driver-i386.c (detect_caches_amd, [...]): Fix -Wc++-compat and/or -Wcast-qual warnings.
[gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "df.h"
50 #include "dbgcnt.h"
51
52 static int reload_cse_noop_set_p (rtx);
53 static void reload_cse_simplify (rtx, rtx);
54 static void reload_cse_regs_1 (rtx);
55 static int reload_cse_simplify_set (rtx, rtx);
56 static int reload_cse_simplify_operands (rtx, rtx);
57
58 static void reload_combine (void);
59 static void reload_combine_note_use (rtx *, rtx);
60 static void reload_combine_note_store (rtx, const_rtx, void *);
61
62 static void reload_cse_move2add (rtx);
63 static void move2add_note_store (rtx, const_rtx, void *);
64
65 /* Call cse / combine like post-reload optimization phases.
66 FIRST is the first instruction. */
67 void
68 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
69 {
70 reload_cse_regs_1 (first);
71 reload_combine ();
72 reload_cse_move2add (first);
73 if (flag_expensive_optimizations)
74 reload_cse_regs_1 (first);
75 }
76
77 /* See whether a single set SET is a noop. */
78 static int
79 reload_cse_noop_set_p (rtx set)
80 {
81 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82 return 0;
83
84 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85 }
86
87 /* Try to simplify INSN. */
88 static void
89 reload_cse_simplify (rtx insn, rtx testreg)
90 {
91 rtx body = PATTERN (insn);
92
93 if (GET_CODE (body) == SET)
94 {
95 int count = 0;
96
97 /* Simplify even if we may think it is a no-op.
98 We may think a memory load of a value smaller than WORD_SIZE
99 is redundant because we haven't taken into account possible
100 implicit extension. reload_cse_simplify_set() will bring
101 this out, so it's safer to simplify before we delete. */
102 count += reload_cse_simplify_set (body, insn);
103
104 if (!count && reload_cse_noop_set_p (body))
105 {
106 rtx value = SET_DEST (body);
107 if (REG_P (value)
108 && ! REG_FUNCTION_VALUE_P (value))
109 value = 0;
110 delete_insn_and_edges (insn);
111 return;
112 }
113
114 if (count > 0)
115 apply_change_group ();
116 else
117 reload_cse_simplify_operands (insn, testreg);
118 }
119 else if (GET_CODE (body) == PARALLEL)
120 {
121 int i;
122 int count = 0;
123 rtx value = NULL_RTX;
124
125 /* Registers mentioned in the clobber list for an asm cannot be reused
126 within the body of the asm. Invalidate those registers now so that
127 we don't try to substitute values for them. */
128 if (asm_noperands (body) >= 0)
129 {
130 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
131 {
132 rtx part = XVECEXP (body, 0, i);
133 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
134 cselib_invalidate_rtx (XEXP (part, 0));
135 }
136 }
137
138 /* If every action in a PARALLEL is a noop, we can delete
139 the entire PARALLEL. */
140 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
141 {
142 rtx part = XVECEXP (body, 0, i);
143 if (GET_CODE (part) == SET)
144 {
145 if (! reload_cse_noop_set_p (part))
146 break;
147 if (REG_P (SET_DEST (part))
148 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
149 {
150 if (value)
151 break;
152 value = SET_DEST (part);
153 }
154 }
155 else if (GET_CODE (part) != CLOBBER)
156 break;
157 }
158
159 if (i < 0)
160 {
161 delete_insn_and_edges (insn);
162 /* We're done with this insn. */
163 return;
164 }
165
166 /* It's not a no-op, but we can try to simplify it. */
167 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
168 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
169 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
170
171 if (count > 0)
172 apply_change_group ();
173 else
174 reload_cse_simplify_operands (insn, testreg);
175 }
176 }
177
178 /* Do a very simple CSE pass over the hard registers.
179
180 This function detects no-op moves where we happened to assign two
181 different pseudo-registers to the same hard register, and then
182 copied one to the other. Reload will generate a useless
183 instruction copying a register to itself.
184
185 This function also detects cases where we load a value from memory
186 into two different registers, and (if memory is more expensive than
187 registers) changes it to simply copy the first register into the
188 second register.
189
190 Another optimization is performed that scans the operands of each
191 instruction to see whether the value is already available in a
192 hard register. It then replaces the operand with the hard register
193 if possible, much like an optional reload would. */
194
195 static void
196 reload_cse_regs_1 (rtx first)
197 {
198 rtx insn;
199 rtx testreg = gen_rtx_REG (VOIDmode, -1);
200
201 cselib_init (true);
202 init_alias_analysis ();
203
204 for (insn = first; insn; insn = NEXT_INSN (insn))
205 {
206 if (INSN_P (insn))
207 reload_cse_simplify (insn, testreg);
208
209 cselib_process_insn (insn);
210 }
211
212 /* Clean up. */
213 end_alias_analysis ();
214 cselib_finish ();
215 }
216
217 /* Try to simplify a single SET instruction. SET is the set pattern.
