intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
76
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void choose_function_section (void);
81 static bool can_predict_insn_p (const_rtx);
82
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
85
86 struct predictor_info
87 {
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
92 };
93
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
97
98 /* Recompute hitrate in percent to our representation. */
99
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
101
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
105
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
108 };
109 #undef DEF_PREDICTOR
110
111 /* Return TRUE if frequency FREQ is considered to be hot. */
112
113 static inline bool
114 maybe_hot_frequency_p (int freq)
115 {
116 struct cgraph_node *node = cgraph_node (current_function_decl);
117 if (!profile_info || !flag_branch_probabilities)
118 {
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
123 }
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq <= (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128 return false;
129 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130 return false;
131 return true;
132 }
133
134 /* Return TRUE if frequency FREQ is considered to be hot. */
135
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
138 {
139 if (profile_status != PROFILE_READ)
140 return true;
141 /* Code executed at most once is not hot. */
142 if (profile_info->runs >= count)
143 return false;
144 return (count
145 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
146 }
147
148 /* Return true in case BB can be CPU intensive and should be optimized
149 for maximal performance. */
150
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
153 {
154 if (profile_status == PROFILE_READ)
155 return maybe_hot_count_p (bb->count);
156 return maybe_hot_frequency_p (bb->frequency);
157 }
158
159 /* Return true if the call can be hot. */
160
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
163 {
164 if (profile_info && flag_branch_probabilities
165 && (edge->count
166 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167 return false;
168 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169 || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173 return false;
174 if (optimize_size)
175 return false;
176 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177 return true;
178 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180 return false;
181 if (flag_guess_branch_prob
182 && edge->frequency <= (CGRAPH_FREQ_BASE
183 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184 return false;
185 return true;
186 }
187
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
190
191 bool
192 maybe_hot_edge_p (edge e)
193 {
194 if (profile_status == PROFILE_READ)
195 return maybe_hot_count_p (e->count);
196 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
197 }
198
199 /* Return true in case BB is probably never executed. */
200 bool
201 probably_never_executed_bb_p (const_basic_block bb)
202 {
203 if (profile_info && flag_branch_probabilities)
204 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
205 if ((!profile_info || !flag_branch_probabilities)
206 && cgraph_node (current_function_decl)->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
207 return true;
208 return false;
209 }
210
211 /* Return true when current function should always be optimized for size. */
212
213 bool
214 optimize_function_for_size_p (struct function *fun)
215 {
216 return (optimize_size
217 || (fun && fun->decl
218 && (cgraph_node (fun->decl)->frequency
219 == NODE_FREQUENCY_UNLIKELY_EXECUTED)));
220 }
221
222 /* Return true when current function should always be optimized for speed. */
223
224 bool
225 optimize_function_for_speed_p (struct function *fun)
226 {
227 return !optimize_function_for_size_p (fun);
228 }
229
230 /* Return TRUE when BB should be optimized for size. */
231
232 bool
233 optimize_bb_for_size_p (const_basic_block bb)
234 {
235 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
236 }
237
238 /* Return TRUE when BB should be optimized for speed. */
239
240 bool
241 optimize_bb_for_speed_p (const_basic_block bb)
242 {
243 return !optimize_bb_for_size_p (bb);
244 }
245
246 /* Return TRUE when BB should be optimized for size. */
