combine.c (record_dead_and_set_regs): Iterate over hard register set with a hard_reg_...
[gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "basic-block.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "except.h"
39 #include "intl.h"
40 #include "obstack.h"
41 #include "hashtab.h"
42 #include "params.h"
43 #include "target.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
52
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
58
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
70
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
76 */
77 \f
78
79 /* Keep statistics of this pass. */
80 static struct
81 {
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85 } stats;
86
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
90
91 /* The table itself. */
92 static htab_t expr_table;
93
94 /* Expression elements in the hash table. */
95 struct expr
96 {
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
98 rtx expr;
99
100 /* The same hash for this entry. */
101 hashval_t hash;
102
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr *avail_occr;
105 };
106
107 static struct obstack expr_obstack;
108
109 /* Occurrence of an expression.
110 There is at most one occurrence per basic block. If a pattern appears
111 more than once, the last appearance is used. */
112
113 struct occr
114 {
115 /* Next occurrence of this expression. */
116 struct occr *next;
117 /* The insn that computes the expression. */
118 rtx insn;
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
120 char deleted_p;
121 };
122
123 static struct obstack occr_obstack;
124
125 /* The following structure holds the information about the occurrences of
126 the redundant instructions. */
127 struct unoccr
128 {
129 struct unoccr *next;
130 edge pred;
131 rtx insn;
132 };
133
134 static struct obstack unoccr_obstack;
135
136 /* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
138 basic block.
139
140 This array is used during the building of the hash table (step 1) to
141 determine if a reg is killed before the end of a basic block.
142
143 It is also used when eliminating partial redundancies (step 2) to see
144 if a reg was modified since the start of a basic block. */
145 static int *reg_avail_info;
146
147 /* A list of insns that may modify memory within the current basic block. */
148 struct modifies_mem
149 {
150 rtx insn;
151 struct modifies_mem *next;
152 };
153 static struct modifies_mem *modifies_mem_list;
154
155 /* The modifies_mem structs also go on an obstack, only this obstack is
156 freed each time after completing the analysis or transformations on
157 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
158 object on the obstack to keep track of the bottom of the obstack. */
159 static struct obstack modifies_mem_obstack;
160 static struct modifies_mem *modifies_mem_obstack_bottom;
161
162 /* Mapping of insn UIDs to CUIDs.
163 CUIDs are like UIDs except they increase monotonically in each basic
164 block, have no gaps, and only apply to real insns. */
165 static int *uid_cuid;
166 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
167 \f
168
169 /* Helpers for memory allocation/freeing. */
170 static void alloc_mem (void);
171 static void free_mem (void);
172
173 /* Support for hash table construction and transformations. */
174 static bool oprs_unchanged_p (rtx, rtx, bool);
175 static void record_last_reg_set_info (rtx, rtx);
176 static void record_last_reg_set_info_regno (rtx, int);
177 static void record_last_mem_set_info (rtx);
178 static void record_last_set_info (rtx, const_rtx, void *);
179 static void record_opr_changes (rtx);
180
181 static void find_mem_conflicts (rtx, const_rtx, void *);
182 static int load_killed_in_block_p (int, rtx, bool);
183 static void reset_opr_set_tables (void);
184
185 /* Hash table support. */
186 static hashval_t hash_expr (rtx, int *);
187 static hashval_t hash_expr_for_htab (const void *);
188 static int expr_equiv_p (const void *, const void *);
189 static void insert_expr_in_table (rtx, rtx);
190 static struct expr *lookup_expr_in_table (rtx);
191 static int dump_hash_table_entry (void **, void *);
192 static void dump_hash_table (FILE *);
193
194 /* Helpers for eliminate_partially_redundant_load. */
195 static bool reg_killed_on_edge (rtx, edge);
196 static bool reg_used_on_edge (rtx, edge);
197
198 static rtx get_avail_load_store_reg (rtx);
199
200 static bool bb_has_well_behaved_predecessors (basic_block);
201 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
202 static void hash_scan_set (rtx);
203 static void compute_hash_table (void);
204
205 /* The work horses of this pass. */
206 static void eliminate_partially_redundant_load (basic_block,
207 rtx,
208 struct expr *);
209 static void eliminate_partially_redundant_loads (void);
210 \f
211
212 /* Allocate memory for the CUID mapping array and register/memory
213 tracking tables. */
214
