* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "toplev.h"
27
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "basic-block.h"
37 #include "output.h"
38 #include "function.h"
39 #include "expr.h"
40 #include "except.h"
41 #include "intl.h"
42 #include "obstack.h"
43 #include "hashtab.h"
44 #include "params.h"
45 #include "target.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
48 #include "dbgcnt.h"
49
50 /* The following code implements gcse after reload, the purpose of this
51 pass is to cleanup redundant loads generated by reload and other
52 optimizations that come after gcse. It searches for simple inter-block
53 redundancies and tries to eliminate them by adding moves and loads
54 in cold places.
55
56 Perform partially redundant load elimination, try to eliminate redundant
57 loads created by the reload pass. We try to look for full or partial
58 redundant loads fed by one or more loads/stores in predecessor BBs,
59 and try adding loads to make them fully redundant. We also check if
60 it's worth adding loads to be able to delete the redundant load.
61
62 Algorithm:
63 1. Build available expressions hash table:
64 For each load/store instruction, if the loaded/stored memory didn't
65 change until the end of the basic block add this memory expression to
66 the hash table.
67 2. Perform Redundancy elimination:
68 For each load instruction do the following:
69 perform partial redundancy elimination, check if it's worth adding
70 loads to make the load fully redundant. If so add loads and
71 register copies and delete the load.
72 3. Delete instructions made redundant in step 2.
73
74 Future enhancement:
75 If the loaded register is used/defined between load and some store,
76 look for some other free register between load and all its stores,
77 and replace the load with a copy from this register to the loaded
78 register.
79 */
80 \f
81
82 /* Keep statistics of this pass. */
83 static struct
84 {
85 int moves_inserted;
86 int copies_inserted;
87 int insns_deleted;
88 } stats;
89
90 /* We need to keep a hash table of expressions. The table entries are of
91 type 'struct expr', and for each expression there is a single linked
92 list of occurrences. */
93
94 /* The table itself. */
95 static htab_t expr_table;
96
97 /* Expression elements in the hash table. */
98 struct expr
99 {
100 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
101 rtx expr;
102
103 /* The same hash for this entry. */
104 hashval_t hash;
105
106 /* List of available occurrence in basic blocks in the function. */
107 struct occr *avail_occr;
108 };
109
110 static struct obstack expr_obstack;
111
112 /* Occurrence of an expression.
113 There is at most one occurrence per basic block. If a pattern appears
114 more than once, the last appearance is used. */
115
116 struct occr
117 {
118 /* Next occurrence of this expression. */
119 struct occr *next;
120 /* The insn that computes the expression. */
121 rtx insn;
122 /* Nonzero if this [anticipatable] occurrence has been deleted. */
123 char deleted_p;
124 };
125
126 static struct obstack occr_obstack;
127
128 /* The following structure holds the information about the occurrences of
129 the redundant instructions. */
130 struct unoccr
131 {
132 struct unoccr *next;
133 edge pred;
134 rtx insn;
135 };
136
137 static struct obstack unoccr_obstack;
138
139 /* Array where each element is the CUID if the insn that last set the hard
140 register with the number of the element, since the start of the current
141 basic block.
142
143 This array is used during the building of the hash table (step 1) to
144 determine if a reg is killed before the end of a basic block.
145
146 It is also used when eliminating partial redundancies (step 2) to see
147 if a reg was modified since the start of a basic block. */
148 static int *reg_avail_info;
149
150 /* A list of insns that may modify memory within the current basic block. */
151 struct modifies_mem
152 {
153 rtx insn;
154 struct modifies_mem *next;
155 };
156 static struct modifies_mem *modifies_mem_list;
157
158 /* The modifies_mem structs also go on an obstack, only this obstack is
159 freed each time after completing the analysis or transformations on
160 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
161 object on the obstack to keep track of the bottom of the obstack. */
162 static struct obstack modifies_mem_obstack;
163 static struct modifies_mem *modifies_mem_obstack_bottom;
164
165 /* Mapping of insn UIDs to CUIDs.