218 INSN is the instruction it came from.
219 This function only handles one case: if we set a register to a value
220 which is not a register, we try to find that value in some other register
221 and change the set into a register copy. */
222
223 static int
224 reload_cse_simplify_set (rtx set, rtx insn)
225 {
226 int did_change = 0;
227 int dreg;
228 rtx src;
229 enum reg_class dclass;
230 int old_cost;
231 cselib_val *val;
232 struct elt_loc_list *l;
233 #ifdef LOAD_EXTEND_OP
234 enum rtx_code extend_op = UNKNOWN;
235 #endif
236
237 dreg = true_regnum (SET_DEST (set));
238 if (dreg < 0)
239 return 0;
240
241 src = SET_SRC (set);
242 if (side_effects_p (src) || true_regnum (src) >= 0)
243 return 0;
244
245 dclass = REGNO_REG_CLASS (dreg);
246
247 #ifdef LOAD_EXTEND_OP
248 /* When replacing a memory with a register, we need to honor assumptions
249 that combine made wrt the contents of sign bits. We'll do this by
250 generating an extend instruction instead of a reg->reg copy. Thus
251 the destination must be a register that we can widen. */
252 if (MEM_P (src)
253 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
254 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
255 && !REG_P (SET_DEST (set)))
256 return 0;
257 #endif
258
259 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
260 if (! val)
261 return 0;
262
263 /* If memory loads are cheaper than register copies, don't change them. */
264 if (MEM_P (src))
265 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
266 else if (REG_P (src))
267 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
268 REGNO_REG_CLASS (REGNO (src)), dclass);
269 else
270 old_cost = rtx_cost (src, SET);
271
272 for (l = val->locs; l; l = l->next)
273 {
274 rtx this_rtx = l->loc;
275 int this_cost;
276
277 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
278 {
279 #ifdef LOAD_EXTEND_OP
280 if (extend_op != UNKNOWN)
281 {
282 HOST_WIDE_INT this_val;
283
284 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
285 constants, such as SYMBOL_REF, cannot be extended. */
286 if (GET_CODE (this_rtx) != CONST_INT)
287 continue;
288
289 this_val = INTVAL (this_rtx);
290 switch (extend_op)
291 {
292 case ZERO_EXTEND:
293 this_val &= GET_MODE_MASK (GET_MODE (src));
294 break;
295 case SIGN_EXTEND:
296 /* ??? In theory we're already extended. */
297 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
298 break;
299 default:
300 gcc_unreachable ();
301 }
302 this_rtx = GEN_INT (this_val);
303 }
304 #endif
305 this_cost = rtx_cost (this_rtx, SET);
306 }
307 else if (REG_P (this_rtx))
308 {
309 #ifdef LOAD_EXTEND_OP
310 if (extend_op != UNKNOWN)
311 {
312 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
313 this_cost = rtx_cost (this_rtx, SET);
314 }
315 else
316 #endif
317 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
318 REGNO_REG_CLASS (REGNO (this_rtx)),
319 dclass);
320 }
321 else
322 continue;
323
324 /* If equal costs, prefer registers over anything else. That
325 tends to lead to smaller instructions on some machines. */
326 if (this_cost < old_cost
327 || (this_cost == old_cost
328 && REG_P (this_rtx)
329 && !REG_P (SET_SRC (set))))
330 {
331 #ifdef LOAD_EXTEND_OP
332 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
333 && extend_op != UNKNOWN
334 #ifdef CANNOT_CHANGE_MODE_CLASS
335 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
336 word_mode,
337 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
338 #endif
339 )
340 {
341 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
342 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
343 validate_change (insn, &SET_DEST (set), wide_dest, 1);
344 }
345 #endif
346
347 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
348 old_cost = this_cost, did_change = 1;
349 }
350 }
351
352 return did_change;
353 }
354
355 /* Try to replace operands in INSN with equivalent values that are already
356 in registers. This can be viewed as optional reloading.
357
358 For each non-register operand in the insn, see if any hard regs are
359 known to be equivalent to that operand. Record the alternatives which
360 can accept these hard registers. Among all alternatives, select the
361 ones which are better or equal to the one currently matching, where
362 "better" is in terms of '?' and '!' constraints. Among the remaining
363 alternatives, select the one which replaces most operands with
364 hard registers. */
365
366 static int
367 reload_cse_simplify_operands (rtx insn, rtx testreg)
368 {
369 int i, j;
370
371 /* For each operand, all registers that are equivalent to it. */
372 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
373
374 const char *constraints[MAX_RECOG_OPERANDS];
375
376 /* Vector recording how bad an alternative is. */
377 int *alternative_reject;
378 /* Vector recording how many registers can be introduced by choosing
379 this alternative. */
380 int *alternative_nregs;
381 /* Array of vectors recording, for each operand and each alternative,
382 which hard register to substitute, or -1 if the operand should be
383 left as it is. */
384 int *op_alt_regno[MAX_RECOG_OPERANDS];
385 /* Array of alternatives, sorted in order of decreasing desirability. */
386 int *alternative_order;
387
388 extract_insn (insn);
389
390 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
391 return 0;
392
393 /* Figure out which alternative currently matches. */
394 if (! constrain_operands (1))
395 fatal_insn_not_found (insn);
396
397 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
398 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
399 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
400 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
401 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
402
403 /* For each operand, find out which regs are equivalent. */
404 for (i = 0; i < recog_data.n_operands; i++)
405 {
406 cselib_val *v;
407 struct elt_loc_list *l;
408 rtx op;
409 enum machine_mode mode;
410
411 CLEAR_HARD_REG_SET (equiv_regs[i]);
412
413 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
414 right, so avoid the problem here. Likewise if we have a constant
415 and the insn pattern doesn't tell us the mode we need. */
416 if (LABEL_P (recog_data.operand[i])
417 || (CONSTANT_P (recog_data.operand[i])
418 && recog_data.operand_mode[i] == VOIDmode))
419 continue;
420
421 op = recog_data.operand[i];
422 mode = GET_MODE (op);
423 #ifdef LOAD_EXTEND_OP
424 if (MEM_P (op)
425 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
426 && LOAD_EXTEND_OP (mode) != UNKNOWN)
427 {
428 rtx set = single_set (insn);
429
430 /* We might have multiple sets, some of which do implicit
431 extension. Punt on this for now. */
432 if (! set)
433 continue;
434 /* If the destination is also a MEM or a STRICT_LOW_PART, no
435 extension applies.