247
248 bool
249 optimize_edge_for_size_p (edge e)
250 {
251 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
252 }
253
254 /* Return TRUE when BB should be optimized for speed. */
255
256 bool
257 optimize_edge_for_speed_p (edge e)
258 {
259 return !optimize_edge_for_size_p (e);
260 }
261
262 /* Return TRUE when BB should be optimized for size. */
263
264 bool
265 optimize_insn_for_size_p (void)
266 {
267 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
268 }
269
270 /* Return TRUE when BB should be optimized for speed. */
271
272 bool
273 optimize_insn_for_speed_p (void)
274 {
275 return !optimize_insn_for_size_p ();
276 }
277
278 /* Return TRUE when LOOP should be optimized for size. */
279
280 bool
281 optimize_loop_for_size_p (struct loop *loop)
282 {
283 return optimize_bb_for_size_p (loop->header);
284 }
285
286 /* Return TRUE when LOOP should be optimized for speed. */
287
288 bool
289 optimize_loop_for_speed_p (struct loop *loop)
290 {
291 return optimize_bb_for_speed_p (loop->header);
292 }
293
294 /* Return TRUE when LOOP nest should be optimized for speed. */
295
296 bool
297 optimize_loop_nest_for_speed_p (struct loop *loop)
298 {
299 struct loop *l = loop;
300 if (optimize_loop_for_speed_p (loop))
301 return true;
302 l = loop->inner;
303 while (l && l != loop)
304 {
305 if (optimize_loop_for_speed_p (l))
306 return true;
307 if (l->inner)
308 l = l->inner;
309 else if (l->next)
310 l = l->next;
311 else
312 {
313 while (l != loop && !l->next)
314 l = loop_outer (l);
315 if (l != loop)
316 l = l->next;
317 }
318 }
319 return false;
320 }
321
322 /* Return TRUE when LOOP nest should be optimized for size. */
323
324 bool
325 optimize_loop_nest_for_size_p (struct loop *loop)
326 {
327 return !optimize_loop_nest_for_speed_p (loop);
328 }
329
330 /* Return true when edge E is likely to be well predictable by branch
331 predictor. */
332
333 bool
334 predictable_edge_p (edge e)
335 {
336 if (profile_status == PROFILE_ABSENT)
337 return false;
338 if ((e->probability
339 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
340 || (REG_BR_PROB_BASE - e->probability
341 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
342 return true;
343 return false;
344 }
345
346
347 /* Set RTL expansion for BB profile. */
348
349 void
350 rtl_profile_for_bb (basic_block bb)
351 {
352 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
353 }
354
355 /* Set RTL expansion for edge profile. */
356
357 void
358 rtl_profile_for_edge (edge e)
359 {
360 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
361 }
362
363 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
364 void
365 default_rtl_profile (void)
366 {
367 crtl->maybe_hot_insn_p = true;
368 }
369
370 /* Return true if the one of outgoing edges is already predicted by
371 PREDICTOR. */
372
373 bool
374 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
375 {
376 rtx note;
377 if (!INSN_P (BB_END (bb)))
378 return false;
379 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
380 if (REG_NOTE_KIND (note) == REG_BR_PRED
381 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
382 return true;
383 return false;
384 }
385
386 /* This map contains for a basic block the list of predictions for the
387 outgoing edges. */
388
389 static struct pointer_map_t *bb_predictions;
390
391 /* Return true if the one of outgoing edges is already predicted by
392 PREDICTOR. */
393
394 bool
395 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
396 {
397 struct edge_prediction *i;
398 void **preds = pointer_map_contains (bb_predictions, bb);
399
400 if (!preds)
401 return false;
402
403 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
404 if (i->ep_predictor == predictor)
405 return true;
406 return false;
407 }
408
409 /* Return true when the probability of edge is reliable.
410
411 The profile guessing code is good at predicting branch outcome (ie.
412 taken/not taken), that is predicted right slightly over 75% of time.
413 It is however notoriously poor on predicting the probability itself.
414 In general the profile appear a lot flatter (with probabilities closer
415 to 50%) than the reality so it is bad idea to use it to drive optimization
416 such as those disabling dynamic branch prediction for well predictable
417 branches.
