basic-block.h (rtl_bb_info): Break out head_, end_, global_live_at_start, global_live...
[gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47
48 static int reload_cse_noop_set_p (rtx);
49 static void reload_cse_simplify (rtx, rtx);
50 static void reload_cse_regs_1 (rtx);
51 static int reload_cse_simplify_set (rtx, rtx);
52 static int reload_cse_simplify_operands (rtx, rtx);
53
54 static void reload_combine (void);
55 static void reload_combine_note_use (rtx *, rtx);
56 static void reload_combine_note_store (rtx, rtx, void *);
57
58 static void reload_cse_move2add (rtx);
59 static void move2add_note_store (rtx, rtx, void *);
60
61 /* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
63 void
64 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
65 {
66 reload_cse_regs_1 (first);
67 reload_combine ();
68 reload_cse_move2add (first);
69 if (flag_expensive_optimizations)
70 reload_cse_regs_1 (first);
71 }
72
73 /* See whether a single set SET is a noop. */
74 static int
75 reload_cse_noop_set_p (rtx set)
76 {
77 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
78 return 0;
79
80 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
81 }
82
83 /* Try to simplify INSN. */
84 static void
85 reload_cse_simplify (rtx insn, rtx testreg)
86 {
87 rtx body = PATTERN (insn);
88
89 if (GET_CODE (body) == SET)
90 {
91 int count = 0;
92
93 /* Simplify even if we may think it is a no-op.
94 We may think a memory load of a value smaller than WORD_SIZE
95 is redundant because we haven't taken into account possible
96 implicit extension. reload_cse_simplify_set() will bring
97 this out, so it's safer to simplify before we delete. */
98 count += reload_cse_simplify_set (body, insn);
99
100 if (!count && reload_cse_noop_set_p (body))
101 {
102 rtx value = SET_DEST (body);
103 if (REG_P (value)
104 && ! REG_FUNCTION_VALUE_P (value))
105 value = 0;
106 delete_insn_and_edges (insn);
107 return;
108 }
109
110 if (count > 0)
111 apply_change_group ();
112 else
113 reload_cse_simplify_operands (insn, testreg);
114 }
115 else if (GET_CODE (body) == PARALLEL)
116 {
117 int i;
118 int count = 0;
119 rtx value = NULL_RTX;
120
121 /* Registers mentioned in the clobber list for an asm cannot be reused
122 within the body of the asm. Invalidate those registers now so that
123 we don't try to substitute values for them. */
124 if (asm_noperands (body) >= 0)
125 {
126 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
127 {
128 rtx part = XVECEXP (body, 0, i);
129 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
130 cselib_invalidate_rtx (XEXP (part, 0));
131 }
132 }
133
134 /* If every action in a PARALLEL is a noop, we can delete
135 the entire PARALLEL. */
136 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
137 {
138 rtx part = XVECEXP (body, 0, i);
139 if (GET_CODE (part) == SET)
140 {
141 if (! reload_cse_noop_set_p (part))
142 break;
143 if (REG_P (SET_DEST (part))
144 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
145 {
146 if (value)
147 break;
148 value = SET_DEST (part);
149 }
150 }
151 else if (GET_CODE (part) != CLOBBER)
152 break;
153 }
154
155 if (i < 0)
156 {
157 delete_insn_and_edges (insn);
158 /* We're done with this insn. */
159 return;
160 }
161
162 /* It's not a no-op, but we can try to simplify it. */
163 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
164 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
165 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
166
167 if (count > 0)
168 apply_change_group ();
169 else
170 reload_cse_simplify_operands (insn, testreg);
171 }
172 }
173
174 /* Do a very simple CSE pass over the hard registers.
175
176 This function detects no-op moves where we happened to assign two
177 different pseudo-registers to the same hard register, and then
178 copied one to the other. Reload will generate a useless
179 instruction copying a register to itself.
180
181 This function also detects cases where we load a value from memory
182 into two different registers, and (if memory is more expensive than
183 registers) changes it to simply copy the first register into the
184 second register.
185
186 Another optimization is performed that scans the operands of each
187 instruction to see whether the value is already available in a
188 hard register. It then replaces the operand with the hard register
189 if possible, much like an optional reload would. */
190
191 static void
192 reload_cse_regs_1 (rtx first)
193 {
194 rtx insn;
195 rtx testreg = gen_rtx_REG (VOIDmode, -1);
196
197 cselib_init (true);
198 init_alias_analysis ();
199
200 for (insn = first; insn; insn = NEXT_INSN (insn))
201 {
202 if (INSN_P (insn))
203 reload_cse_simplify (insn, testreg);
204
205 cselib_process_insn (insn);
206 }
207
208 /* Clean up. */
209 end_alias_analysis ();
210 cselib_finish ();
211 }
212
213 /* Try to simplify a single SET instruction. SET is the set pattern.