166 CUIDs are like UIDs except they increase monotonically in each basic
167 block, have no gaps, and only apply to real insns. */
168 static int *uid_cuid;
169 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
170 \f
171
172 /* Helpers for memory allocation/freeing. */
173 static void alloc_mem (void);
174 static void free_mem (void);
175
176 /* Support for hash table construction and transformations. */
177 static bool oprs_unchanged_p (rtx, rtx, bool);
178 static void record_last_reg_set_info (rtx, rtx);
179 static void record_last_reg_set_info_regno (rtx, int);
180 static void record_last_mem_set_info (rtx);
181 static void record_last_set_info (rtx, const_rtx, void *);
182 static void record_opr_changes (rtx);
183
184 static void find_mem_conflicts (rtx, const_rtx, void *);
185 static int load_killed_in_block_p (int, rtx, bool);
186 static void reset_opr_set_tables (void);
187
188 /* Hash table support. */
189 static hashval_t hash_expr (rtx, int *);
190 static hashval_t hash_expr_for_htab (const void *);
191 static int expr_equiv_p (const void *, const void *);
192 static void insert_expr_in_table (rtx, rtx);
193 static struct expr *lookup_expr_in_table (rtx);
194 static int dump_hash_table_entry (void **, void *);
195 static void dump_hash_table (FILE *);
196
197 /* Helpers for eliminate_partially_redundant_load. */
198 static bool reg_killed_on_edge (rtx, edge);
199 static bool reg_used_on_edge (rtx, edge);
200
201 static rtx get_avail_load_store_reg (rtx);
202
203 static bool bb_has_well_behaved_predecessors (basic_block);
204 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
205 static void hash_scan_set (rtx);
206 static void compute_hash_table (void);
207
208 /* The work horses of this pass. */
209 static void eliminate_partially_redundant_load (basic_block,
210 rtx,
211 struct expr *);
212 static void eliminate_partially_redundant_loads (void);
213 \f
214
215 /* Allocate memory for the CUID mapping array and register/memory
216 tracking tables. */
217
218 static void
219 alloc_mem (void)
220 {
221 int i;
222 basic_block bb;
223 rtx insn;
224
225 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
226 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
227 i = 1;
228 FOR_EACH_BB (bb)
229 FOR_BB_INSNS (bb, insn)
230 {
231 if (INSN_P (insn))
232 uid_cuid[INSN_UID (insn)] = i++;
233 else
234 uid_cuid[INSN_UID (insn)] = i;
235 }
236
237 /* Allocate the available expressions hash table. We don't want to
238 make the hash table too small, but unnecessarily making it too large
239 also doesn't help. The i/4 is a gcse.c relic, and seems like a
240 reasonable choice. */
241 expr_table = htab_create (MAX (i / 4, 13),
242 hash_expr_for_htab, expr_equiv_p, NULL);
243
244 /* We allocate everything on obstacks because we often can roll back
245 the whole obstack to some point. Freeing obstacks is very fast. */
246 gcc_obstack_init (&expr_obstack);
247 gcc_obstack_init (&occr_obstack);
248 gcc_obstack_init (&unoccr_obstack);
249 gcc_obstack_init (&modifies_mem_obstack);
250
251 /* Working array used to track the last set for each register
252 in the current block. */
253 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
254
255 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
256 can roll it back in reset_opr_set_tables. */
257 modifies_mem_obstack_bottom =
258 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
259 sizeof (struct modifies_mem));
260 }
261
262 /* Free memory allocated by alloc_mem. */
263
264 static void
265 free_mem (void)
266 {
267 free (uid_cuid);
268
269 htab_delete (expr_table);
270
271 obstack_free (&expr_obstack, NULL);
272 obstack_free (&occr_obstack, NULL);
273 obstack_free (&unoccr_obstack, NULL);
274 obstack_free (&modifies_mem_obstack, NULL);
275
276 free (reg_avail_info);
277 }
278 \f
279
280 /* Hash expression X.
281 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
282 or if the expression contains something we don't want to insert in the
283 table. */
284
285 static hashval_t
286 hash_expr (rtx x, int *do_not_record_p)
287 {
288 *do_not_record_p = 0;
289 return hash_rtx (x, GET_MODE (x), do_not_record_p,
290 NULL, /*have_reg_qty=*/false);
291 }
292
293 /* Callback for hashtab.
294 Return the hash value for expression EXP. We don't actually hash
295 here, we just return the cached hash value. */
296
297 static hashval_t
298 hash_expr_for_htab (const void *expp)
299 {
300 const struct expr *const exp = (const struct expr *) expp;
301 return exp->hash;
302 }
303
304 /* Callback for hashtab.
305 Return nonzero if exp1 is equivalent to exp2. */
306
307 static int
308 expr_equiv_p (const void *exp1p, const void *exp2p)
309 {
310 const struct expr *const exp1 = (const struct expr *) exp1p;
311 const struct expr *const exp2 = (const struct expr *) exp2p;
312 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
313
314 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
315 return equiv_p;
316 }
317 \f
318
319 /* Insert expression X in INSN in the hash TABLE.
320 If it is already present, record it as the last occurrence in INSN's
321 basic block. */
322
323 static void
324 insert_expr_in_table (rtx x, rtx insn)
325 {
326 int do_not_record_p;
327 hashval_t hash;
328 struct expr *cur_expr, **slot;
329 struct occr *avail_occr, *last_occr = NULL;
330
331 hash = hash_expr (x, &do_not_record_p);
332
333 /* Do not insert expression in the table if it contains volatile operands,
334 or if hash_expr determines the expression is something we don't want
335 to or can't handle. */
336 if (do_not_record_p)
337 return;
338
339 /* We anticipate that redundant expressions are rare, so for convenience
340 allocate a new hash table element here already and set its fields.