215 static void
216 alloc_mem (void)
217 {
218 int i;
219 basic_block bb;
220 rtx insn;
221
222 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
223 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
224 i = 1;
225 FOR_EACH_BB (bb)
226 FOR_BB_INSNS (bb, insn)
227 {
228 if (INSN_P (insn))
229 uid_cuid[INSN_UID (insn)] = i++;
230 else
231 uid_cuid[INSN_UID (insn)] = i;
232 }
233
234 /* Allocate the available expressions hash table. We don't want to
235 make the hash table too small, but unnecessarily making it too large
236 also doesn't help. The i/4 is a gcse.c relic, and seems like a
237 reasonable choice. */
238 expr_table = htab_create (MAX (i / 4, 13),
239 hash_expr_for_htab, expr_equiv_p, NULL);
240
241 /* We allocate everything on obstacks because we often can roll back
242 the whole obstack to some point. Freeing obstacks is very fast. */
243 gcc_obstack_init (&expr_obstack);
244 gcc_obstack_init (&occr_obstack);
245 gcc_obstack_init (&unoccr_obstack);
246 gcc_obstack_init (&modifies_mem_obstack);
247
248 /* Working array used to track the last set for each register
249 in the current block. */
250 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
251
252 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
253 can roll it back in reset_opr_set_tables. */
254 modifies_mem_obstack_bottom =
255 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
256 sizeof (struct modifies_mem));
257 }
258
259 /* Free memory allocated by alloc_mem. */
260
261 static void
262 free_mem (void)
263 {
264 free (uid_cuid);
265
266 htab_delete (expr_table);
267
268 obstack_free (&expr_obstack, NULL);
269 obstack_free (&occr_obstack, NULL);
270 obstack_free (&unoccr_obstack, NULL);
271 obstack_free (&modifies_mem_obstack, NULL);
272
273 free (reg_avail_info);
274 }
275 \f
276
277 /* Hash expression X.
278 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
279 or if the expression contains something we don't want to insert in the
280 table. */
281
282 static hashval_t
283 hash_expr (rtx x, int *do_not_record_p)
284 {
285 *do_not_record_p = 0;
286 return hash_rtx (x, GET_MODE (x), do_not_record_p,
287 NULL, /*have_reg_qty=*/false);
288 }
289
290 /* Callback for hashtab.
291 Return the hash value for expression EXP. We don't actually hash
292 here, we just return the cached hash value. */
293
294 static hashval_t
295 hash_expr_for_htab (const void *expp)
296 {
297 const struct expr *const exp = (const struct expr *) expp;
298 return exp->hash;
299 }
300
301 /* Callback for hashtab.
302 Return nonzero if exp1 is equivalent to exp2. */
303
304 static int
305 expr_equiv_p (const void *exp1p, const void *exp2p)
306 {
307 const struct expr *const exp1 = (const struct expr *) exp1p;
308 const struct expr *const exp2 = (const struct expr *) exp2p;
309 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
310
311 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
312 return equiv_p;
313 }
314 \f
315
316 /* Insert expression X in INSN in the hash TABLE.
317 If it is already present, record it as the last occurrence in INSN's
318 basic block. */
319
320 static void
321 insert_expr_in_table (rtx x, rtx insn)
322 {
323 int do_not_record_p;
324 hashval_t hash;
325 struct expr *cur_expr, **slot;
326 struct occr *avail_occr, *last_occr = NULL;
327
328 hash = hash_expr (x, &do_not_record_p);
329
330 /* Do not insert expression in the table if it contains volatile operands,
331 or if hash_expr determines the expression is something we don't want
332 to or can't handle. */
333 if (do_not_record_p)
334 return;
335
336 /* We anticipate that redundant expressions are rare, so for convenience
337 allocate a new hash table element here already and set its fields.
338 If we don't do this, we need a hack with a static struct expr. Anyway,
339 obstack_free is really fast and one more obstack_alloc doesn't hurt if
340 we're going to see more expressions later on. */
341 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
342 sizeof (struct expr));
343 cur_expr->expr = x;
344 cur_expr->hash = hash;
345 cur_expr->avail_occr = NULL;
346
347 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
348 hash, INSERT);
349
350 if (! (*slot))
351 /* The expression isn't found, so insert it. */
352 *slot = cur_expr;
353 else
354 {
355 /* The expression is already in the table, so roll back the
356 obstack and use the existing table entry. */
357 obstack_free (&expr_obstack, cur_expr);
358 cur_expr = *slot;
359 }
360
361 /* Search for another occurrence in the same basic block. */
362 avail_occr = cur_expr->avail_occr;
363 while (avail_occr
364 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
365 {
366 /* If an occurrence isn't found, save a pointer to the end of
367 the list. */
368 last_occr = avail_occr;
369 avail_occr = avail_occr->next;
370 }
371
372 if (avail_occr)
373 /* Found another instance of the expression in the same basic block.