214 INSN is the instruction it came from.
215 This function only handles one case: if we set a register to a value
216 which is not a register, we try to find that value in some other register
217 and change the set into a register copy. */
218
219 static int
220 reload_cse_simplify_set (rtx set, rtx insn)
221 {
222 int did_change = 0;
223 int dreg;
224 rtx src;
225 enum reg_class dclass;
226 int old_cost;
227 cselib_val *val;
228 struct elt_loc_list *l;
229 #ifdef LOAD_EXTEND_OP
230 enum rtx_code extend_op = UNKNOWN;
231 #endif
232
233 dreg = true_regnum (SET_DEST (set));
234 if (dreg < 0)
235 return 0;
236
237 src = SET_SRC (set);
238 if (side_effects_p (src) || true_regnum (src) >= 0)
239 return 0;
240
241 dclass = REGNO_REG_CLASS (dreg);
242
243 #ifdef LOAD_EXTEND_OP
244 /* When replacing a memory with a register, we need to honor assumptions
245 that combine made wrt the contents of sign bits. We'll do this by
246 generating an extend instruction instead of a reg->reg copy. Thus
247 the destination must be a register that we can widen. */
248 if (MEM_P (src)
249 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
250 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
251 && !REG_P (SET_DEST (set)))
252 return 0;
253 #endif
254
255 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
256 if (! val)
257 return 0;
258
259 /* If memory loads are cheaper than register copies, don't change them. */
260 if (MEM_P (src))
261 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
262 else if (REG_P (src))
263 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
264 REGNO_REG_CLASS (REGNO (src)), dclass);
265 else
266 old_cost = rtx_cost (src, SET);
267
268 for (l = val->locs; l; l = l->next)
269 {
270 rtx this_rtx = l->loc;
271 int this_cost;
272
273 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
274 {
275 #ifdef LOAD_EXTEND_OP
276 if (extend_op != UNKNOWN)
277 {
278 HOST_WIDE_INT this_val;
279
280 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
281 constants, such as SYMBOL_REF, cannot be extended. */
282 if (GET_CODE (this_rtx) != CONST_INT)
283 continue;
284
285 this_val = INTVAL (this_rtx);
286 switch (extend_op)
287 {
288 case ZERO_EXTEND:
289 this_val &= GET_MODE_MASK (GET_MODE (src));
290 break;
291 case SIGN_EXTEND:
292 /* ??? In theory we're already extended. */
293 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
294 break;
295 default:
296 gcc_unreachable ();
297 }
298 this_rtx = GEN_INT (this_val);
299 }
300 #endif
301 this_cost = rtx_cost (this_rtx, SET);
302 }
303 else if (REG_P (this_rtx))
304 {
305 #ifdef LOAD_EXTEND_OP
306 if (extend_op != UNKNOWN)
307 {
308 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
309 this_cost = rtx_cost (this_rtx, SET);
310 }
311 else
312 #endif
313 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
314 REGNO_REG_CLASS (REGNO (this_rtx)),
315 dclass);
316 }
317 else
318 continue;
319
320 /* If equal costs, prefer registers over anything else. That
321 tends to lead to smaller instructions on some machines. */
322 if (this_cost < old_cost
323 || (this_cost == old_cost
324 && REG_P (this_rtx)
325 && !REG_P (SET_SRC (set))))
326 {
327 #ifdef LOAD_EXTEND_OP
328 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
329 && extend_op != UNKNOWN
330 #ifdef CANNOT_CHANGE_MODE_CLASS
331 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
332 word_mode,
333 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
334 #endif
335 )
336 {
337 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
338 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
339 validate_change (insn, &SET_DEST (set), wide_dest, 1);
340 }
341 #endif
342
343 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
344 old_cost = this_cost, did_change = 1;
345 }
346 }
347
348 return did_change;
349 }
350
351 /* Try to replace operands in INSN with equivalent values that are already
352 in registers. This can be viewed as optional reloading.
353
354 For each non-register operand in the insn, see if any hard regs are
355 known to be equivalent to that operand. Record the alternatives which
356 can accept these hard registers. Among all alternatives, select the
357 ones which are better or equal to the one currently matching, where
358 "better" is in terms of '?' and '!' constraints. Among the remaining
359 alternatives, select the one which replaces most operands with
360 hard registers. */
361
362 static int
363 reload_cse_simplify_operands (rtx insn, rtx testreg)
364 {
365 int i, j;
366
367 /* For each operand, all registers that are equivalent to it. */
368 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
369
370 const char *constraints[MAX_RECOG_OPERANDS];
371
372 /* Vector recording how bad an alternative is. */
373 int *alternative_reject;
374 /* Vector recording how many registers can be introduced by choosing
375 this alternative. */
376 int *alternative_nregs;
377 /* Array of vectors recording, for each operand and each alternative,
378 which hard register to substitute, or -1 if the operand should be
379 left as it is. */
380 int *op_alt_regno[MAX_RECOG_OPERANDS];
381 /* Array of alternatives, sorted in order of decreasing desirability. */
382 int *alternative_order;
383
384 extract_insn (insn);
385
386 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
387 return 0;
388
389 /* Figure out which alternative currently matches. */
390 if (! constrain_operands (1))
391 fatal_insn_not_found (insn);
392
393 alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
394 alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
395 alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
396 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
397 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
398
399 /* For each operand, find out which regs are equivalent. */
400 for (i = 0; i < recog_data.n_operands; i++)
401 {
402 cselib_val *v;
403 struct elt_loc_list *l;
404 rtx op;
405 enum machine_mode mode;
406
407 CLEAR_HARD_REG_SET (equiv_regs[i]);
408
409 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
410 right, so avoid the problem here. Likewise if we have a constant
411 and the insn pattern doesn't tell us the mode we need. */
412 if (LABEL_P (recog_data.operand[i])
413 || (CONSTANT_P (recog_data.operand[i])
414 && recog_data.operand_mode[i] == VOIDmode))
415 continue;
416
417 op = recog_data.operand[i];
418 mode = GET_MODE (op);
419 #ifdef LOAD_EXTEND_OP
420 if (MEM_P (op)
421 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
422 && LOAD_EXTEND_OP (mode) != UNKNOWN)
423 {
424 rtx set = single_set (insn);
425
426 /* We might have multiple sets, some of which do implicit
427 extension. Punt on this for now. */
428 if (! set)
429 continue;
430 /* If the destination is also a MEM or a STRICT_LOW_PART, no
431 extension applies.