341 If we don't do this, we need a hack with a static struct expr. Anyway,
342 obstack_free is really fast and one more obstack_alloc doesn't hurt if
343 we're going to see more expressions later on. */
344 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
345 sizeof (struct expr));
346 cur_expr->expr = x;
347 cur_expr->hash = hash;
348 cur_expr->avail_occr = NULL;
349
350 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
351 hash, INSERT);
352
353 if (! (*slot))
354 /* The expression isn't found, so insert it. */
355 *slot = cur_expr;
356 else
357 {
358 /* The expression is already in the table, so roll back the
359 obstack and use the existing table entry. */
360 obstack_free (&expr_obstack, cur_expr);
361 cur_expr = *slot;
362 }
363
364 /* Search for another occurrence in the same basic block. */
365 avail_occr = cur_expr->avail_occr;
366 while (avail_occr
367 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
368 {
369 /* If an occurrence isn't found, save a pointer to the end of
370 the list. */
371 last_occr = avail_occr;
372 avail_occr = avail_occr->next;
373 }
374
375 if (avail_occr)
376 /* Found another instance of the expression in the same basic block.
377 Prefer this occurrence to the currently recorded one. We want
378 the last one in the block and the block is scanned from start
379 to end. */
380 avail_occr->insn = insn;
381 else
382 {
383 /* First occurrence of this expression in this basic block. */
384 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
385 sizeof (struct occr));
386
387 /* First occurrence of this expression in any block? */
388 if (cur_expr->avail_occr == NULL)
389 cur_expr->avail_occr = avail_occr;
390 else
391 last_occr->next = avail_occr;
392
393 avail_occr->insn = insn;
394 avail_occr->next = NULL;
395 avail_occr->deleted_p = 0;
396 }
397 }
398 \f
399
400 /* Lookup pattern PAT in the expression hash table.
401 The result is a pointer to the table entry, or NULL if not found. */
402
403 static struct expr *
404 lookup_expr_in_table (rtx pat)
405 {
406 int do_not_record_p;
407 struct expr **slot, *tmp_expr;
408 hashval_t hash = hash_expr (pat, &do_not_record_p);
409
410 if (do_not_record_p)
411 return NULL;
412
413 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
414 sizeof (struct expr));
415 tmp_expr->expr = pat;
416 tmp_expr->hash = hash;
417 tmp_expr->avail_occr = NULL;
418
419 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
420 hash, INSERT);
421 obstack_free (&expr_obstack, tmp_expr);
422
423 if (!slot)
424 return NULL;
425 else
426 return (*slot);
427 }
428 \f
429
430 /* Dump all expressions and occurrences that are currently in the
431 expression hash table to FILE. */
432
433 /* This helper is called via htab_traverse. */
434 static int
435 dump_hash_table_entry (void **slot, void *filep)
436 {
437 struct expr *expr = (struct expr *) *slot;
438 FILE *file = (FILE *) filep;
439 struct occr *occr;
440
441 fprintf (file, "expr: ");
442 print_rtl (file, expr->expr);
443 fprintf (file,"\nhashcode: %u\n", expr->hash);
444 fprintf (file,"list of occurrences:\n");
445 occr = expr->avail_occr;
446 while (occr)
447 {
448 rtx insn = occr->insn;
449 print_rtl_single (file, insn);
450 fprintf (file, "\n");
451 occr = occr->next;
452 }
453 fprintf (file, "\n");
454 return 1;
455 }
456
457 static void
458 dump_hash_table (FILE *file)
459 {
460 fprintf (file, "\n\nexpression hash table\n");
461 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
462 (long) htab_size (expr_table),
463 (long) htab_elements (expr_table),
464 htab_collisions (expr_table));
465 if (htab_elements (expr_table) > 0)
466 {
467 fprintf (file, "\n\ntable entries:\n");
468 htab_traverse (expr_table, dump_hash_table_entry, file);
469 }
470 fprintf (file, "\n");
471 }
472 \f
473 /* Return true if register X is recorded as being set by an instruction
474 whose CUID is greater than the one given. */
475
476 static bool
477 reg_changed_after_insn_p (rtx x, int cuid)
478 {
479 unsigned int regno, end_regno;
480
481 regno = REGNO (x);
482 end_regno = END_HARD_REGNO (x);
483 do
484 if (reg_avail_info[regno] > cuid)
485 return true;
486 while (++regno < end_regno);
487 return false;
488 }
489
490 /* Return nonzero if the operands of expression X are unchanged
491 1) from the start of INSN's basic block up to but not including INSN
492 if AFTER_INSN is false, or
493 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
494
495 static bool
496 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
497 {
498 int i, j;
499 enum rtx_code code;
500 const char *fmt;
501
502 if (x == 0)
503 return 1;
504
505 code = GET_CODE (x);
506 switch (code)
507 {
508 case REG:
509 /* We are called after register allocation. */
510 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
511 if (after_insn)
512 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
513 else
514 return !reg_changed_after_insn_p (x, 0);
515
516 case MEM:
517 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
518 return 0;
519 else
520 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
521
522 case PC:
523 case CC0: /*FIXME*/
524 case CONST:
525 case CONST_INT:
526 case CONST_DOUBLE:
527 case CONST_FIXED:
528 case CONST_VECTOR:
529 case SYMBOL_REF:
530 case LABEL_REF:
531 case ADDR_VEC:
532 case ADDR_DIFF_VEC:
533 return 1;
534
535 case PRE_DEC:
536 case PRE_INC:
537 case POST_DEC:
538 case POST_INC:
539 case PRE_MODIFY:
540 case POST_MODIFY:
541 if (after_insn)
542 return 0;
543 break;
544
545 default:
546 break;
547 }
548
549 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
550 {
551 if (fmt[i] == 'e')
552 {
553 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
554 return 0;
555 }
556 else if (fmt[i] == 'E')
557 for (j = 0; j < XVECLEN (x, i); j++)
558 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
559 return 0;
560 }
561
562 return 1;
563 }
564 \f
565
566 /* Used for communication between find_mem_conflicts and
567 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
568 conflict between two memory references.