374 Prefer this occurrence to the currently recorded one. We want
375 the last one in the block and the block is scanned from start
376 to end. */
377 avail_occr->insn = insn;
378 else
379 {
380 /* First occurrence of this expression in this basic block. */
381 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
382 sizeof (struct occr));
383
384 /* First occurrence of this expression in any block? */
385 if (cur_expr->avail_occr == NULL)
386 cur_expr->avail_occr = avail_occr;
387 else
388 last_occr->next = avail_occr;
389
390 avail_occr->insn = insn;
391 avail_occr->next = NULL;
392 avail_occr->deleted_p = 0;
393 }
394 }
395 \f
396
397 /* Lookup pattern PAT in the expression hash table.
398 The result is a pointer to the table entry, or NULL if not found. */
399
400 static struct expr *
401 lookup_expr_in_table (rtx pat)
402 {
403 int do_not_record_p;
404 struct expr **slot, *tmp_expr;
405 hashval_t hash = hash_expr (pat, &do_not_record_p);
406
407 if (do_not_record_p)
408 return NULL;
409
410 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
411 sizeof (struct expr));
412 tmp_expr->expr = pat;
413 tmp_expr->hash = hash;
414 tmp_expr->avail_occr = NULL;
415
416 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
417 hash, INSERT);
418 obstack_free (&expr_obstack, tmp_expr);
419
420 if (!slot)
421 return NULL;
422 else
423 return (*slot);
424 }
425 \f
426
427 /* Dump all expressions and occurrences that are currently in the
428 expression hash table to FILE. */
429
430 /* This helper is called via htab_traverse. */
431 static int
432 dump_hash_table_entry (void **slot, void *filep)
433 {
434 struct expr *expr = (struct expr *) *slot;
435 FILE *file = (FILE *) filep;
436 struct occr *occr;
437
438 fprintf (file, "expr: ");
439 print_rtl (file, expr->expr);
440 fprintf (file,"\nhashcode: %u\n", expr->hash);
441 fprintf (file,"list of occurrences:\n");
442 occr = expr->avail_occr;
443 while (occr)
444 {
445 rtx insn = occr->insn;
446 print_rtl_single (file, insn);
447 fprintf (file, "\n");
448 occr = occr->next;
449 }
450 fprintf (file, "\n");
451 return 1;
452 }
453
454 static void
455 dump_hash_table (FILE *file)
456 {
457 fprintf (file, "\n\nexpression hash table\n");
458 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
459 (long) htab_size (expr_table),
460 (long) htab_elements (expr_table),
461 htab_collisions (expr_table));
462 if (htab_elements (expr_table) > 0)
463 {
464 fprintf (file, "\n\ntable entries:\n");
465 htab_traverse (expr_table, dump_hash_table_entry, file);
466 }
467 fprintf (file, "\n");
468 }
469 \f
470 /* Return true if register X is recorded as being set by an instruction
471 whose CUID is greater than the one given. */
472
473 static bool
474 reg_changed_after_insn_p (rtx x, int cuid)
475 {
476 unsigned int regno, end_regno;
477
478 regno = REGNO (x);
479 end_regno = END_HARD_REGNO (x);
480 do
481 if (reg_avail_info[regno] > cuid)
482 return true;
483 while (++regno < end_regno);
484 return false;
485 }
486
487 /* Return nonzero if the operands of expression X are unchanged
488 1) from the start of INSN's basic block up to but not including INSN
489 if AFTER_INSN is false, or
490 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
491
492 static bool
493 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
494 {
495 int i, j;
496 enum rtx_code code;
497 const char *fmt;
498
499 if (x == 0)
500 return 1;
501
502 code = GET_CODE (x);
503 switch (code)
504 {
505 case REG:
506 /* We are called after register allocation. */
507 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
508 if (after_insn)
509 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
510 else
511 return !reg_changed_after_insn_p (x, 0);
512
513 case MEM:
514 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
515 return 0;
516 else
517 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
518
519 case PC:
520 case CC0: /*FIXME*/
521 case CONST:
522 CASE_CONST_ANY:
523 case SYMBOL_REF:
524 case LABEL_REF:
525 case ADDR_VEC:
526 case ADDR_DIFF_VEC:
527 return 1;
528
529 case PRE_DEC:
530 case PRE_INC:
531 case POST_DEC:
532 case POST_INC:
533 case PRE_MODIFY:
534 case POST_MODIFY:
535 if (after_insn)
536 return 0;
537 break;
538
539 default:
540 break;
541 }
542
543 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
544 {
545 if (fmt[i] == 'e')
546 {
547 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
548 return 0;
549 }
550 else if (fmt[i] == 'E')
551 for (j = 0; j < XVECLEN (x, i); j++)
552 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
553 return 0;
554 }
555
556 return 1;
557 }
558 \f
559
560 /* Used for communication between find_mem_conflicts and
561 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
562 conflict between two memory references.