432 Also, if there is an explicit extension, we don't have to
433 worry about an implicit one. */
434 else if (MEM_P (SET_DEST (set))
435 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
436 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
437 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
438 ; /* Continue ordinary processing. */
439 #ifdef CANNOT_CHANGE_MODE_CLASS
440 /* If the register cannot change mode to word_mode, it follows that
441 it cannot have been used in word_mode. */
442 else if (REG_P (SET_DEST (set))
443 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
444 word_mode,
445 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
446 ; /* Continue ordinary processing. */
447 #endif
448 /* If this is a straight load, make the extension explicit. */
449 else if (REG_P (SET_DEST (set))
450 && recog_data.n_operands == 2
451 && SET_SRC (set) == op
452 && SET_DEST (set) == recog_data.operand[1-i])
453 {
454 validate_change (insn, recog_data.operand_loc[i],
455 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
456 word_mode, op),
457 1);
458 validate_change (insn, recog_data.operand_loc[1-i],
459 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
460 1);
461 if (! apply_change_group ())
462 return 0;
463 return reload_cse_simplify_operands (insn, testreg);
464 }
465 else
466 /* ??? There might be arithmetic operations with memory that are
467 safe to optimize, but is it worth the trouble? */
468 continue;
469 }
470 #endif /* LOAD_EXTEND_OP */
471 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
472 if (! v)
473 continue;
474
475 for (l = v->locs; l; l = l->next)
476 if (REG_P (l->loc))
477 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
478 }
479
480 for (i = 0; i < recog_data.n_operands; i++)
481 {
482 enum machine_mode mode;
483 int regno;
484 const char *p;
485
486 op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
487 for (j = 0; j < recog_data.n_alternatives; j++)
488 op_alt_regno[i][j] = -1;
489
490 p = constraints[i] = recog_data.constraints[i];
491 mode = recog_data.operand_mode[i];
492
493 /* Add the reject values for each alternative given by the constraints
494 for this operand. */
495 j = 0;
496 while (*p != '\0')
497 {
498 char c = *p++;
499 if (c == ',')
500 j++;
501 else if (c == '?')
502 alternative_reject[j] += 3;
503 else if (c == '!')
504 alternative_reject[j] += 300;
505 }
506
507 /* We won't change operands which are already registers. We
508 also don't want to modify output operands. */
509 regno = true_regnum (recog_data.operand[i]);
510 if (regno >= 0
511 || constraints[i][0] == '='
512 || constraints[i][0] == '+')
513 continue;
514
515 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
516 {
517 int class = (int) NO_REGS;
518
519 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
520 continue;
521
522 REGNO (testreg) = regno;
523 PUT_MODE (testreg, mode);
524
525 /* We found a register equal to this operand. Now look for all
526 alternatives that can accept this register and have not been
527 assigned a register they can use yet. */
528 j = 0;
529 p = constraints[i];
530 for (;;)
531 {
532 char c = *p;
533
534 switch (c)
535 {
536 case '=': case '+': case '?':
537 case '#': case '&': case '!':
538 case '*': case '%':
539 case '0': case '1': case '2': case '3': case '4':
540 case '5': case '6': case '7': case '8': case '9':
541 case 'm': case '<': case '>': case 'V': case 'o':
542 case 'E': case 'F': case 'G': case 'H':
543 case 's': case 'i': case 'n':
544 case 'I': case 'J': case 'K': case 'L':
545 case 'M': case 'N': case 'O': case 'P':
546 case 'p': case 'X':
547 /* These don't say anything we care about. */
548 break;
549
550 case 'g': case 'r':
551 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
552 break;
553
554 default:
555 class
556 = (reg_class_subunion
557 [(int) class]
558 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
559 break;
560
561 case ',': case '\0':
562 /* See if REGNO fits this alternative, and set it up as the
563 replacement register if we don't have one for this
564 alternative yet and the operand being replaced is not
565 a cheap CONST_INT. */
566 if (op_alt_regno[i][j] == -1
567 && reg_fits_class_p (testreg, class, 0, mode)
568 && (GET_CODE (recog_data.operand[i]) != CONST_INT
569 || (rtx_cost (recog_data.operand[i], SET)
570 > rtx_cost (testreg, SET))))
571 {
572 alternative_nregs[j]++;
573 op_alt_regno[i][j] = regno;
574 }
575 j++;
576 break;
577 }
578 p += CONSTRAINT_LEN (c, p);
579
580 if (c == '\0')
581 break;
582 }
583 }
584 }
585
586 /* Record all alternatives which are better or equal to the currently
587 matching one in the alternative_order array. */
588 for (i = j = 0; i < recog_data.n_alternatives; i++)
589 if (alternative_reject[i] <= alternative_reject[which_alternative])
590 alternative_order[j++] = i;
591 recog_data.n_alternatives = j;
592
593 /* Sort it. Given a small number of alternatives, a dumb algorithm
594 won't hurt too much. */
595 for (i = 0; i < recog_data.n_alternatives - 1; i++)
596 {
597 int best = i;
598 int best_reject = alternative_reject[alternative_order[i]];
599 int best_nregs = alternative_nregs[alternative_order[i]];
600 int tmp;
601
602 for (j = i + 1; j < recog_data.n_alternatives; j++)
603 {
604 int this_reject = alternative_reject[alternative_order[j]];
605 int this_nregs = alternative_nregs[alternative_order[j]];
606
607 if (this_reject < best_reject
608 || (this_reject == best_reject && this_nregs < best_nregs))
609 {
610 best = j;
611 best_reject = this_reject;
612 best_nregs = this_nregs;
613 }
614 }
615
616 tmp = alternative_order[best];
617 alternative_order[best] = alternative_order[i];
618 alternative_order[i] = tmp;
619 }
620
621 /* Substitute the operands as determined by op_alt_regno for the best
622 alternative. */
623 j = alternative_order[0];
624
625 for (i = 0; i < recog_data.n_operands; i++)
626 {
627 enum machine_mode mode = recog_data.operand_mode[i];
628 if (op_alt_regno[i][j] == -1)
629 continue;
630
631 validate_change (insn, recog_data.operand_loc[i],
632 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
633 }
634
635 for (i = recog_data.n_dups - 1; i >= 0; i--)
636 {
637 int op = recog_data.dup_num[i];
638 enum machine_mode mode = recog_data.operand_mode[op];
639
640 if (op_alt_regno[op][j] == -1)
641 continue;
642
643 validate_change (insn, recog_data.dup_loc[i],
644 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
645 }
646
647 return apply_change_group ();
648 }
649 \f
650 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
651 addressing now.