569 This is a bit of a hack to work around the limitations of note_stores. */
570 static int mems_conflict_p;
571
572 /* DEST is the output of an instruction. If it is a memory reference, and
573 possibly conflicts with the load found in DATA, then set mems_conflict_p
574 to a nonzero value. */
575
576 static void
577 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
578 void *data)
579 {
580 rtx mem_op = (rtx) data;
581
582 while (GET_CODE (dest) == SUBREG
583 || GET_CODE (dest) == ZERO_EXTRACT
584 || GET_CODE (dest) == STRICT_LOW_PART)
585 dest = XEXP (dest, 0);
586
587 /* If DEST is not a MEM, then it will not conflict with the load. Note
588 that function calls are assumed to clobber memory, but are handled
589 elsewhere. */
590 if (! MEM_P (dest))
591 return;
592
593 if (true_dependence (dest, GET_MODE (dest), mem_op,
594 rtx_addr_varies_p))
595 mems_conflict_p = 1;
596 }
597 \f
598
599 /* Return nonzero if the expression in X (a memory reference) is killed
600 in the current basic block before (if AFTER_INSN is false) or after
601 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
602
603 This function assumes that the modifies_mem table is flushed when
604 the hash table construction or redundancy elimination phases start
605 processing a new basic block. */
606
607 static int
608 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
609 {
610 struct modifies_mem *list_entry = modifies_mem_list;
611
612 while (list_entry)
613 {
614 rtx setter = list_entry->insn;
615
616 /* Ignore entries in the list that do not apply. */
617 if ((after_insn
618 && INSN_CUID (setter) < uid_limit)
619 || (! after_insn
620 && INSN_CUID (setter) > uid_limit))
621 {
622 list_entry = list_entry->next;
623 continue;
624 }
625
626 /* If SETTER is a call everything is clobbered. Note that calls
627 to pure functions are never put on the list, so we need not
628 worry about them. */
629 if (CALL_P (setter))
630 return 1;
631
632 /* SETTER must be an insn of some kind that sets memory. Call
633 note_stores to examine each hunk of memory that is modified.
634 It will set mems_conflict_p to nonzero if there may be a
635 conflict between X and SETTER. */
636 mems_conflict_p = 0;
637 note_stores (PATTERN (setter), find_mem_conflicts, x);
638 if (mems_conflict_p)
639 return 1;
640
641 list_entry = list_entry->next;
642 }
643 return 0;
644 }
645 \f
646
647 /* Record register first/last/block set information for REGNO in INSN. */
648
649 static inline void
650 record_last_reg_set_info (rtx insn, rtx reg)
651 {
652 unsigned int regno, end_regno;
653
654 regno = REGNO (reg);
655 end_regno = END_HARD_REGNO (reg);
656 do
657 reg_avail_info[regno] = INSN_CUID (insn);
658 while (++regno < end_regno);
659 }
660
661 static inline void
662 record_last_reg_set_info_regno (rtx insn, int regno)
663 {
664 reg_avail_info[regno] = INSN_CUID (insn);
665 }
666
667
668 /* Record memory modification information for INSN. We do not actually care
669 about the memory location(s) that are set, or even how they are set (consider
670 a CALL_INSN). We merely need to record which insns modify memory. */
671
672 static void
673 record_last_mem_set_info (rtx insn)
674 {
675 struct modifies_mem *list_entry;
676
677 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
678 sizeof (struct modifies_mem));
679 list_entry->insn = insn;
680 list_entry->next = modifies_mem_list;
681 modifies_mem_list = list_entry;
682 }
683
684 /* Called from compute_hash_table via note_stores to handle one
685 SET or CLOBBER in an insn. DATA is really the instruction in which
686 the SET is taking place. */
687
688 static void
689 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
690 {
691 rtx last_set_insn = (rtx) data;
692
693 if (GET_CODE (dest) == SUBREG)
694 dest = SUBREG_REG (dest);
695
696 if (REG_P (dest))
697 record_last_reg_set_info (last_set_insn, dest);
698 else if (MEM_P (dest))
699 {
700 /* Ignore pushes, they don't clobber memory. They may still
701 clobber the stack pointer though. Some targets do argument
702 pushes without adding REG_INC notes. See e.g. PR25196,
703 where a pushsi2 on i386 doesn't have REG_INC notes. Note
704 such changes here too. */
705 if (! push_operand (dest, GET_MODE (dest)))
706 record_last_mem_set_info (last_set_insn);
707 else
708 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
709 }
710 }
711
712
713 /* Reset tables used to keep track of what's still available since the
714 start of the block. */
715
716 static void
717 reset_opr_set_tables (void)
718 {
719 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
720 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
721 modifies_mem_list = NULL;
722 }
723 \f
724
725 /* Record things set by INSN.