436 Also, if there is an explicit extension, we don't have to
437 worry about an implicit one. */
438 else if (MEM_P (SET_DEST (set))
439 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
440 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
441 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
442 ; /* Continue ordinary processing. */
443 #ifdef CANNOT_CHANGE_MODE_CLASS
444 /* If the register cannot change mode to word_mode, it follows that
445 it cannot have been used in word_mode. */
446 else if (REG_P (SET_DEST (set))
447 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
448 word_mode,
449 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
450 ; /* Continue ordinary processing. */
451 #endif
452 /* If this is a straight load, make the extension explicit. */
453 else if (REG_P (SET_DEST (set))
454 && recog_data.n_operands == 2
455 && SET_SRC (set) == op
456 && SET_DEST (set) == recog_data.operand[1-i])
457 {
458 validate_change (insn, recog_data.operand_loc[i],
459 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode),
460 word_mode, op),
461 1);
462 validate_change (insn, recog_data.operand_loc[1-i],
463 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
464 1);
465 if (! apply_change_group ())
466 return 0;
467 return reload_cse_simplify_operands (insn, testreg);
468 }
469 else
470 /* ??? There might be arithmetic operations with memory that are
471 safe to optimize, but is it worth the trouble? */
472 continue;
473 }
474 #endif /* LOAD_EXTEND_OP */
475 v = cselib_lookup (op, recog_data.operand_mode[i], 0);
476 if (! v)
477 continue;
478
479 for (l = v->locs; l; l = l->next)
480 if (REG_P (l->loc))
481 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
482 }
483
484 for (i = 0; i < recog_data.n_operands; i++)
485 {
486 enum machine_mode mode;
487 int regno;
488 const char *p;
489
490 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
491 for (j = 0; j < recog_data.n_alternatives; j++)
492 op_alt_regno[i][j] = -1;
493
494 p = constraints[i] = recog_data.constraints[i];
495 mode = recog_data.operand_mode[i];
496
497 /* Add the reject values for each alternative given by the constraints
498 for this operand. */
499 j = 0;
500 while (*p != '\0')
501 {
502 char c = *p++;
503 if (c == ',')
504 j++;
505 else if (c == '?')
506 alternative_reject[j] += 3;
507 else if (c == '!')
508 alternative_reject[j] += 300;
509 }
510
511 /* We won't change operands which are already registers. We
512 also don't want to modify output operands. */
513 regno = true_regnum (recog_data.operand[i]);
514 if (regno >= 0
515 || constraints[i][0] == '='
516 || constraints[i][0] == '+')
517 continue;
518
519 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
520 {
521 int class = (int) NO_REGS;
522
523 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
524 continue;
525
526 SET_REGNO (testreg, regno);
527 PUT_MODE (testreg, mode);
528
529 /* We found a register equal to this operand. Now look for all
530 alternatives that can accept this register and have not been
531 assigned a register they can use yet. */
532 j = 0;
533 p = constraints[i];
534 for (;;)
535 {
536 char c = *p;
537
538 switch (c)
539 {
540 case '=': case '+': case '?':
541 case '#': case '&': case '!':
542 case '*': case '%':
543 case '0': case '1': case '2': case '3': case '4':
544 case '5': case '6': case '7': case '8': case '9':
545 case '<': case '>': case 'V': case 'o':
546 case 'E': case 'F': case 'G': case 'H':
547 case 's': case 'i': case 'n':
548 case 'I': case 'J': case 'K': case 'L':
549 case 'M': case 'N': case 'O': case 'P':
550 case 'p': case 'X': case TARGET_MEM_CONSTRAINT:
551 /* These don't say anything we care about. */
552 break;
553
554 case 'g': case 'r':
555 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
556 break;
557
558 default:
559 class
560 = (reg_class_subunion
561 [(int) class]
562 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
563 break;
564
565 case ',': case '\0':
566 /* See if REGNO fits this alternative, and set it up as the
567 replacement register if we don't have one for this
568 alternative yet and the operand being replaced is not
569 a cheap CONST_INT. */
570 if (op_alt_regno[i][j] == -1
571 && reg_fits_class_p (testreg, class, 0, mode)
572 && (GET_CODE (recog_data.operand[i]) != CONST_INT
573 || (rtx_cost (recog_data.operand[i], SET)
574 > rtx_cost (testreg, SET))))
575 {
576 alternative_nregs[j]++;
577 op_alt_regno[i][j] = regno;
578 }
579 j++;
580 class = (int) NO_REGS;
581 break;
582 }
583 p += CONSTRAINT_LEN (c, p);
584
585 if (c == '\0')
586 break;
587 }
588 }
589 }
590
591 /* Record all alternatives which are better or equal to the currently
592 matching one in the alternative_order array. */
593 for (i = j = 0; i < recog_data.n_alternatives; i++)
594 if (alternative_reject[i] <= alternative_reject[which_alternative])
595 alternative_order[j++] = i;
596 recog_data.n_alternatives = j;
597
598 /* Sort it. Given a small number of alternatives, a dumb algorithm
599 won't hurt too much. */
600 for (i = 0; i < recog_data.n_alternatives - 1; i++)
601 {
602 int best = i;
603 int best_reject = alternative_reject[alternative_order[i]];
604 int best_nregs = alternative_nregs[alternative_order[i]];
605 int tmp;
606
607 for (j = i + 1; j < recog_data.n_alternatives; j++)
608 {
609 int this_reject = alternative_reject[alternative_order[j]];
610 int this_nregs = alternative_nregs[alternative_order[j]];
611
612 if (this_reject < best_reject
613 || (this_reject == best_reject && this_nregs > best_nregs))
614 {
615 best = j;
616 best_reject = this_reject;
617 best_nregs = this_nregs;
618 }
619 }
620
621 tmp = alternative_order[best];
622 alternative_order[best] = alternative_order[i];
623 alternative_order[i] = tmp;
624 }
625
626 /* Substitute the operands as determined by op_alt_regno for the best
627 alternative. */
628 j = alternative_order[0];
629
630 for (i = 0; i < recog_data.n_operands; i++)
631 {
632 enum machine_mode mode = recog_data.operand_mode[i];
633 if (op_alt_regno[i][j] == -1)
634 continue;
635
636 validate_change (insn, recog_data.operand_loc[i],
637 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
638 }
639
640 for (i = recog_data.n_dups - 1; i >= 0; i--)
641 {
642 int op = recog_data.dup_num[i];
643 enum machine_mode mode = recog_data.operand_mode[op];
644
645 if (op_alt_regno[op][j] == -1)
646 continue;
647
648 validate_change (insn, recog_data.dup_loc[i],
649 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
650 }
651
652 return apply_change_group ();
653 }
654 \f
655 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
656 addressing now.