652 This code might also be useful when reload gave up on reg+reg addressing
653 because of clashes between the return register and INDEX_REG_CLASS. */
654
655 /* The maximum number of uses of a register we can keep track of to
656 replace them with reg+reg addressing. */
657 #define RELOAD_COMBINE_MAX_USES 6
658
659 /* INSN is the insn where a register has ben used, and USEP points to the
660 location of the register within the rtl. */
661 struct reg_use { rtx insn, *usep; };
662
663 /* If the register is used in some unknown fashion, USE_INDEX is negative.
664 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
665 indicates where it becomes live again.
666 Otherwise, USE_INDEX is the index of the last encountered use of the
667 register (which is first among these we have seen since we scan backwards),
668 OFFSET contains the constant offset that is added to the register in
669 all encountered uses, and USE_RUID indicates the first encountered, i.e.
670 last, of these uses.
671 STORE_RUID is always meaningful if we only want to use a value in a
672 register in a different place: it denotes the next insn in the insn
673 stream (i.e. the last encountered) that sets or clobbers the register. */
674 static struct
675 {
676 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
677 int use_index;
678 rtx offset;
679 int store_ruid;
680 int use_ruid;
681 } reg_state[FIRST_PSEUDO_REGISTER];
682
683 /* Reverse linear uid. This is increased in reload_combine while scanning
684 the instructions from last to first. It is used to set last_label_ruid
685 and the store_ruid / use_ruid fields in reg_state. */
686 static int reload_combine_ruid;
687
688 #define LABEL_LIVE(LABEL) \
689 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
690
691 static void
692 reload_combine (void)
693 {
694 rtx insn, set;
695 int first_index_reg = -1;
696 int last_index_reg = 0;
697 int i;
698 basic_block bb;
699 unsigned int r;
700 int last_label_ruid;
701 int min_labelno, n_labels;
702 HARD_REG_SET ever_live_at_start, *label_live;
703
704 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
705 reload has already used it where appropriate, so there is no use in
706 trying to generate it now. */
707 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
708 return;
709
710 /* To avoid wasting too much time later searching for an index register,
711 determine the minimum and maximum index register numbers. */
712 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
713 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
714 {
715 if (first_index_reg == -1)
716 first_index_reg = r;
717
718 last_index_reg = r;
719 }
720
721 /* If no index register is available, we can quit now. */
722 if (first_index_reg == -1)
723 return;
724
725 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
726 information is a bit fuzzy immediately after reload, but it's
727 still good enough to determine which registers are live at a jump
728 destination. */
729 min_labelno = get_first_label_num ();
730 n_labels = max_label_num () - min_labelno;
731 label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
732 CLEAR_HARD_REG_SET (ever_live_at_start);
733
734 FOR_EACH_BB_REVERSE (bb)
735 {
736 insn = BB_HEAD (bb);
737 if (LABEL_P (insn))
738 {
739 HARD_REG_SET live;
740
741 REG_SET_TO_HARD_REG_SET (live,
742 bb->il.rtl->global_live_at_start);
743 compute_use_by_pseudos (&live,
744 bb->il.rtl->global_live_at_start);
745 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
746 IOR_HARD_REG_SET (ever_live_at_start, live);
747 }
748 }
749
750 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
751 last_label_ruid = reload_combine_ruid = 0;
752 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
753 {
754 reg_state[r].store_ruid = reload_combine_ruid;
755 if (fixed_regs[r])
756 reg_state[r].use_index = -1;
757 else
758 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
759 }
760
761 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
762 {
763 rtx note;
764
765 /* We cannot do our optimization across labels. Invalidating all the use
766 information we have would be costly, so we just note where the label
767 is and then later disable any optimization that would cross it. */
768 if (LABEL_P (insn))
769 last_label_ruid = reload_combine_ruid;
770 else if (BARRIER_P (insn))
771 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
772 if (! fixed_regs[r])
773 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
774
775 if (! INSN_P (insn))
776 continue;
777
778 reload_combine_ruid++;
779
780 /* Look for (set (REGX) (CONST_INT))
781 (set (REGX) (PLUS (REGX) (REGY)))
782 ...
783 ... (MEM (REGX)) ...
784 and convert it to
785 (set (REGZ) (CONST_INT))
786 ...
787 ... (MEM (PLUS (REGZ) (REGY)))... .
788
789 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
790 and that we know all uses of REGX before it dies.
791 Also, explicitly check that REGX != REGY; our life information
792 does not yet show whether REGY changes in this insn. */
793 set = single_set (insn);
794 if (set != NULL_RTX
795 && REG_P (SET_DEST (set))
796 && (hard_regno_nregs[REGNO (SET_DEST (set))]
797 [GET_MODE (SET_DEST (set))]
798 == 1)
799 && GET_CODE (SET_SRC (set)) == PLUS
800 && REG_P (XEXP (SET_SRC (set), 1))
801 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
802 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
803 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
804 {
805 rtx reg = SET_DEST (set);
806 rtx plus = SET_SRC (set);
807 rtx base = XEXP (plus, 1);
808 rtx prev = prev_nonnote_insn (insn);
809 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
810 unsigned int regno = REGNO (reg);
811 rtx const_reg = NULL_RTX;
812 rtx reg_sum = NULL_RTX;
813
814 /* Now, we need an index register.