563 This is a bit of a hack to work around the limitations of note_stores. */
564 static int mems_conflict_p;
565
566 /* DEST is the output of an instruction. If it is a memory reference, and
567 possibly conflicts with the load found in DATA, then set mems_conflict_p
568 to a nonzero value. */
569
570 static void
571 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
572 void *data)
573 {
574 rtx mem_op = (rtx) data;
575
576 while (GET_CODE (dest) == SUBREG
577 || GET_CODE (dest) == ZERO_EXTRACT
578 || GET_CODE (dest) == STRICT_LOW_PART)
579 dest = XEXP (dest, 0);
580
581 /* If DEST is not a MEM, then it will not conflict with the load. Note
582 that function calls are assumed to clobber memory, but are handled
583 elsewhere. */
584 if (! MEM_P (dest))
585 return;
586
587 if (true_dependence (dest, GET_MODE (dest), mem_op))
588 mems_conflict_p = 1;
589 }
590 \f
591
592 /* Return nonzero if the expression in X (a memory reference) is killed
593 in the current basic block before (if AFTER_INSN is false) or after
594 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
595
596 This function assumes that the modifies_mem table is flushed when
597 the hash table construction or redundancy elimination phases start
598 processing a new basic block. */
599
600 static int
601 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
602 {
603 struct modifies_mem *list_entry = modifies_mem_list;
604
605 while (list_entry)
606 {
607 rtx setter = list_entry->insn;
608
609 /* Ignore entries in the list that do not apply. */
610 if ((after_insn
611 && INSN_CUID (setter) < uid_limit)
612 || (! after_insn
613 && INSN_CUID (setter) > uid_limit))
614 {
615 list_entry = list_entry->next;
616 continue;
617 }
618
619 /* If SETTER is a call everything is clobbered. Note that calls
620 to pure functions are never put on the list, so we need not
621 worry about them. */
622 if (CALL_P (setter))
623 return 1;
624
625 /* SETTER must be an insn of some kind that sets memory. Call
626 note_stores to examine each hunk of memory that is modified.
627 It will set mems_conflict_p to nonzero if there may be a
628 conflict between X and SETTER. */
629 mems_conflict_p = 0;
630 note_stores (PATTERN (setter), find_mem_conflicts, x);
631 if (mems_conflict_p)
632 return 1;
633
634 list_entry = list_entry->next;
635 }
636 return 0;
637 }
638 \f
639
640 /* Record register first/last/block set information for REGNO in INSN. */
641
642 static inline void
643 record_last_reg_set_info (rtx insn, rtx reg)
644 {
645 unsigned int regno, end_regno;
646
647 regno = REGNO (reg);
648 end_regno = END_HARD_REGNO (reg);
649 do
650 reg_avail_info[regno] = INSN_CUID (insn);
651 while (++regno < end_regno);
652 }
653
654 static inline void
655 record_last_reg_set_info_regno (rtx insn, int regno)
656 {
657 reg_avail_info[regno] = INSN_CUID (insn);
658 }
659
660
661 /* Record memory modification information for INSN. We do not actually care
662 about the memory location(s) that are set, or even how they are set (consider
663 a CALL_INSN). We merely need to record which insns modify memory. */
664
665 static void
666 record_last_mem_set_info (rtx insn)
667 {
668 struct modifies_mem *list_entry;
669
670 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
671 sizeof (struct modifies_mem));
672 list_entry->insn = insn;
673 list_entry->next = modifies_mem_list;
674 modifies_mem_list = list_entry;
675 }
676
677 /* Called from compute_hash_table via note_stores to handle one
678 SET or CLOBBER in an insn. DATA is really the instruction in which
679 the SET is taking place. */
680
681 static void
682 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
683 {
684 rtx last_set_insn = (rtx) data;
685
686 if (GET_CODE (dest) == SUBREG)
687 dest = SUBREG_REG (dest);
688
689 if (REG_P (dest))
690 record_last_reg_set_info (last_set_insn, dest);
691 else if (MEM_P (dest))
692 {
693 /* Ignore pushes, they don't clobber memory. They may still
694 clobber the stack pointer though. Some targets do argument
695 pushes without adding REG_INC notes. See e.g. PR25196,
696 where a pushsi2 on i386 doesn't have REG_INC notes. Note
697 such changes here too. */
698 if (! push_operand (dest, GET_MODE (dest)))
699 record_last_mem_set_info (last_set_insn);
700 else
701 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
702 }
703 }
704
705
706 /* Reset tables used to keep track of what's still available since the
707 start of the block. */
708
709 static void
710 reset_opr_set_tables (void)
711 {
712 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
713 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
714 modifies_mem_list = NULL;
715 }
716 \f
717
718 /* Record things set by INSN.