657 This code might also be useful when reload gave up on reg+reg addressing
658 because of clashes between the return register and INDEX_REG_CLASS. */
659
660 /* The maximum number of uses of a register we can keep track of to
661 replace them with reg+reg addressing. */
662 #define RELOAD_COMBINE_MAX_USES 6
663
664 /* INSN is the insn where a register has been used, and USEP points to the
665 location of the register within the rtl. */
666 struct reg_use { rtx insn, *usep; };
667
668 /* If the register is used in some unknown fashion, USE_INDEX is negative.
669 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
670 indicates where it becomes live again.
671 Otherwise, USE_INDEX is the index of the last encountered use of the
672 register (which is first among these we have seen since we scan backwards),
673 OFFSET contains the constant offset that is added to the register in
674 all encountered uses, and USE_RUID indicates the first encountered, i.e.
675 last, of these uses.
676 STORE_RUID is always meaningful if we only want to use a value in a
677 register in a different place: it denotes the next insn in the insn
678 stream (i.e. the last encountered) that sets or clobbers the register. */
679 static struct
680 {
681 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
682 int use_index;
683 rtx offset;
684 int store_ruid;
685 int use_ruid;
686 } reg_state[FIRST_PSEUDO_REGISTER];
687
688 /* Reverse linear uid. This is increased in reload_combine while scanning
689 the instructions from last to first. It is used to set last_label_ruid
690 and the store_ruid / use_ruid fields in reg_state. */
691 static int reload_combine_ruid;
692
693 #define LABEL_LIVE(LABEL) \
694 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
695
696 static void
697 reload_combine (void)
698 {
699 rtx insn, set;
700 int first_index_reg = -1;
701 int last_index_reg = 0;
702 int i;
703 basic_block bb;
704 unsigned int r;
705 int last_label_ruid;
706 int min_labelno, n_labels;
707 HARD_REG_SET ever_live_at_start, *label_live;
708
709 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
710 reload has already used it where appropriate, so there is no use in
711 trying to generate it now. */
712 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
713 return;
714
715 /* To avoid wasting too much time later searching for an index register,
716 determine the minimum and maximum index register numbers. */
717 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
718 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
719 {
720 if (first_index_reg == -1)
721 first_index_reg = r;
722
723 last_index_reg = r;
724 }
725
726 /* If no index register is available, we can quit now. */
727 if (first_index_reg == -1)
728 return;
729
730 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
731 information is a bit fuzzy immediately after reload, but it's
732 still good enough to determine which registers are live at a jump
733 destination. */
734 min_labelno = get_first_label_num ();
735 n_labels = max_label_num () - min_labelno;
736 label_live = XNEWVEC (HARD_REG_SET, n_labels);
737 CLEAR_HARD_REG_SET (ever_live_at_start);
738
739 FOR_EACH_BB_REVERSE (bb)
740 {
741 insn = BB_HEAD (bb);
742 if (LABEL_P (insn))
743 {
744 HARD_REG_SET live;
745 bitmap live_in = df_get_live_in (bb);
746
747 REG_SET_TO_HARD_REG_SET (live, live_in);
748 compute_use_by_pseudos (&live, live_in);
749 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
750 IOR_HARD_REG_SET (ever_live_at_start, live);
751 }
752 }
753
754 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
755 last_label_ruid = reload_combine_ruid = 0;
756 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
757 {
758 reg_state[r].store_ruid = reload_combine_ruid;
759 if (fixed_regs[r])
760 reg_state[r].use_index = -1;
761 else
762 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
763 }
764
765 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
766 {
767 rtx note;
768
769 /* We cannot do our optimization across labels. Invalidating all the use
770 information we have would be costly, so we just note where the label
771 is and then later disable any optimization that would cross it. */
772 if (LABEL_P (insn))
773 last_label_ruid = reload_combine_ruid;
774 else if (BARRIER_P (insn))
775 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
776 if (! fixed_regs[r])
777 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
778
779 if (! INSN_P (insn))
780 continue;
781
782 reload_combine_ruid++;
783
784 /* Look for (set (REGX) (CONST_INT))
785 (set (REGX) (PLUS (REGX) (REGY)))
786 ...
787 ... (MEM (REGX)) ...
788 and convert it to
789 (set (REGZ) (CONST_INT))
790 ...
791 ... (MEM (PLUS (REGZ) (REGY)))... .
792
793 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
794 and that we know all uses of REGX before it dies.
795 Also, explicitly check that REGX != REGY; our life information
796 does not yet show whether REGY changes in this insn. */
797 set = single_set (insn);
798 if (set != NULL_RTX
799 && REG_P (SET_DEST (set))
800 && (hard_regno_nregs[REGNO (SET_DEST (set))]
801 [GET_MODE (SET_DEST (set))]
802 == 1)
803 && GET_CODE (SET_SRC (set)) == PLUS
804 && REG_P (XEXP (SET_SRC (set), 1))
805 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
806 && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set))
807 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
808 {
809 rtx reg = SET_DEST (set);
810 rtx plus = SET_SRC (set);
811 rtx base = XEXP (plus, 1);
812 rtx prev = prev_nonnote_insn (insn);
813 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
814 unsigned int regno = REGNO (reg);
815 rtx const_reg = NULL_RTX;
816 rtx reg_sum = NULL_RTX;
817
818 /* Now, we need an index register.
819 We'll set index_reg to this index register, const_reg to the
820 register that is to be loaded with the constant
821 (denoted as REGZ in the substitution illustration above),
822 and reg_sum to the register-register that we want to use to
823 substitute uses of REG (typically in MEMs) with.