726 This data is used by oprs_unchanged_p. */
727
728 static void
729 record_opr_changes (rtx insn)
730 {
731 rtx note;
732
733 /* Find all stores and record them. */
734 note_stores (PATTERN (insn), record_last_set_info, insn);
735
736 /* Also record autoincremented REGs for this insn as changed. */
737 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
738 if (REG_NOTE_KIND (note) == REG_INC)
739 record_last_reg_set_info (insn, XEXP (note, 0));
740
741 /* Finally, if this is a call, record all call clobbers. */
742 if (CALL_P (insn))
743 {
744 unsigned int regno;
745 rtx link, x;
746
747 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
748 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
749 record_last_reg_set_info_regno (insn, regno);
750
751 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
752 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
753 {
754 x = XEXP (XEXP (link, 0), 0);
755 if (REG_P (x))
756 {
757 gcc_assert (HARD_REGISTER_P (x));
758 record_last_reg_set_info (insn, x);
759 }
760 }
761
762 if (! RTL_CONST_OR_PURE_CALL_P (insn))
763 record_last_mem_set_info (insn);
764 }
765 }
766 \f
767
768 /* Scan the pattern of INSN and add an entry to the hash TABLE.
769 After reload we are interested in loads/stores only. */
770
771 static void
772 hash_scan_set (rtx insn)
773 {
774 rtx pat = PATTERN (insn);
775 rtx src = SET_SRC (pat);
776 rtx dest = SET_DEST (pat);
777
778 /* We are only interested in loads and stores. */
779 if (! MEM_P (src) && ! MEM_P (dest))
780 return;
781
782 /* Don't mess with jumps and nops. */
783 if (JUMP_P (insn) || set_noop_p (pat))
784 return;
785
786 if (REG_P (dest))
787 {
788 if (/* Don't CSE something if we can't do a reg/reg copy. */
789 can_copy_p (GET_MODE (dest))
790 /* Is SET_SRC something we want to gcse? */
791 && general_operand (src, GET_MODE (src))
792 #ifdef STACK_REGS
793 /* Never consider insns touching the register stack. It may
794 create situations that reg-stack cannot handle (e.g. a stack
795 register live across an abnormal edge). */
796 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
797 #endif
798 /* An expression is not available if its operands are
799 subsequently modified, including this insn. */
800 && oprs_unchanged_p (src, insn, true))
801 {
802 insert_expr_in_table (src, insn);
803 }
804 }
805 else if (REG_P (src))
806 {
807 /* Only record sets of pseudo-regs in the hash table. */
808 if (/* Don't CSE something if we can't do a reg/reg copy. */
809 can_copy_p (GET_MODE (src))
810 /* Is SET_DEST something we want to gcse? */
811 && general_operand (dest, GET_MODE (dest))
812 #ifdef STACK_REGS
813 /* As above for STACK_REGS. */
814 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
815 #endif
816 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
817 /* Check if the memory expression is killed after insn. */
818 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
819 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
820 {
821 insert_expr_in_table (dest, insn);
822 }
823 }
824 }
825 \f
826
827 /* Create hash table of memory expressions available at end of basic
828 blocks. Basically you should think of this hash table as the
829 representation of AVAIL_OUT. This is the set of expressions that
830 is generated in a basic block and not killed before the end of the
831 same basic block. Notice that this is really a local computation. */
832
833 static void
834 compute_hash_table (void)
835 {
836 basic_block bb;
837
838 FOR_EACH_BB (bb)
839 {
840 rtx insn;
841
842 /* First pass over the instructions records information used to
843 determine when registers and memory are last set.