719 This data is used by oprs_unchanged_p. */
720
721 static void
722 record_opr_changes (rtx insn)
723 {
724 rtx note;
725
726 /* Find all stores and record them. */
727 note_stores (PATTERN (insn), record_last_set_info, insn);
728
729 /* Also record autoincremented REGs for this insn as changed. */
730 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
731 if (REG_NOTE_KIND (note) == REG_INC)
732 record_last_reg_set_info (insn, XEXP (note, 0));
733
734 /* Finally, if this is a call, record all call clobbers. */
735 if (CALL_P (insn))
736 {
737 unsigned int regno;
738 rtx link, x;
739 hard_reg_set_iterator hrsi;
740 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
741 record_last_reg_set_info_regno (insn, regno);
742
743 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
744 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
745 {
746 x = XEXP (XEXP (link, 0), 0);
747 if (REG_P (x))
748 {
749 gcc_assert (HARD_REGISTER_P (x));
750 record_last_reg_set_info (insn, x);
751 }
752 }
753
754 if (! RTL_CONST_OR_PURE_CALL_P (insn))
755 record_last_mem_set_info (insn);
756 }
757 }
758 \f
759
760 /* Scan the pattern of INSN and add an entry to the hash TABLE.
761 After reload we are interested in loads/stores only. */
762
763 static void
764 hash_scan_set (rtx insn)
765 {
766 rtx pat = PATTERN (insn);
767 rtx src = SET_SRC (pat);
768 rtx dest = SET_DEST (pat);
769
770 /* We are only interested in loads and stores. */
771 if (! MEM_P (src) && ! MEM_P (dest))
772 return;
773
774 /* Don't mess with jumps and nops. */
775 if (JUMP_P (insn) || set_noop_p (pat))
776 return;
777
778 if (REG_P (dest))
779 {
780 if (/* Don't CSE something if we can't do a reg/reg copy. */
781 can_copy_p (GET_MODE (dest))
782 /* Is SET_SRC something we want to gcse? */
783 && general_operand (src, GET_MODE (src))
784 #ifdef STACK_REGS
785 /* Never consider insns touching the register stack. It may
786 create situations that reg-stack cannot handle (e.g. a stack
787 register live across an abnormal edge). */
788 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
789 #endif
790 /* An expression is not available if its operands are
791 subsequently modified, including this insn. */
792 && oprs_unchanged_p (src, insn, true))
793 {
794 insert_expr_in_table (src, insn);
795 }
796 }
797 else if (REG_P (src))
798 {
799 /* Only record sets of pseudo-regs in the hash table. */
800 if (/* Don't CSE something if we can't do a reg/reg copy. */
801 can_copy_p (GET_MODE (src))
802 /* Is SET_DEST something we want to gcse? */
803 && general_operand (dest, GET_MODE (dest))
804 #ifdef STACK_REGS
805 /* As above for STACK_REGS. */
806 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
807 #endif
808 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
809 /* Check if the memory expression is killed after insn. */
810 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
811 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
812 {
813 insert_expr_in_table (dest, insn);
814 }
815 }
816 }
817 \f
818
819 /* Create hash table of memory expressions available at end of basic
820 blocks. Basically you should think of this hash table as the
821 representation of AVAIL_OUT. This is the set of expressions that
822 is generated in a basic block and not killed before the end of the
823 same basic block. Notice that this is really a local computation. */
824
825 static void
826 compute_hash_table (void)
827 {
828 basic_block bb;
829
830 FOR_EACH_BB (bb)
831 {
832 rtx insn;
833
834 /* First pass over the instructions records information used to
835 determine when registers and memory are last set.
836 Since we compute a "local" AVAIL_OUT, reset the tables that
837 help us keep track of what has been modified since the start
838 of the block. */
839 reset_opr_set_tables ();
840 FOR_BB_INSNS (bb, insn)
841 {
842 if (INSN_P (insn))
843 record_opr_changes (insn);
844 }
845
846 /* The next pass actually builds the hash table. */
847 FOR_BB_INSNS (bb, insn)
848 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
849 hash_scan_set (insn);
850 }
851 }
852 \f
853
854 /* Check if register REG is killed in any insn waiting to be inserted on
855 edge E. This function is required to check that our data flow analysis
856 is still valid prior to commit_edge_insertions. */
857
858 static bool
859 reg_killed_on_edge (rtx reg, edge e)
860 {
861 rtx insn;
862
863 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
864 if (INSN_P (insn) && reg_set_p (reg, insn))
865 return true;
866
867 return false;
868 }
869
870 /* Similar to above - check if register REG is used in any insn waiting
871 to be inserted on edge E.