824 First check REG and BASE for being index registers;
825 we can use them even if they are not dead. */
826 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
827 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
828 REGNO (base)))
829 {
830 const_reg = reg;
831 reg_sum = plus;
832 }
833 else
834 {
835 /* Otherwise, look for a free index register. Since we have
836 checked above that neither REG nor BASE are index registers,
837 if we find anything at all, it will be different from these
838 two registers. */
839 for (i = first_index_reg; i <= last_index_reg; i++)
840 {
841 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
842 i)
843 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
844 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
845 && hard_regno_nregs[i][GET_MODE (reg)] == 1)
846 {
847 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
848
849 const_reg = index_reg;
850 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
851 break;
852 }
853 }
854 }
855
856 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
857 (REGY), i.e. BASE, is not clobbered before the last use we'll
858 create. */
859 if (prev_set != 0
860 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
861 && rtx_equal_p (SET_DEST (prev_set), reg)
862 && reg_state[regno].use_index >= 0
863 && (reg_state[REGNO (base)].store_ruid
864 <= reg_state[regno].use_ruid)
865 && reg_sum != 0)
866 {
867 int i;
868
869 /* Change destination register and, if necessary, the
870 constant value in PREV, the constant loading instruction. */
871 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
872 if (reg_state[regno].offset != const0_rtx)
873 validate_change (prev,
874 &SET_SRC (prev_set),
875 GEN_INT (INTVAL (SET_SRC (prev_set))
876 + INTVAL (reg_state[regno].offset)),
877 1);
878
879 /* Now for every use of REG that we have recorded, replace REG
880 with REG_SUM. */
881 for (i = reg_state[regno].use_index;
882 i < RELOAD_COMBINE_MAX_USES; i++)
883 validate_unshare_change (reg_state[regno].reg_use[i].insn,
884 reg_state[regno].reg_use[i].usep,
885 /* Each change must have its own
886 replacement. */
887 reg_sum, 1);
888
889 if (apply_change_group ())
890 {
891 /* Delete the reg-reg addition. */
892 delete_insn (insn);
893
894 if (reg_state[regno].offset != const0_rtx)
895 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
896 are now invalid. */
897 remove_reg_equal_equiv_notes (prev);
898
899 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
900 reg_state[REGNO (const_reg)].store_ruid
901 = reload_combine_ruid;
902 continue;
903 }
904 }
905 }
906
907 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
908
909 if (CALL_P (insn))
910 {
911 rtx link;
912
913 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
914 if (call_used_regs[r])
915 {
916 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
917 reg_state[r].store_ruid = reload_combine_ruid;
918 }
919
920 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
921 link = XEXP (link, 1))
922 {
923 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
924 if (REG_P (usage_rtx))
925 {
926 unsigned int i;
927 unsigned int start_reg = REGNO (usage_rtx);
928 unsigned int num_regs =
929 hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
930 unsigned int end_reg = start_reg + num_regs - 1;
931 for (i = start_reg; i <= end_reg; i++)
932 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
933 {
934 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
935 reg_state[i].store_ruid = reload_combine_ruid;
936 }
937 else
938 reg_state[i].use_index = -1;
939 }
940 }
941
942 }
943 else if (JUMP_P (insn)
944 && GET_CODE (PATTERN (insn)) != RETURN)
945 {
946 /* Non-spill registers might be used at the call destination in
947 some unknown fashion, so we have to mark the unknown use. */
948 HARD_REG_SET *live;
949
950 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
951 && JUMP_LABEL (insn))
952 live = &LABEL_LIVE (JUMP_LABEL (insn));
953 else
954 live = &ever_live_at_start;
955
956 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
957 if (TEST_HARD_REG_BIT (*live, i))
958 reg_state[i].use_index = -1;
959 }
960
961 reload_combine_note_use (&PATTERN (insn), insn);
962 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
963 {
964 if (REG_NOTE_KIND (note) == REG_INC
965 && REG_P (XEXP (note, 0)))
966 {
967 int regno = REGNO (XEXP (note, 0));
968
969 reg_state[regno].store_ruid = reload_combine_ruid;
970 reg_state[regno].use_index = -1;
971 }
972 }
973 }
974
975 free (label_live);
976 }
977
978 /* Check if DST is a register or a subreg of a register; if it is,
979 update reg_state[regno].store_ruid and reg_state[regno].use_index
980 accordingly. Called via note_stores from reload_combine. */
981
982 static void
983 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
984 {
985 int regno = 0;
986 int i;
987 enum machine_mode mode = GET_MODE (dst);
988
989 if (GET_CODE (dst) == SUBREG)
990 {
991 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
992 GET_MODE (SUBREG_REG (dst)),
993 SUBREG_BYTE (dst),
994 GET_MODE (dst));
995 dst = SUBREG_REG (dst);
996 }
997 if (!REG_P (dst))
998 return;
999 regno += REGNO (dst);
1000
1001 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1002 careful with registers / register parts that are not full words.
1003 Similarly for ZERO_EXTRACT. */
1004 if (GET_CODE (set) != SET
1005 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1006 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1007 {
1008 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1009 {
1010 reg_state[i].use_index = -1;
1011 reg_state[i].store_ruid = reload_combine_ruid;
1012 }
1013 }
1014 else
1015 {
1016 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1017 {
1018 reg_state[i].store_ruid = reload_combine_ruid;
1019 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1020 }
1021 }
1022 }
1023
1024 /* XP points to a piece of rtl that has to be checked for any uses of
1025 registers.
1026 *XP is the pattern of INSN, or a part of it.