815 We'll set index_reg to this index register, const_reg to the
816 register that is to be loaded with the constant
817 (denoted as REGZ in the substitution illustration above),
818 and reg_sum to the register-register that we want to use to
819 substitute uses of REG (typically in MEMs) with.
820 First check REG and BASE for being index registers;
821 we can use them even if they are not dead. */
822 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
823 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
824 REGNO (base)))
825 {
826 const_reg = reg;
827 reg_sum = plus;
828 }
829 else
830 {
831 /* Otherwise, look for a free index register. Since we have
832 checked above that neither REG nor BASE are index registers,
833 if we find anything at all, it will be different from these
834 two registers. */
835 for (i = first_index_reg; i <= last_index_reg; i++)
836 {
837 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
838 i)
839 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
840 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
841 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
842 {
843 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
844
845 const_reg = index_reg;
846 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
847 break;
848 }
849 }
850 }
851
852 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
853 (REGY), i.e. BASE, is not clobbered before the last use we'll
854 create. */
855 if (prev_set != 0
856 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
857 && rtx_equal_p (SET_DEST (prev_set), reg)
858 && reg_state[regno].use_index >= 0
859 && (reg_state[REGNO (base)].store_ruid
860 <= reg_state[regno].use_ruid)
861 && reg_sum != 0)
862 {
863 int i;
864
865 /* Change destination register and, if necessary, the
866 constant value in PREV, the constant loading instruction. */
867 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
868 if (reg_state[regno].offset != const0_rtx)
869 validate_change (prev,
870 &SET_SRC (prev_set),
871 GEN_INT (INTVAL (SET_SRC (prev_set))
872 + INTVAL (reg_state[regno].offset)),
873 1);
874
875 /* Now for every use of REG that we have recorded, replace REG
876 with REG_SUM. */
877 for (i = reg_state[regno].use_index;
878 i < RELOAD_COMBINE_MAX_USES; i++)
879 validate_change (reg_state[regno].reg_use[i].insn,
880 reg_state[regno].reg_use[i].usep,
881 /* Each change must have its own
882 replacement. */
883 copy_rtx (reg_sum), 1);
884
885 if (apply_change_group ())
886 {
887 rtx *np;
888
889 /* Delete the reg-reg addition. */
890 delete_insn (insn);
891
892 if (reg_state[regno].offset != const0_rtx)
893 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
894 are now invalid. */
895 for (np = &REG_NOTES (prev); *np;)
896 {
897 if (REG_NOTE_KIND (*np) == REG_EQUAL
898 || REG_NOTE_KIND (*np) == REG_EQUIV)
899 *np = XEXP (*np, 1);
900 else
901 np = &XEXP (*np, 1);
902 }
903
904 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
905 reg_state[REGNO (const_reg)].store_ruid
906 = reload_combine_ruid;
907 continue;
908 }
909 }
910 }
911
912 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
913
914 if (CALL_P (insn))
915 {
916 rtx link;
917
918 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
919 if (call_used_regs[r])
920 {
921 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
922 reg_state[r].store_ruid = reload_combine_ruid;
923 }
924
925 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
926 link = XEXP (link, 1))
927 {
928 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
929 if (REG_P (usage_rtx))
930 {
931 unsigned int i;
932 unsigned int start_reg = REGNO (usage_rtx);
933 unsigned int num_regs =
934 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
935 unsigned int end_reg = start_reg + num_regs - 1;
936 for (i = start_reg; i <= end_reg; i++)
937 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
938 {
939 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
940 reg_state[i].store_ruid = reload_combine_ruid;
941 }
942 else
943 reg_state[i].use_index = -1;
944 }
945 }
946
947 }
948 else if (JUMP_P (insn)
949 && GET_CODE (PATTERN (insn)) != RETURN)
950 {
951 /* Non-spill registers might be used at the call destination in
952 some unknown fashion, so we have to mark the unknown use. */
953 HARD_REG_SET *live;
954
955 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
956 && JUMP_LABEL (insn))
957 live = &LABEL_LIVE (JUMP_LABEL (insn));
958 else
959 live = &ever_live_at_start;
960
961 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
962 if (TEST_HARD_REG_BIT (*live, i))
963 reg_state[i].use_index = -1;
964 }
965
966 reload_combine_note_use (&PATTERN (insn), insn);
967 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
968 {
969 if (REG_NOTE_KIND (note) == REG_INC
970 && REG_P (XEXP (note, 0)))
971 {
972 int regno = REGNO (XEXP (note, 0));
973
974 reg_state[regno].store_ruid = reload_combine_ruid;
975 reg_state[regno].use_index = -1;
976 }
977 }
978 }
979
980 free (label_live);
981 }
982
983 /* Check if DST is a register or a subreg of a register; if it is,
984 update reg_state[regno].store_ruid and reg_state[regno].use_index
985 accordingly. Called via note_stores from reload_combine. */
986
987 static void
988 reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
989 {
990 int regno = 0;
991 int i;
992 enum machine_mode mode = GET_MODE (dst);
993
994 if (GET_CODE (dst) == SUBREG)
995 {
996 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
997 GET_MODE (SUBREG_REG (dst)),
998 SUBREG_BYTE (dst),
999 GET_MODE (dst));
1000 dst = SUBREG_REG (dst);
1001 }
1002 if (!REG_P (dst))
1003 return;
1004 regno += REGNO (dst);
1005
1006 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1007 careful with registers / register parts that are not full words.