872 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
873 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
874
875 static bool
876 reg_used_on_edge (rtx reg, edge e)
877 {
878 rtx insn;
879
880 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
881 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
882 return true;
883
884 return false;
885 }
886 \f
887 /* Return the loaded/stored register of a load/store instruction. */
888
889 static rtx
890 get_avail_load_store_reg (rtx insn)
891 {
892 if (REG_P (SET_DEST (PATTERN (insn))))
893 /* A load. */
894 return SET_DEST(PATTERN(insn));
895 else
896 {
897 /* A store. */
898 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
899 return SET_SRC (PATTERN (insn));
900 }
901 }
902
903 /* Return nonzero if the predecessors of BB are "well behaved". */
904
905 static bool
906 bb_has_well_behaved_predecessors (basic_block bb)
907 {
908 edge pred;
909 edge_iterator ei;
910
911 if (EDGE_COUNT (bb->preds) == 0)
912 return false;
913
914 FOR_EACH_EDGE (pred, ei, bb->preds)
915 {
916 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
917 return false;
918
919 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
920 return false;
921
922 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
923 return false;
924 }
925 return true;
926 }
927
928
929 /* Search for the occurrences of expression in BB. */
930
931 static struct occr*
932 get_bb_avail_insn (basic_block bb, struct occr *occr)
933 {
934 for (; occr != NULL; occr = occr->next)
935 if (BLOCK_FOR_INSN (occr->insn) == bb)
936 return occr;
937 return NULL;
938 }
939
940
941 /* This handles the case where several stores feed a partially redundant
942 load. It checks if the redundancy elimination is possible and if it's
943 worth it.
944
945 Redundancy elimination is possible if,
946 1) None of the operands of an insn have been modified since the start
947 of the current basic block.
948 2) In any predecessor of the current basic block, the same expression
949 is generated.
950
951 See the function body for the heuristics that determine if eliminating
952 a redundancy is also worth doing, assuming it is possible. */
953
954 static void
955 eliminate_partially_redundant_load (basic_block bb, rtx insn,
956 struct expr *expr)
957 {
958 edge pred;
959 rtx avail_insn = NULL_RTX;
960 rtx avail_reg;
961 rtx dest, pat;
962 struct occr *a_occr;
963 struct unoccr *occr, *avail_occrs = NULL;
964 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
965 int npred_ok = 0;
966 gcov_type ok_count = 0; /* Redundant load execution count. */
967 gcov_type critical_count = 0; /* Execution count of critical edges. */
968 edge_iterator ei;
969 bool critical_edge_split = false;
970
971 /* The execution count of the loads to be added to make the
972 load fully redundant. */
973 gcov_type not_ok_count = 0;
974 basic_block pred_bb;
975
976 pat = PATTERN (insn);
977 dest = SET_DEST (pat);
978
979 /* Check that the loaded register is not used, set, or killed from the
980 beginning of the block. */
981 if (reg_changed_after_insn_p (dest, 0)
982 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
983 return;
984
985 /* Check potential for replacing load with copy for predecessors. */
986 FOR_EACH_EDGE (pred, ei, bb->preds)
987 {
988 rtx next_pred_bb_end;
989
990 avail_insn = NULL_RTX;
991 avail_reg = NULL_RTX;
992 pred_bb = pred->src;
993 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
994 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
995 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
996 {
997 /* Check if the loaded register is not used. */
998 avail_insn = a_occr->insn;
999 avail_reg = get_avail_load_store_reg (avail_insn);
1000 gcc_assert (avail_reg);
1001
1002 /* Make sure we can generate a move from register avail_reg to
1003 dest. */
1004 extract_insn (gen_move_insn (copy_rtx (dest),
1005 copy_rtx (avail_reg)));
1006 if (! constrain_operands (1)
1007 || reg_killed_on_edge (avail_reg, pred)
1008 || reg_used_on_edge (dest, pred))
1009 {
1010 avail_insn = NULL;
1011 continue;
1012 }
1013 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1014 /* AVAIL_INSN remains non-null. */
1015 break;
1016 else
1017 avail_insn = NULL;
1018 }
1019
1020 if (EDGE_CRITICAL_P (pred))
1021 critical_count += pred->count;
1022
1023 if (avail_insn != NULL_RTX)
1024 {
1025 npred_ok++;
1026 ok_count += pred->count;
1027 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1028 copy_rtx (avail_reg)))))