1027 Called from reload_combine, and recursively by itself. */
1028 static void
1029 reload_combine_note_use (rtx *xp, rtx insn)
1030 {
1031 rtx x = *xp;
1032 enum rtx_code code = x->code;
1033 const char *fmt;
1034 int i, j;
1035 rtx offset = const0_rtx; /* For the REG case below. */
1036
1037 switch (code)
1038 {
1039 case SET:
1040 if (REG_P (SET_DEST (x)))
1041 {
1042 reload_combine_note_use (&SET_SRC (x), insn);
1043 return;
1044 }
1045 break;
1046
1047 case USE:
1048 /* If this is the USE of a return value, we can't change it. */
1049 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1050 {
1051 /* Mark the return register as used in an unknown fashion. */
1052 rtx reg = XEXP (x, 0);
1053 int regno = REGNO (reg);
1054 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1055
1056 while (--nregs >= 0)
1057 reg_state[regno + nregs].use_index = -1;
1058 return;
1059 }
1060 break;
1061
1062 case CLOBBER:
1063 if (REG_P (SET_DEST (x)))
1064 {
1065 /* No spurious CLOBBERs of pseudo registers may remain. */
1066 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1067 return;
1068 }
1069 break;
1070
1071 case PLUS:
1072 /* We are interested in (plus (reg) (const_int)) . */
1073 if (!REG_P (XEXP (x, 0))
1074 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1075 break;
1076 offset = XEXP (x, 1);
1077 x = XEXP (x, 0);
1078 /* Fall through. */
1079 case REG:
1080 {
1081 int regno = REGNO (x);
1082 int use_index;
1083 int nregs;
1084
1085 /* No spurious USEs of pseudo registers may remain. */
1086 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1087
1088 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1089
1090 /* We can't substitute into multi-hard-reg uses. */
1091 if (nregs > 1)
1092 {
1093 while (--nregs >= 0)
1094 reg_state[regno + nregs].use_index = -1;
1095 return;
1096 }
1097
1098 /* If this register is already used in some unknown fashion, we
1099 can't do anything.
1100 If we decrement the index from zero to -1, we can't store more
1101 uses, so this register becomes used in an unknown fashion. */
1102 use_index = --reg_state[regno].use_index;
1103 if (use_index < 0)
1104 return;
1105
1106 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1107 {
1108 /* We have found another use for a register that is already
1109 used later. Check if the offsets match; if not, mark the
1110 register as used in an unknown fashion. */
1111 if (! rtx_equal_p (offset, reg_state[regno].offset))
1112 {
1113 reg_state[regno].use_index = -1;
1114 return;
1115 }
1116 }
1117 else
1118 {
1119 /* This is the first use of this register we have seen since we
1120 marked it as dead. */
1121 reg_state[regno].offset = offset;
1122 reg_state[regno].use_ruid = reload_combine_ruid;
1123 }
1124 reg_state[regno].reg_use[use_index].insn = insn;
1125 reg_state[regno].reg_use[use_index].usep = xp;
1126 return;
1127 }
1128
1129 default:
1130 break;
1131 }
1132
1133 /* Recursively process the components of X. */
1134 fmt = GET_RTX_FORMAT (code);
1135 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1136 {
1137 if (fmt[i] == 'e')
1138 reload_combine_note_use (&XEXP (x, i), insn);
1139 else if (fmt[i] == 'E')
1140 {
1141 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1142 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1143 }
1144 }
1145 }
1146 \f
1147 /* See if we can reduce the cost of a constant by replacing a move
1148 with an add. We track situations in which a register is set to a
1149 constant or to a register plus a constant. */
1150 /* We cannot do our optimization across labels. Invalidating all the
1151 information about register contents we have would be costly, so we
1152 use move2add_last_label_luid to note where the label is and then
1153 later disable any optimization that would cross it.
1154 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1155 reg_set_luid[n] is greater than move2add_last_label_luid. */
1156 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1157
1158 /* If reg_base_reg[n] is negative, register n has been set to
1159 reg_offset[n] in mode reg_mode[n] .
1160 If reg_base_reg[n] is non-negative, register n has been set to the
1161 sum of reg_offset[n] and the value of register reg_base_reg[n]
1162 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1163 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1164 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1165 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1166
1167 /* move2add_luid is linearly increased while scanning the instructions
1168 from first to last. It is used to set reg_set_luid in
1169 reload_cse_move2add and move2add_note_store. */
1170 static int move2add_luid;
1171
1172 /* move2add_last_label_luid is set whenever a label is found. Labels
1173 invalidate all previously collected reg_offset data. */
1174 static int move2add_last_label_luid;
1175
1176 /* ??? We don't know how zero / sign extension is handled, hence we
1177 can't go from a narrower to a wider mode. */
1178 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1179 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1180 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1181 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1182 GET_MODE_BITSIZE (INMODE))))
1183
1184 static void
1185 reload_cse_move2add (rtx first)
1186 {
1187 int i;
1188 rtx insn;
1189
1190 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1191 reg_set_luid[i] = 0;
1192
1193 move2add_last_label_luid = 0;
1194 move2add_luid = 2;
1195 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1196 {
1197 rtx pat, note;
1198
1199 if (LABEL_P (insn))
1200 {
1201 move2add_last_label_luid = move2add_luid;
1202 /* We're going to increment move2add_luid twice after a
1203 label, so that we can use move2add_last_label_luid + 1 as
1204 the luid for constants. */
1205 move2add_luid++;
1206 continue;
1207 }
1208 if (! INSN_P (insn))
1209 continue;
1210 pat = PATTERN (insn);
1211 /* For simplicity, we only perform this optimization on
1212 straightforward SETs. */
1213 if (GET_CODE (pat) == SET
1214 && REG_P (SET_DEST (pat)))
1215 {
1216 rtx reg = SET_DEST (pat);
1217 int regno = REGNO (reg);
1218 rtx src = SET_SRC (pat);
1219
1220 /* Check if we have valid information on the contents of this
1221 register in the mode of REG. */
1222 if (reg_set_luid[regno] > move2add_last_label_luid
1223 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno])
1224 && dbg_cnt (cse2_move2add))
1225 {
1226 /* Try to transform (set (REGX) (CONST_INT A))
1227 ...