844 Since we compute a "local" AVAIL_OUT, reset the tables that
845 help us keep track of what has been modified since the start
846 of the block. */
847 reset_opr_set_tables ();
848 FOR_BB_INSNS (bb, insn)
849 {
850 if (INSN_P (insn))
851 record_opr_changes (insn);
852 }
853
854 /* The next pass actually builds the hash table. */
855 FOR_BB_INSNS (bb, insn)
856 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
857 hash_scan_set (insn);
858 }
859 }
860 \f
861
862 /* Check if register REG is killed in any insn waiting to be inserted on
863 edge E. This function is required to check that our data flow analysis
864 is still valid prior to commit_edge_insertions. */
865
866 static bool
867 reg_killed_on_edge (rtx reg, edge e)
868 {
869 rtx insn;
870
871 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
872 if (INSN_P (insn) && reg_set_p (reg, insn))
873 return true;
874
875 return false;
876 }
877
878 /* Similar to above - check if register REG is used in any insn waiting
879 to be inserted on edge E.
880 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
881 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
882
883 static bool
884 reg_used_on_edge (rtx reg, edge e)
885 {
886 rtx insn;
887
888 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
889 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
890 return true;
891
892 return false;
893 }
894 \f
895 /* Return the loaded/stored register of a load/store instruction. */
896
897 static rtx
898 get_avail_load_store_reg (rtx insn)
899 {
900 if (REG_P (SET_DEST (PATTERN (insn))))
901 /* A load. */
902 return SET_DEST(PATTERN(insn));
903 else
904 {
905 /* A store. */
906 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
907 return SET_SRC (PATTERN (insn));
908 }
909 }
910
911 /* Return nonzero if the predecessors of BB are "well behaved". */
912
913 static bool
914 bb_has_well_behaved_predecessors (basic_block bb)
915 {
916 edge pred;
917 edge_iterator ei;
918
919 if (EDGE_COUNT (bb->preds) == 0)
920 return false;
921
922 FOR_EACH_EDGE (pred, ei, bb->preds)
923 {
924 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
925 return false;
926
927 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
928 return false;
929 }
930 return true;
931 }
932
933
934 /* Search for the occurrences of expression in BB. */
935
936 static struct occr*
937 get_bb_avail_insn (basic_block bb, struct occr *occr)
938 {
939 for (; occr != NULL; occr = occr->next)
940 if (BLOCK_FOR_INSN (occr->insn) == bb)
941 return occr;
942 return NULL;
943 }
944
945
946 /* This handles the case where several stores feed a partially redundant
947 load. It checks if the redundancy elimination is possible and if it's
948 worth it.
949
950 Redundancy elimination is possible if,
951 1) None of the operands of an insn have been modified since the start
952 of the current basic block.
953 2) In any predecessor of the current basic block, the same expression
954 is generated.
955
956 See the function body for the heuristics that determine if eliminating
957 a redundancy is also worth doing, assuming it is possible. */
958
959 static void
960 eliminate_partially_redundant_load (basic_block bb, rtx insn,
961 struct expr *expr)
962 {
963 edge pred;
964 rtx avail_insn = NULL_RTX;
965 rtx avail_reg;
966 rtx dest, pat;
967 struct occr *a_occr;
968 struct unoccr *occr, *avail_occrs = NULL;
969 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
970 int npred_ok = 0;
971 gcov_type ok_count = 0; /* Redundant load execution count. */
972 gcov_type critical_count = 0; /* Execution count of critical edges. */
973 edge_iterator ei;
974 bool critical_edge_split = false;
975
976 /* The execution count of the loads to be added to make the
977 load fully redundant. */
978 gcov_type not_ok_count = 0;
979 basic_block pred_bb;
980
981 pat = PATTERN (insn);
982 dest = SET_DEST (pat);
983
984 /* Check that the loaded register is not used, set, or killed from the
985 beginning of the block. */
986 if (reg_changed_after_insn_p (dest, 0)
987 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
988 return;
989
990 /* Check potential for replacing load with copy for predecessors. */
991 FOR_EACH_EDGE (pred, ei, bb->preds)
992 {
993 rtx next_pred_bb_end;
994
995 avail_insn = NULL_RTX;
996 avail_reg = NULL_RTX;
997 pred_bb = pred->src;
998 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
999 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1000 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1001 {
1002 /* Check if the loaded register is not used. */
1003 avail_insn = a_occr->insn;
1004 avail_reg = get_avail_load_store_reg (avail_insn);
1005 gcc_assert (avail_reg);
1006