1029 {
1030 /* Check if there is going to be a split. */
1031 if (EDGE_CRITICAL_P (pred))
1032 critical_edge_split = true;
1033 }
1034 else /* Its a dead move no need to generate. */
1035 continue;
1036 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1037 sizeof (struct unoccr));
1038 occr->insn = avail_insn;
1039 occr->pred = pred;
1040 occr->next = avail_occrs;
1041 avail_occrs = occr;
1042 if (! rollback_unoccr)
1043 rollback_unoccr = occr;
1044 }
1045 else
1046 {
1047 /* Adding a load on a critical edge will cause a split. */
1048 if (EDGE_CRITICAL_P (pred))
1049 critical_edge_split = true;
1050 not_ok_count += pred->count;
1051 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1052 sizeof (struct unoccr));
1053 unoccr->insn = NULL_RTX;
1054 unoccr->pred = pred;
1055 unoccr->next = unavail_occrs;
1056 unavail_occrs = unoccr;
1057 if (! rollback_unoccr)
1058 rollback_unoccr = unoccr;
1059 }
1060 }
1061
1062 if (/* No load can be replaced by copy. */
1063 npred_ok == 0
1064 /* Prevent exploding the code. */
1065 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1066 /* If we don't have profile information we cannot tell if splitting
1067 a critical edge is profitable or not so don't do it. */
1068 || ((! profile_info || ! flag_branch_probabilities
1069 || targetm.cannot_modify_jumps_p ())
1070 && critical_edge_split))
1071 goto cleanup;
1072
1073 /* Check if it's worth applying the partial redundancy elimination. */
1074 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1075 goto cleanup;
1076 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1077 goto cleanup;
1078
1079 /* Generate moves to the loaded register from where
1080 the memory is available. */
1081 for (occr = avail_occrs; occr; occr = occr->next)
1082 {
1083 avail_insn = occr->insn;
1084 pred = occr->pred;
1085 /* Set avail_reg to be the register having the value of the
1086 memory. */
1087 avail_reg = get_avail_load_store_reg (avail_insn);
1088 gcc_assert (avail_reg);
1089
1090 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1091 copy_rtx (avail_reg)),
1092 pred);
1093 stats.moves_inserted++;
1094
1095 if (dump_file)
1096 fprintf (dump_file,
1097 "generating move from %d to %d on edge from %d to %d\n",
1098 REGNO (avail_reg),
1099 REGNO (dest),
1100 pred->src->index,
1101 pred->dest->index);
1102 }
1103
1104 /* Regenerate loads where the memory is unavailable. */
1105 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1106 {
1107 pred = unoccr->pred;
1108 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1109 stats.copies_inserted++;
1110
1111 if (dump_file)
1112 {
1113 fprintf (dump_file,
1114 "generating on edge from %d to %d a copy of load: ",
1115 pred->src->index,
1116 pred->dest->index);
1117 print_rtl (dump_file, PATTERN (insn));
1118 fprintf (dump_file, "\n");
1119 }
1120 }
1121
1122 /* Delete the insn if it is not available in this block and mark it
1123 for deletion if it is available. If insn is available it may help
1124 discover additional redundancies, so mark it for later deletion. */
1125 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1126 a_occr && (a_occr->insn != insn);
1127 a_occr = get_bb_avail_insn (bb, a_occr->next))
1128 ;
1129
1130 if (!a_occr)
1131 {
1132 stats.insns_deleted++;
1133
1134 if (dump_file)
1135 {
1136 fprintf (dump_file, "deleting insn:\n");
1137 print_rtl_single (dump_file, insn);
1138 fprintf (dump_file, "\n");
1139 }
1140 delete_insn (insn);
1141 }
1142 else
1143 a_occr->deleted_p = 1;
1144
1145 cleanup:
1146 if (rollback_unoccr)
1147 obstack_free (&unoccr_obstack, rollback_unoccr);
1148 }
1149
1150 /* Performing the redundancy elimination as described before. */
1151
1152 static void
1153 eliminate_partially_redundant_loads (void)
1154 {
1155 rtx insn;
1156 basic_block bb;
1157
1158 /* Note we start at block 1. */
1159
1160 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1161 return;
1162
1163 FOR_BB_BETWEEN (bb,
1164 ENTRY_BLOCK_PTR->next_bb->next_bb,
1165 EXIT_BLOCK_PTR,
1166 next_bb)
1167 {
1168 /* Don't try anything on basic blocks with strange predecessors. */
1169 if (! bb_has_well_behaved_predecessors (bb))
1170 continue;
1171
1172 /* Do not try anything on cold basic blocks. */
1173 if (optimize_bb_for_size_p (bb))
1174 continue;
1175
1176 /* Reset the table of things changed since the start of the current
1177 basic block. */
1178 reset_opr_set_tables ();
1179