1008 Similarly for ZERO_EXTRACT. */
1009 if (GET_CODE (set) != SET
1010 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1011 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1012 {
1013 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1014 {
1015 reg_state[i].use_index = -1;
1016 reg_state[i].store_ruid = reload_combine_ruid;
1017 }
1018 }
1019 else
1020 {
1021 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1022 {
1023 reg_state[i].store_ruid = reload_combine_ruid;
1024 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1025 }
1026 }
1027 }
1028
1029 /* XP points to a piece of rtl that has to be checked for any uses of
1030 registers.
1031 *XP is the pattern of INSN, or a part of it.
1032 Called from reload_combine, and recursively by itself. */
1033 static void
1034 reload_combine_note_use (rtx *xp, rtx insn)
1035 {
1036 rtx x = *xp;
1037 enum rtx_code code = x->code;
1038 const char *fmt;
1039 int i, j;
1040 rtx offset = const0_rtx; /* For the REG case below. */
1041
1042 switch (code)
1043 {
1044 case SET:
1045 if (REG_P (SET_DEST (x)))
1046 {
1047 reload_combine_note_use (&SET_SRC (x), insn);
1048 return;
1049 }
1050 break;
1051
1052 case USE:
1053 /* If this is the USE of a return value, we can't change it. */
1054 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1055 {
1056 /* Mark the return register as used in an unknown fashion. */
1057 rtx reg = XEXP (x, 0);
1058 int regno = REGNO (reg);
1059 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1060
1061 while (--nregs >= 0)
1062 reg_state[regno + nregs].use_index = -1;
1063 return;
1064 }
1065 break;
1066
1067 case CLOBBER:
1068 if (REG_P (SET_DEST (x)))
1069 {
1070 /* No spurious CLOBBERs of pseudo registers may remain. */
1071 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1072 return;
1073 }
1074 break;
1075
1076 case PLUS:
1077 /* We are interested in (plus (reg) (const_int)) . */
1078 if (!REG_P (XEXP (x, 0))
1079 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1080 break;
1081 offset = XEXP (x, 1);
1082 x = XEXP (x, 0);
1083 /* Fall through. */
1084 case REG:
1085 {
1086 int regno = REGNO (x);
1087 int use_index;
1088 int nregs;
1089
1090 /* No spurious USEs of pseudo registers may remain. */
1091 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1092
1093 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1094
1095 /* We can't substitute into multi-hard-reg uses. */
1096 if (nregs > 1)
1097 {
1098 while (--nregs >= 0)
1099 reg_state[regno + nregs].use_index = -1;
1100 return;
1101 }
1102
1103 /* If this register is already used in some unknown fashion, we
1104 can't do anything.
1105 If we decrement the index from zero to -1, we can't store more
1106 uses, so this register becomes used in an unknown fashion. */
1107 use_index = --reg_state[regno].use_index;
1108 if (use_index < 0)
1109 return;
1110
1111 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1112 {
1113 /* We have found another use for a register that is already
1114 used later. Check if the offsets match; if not, mark the
1115 register as used in an unknown fashion. */
1116 if (! rtx_equal_p (offset, reg_state[regno].offset))
1117 {
1118 reg_state[regno].use_index = -1;
1119 return;
1120 }
1121 }
1122 else
1123 {
1124 /* This is the first use of this register we have seen since we
1125 marked it as dead. */
1126 reg_state[regno].offset = offset;
1127 reg_state[regno].use_ruid = reload_combine_ruid;
1128 }
1129 reg_state[regno].reg_use[use_index].insn = insn;
1130 reg_state[regno].reg_use[use_index].usep = xp;
1131 return;
1132 }
1133
1134 default:
1135 break;
1136 }
1137
1138 /* Recursively process the components of X. */
1139 fmt = GET_RTX_FORMAT (code);
1140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1141 {
1142 if (fmt[i] == 'e')
1143 reload_combine_note_use (&XEXP (x, i), insn);
1144 else if (fmt[i] == 'E')
1145 {
1146 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1147 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1148 }
1149 }
1150 }
1151 \f
1152 /* See if we can reduce the cost of a constant by replacing a move
1153 with an add. We track situations in which a register is set to a
1154 constant or to a register plus a constant. */
1155 /* We cannot do our optimization across labels. Invalidating all the
1156 information about register contents we have would be costly, so we
1157 use move2add_last_label_luid to note where the label is and then
1158 later disable any optimization that would cross it.
1159 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1160 reg_set_luid[n] is greater than move2add_last_label_luid. */
1161 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1162
1163 /* If reg_base_reg[n] is negative, register n has been set to
1164 reg_offset[n] in mode reg_mode[n] .
1165 If reg_base_reg[n] is non-negative, register n has been set to the
1166 sum of reg_offset[n] and the value of register reg_base_reg[n]
1167 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1168 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1169 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1170 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1171
1172 /* move2add_luid is linearly increased while scanning the instructions
1173 from first to last. It is used to set reg_set_luid in
1174 reload_cse_move2add and move2add_note_store. */
1175 static int move2add_luid;
1176
1177 /* move2add_last_label_luid is set whenever a label is found. Labels
1178 invalidate all previously collected reg_offset data. */
1179 static int move2add_last_label_luid;
1180
1181 /* ??? We don't know how zero / sign extension is handled, hence we
1182 can't go from a narrower to a wider mode. */
1183 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1184 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1185 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1186 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1187 GET_MODE_BITSIZE (INMODE))))
1188
1189 static void
1190 reload_cse_move2add (rtx first)
1191 {
1192 int i;
1193 rtx insn;
1194
1195 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1196 reg_set_luid[i] = 0;
1197
1198 move2add_last_label_luid = 0;
1199 move2add_luid = 2;
1200 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1201 {
1202 rtx pat, note;
1203
1204 if (LABEL_P (insn))
1205 {
1206 move2add_last_label_luid = move2add_luid;
1207 /* We're going to increment move2add_luid twice after a
1208 label, so that we can use move2add_last_label_luid + 1 as
1209 the luid for constants. */
1210 move2add_luid++;
1211 continue;
1212 }
1213 if (! INSN_P (insn))
1214 continue;
1215 pat = PATTERN (insn);
1216 /* For simplicity, we only perform this optimization on
1217 straightforward SETs. */
1218 if (GET_CODE (pat) == SET
1219 && REG_P (SET_DEST (pat)))
1220 {
1221 rtx reg = SET_DEST (pat);
1222 int regno = REGNO (reg);
1223 rtx src = SET_SRC (pat);
1224
1225 /* Check if we have valid information on the contents of this
1226 register in the mode of REG. */
1227 if (reg_set_luid[regno] > move2add_last_label_luid
1228 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
1229 {
1230 /* Try to transform (set (REGX) (CONST_INT A))
1231 ...