1007 /* Make sure we can generate a move from register avail_reg to
1008 dest. */
1009 extract_insn (gen_move_insn (copy_rtx (dest),
1010 copy_rtx (avail_reg)));
1011 if (! constrain_operands (1)
1012 || reg_killed_on_edge (avail_reg, pred)
1013 || reg_used_on_edge (dest, pred))
1014 {
1015 avail_insn = NULL;
1016 continue;
1017 }
1018 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1019 /* AVAIL_INSN remains non-null. */
1020 break;
1021 else
1022 avail_insn = NULL;
1023 }
1024
1025 if (EDGE_CRITICAL_P (pred))
1026 critical_count += pred->count;
1027
1028 if (avail_insn != NULL_RTX)
1029 {
1030 npred_ok++;
1031 ok_count += pred->count;
1032 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1033 copy_rtx (avail_reg)))))
1034 {
1035 /* Check if there is going to be a split. */
1036 if (EDGE_CRITICAL_P (pred))
1037 critical_edge_split = true;
1038 }
1039 else /* Its a dead move no need to generate. */
1040 continue;
1041 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1042 sizeof (struct unoccr));
1043 occr->insn = avail_insn;
1044 occr->pred = pred;
1045 occr->next = avail_occrs;
1046 avail_occrs = occr;
1047 if (! rollback_unoccr)
1048 rollback_unoccr = occr;
1049 }
1050 else
1051 {
1052 /* Adding a load on a critical edge will cause a split. */
1053 if (EDGE_CRITICAL_P (pred))
1054 critical_edge_split = true;
1055 not_ok_count += pred->count;
1056 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1057 sizeof (struct unoccr));
1058 unoccr->insn = NULL_RTX;
1059 unoccr->pred = pred;
1060 unoccr->next = unavail_occrs;
1061 unavail_occrs = unoccr;
1062 if (! rollback_unoccr)
1063 rollback_unoccr = unoccr;
1064 }
1065 }
1066
1067 if (/* No load can be replaced by copy. */
1068 npred_ok == 0
1069 /* Prevent exploding the code. */
1070 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1071 /* If we don't have profile information we cannot tell if splitting
1072 a critical edge is profitable or not so don't do it. */
1073 || ((! profile_info || ! flag_branch_probabilities
1074 || targetm.cannot_modify_jumps_p ())
1075 && critical_edge_split))
1076 goto cleanup;
1077
1078 /* Check if it's worth applying the partial redundancy elimination. */
1079 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1080 goto cleanup;
1081 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1082 goto cleanup;
1083
1084 /* Generate moves to the loaded register from where
1085 the memory is available. */
1086 for (occr = avail_occrs; occr; occr = occr->next)
1087 {
1088 avail_insn = occr->insn;
1089 pred = occr->pred;
1090 /* Set avail_reg to be the register having the value of the
1091 memory. */
1092 avail_reg = get_avail_load_store_reg (avail_insn);
1093 gcc_assert (avail_reg);
1094
1095 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1096 copy_rtx (avail_reg)),
1097 pred);
1098 stats.moves_inserted++;
1099
1100 if (dump_file)
1101 fprintf (dump_file,
1102 "generating move from %d to %d on edge from %d to %d\n",
1103 REGNO (avail_reg),
1104 REGNO (dest),
1105 pred->src->index,
1106 pred->dest->index);
1107 }
1108
1109 /* Regenerate loads where the memory is unavailable. */
1110 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1111 {
1112 pred = unoccr->pred;
1113 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1114 stats.copies_inserted++;
1115
1116 if (dump_file)
1117 {
1118 fprintf (dump_file,
1119 "generating on edge from %d to %d a copy of load: ",
1120 pred->src->index,
1121 pred->dest->index);
1122 print_rtl (dump_file, PATTERN (insn));
1123 fprintf (dump_file, "\n");
1124 }
1125 }
1126
1127 /* Delete the insn if it is not available in this block and mark it
1128 for deletion if it is available. If insn is available it may help
1129 discover additional redundancies, so mark it for later deletion. */
1130 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1131 a_occr && (a_occr->insn != insn);
1132 a_occr = get_bb_avail_insn (bb, a_occr->next));
1133
1134 if (!a_occr)
1135 {
1136 stats.insns_deleted++;
1137
1138 if (dump_file)
1139 {
1140 fprintf (dump_file, "deleting insn:\n");
1141 print_rtl_single (dump_file, insn);
1142 fprintf (dump_file, "\n");
1143 }
1144 delete_insn (insn);
1145 }
1146 else
1147 a_occr->deleted_p = 1;
1148
1149 cleanup:
1150 if (rollback_unoccr)
1151 obstack_free (&unoccr_obstack, rollback_unoccr);
1152 }
1153
1154 /* Performing the redundancy elimination as described before. */
1155
1156 static void
1157 eliminate_partially_redundant_loads (void)
1158 {
1159 rtx insn;
1160 basic_block bb;
1161
1162 /* Note we start at block 1. */
1163
1164 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1165 return;
1166
1167 FOR_BB_BETWEEN (bb,