1180 /* Look at all insns in the current basic block and see if there are
1181 any loads in it that we can record. */
1182 FOR_BB_INSNS (bb, insn)
1183 {
1184 /* Is it a load - of the form (set (reg) (mem))? */
1185 if (NONJUMP_INSN_P (insn)
1186 && GET_CODE (PATTERN (insn)) == SET
1187 && REG_P (SET_DEST (PATTERN (insn)))
1188 && MEM_P (SET_SRC (PATTERN (insn))))
1189 {
1190 rtx pat = PATTERN (insn);
1191 rtx src = SET_SRC (pat);
1192 struct expr *expr;
1193
1194 if (!MEM_VOLATILE_P (src)
1195 && GET_MODE (src) != BLKmode
1196 && general_operand (src, GET_MODE (src))
1197 /* Are the operands unchanged since the start of the
1198 block? */
1199 && oprs_unchanged_p (src, insn, false)
1200 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1201 && !side_effects_p (src)
1202 /* Is the expression recorded? */
1203 && (expr = lookup_expr_in_table (src)) != NULL)
1204 {
1205 /* We now have a load (insn) and an available memory at
1206 its BB start (expr). Try to remove the loads if it is
1207 redundant. */
1208 eliminate_partially_redundant_load (bb, insn, expr);
1209 }
1210 }
1211
1212 /* Keep track of everything modified by this insn, so that we
1213 know what has been modified since the start of the current
1214 basic block. */
1215 if (INSN_P (insn))
1216 record_opr_changes (insn);
1217 }
1218 }
1219
1220 commit_edge_insertions ();
1221 }
1222
1223 /* Go over the expression hash table and delete insns that were
1224 marked for later deletion. */
1225
1226 /* This helper is called via htab_traverse. */
1227 static int
1228 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1229 {
1230 struct expr *expr = (struct expr *) *slot;
1231 struct occr *occr;
1232
1233 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1234 {
1235 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1236 {
1237 delete_insn (occr->insn);
1238 stats.insns_deleted++;
1239
1240 if (dump_file)
1241 {
1242 fprintf (dump_file, "deleting insn:\n");
1243 print_rtl_single (dump_file, occr->insn);
1244 fprintf (dump_file, "\n");
1245 }
1246 }
1247 }
1248
1249 return 1;
1250 }
1251
1252 static void
1253 delete_redundant_insns (void)
1254 {
1255 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1256 if (dump_file)
1257 fprintf (dump_file, "\n");
1258 }
1259
1260 /* Main entry point of the GCSE after reload - clean some redundant loads
1261 due to spilling. */
1262
1263 static void
1264 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1265 {
1266
1267 memset (&stats, 0, sizeof (stats));
1268
1269 /* Allocate memory for this pass.
1270 Also computes and initializes the insns' CUIDs. */
1271 alloc_mem ();
1272
1273 /* We need alias analysis. */
1274 init_alias_analysis ();
1275
1276 compute_hash_table ();
1277
1278 if (dump_file)
1279 dump_hash_table (dump_file);
1280
1281 if (htab_elements (expr_table) > 0)
1282 {
1283 eliminate_partially_redundant_loads ();
1284 delete_redundant_insns ();
1285
1286 if (dump_file)
1287 {
1288 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1289 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1290 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1291 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1292 fprintf (dump_file, "\n\n");
1293 }
1294
1295 statistics_counter_event (cfun, "copies inserted",
1296 stats.copies_inserted);
1297 statistics_counter_event (cfun, "moves inserted",
1298 stats.moves_inserted);
1299 statistics_counter_event (cfun, "insns deleted",
1300 stats.insns_deleted);
1301 }
1302
1303 /* We are finished with alias. */
1304 end_alias_analysis ();
1305
1306 free_mem ();
1307 }
1308
1309 \f
1310 static bool
1311 gate_handle_gcse2 (void)
1312 {
1313 return (optimize > 0 && flag_gcse_after_reload
1314 && optimize_function_for_speed_p (cfun));
1315 }
1316
1317
1318 static unsigned int
1319 rest_of_handle_gcse2 (void)
1320 {
1321 gcse_after_reload_main (get_insns ());
1322 rebuild_jump_labels (get_insns ());
1323 return 0;
1324 }
1325
1326 struct rtl_opt_pass pass_gcse2 =
1327 {
1328 {
1329 RTL_PASS,
1330 "gcse2", /* name */
1331 gate_handle_gcse2, /* gate */
1332 rest_of_handle_gcse2, /* execute */
1333 NULL, /* sub */
1334 NULL, /* next */
1335 0, /* static_pass_number */
1336 TV_GCSE_AFTER_RELOAD, /* tv_id */
1337 0, /* properties_required */
1338 0, /* properties_provided */
1339 0, /* properties_destroyed */
1340 0, /* todo_flags_start */
1341 TODO_verify_rtl_sharing
1342 | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
1343 }
1344 };