1232 (set (REGX) (CONST_INT B))
1233 to
1234 (set (REGX) (CONST_INT A))
1235 ...
1236 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1237 or
1238 (set (REGX) (CONST_INT A))
1239 ...
1240 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1241 */
1242
1243 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1244 {
1245 rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
1246 GET_MODE (reg));
1247 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1248 use (set (reg) (reg)) instead.
1249 We don't delete this insn, nor do we convert it into a
1250 note, to avoid losing register notes or the return
1251 value flag. jump2 already knows how to get rid of
1252 no-op moves. */
1253 if (new_src == const0_rtx)
1254 {
1255 /* If the constants are different, this is a
1256 truncation, that, if turned into (set (reg)
1257 (reg)), would be discarded. Maybe we should
1258 try a truncMN pattern? */
1259 if (INTVAL (src) == reg_offset [regno])
1260 validate_change (insn, &SET_SRC (pat), reg, 0);
1261 }
1262 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1263 && have_add2_insn (reg, new_src))
1264 {
1265 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1266 validate_change (insn, &SET_SRC (pat), tem, 0);
1267 }
1268 else
1269 {
1270 enum machine_mode narrow_mode;
1271 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1272 narrow_mode != VOIDmode
1273 && narrow_mode != GET_MODE (reg);
1274 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1275 {
1276 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1277 && ((reg_offset[regno]
1278 & ~GET_MODE_MASK (narrow_mode))
1279 == (INTVAL (src)
1280 & ~GET_MODE_MASK (narrow_mode))))
1281 {
1282 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1283 REGNO (reg));
1284 rtx narrow_src = gen_int_mode (INTVAL (src),
1285 narrow_mode);
1286 rtx new_set =
1287 gen_rtx_SET (VOIDmode,
1288 gen_rtx_STRICT_LOW_PART (VOIDmode,
1289 narrow_reg),
1290 narrow_src);
1291 if (validate_change (insn, &PATTERN (insn),
1292 new_set, 0))
1293 break;
1294 }
1295 }
1296 }
1297 reg_set_luid[regno] = move2add_luid;
1298 reg_mode[regno] = GET_MODE (reg);
1299 reg_offset[regno] = INTVAL (src);
1300 continue;
1301 }
1302
1303 /* Try to transform (set (REGX) (REGY))
1304 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1305 ...
1306 (set (REGX) (REGY))
1307 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1308 to
1309 (set (REGX) (REGY))
1310 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1311 ...
1312 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1313 else if (REG_P (src)
1314 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1315 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1316 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1317 reg_mode[REGNO (src)]))
1318 {
1319 rtx next = next_nonnote_insn (insn);
1320 rtx set = NULL_RTX;
1321 if (next)
1322 set = single_set (next);
1323 if (set
1324 && SET_DEST (set) == reg
1325 && GET_CODE (SET_SRC (set)) == PLUS
1326 && XEXP (SET_SRC (set), 0) == reg
1327 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1328 {
1329 rtx src3 = XEXP (SET_SRC (set), 1);
1330 HOST_WIDE_INT added_offset = INTVAL (src3);
1331 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1332 HOST_WIDE_INT regno_offset = reg_offset[regno];
1333 rtx new_src =
1334 gen_int_mode (added_offset
1335 + base_offset
1336 - regno_offset,
1337 GET_MODE (reg));
1338 int success = 0;
1339
1340 if (new_src == const0_rtx)
1341 /* See above why we create (set (reg) (reg)) here. */
1342 success
1343 = validate_change (next, &SET_SRC (set), reg, 0);
1344 else if ((rtx_cost (new_src, PLUS)
1345 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1346 && have_add2_insn (reg, new_src))
1347 {
1348 rtx newpat = gen_rtx_SET (VOIDmode,
1349 reg,
1350 gen_rtx_PLUS (GET_MODE (reg),
1351 reg,
1352 new_src));
1353 success
1354 = validate_change (next, &PATTERN (next),
1355 newpat, 0);
1356 }
1357 if (success)
1358 delete_insn (insn);
1359 insn = next;
1360 reg_mode[regno] = GET_MODE (reg);
1361 reg_offset[regno] =
1362 trunc_int_for_mode (added_offset + base_offset,
1363 GET_MODE (reg));
1364 continue;
1365 }
1366 }
1367 }
1368 }
1369
1370 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1371 {
1372 if (REG_NOTE_KIND (note) == REG_INC
1373 && REG_P (XEXP (note, 0)))
1374 {
1375 /* Reset the information about this register. */
1376 int regno = REGNO (XEXP (note, 0));
1377 if (regno < FIRST_PSEUDO_REGISTER)
1378 reg_set_luid[regno] = 0;
1379 }
1380 }
1381 note_stores (PATTERN (insn), move2add_note_store, NULL);
1382
1383 /* If INSN is a conditional branch, we try to extract an
1384 implicit set out of it. */
1385 if (any_condjump_p (insn))
1386 {
1387 rtx cnd = fis_get_condition (insn);
1388
1389 if (cnd != NULL_RTX
1390 && GET_CODE (cnd) == NE
1391 && REG_P (XEXP (cnd, 0))
1392 && !reg_set_p (XEXP (cnd, 0), insn)
1393 /* The following two checks, which are also in
1394 move2add_note_store, are intended to reduce the
1395 number of calls to gen_rtx_SET to avoid memory
1396 allocation if possible. */
1397 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1398 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1399 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1400 {
1401 rtx implicit_set =
1402 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1403 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1404 }
1405 }
1406
1407 /* If this is a CALL_INSN, all call used registers are stored with
1408 unknown values. */
1409 if (CALL_P (insn))
1410 {
1411 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1412 {
1413 if (call_used_regs[i])
1414 /* Reset the information about this register. */
1415 reg_set_luid[i] = 0;
1416 }
1417 }
1418 }
1419 }
1420
1421 /* SET is a SET or CLOBBER that sets DST.