1168 ENTRY_BLOCK_PTR->next_bb->next_bb,
1169 EXIT_BLOCK_PTR,
1170 next_bb)
1171 {
1172 /* Don't try anything on basic blocks with strange predecessors. */
1173 if (! bb_has_well_behaved_predecessors (bb))
1174 continue;
1175
1176 /* Do not try anything on cold basic blocks. */
1177 if (optimize_bb_for_size_p (bb))
1178 continue;
1179
1180 /* Reset the table of things changed since the start of the current
1181 basic block. */
1182 reset_opr_set_tables ();
1183
1184 /* Look at all insns in the current basic block and see if there are
1185 any loads in it that we can record. */
1186 FOR_BB_INSNS (bb, insn)
1187 {
1188 /* Is it a load - of the form (set (reg) (mem))? */
1189 if (NONJUMP_INSN_P (insn)
1190 && GET_CODE (PATTERN (insn)) == SET
1191 && REG_P (SET_DEST (PATTERN (insn)))
1192 && MEM_P (SET_SRC (PATTERN (insn))))
1193 {
1194 rtx pat = PATTERN (insn);
1195 rtx src = SET_SRC (pat);
1196 struct expr *expr;
1197
1198 if (!MEM_VOLATILE_P (src)
1199 && GET_MODE (src) != BLKmode
1200 && general_operand (src, GET_MODE (src))
1201 /* Are the operands unchanged since the start of the
1202 block? */
1203 && oprs_unchanged_p (src, insn, false)
1204 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1205 && !side_effects_p (src)
1206 /* Is the expression recorded? */
1207 && (expr = lookup_expr_in_table (src)) != NULL)
1208 {
1209 /* We now have a load (insn) and an available memory at
1210 its BB start (expr). Try to remove the loads if it is
1211 redundant. */
1212 eliminate_partially_redundant_load (bb, insn, expr);
1213 }
1214 }
1215
1216 /* Keep track of everything modified by this insn, so that we
1217 know what has been modified since the start of the current
1218 basic block. */
1219 if (INSN_P (insn))
1220 record_opr_changes (insn);
1221 }
1222 }
1223
1224 commit_edge_insertions ();
1225 }
1226
1227 /* Go over the expression hash table and delete insns that were
1228 marked for later deletion. */
1229
1230 /* This helper is called via htab_traverse. */
1231 static int
1232 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1233 {
1234 struct expr *expr = (struct expr *) *slot;
1235 struct occr *occr;
1236
1237 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1238 {
1239 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1240 {
1241 delete_insn (occr->insn);
1242 stats.insns_deleted++;
1243
1244 if (dump_file)
1245 {
1246 fprintf (dump_file, "deleting insn:\n");
1247 print_rtl_single (dump_file, occr->insn);
1248 fprintf (dump_file, "\n");
1249 }
1250 }
1251 }
1252
1253 return 1;
1254 }
1255
1256 static void
1257 delete_redundant_insns (void)
1258 {
1259 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1260 if (dump_file)
1261 fprintf (dump_file, "\n");
1262 }
1263
1264 /* Main entry point of the GCSE after reload - clean some redundant loads
1265 due to spilling. */
1266
1267 static void
1268 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1269 {
1270
1271 memset (&stats, 0, sizeof (stats));
1272
1273 /* Allocate memory for this pass.
1274 Also computes and initializes the insns' CUIDs. */
1275 alloc_mem ();
1276
1277 /* We need alias analysis. */
1278 init_alias_analysis ();
1279
1280 compute_hash_table ();
1281
1282 if (dump_file)
1283 dump_hash_table (dump_file);
1284
1285 if (htab_elements (expr_table) > 0)
1286 {
1287 eliminate_partially_redundant_loads ();
1288 delete_redundant_insns ();
1289
1290 if (dump_file)
1291 {
1292 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1293 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1294 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1295 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1296 fprintf (dump_file, "\n\n");
1297 }
1298 }
1299
1300 /* We are finished with alias. */
1301 end_alias_analysis ();
1302
1303 free_mem ();
1304 }
1305
1306 \f
1307 static bool
1308 gate_handle_gcse2 (void)
1309 {
1310 return (optimize > 0 && flag_gcse_after_reload
1311 && optimize_function_for_speed_p (cfun));
1312 }
1313
1314
1315 static unsigned int
1316 rest_of_handle_gcse2 (void)
1317 {
1318 gcse_after_reload_main (get_insns ());
1319 rebuild_jump_labels (get_insns ());
1320 return 0;
1321 }
1322
1323 struct rtl_opt_pass pass_gcse2 =
1324 {
1325 {
1326 RTL_PASS,
1327 "gcse2", /* name */
1328 gate_handle_gcse2, /* gate */
1329 rest_of_handle_gcse2, /* execute */
1330 NULL, /* sub */
1331 NULL, /* next */
1332 0, /* static_pass_number */
1333 TV_GCSE_AFTER_RELOAD, /* tv_id */
1334 0, /* properties_required */
1335 0, /* properties_provided */
1336 0, /* properties_destroyed */
1337 0, /* todo_flags_start */
1338 TODO_dump_func | TODO_verify_rtl_sharing
1339 | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
1340 }
1341 };
1342