1228 (set (REGX) (CONST_INT B))
1229 to
1230 (set (REGX) (CONST_INT A))
1231 ...
1232 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1233 or
1234 (set (REGX) (CONST_INT A))
1235 ...
1236 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1237 */
1238
1239 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1240 {
1241 rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno],
1242 GET_MODE (reg));
1243 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1244 use (set (reg) (reg)) instead.
1245 We don't delete this insn, nor do we convert it into a
1246 note, to avoid losing register notes or the return
1247 value flag. jump2 already knows how to get rid of
1248 no-op moves. */
1249 if (new_src == const0_rtx)
1250 {
1251 /* If the constants are different, this is a
1252 truncation, that, if turned into (set (reg)
1253 (reg)), would be discarded. Maybe we should
1254 try a truncMN pattern? */
1255 if (INTVAL (src) == reg_offset [regno])
1256 validate_change (insn, &SET_SRC (pat), reg, 0);
1257 }
1258 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1259 && have_add2_insn (reg, new_src))
1260 {
1261 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1262 validate_change (insn, &SET_SRC (pat), tem, 0);
1263 }
1264 else if (GET_MODE (reg) != BImode)
1265 {
1266 enum machine_mode narrow_mode;
1267 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1268 narrow_mode != VOIDmode
1269 && narrow_mode != GET_MODE (reg);
1270 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1271 {
1272 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1273 && ((reg_offset[regno]
1274 & ~GET_MODE_MASK (narrow_mode))
1275 == (INTVAL (src)
1276 & ~GET_MODE_MASK (narrow_mode))))
1277 {
1278 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1279 REGNO (reg));
1280 rtx narrow_src = gen_int_mode (INTVAL (src),
1281 narrow_mode);
1282 rtx new_set =
1283 gen_rtx_SET (VOIDmode,
1284 gen_rtx_STRICT_LOW_PART (VOIDmode,
1285 narrow_reg),
1286 narrow_src);
1287 if (validate_change (insn, &PATTERN (insn),
1288 new_set, 0))
1289 break;
1290 }
1291 }
1292 }
1293 reg_set_luid[regno] = move2add_luid;
1294 reg_mode[regno] = GET_MODE (reg);
1295 reg_offset[regno] = INTVAL (src);
1296 continue;
1297 }
1298
1299 /* Try to transform (set (REGX) (REGY))
1300 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1301 ...
1302 (set (REGX) (REGY))
1303 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1304 to
1305 (set (REGX) (REGY))
1306 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1307 ...
1308 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1309 else if (REG_P (src)
1310 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1311 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1312 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1313 reg_mode[REGNO (src)]))
1314 {
1315 rtx next = next_nonnote_insn (insn);
1316 rtx set = NULL_RTX;
1317 if (next)
1318 set = single_set (next);
1319 if (set
1320 && SET_DEST (set) == reg
1321 && GET_CODE (SET_SRC (set)) == PLUS
1322 && XEXP (SET_SRC (set), 0) == reg
1323 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1324 {
1325 rtx src3 = XEXP (SET_SRC (set), 1);
1326 HOST_WIDE_INT added_offset = INTVAL (src3);
1327 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1328 HOST_WIDE_INT regno_offset = reg_offset[regno];
1329 rtx new_src =
1330 gen_int_mode (added_offset
1331 + base_offset
1332 - regno_offset,
1333 GET_MODE (reg));
1334 int success = 0;
1335
1336 if (new_src == const0_rtx)
1337 /* See above why we create (set (reg) (reg)) here. */
1338 success
1339 = validate_change (next, &SET_SRC (set), reg, 0);
1340 else if ((rtx_cost (new_src, PLUS)
1341 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1342 && have_add2_insn (reg, new_src))
1343 {
1344 rtx newpat = gen_rtx_SET (VOIDmode,
1345 reg,
1346 gen_rtx_PLUS (GET_MODE (reg),
1347 reg,
1348 new_src));
1349 success
1350 = validate_change (next, &PATTERN (next),
1351 newpat, 0);
1352 }
1353 if (success)
1354 delete_insn (insn);
1355 insn = next;
1356 reg_mode[regno] = GET_MODE (reg);
1357 reg_offset[regno] =
1358 trunc_int_for_mode (added_offset + base_offset,
1359 GET_MODE (reg));
1360 continue;
1361 }
1362 }
1363 }
1364 }
1365
1366 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1367 {
1368 if (REG_NOTE_KIND (note) == REG_INC
1369 && REG_P (XEXP (note, 0)))
1370 {
1371 /* Reset the information about this register. */
1372 int regno = REGNO (XEXP (note, 0));
1373 if (regno < FIRST_PSEUDO_REGISTER)
1374 reg_set_luid[regno] = 0;
1375 }
1376 }
1377 note_stores (PATTERN (insn), move2add_note_store, NULL);
1378
1379 /* If INSN is a conditional branch, we try to extract an
1380 implicit set out of it. */
1381 if (any_condjump_p (insn))
1382 {
1383 rtx cnd = fis_get_condition (insn);
1384
1385 if (cnd != NULL_RTX
1386 && GET_CODE (cnd) == NE
1387 && REG_P (XEXP (cnd, 0))
1388 && !reg_set_p (XEXP (cnd, 0), insn)
1389 /* The following two checks, which are also in
1390 move2add_note_store, are intended to reduce the
1391 number of calls to gen_rtx_SET to avoid memory
1392 allocation if possible. */
1393 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1394 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
1395 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1396 {
1397 rtx implicit_set =
1398 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1399 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1400 }
1401 }
1402
1403 /* If this is a CALL_INSN, all call used registers are stored with
1404 unknown values. */
1405 if (CALL_P (insn))
1406 {
1407 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1408 {
1409 if (call_used_regs[i])
1410 /* Reset the information about this register. */
1411 reg_set_luid[i] = 0;
1412 }
1413 }
1414 }
1415 }
1416
1417 /* SET is a SET or CLOBBER that sets DST.