1422 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1423 Called from reload_cse_move2add via note_stores. */
1424
1425 static void
1426 move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
1427 {
1428 unsigned int regno = 0;
1429 unsigned int i;
1430 enum machine_mode mode = GET_MODE (dst);
1431
1432 if (GET_CODE (dst) == SUBREG)
1433 {
1434 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1435 GET_MODE (SUBREG_REG (dst)),
1436 SUBREG_BYTE (dst),
1437 GET_MODE (dst));
1438 dst = SUBREG_REG (dst);
1439 }
1440
1441 /* Some targets do argument pushes without adding REG_INC notes. */
1442
1443 if (MEM_P (dst))
1444 {
1445 dst = XEXP (dst, 0);
1446 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1447 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1448 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1449 return;
1450 }
1451 if (!REG_P (dst))
1452 return;
1453
1454 regno += REGNO (dst);
1455
1456 if (SCALAR_INT_MODE_P (GET_MODE (dst))
1457 && hard_regno_nregs[regno][mode] == 1 && GET_CODE (set) == SET
1458 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1459 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1460 {
1461 rtx src = SET_SRC (set);
1462 rtx base_reg;
1463 HOST_WIDE_INT offset;
1464 int base_regno;
1465 /* This may be different from mode, if SET_DEST (set) is a
1466 SUBREG. */
1467 enum machine_mode dst_mode = GET_MODE (dst);
1468
1469 switch (GET_CODE (src))
1470 {
1471 case PLUS:
1472 if (REG_P (XEXP (src, 0)))
1473 {
1474 base_reg = XEXP (src, 0);
1475
1476 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1477 offset = INTVAL (XEXP (src, 1));
1478 else if (REG_P (XEXP (src, 1))
1479 && (reg_set_luid[REGNO (XEXP (src, 1))]
1480 > move2add_last_label_luid)
1481 && (MODES_OK_FOR_MOVE2ADD
1482 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1483 {
1484 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1485 offset = reg_offset[REGNO (XEXP (src, 1))];
1486 /* Maybe the first register is known to be a
1487 constant. */
1488 else if (reg_set_luid[REGNO (base_reg)]
1489 > move2add_last_label_luid
1490 && (MODES_OK_FOR_MOVE2ADD
1491 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1492 && reg_base_reg[REGNO (base_reg)] < 0)
1493 {
1494 offset = reg_offset[REGNO (base_reg)];
1495 base_reg = XEXP (src, 1);
1496 }
1497 else
1498 goto invalidate;
1499 }
1500 else
1501 goto invalidate;
1502
1503 break;
1504 }
1505
1506 goto invalidate;
1507
1508 case REG:
1509 base_reg = src;
1510 offset = 0;
1511 break;
1512
1513 case CONST_INT:
1514 /* Start tracking the register as a constant. */
1515 reg_base_reg[regno] = -1;
1516 reg_offset[regno] = INTVAL (SET_SRC (set));
1517 /* We assign the same luid to all registers set to constants. */
1518 reg_set_luid[regno] = move2add_last_label_luid + 1;
1519 reg_mode[regno] = mode;
1520 return;
1521
1522 default:
1523 invalidate:
1524 /* Invalidate the contents of the register. */
1525 reg_set_luid[regno] = 0;
1526 return;
1527 }
1528
1529 base_regno = REGNO (base_reg);
1530 /* If information about the base register is not valid, set it
1531 up as a new base register, pretending its value is known
1532 starting from the current insn. */
1533 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1534 {
1535 reg_base_reg[base_regno] = base_regno;
1536 reg_offset[base_regno] = 0;
1537 reg_set_luid[base_regno] = move2add_luid;
1538 reg_mode[base_regno] = mode;
1539 }
1540 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1541 reg_mode[base_regno]))
1542 goto invalidate;
1543
1544 reg_mode[regno] = mode;
1545
1546 /* Copy base information from our base register. */
1547 reg_set_luid[regno] = reg_set_luid[base_regno];
1548 reg_base_reg[regno] = reg_base_reg[base_regno];
1549
1550 /* Compute the sum of the offsets or constants. */
1551 reg_offset[regno] = trunc_int_for_mode (offset
1552 + reg_offset[base_regno],
1553 dst_mode);
1554 }
1555 else
1556 {
1557 unsigned int endregno = regno + hard_regno_nregs[regno][mode];
1558
1559 for (i = regno; i < endregno; i++)
1560 /* Reset the information about this register. */
1561 reg_set_luid[i] = 0;
1562 }
1563 }