occr; occr = occr->next)
1084 {
1085 avail_insn = occr->insn;
1086 pred = occr->pred;
1087 /* Set avail_reg to be the register having the value of the
1088 memory. */
1089 avail_reg = get_avail_load_store_reg (avail_insn);
1090 gcc_assert (avail_reg);
1091
1092 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1093 copy_rtx (avail_reg)),
1094 pred);
1095 stats.moves_inserted++;
1096
1097 if (dump_file)
1098 fprintf (dump_file,
1099 "generating move from %d to %d on edge from %d to %d\n",
1100 REGNO (avail_reg),
1101 REGNO (dest),
1102 pred->src->index,
1103 pred->dest->index);
1104 }
1105
1106 /* Regenerate loads where the memory is unavailable. */
1107 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1108 {
1109 pred = unoccr->pred;
1110 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1111 stats.copies_inserted++;
1112
1113 if (dump_file)
1114 {
1115 fprintf (dump_file,
1116 "generating on edge from %d to %d a copy of load: ",
1117 pred->src->index,
1118 pred->dest->index);
1119 print_rtl (dump_file, PATTERN (insn));
1120 fprintf (dump_file, "\n");
1121 }
1122 }
1123
1124 /* Delete the insn if it is not available in this block and mark it
1125 for deletion if it is available. If insn is available it may help
1126 discover additional redundancies, so mark it for later deletion. */
1127 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1128 a_occr && (a_occr->insn != insn);
1129 a_occr = get_bb_avail_insn (bb, a_occr->next))
1130 ;
1131
1132 if (!a_occr)
1133 {
1134 stats.insns_deleted++;
1135
1136 if (dump_file)
1137 {
1138 fprintf (dump_file, "deleting insn:\n");
1139 print_rtl_single (dump_file, insn);
1140 fprintf (dump_file, "\n");
1141 }
1142 delete_insn (insn);
1143 }
1144 else
1145 a_occr->deleted_p = 1;
1146
1147 cleanup:
1148 if (rollback_unoccr)
1149 obstack_free (&unoccr_obstack, rollback_unoccr);
1150 }
1151
1152 /* Performing the redundancy elimination as described before. */
1153
1154 static void
1155 eliminate_partially_redundant_loads (void)
1156 {
1157 rtx_insn *insn;
1158 basic_block bb;
1159
1160 /* Note we start at block 1. */
1161
1162 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1163 return;
1164
1165 FOR_BB_BETWEEN (bb,
1166 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1167 EXIT_BLOCK_PTR_FOR_FN (cfun),
1168 next_bb)
1169 {
1170 /* Don't try anything on basic blocks with strange predecessors. */
1171 if (! bb_has_well_behaved_predecessors (bb))
1172 continue;
1173
1174 /* Do not try anything on cold basic blocks. */
1175 if (optimize_bb_for_size_p (bb))
1176 continue;
1177
1178 /* Reset the table of things changed since the start of the current
1179 basic block. */
1180 reset_opr_set_tables ();
1181
1182 /* Look at all insns in the current basic block and see if there are
1183 any loads in it that we can record. */
1184 FOR_BB_INSNS (bb, insn)
1185 {
1186 /* Is it a load - of the form (set (reg) (mem))? */
1187 if (NONJUMP_INSN_P (insn)
1188 && GET_CODE (PATTERN (insn)) == SET
1189 && REG_P (SET_DEST (PATTERN (insn)))
1190 && MEM_P (SET_SRC (PATTERN (insn))))
1191 {
1192 rtx pat = PATTERN (insn);
1193 rtx src = SET_SRC (pat);
1194 struct expr *expr;
1195
1196 if (!MEM_VOLATILE_P (src)
1197 && GET_MODE (src) != BLKmode
1198 && general_operand (src, GET_MODE (src))
1199 /* Are the operands unchanged since the start of the
1200 block? */
1201 && oprs_unchanged_p (src, insn, false)
1202 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1203 && !side_effects_p (src)
1204 /* Is the expression recorded? */
1205 && (expr = lookup_expr_in_table (src)) != NULL)
1206 {
1207 /* We now have a load (insn) and an available memory at
1208 its BB start (expr). Try to remove the loads if it is