1418 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1419 Called from reload_cse_move2add via note_stores. */
1420
1421 static void
1422 move2add_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1423 {
1424 unsigned int regno = 0;
1425 unsigned int nregs = 0;
1426 unsigned int i;
1427 enum machine_mode mode = GET_MODE (dst);
1428
1429 if (GET_CODE (dst) == SUBREG)
1430 {
1431 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1432 GET_MODE (SUBREG_REG (dst)),
1433 SUBREG_BYTE (dst),
1434 GET_MODE (dst));
1435 nregs = subreg_nregs (dst);
1436 dst = SUBREG_REG (dst);
1437 }
1438
1439 /* Some targets do argument pushes without adding REG_INC notes. */
1440
1441 if (MEM_P (dst))
1442 {
1443 dst = XEXP (dst, 0);
1444 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1445 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1446 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1447 return;
1448 }
1449 if (!REG_P (dst))
1450 return;
1451
1452 regno += REGNO (dst);
1453 if (!nregs)
1454 nregs = hard_regno_nregs[regno][mode];
1455
1456 if (SCALAR_INT_MODE_P (GET_MODE (dst))
1457 && nregs == 1 && GET_CODE (set) == SET
1458 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1459 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1460 {
1461 rtx src = SET_SRC (set);
1462 rtx base_reg;
1463 HOST_WIDE_INT offset;
1464 int base_regno;
1465 /* This may be different from mode, if SET_DEST (set) is a
1466 SUBREG. */
1467 enum machine_mode dst_mode = GET_MODE (dst);
1468
1469 switch (GET_CODE (src))
1470 {
1471 case PLUS:
1472 if (REG_P (XEXP (src, 0)))
1473 {
1474 base_reg = XEXP (src, 0);
1475
1476 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1477 offset = INTVAL (XEXP (src, 1));
1478 else if (REG_P (XEXP (src, 1))
1479 && (reg_set_luid[REGNO (XEXP (src, 1))]
1480 > move2add_last_label_luid)
1481 && (MODES_OK_FOR_MOVE2ADD
1482 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1483 {
1484 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1485 offset = reg_offset[REGNO (XEXP (src, 1))];
1486 /* Maybe the first register is known to be a
1487 constant. */
1488 else if (reg_set_luid[REGNO (base_reg)]
1489 > move2add_last_label_luid
1490 && (MODES_OK_FOR_MOVE2ADD
1491 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1492 && reg_base_reg[REGNO (base_reg)] < 0)
1493 {
1494 offset = reg_offset[REGNO (base_reg)];
1495 base_reg = XEXP (src, 1);
1496 }
1497 else
1498 goto invalidate;
1499 }
1500 else
1501 goto invalidate;
1502
1503 break;
1504 }
1505
1506 goto invalidate;
1507
1508 case REG:
1509 base_reg = src;
1510 offset = 0;
1511 break;
1512
1513 case CONST_INT:
1514 /* Start tracking the register as a constant. */
1515 reg_base_reg[regno] = -1;
1516 reg_offset[regno] = INTVAL (SET_SRC (set));
1517 /* We assign the same luid to all registers set to constants. */
1518 reg_set_luid[regno] = move2add_last_label_luid + 1;
1519 reg_mode[regno] = mode;
1520 return;
1521
1522 default:
1523 invalidate:
1524 /* Invalidate the contents of the register. */
1525 reg_set_luid[regno] = 0;
1526 return;
1527 }
1528
1529 base_regno = REGNO (base_reg);
1530 /* If information about the base register is not valid, set it
1531 up as a new base register, pretending its value is known
1532 starting from the current insn. */
1533 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1534 {
1535 reg_base_reg[base_regno] = base_regno;
1536 reg_offset[base_regno] = 0;
1537 reg_set_luid[base_regno] = move2add_luid;
1538 reg_mode[base_regno] = mode;
1539 }
1540 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1541 reg_mode[base_regno]))
1542 goto invalidate;
1543
1544 reg_mode[regno] = mode;
1545
1546 /* Copy base information from our base register. */
1547 reg_set_luid[regno] = reg_set_luid[base_regno];
1548 reg_base_reg[regno] = reg_base_reg[base_regno];
1549
1550 /* Compute the sum of the offsets or constants. */
1551 reg_offset[regno] = trunc_int_for_mode (offset
1552 + reg_offset[base_regno],
1553 dst_mode);
1554 }
1555 else
1556 {
1557 unsigned int endregno = regno + nregs;
1558
1559 for (i = regno; i < endregno; i++)
1560 /* Reset the information about this register. */
1561 reg_set_luid[i] = 0;
1562 }
1563 }
1564 \f
1565 static bool
1566 gate_handle_postreload (void)
1567 {
1568 return (optimize > 0);
1569 }
1570
1571
1572 static unsigned int
1573 rest_of_handle_postreload (void)
1574 {
1575 if (!dbg_cnt (postreload_cse))
1576 return 0;
1577
1578 /* Do a very simple CSE pass over just the hard registers. */
1579 reload_cse_regs (get_insns ());
1580 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
1581 Remove any EH edges associated with them. */
1582 if (flag_non_call_exceptions)
1583 purge_all_dead_edges ();
1584
1585 return 0;
1586 }
1587
1588 struct rtl_opt_pass pass_postreload_cse =
1589 {
1590 {
1591 RTL_PASS,
1592 "postreload", /* name */
1593 gate_handle_postreload, /* gate */
1594 rest_of_handle_postreload, /* execute */
1595 NULL, /* sub */
1596 NULL, /* next */
1597 0, /* static_pass_number */
1598 TV_RELOAD_CSE_REGS, /* tv_id */
1599 0, /* properties_required */
1600 0, /* properties_provided */
1601 0, /* properties_destroyed */
1602 0, /* todo_flags_start */
1603 TODO_df_finish | TODO_verify_rtl_sharing |
1604 TODO_dump_func /* todo_flags_finish */
1605 }
1606 };
1607