1209 redundant. */
1210 eliminate_partially_redundant_load (bb, insn, expr);
1211 }
1212 }
1213
1214 /* Keep track of everything modified by this insn, so that we
1215 know what has been modified since the start of the current
1216 basic block. */
1217 if (INSN_P (insn))
1218 record_opr_changes (insn);
1219 }
1220 }
1221
1222 commit_edge_insertions ();
1223 }
1224
1225 /* Go over the expression hash table and delete insns that were
1226 marked for later deletion. */
1227
1228 /* This helper is called via htab_traverse. */
1229 int
1230 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1231 {
1232 struct expr *exprs = *slot;
1233 struct occr *occr;
1234
1235 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1236 {
1237 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1238 {
1239 delete_insn (occr->insn);
1240 stats.insns_deleted++;
1241
1242 if (dump_file)
1243 {
1244 fprintf (dump_file, "deleting insn:\n");
1245 print_rtl_single (dump_file, occr->insn);
1246 fprintf (dump_file, "\n");
1247 }
1248 }
1249 }
1250
1251 return 1;
1252 }
1253
1254 static void
1255 delete_redundant_insns (void)
1256 {
1257 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1258 if (dump_file)
1259 fprintf (dump_file, "\n");
1260 }
1261
1262 /* Main entry point of the GCSE after reload - clean some redundant loads
1263 due to spilling. */
1264
1265 static void
1266 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1267 {
1268
1269 memset (&stats, 0, sizeof (stats));
1270
1271 /* Allocate memory for this pass.
1272 Also computes and initializes the insns' CUIDs. */
1273 alloc_mem ();
1274
1275 /* We need alias analysis. */
1276 init_alias_analysis ();
1277
1278 compute_hash_table ();
1279
1280 if (dump_file)
1281 dump_hash_table (dump_file);
1282
1283 if (expr_table->elements () > 0)
1284 {
1285 eliminate_partially_redundant_loads ();
1286 delete_redundant_insns ();
1287
1288 if (dump_file)
1289 {
1290 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1291 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1292 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1293 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1294 fprintf (dump_file, "\n\n");
1295 }
1296
1297 statistics_counter_event (cfun, "copies inserted",
1298 stats.copies_inserted);
1299 statistics_counter_event (cfun, "moves inserted",
1300 stats.moves_inserted);
1301 statistics_counter_event (cfun, "insns deleted",
1302 stats.insns_deleted);
1303 }
1304
1305 /* We are finished with alias. */
1306 end_alias_analysis ();
1307
1308 free_mem ();
1309 }
1310
1311 \f
1312
1313 static unsigned int
1314 rest_of_handle_gcse2 (void)
1315 {
1316 gcse_after_reload_main (get_insns ());
1317 rebuild_jump_labels (get_insns ());
1318 return 0;
1319 }
1320
1321 namespace {
1322
1323 const pass_data pass_data_gcse2 =
1324 {
1325 RTL_PASS, /* type */
1326 "gcse2", /* name */
1327 OPTGROUP_NONE, /* optinfo_flags */
1328 TV_GCSE_AFTER_RELOAD, /* tv_id */
1329 0, /* properties_required */
1330 0, /* properties_provided */
1331 0, /* properties_destroyed */
1332 0, /* todo_flags_start */
1333 0, /* todo_flags_finish */
1334 };
1335
1336 class pass_gcse2 : public rtl_opt_pass
1337 {
1338 public:
1339 pass_gcse2 (gcc::context *ctxt)
1340 : rtl_opt_pass (pass_data_gcse2, ctxt)
1341 {}
1342
1343 /* opt_pass methods: */
1344 virtual bool gate (function *fun)
1345 {
1346 return (optimize > 0 && flag_gcse_after_reload
1347 && optimize_function_for_speed_p (fun));
1348 }
1349
1350 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1351
1352 }; // class pass_gcse2
1353
1354 } // anon namespace
1355
1356 rtl_opt_pass *
1357 make_pass_gcse2 (gcc::context *ctxt)
1358 {
1359 return new pass_gcse2 (ctxt);
1360 }