418
419 There are two exceptions - edges leading to noreturn edges and edges
420 predicted by number of iterations heuristics are predicted well. This macro
421 should be able to distinguish those, but at the moment it simply check for
422 noreturn heuristic that is only one giving probability over 99% or bellow
423 1%. In future we might want to propagate reliability information across the
424 CFG if we find this information useful on multiple places. */
425 static bool
426 probability_reliable_p (int prob)
427 {
428 return (profile_status == PROFILE_READ
429 || (profile_status == PROFILE_GUESSED
430 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
431 }
432
433 /* Same predicate as above, working on edges. */
434 bool
435 edge_probability_reliable_p (const_edge e)
436 {
437 return probability_reliable_p (e->probability);
438 }
439
440 /* Same predicate as edge_probability_reliable_p, working on notes. */
441 bool
442 br_prob_note_reliable_p (const_rtx note)
443 {
444 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
445 return probability_reliable_p (INTVAL (XEXP (note, 0)));
446 }
447
448 static void
449 predict_insn (rtx insn, enum br_predictor predictor, int probability)
450 {
451 gcc_assert (any_condjump_p (insn));
452 if (!flag_guess_branch_prob)
453 return;
454
455 add_reg_note (insn, REG_BR_PRED,
456 gen_rtx_CONCAT (VOIDmode,
457 GEN_INT ((int) predictor),
458 GEN_INT ((int) probability)));
459 }
460
461 /* Predict insn by given predictor. */
462
463 void
464 predict_insn_def (rtx insn, enum br_predictor predictor,
465 enum prediction taken)
466 {
467 int probability = predictor_info[(int) predictor].hitrate;
468
469 if (taken != TAKEN)
470 probability = REG_BR_PROB_BASE - probability;
471
472 predict_insn (insn, predictor, probability);
473 }
474
475 /* Predict edge E with given probability if possible. */
476
477 void
478 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
479 {
480 rtx last_insn;
481 last_insn = BB_END (e->src);
482
483 /* We can store the branch prediction information only about
484 conditional jumps. */
485 if (!any_condjump_p (last_insn))
486 return;
487
488 /* We always store probability of branching. */
489 if (e->flags & EDGE_FALLTHRU)
490 probability = REG_BR_PROB_BASE - probability;
491
492 predict_insn (last_insn, predictor, probability);
493 }
494
495 /* Predict edge E with the given PROBABILITY. */
496 void
497 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
498 {
499 gcc_assert (profile_status != PROFILE_GUESSED);
500 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
501 && flag_guess_branch_prob && optimize)
502 {
503 struct edge_prediction *i = XNEW (struct edge_prediction);
504 void **preds = pointer_map_insert (bb_predictions, e->src);
505
506 i->ep_next = (struct edge_prediction *) *preds;
507 *preds = i;
508 i->ep_probability = probability;
509 i->ep_predictor = predictor;
510 i->ep_edge = e;
511 }
512 }
513
514 /* Remove all predictions on given basic block that are attached
515 to edge E. */
516 void
517 remove_predictions_associated_with_edge (edge e)
518 {
519 void **preds;
520
521 if (!bb_predictions)
522 return;
523
524 preds = pointer_map_contains (bb_predictions, e->src);
525
526 if (preds)
527 {
528 struct edge_prediction **prediction = (struct edge_prediction **) preds;
529 struct edge_prediction *next;
530
531 while (*prediction)
532 {
533 if ((*prediction)->ep_edge == e)
534 {
535 next = (*prediction)->ep_next;
536 free (*prediction);
537 *prediction = next;
538 }
539 else
540 prediction = &((*prediction)->ep_next);
541 }
542 }
543 }
544
545 /* Clears the list of predictions stored for BB. */
546
547 static void
548 clear_bb_predictions (basic_block bb)
549 {
550 void **preds = pointer_map_contains (bb_predictions, bb);
551 struct edge_prediction *pred, *next;
552
553 if (!preds)
554 return;
555
556 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
557 {
558 next = pred->ep_next;
559 free (pred);
560 }
561 *preds = NULL;
562 }
563
564 /* Return true when we can store prediction on insn INSN.
565 At the moment we represent predictions only on conditional
566 jumps, not at computed jump or other complicated cases. */
567 static bool
568 can_predict_insn_p (const_rtx insn)
569 {
570 return (JUMP_P (insn)
571 && any_condjump_p (insn)
572 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
573 }
574
575 /* Predict edge E by given predictor if possible. */
576
577 void
578 predict_edge_def (edge e, enum br_predictor predictor,
579 enum prediction taken)
580 {
581 int probability = predictor_info[(int) predictor].hitrate;
582
583 if (taken != TAKEN)
584 probability = REG_BR_PROB_BASE - probability;
585
586 predict_edge (e, predictor, probability);
587 }
588
589 /* Invert all branch predictions or probability notes in the INSN. This needs
590 to be done each time we invert the condition used by the jump. */
591
592 void
593 invert_br_probabilities (rtx insn)
594 {
595 rtx note;
596
597 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
598 if (REG_NOTE_KIND (note) == REG_BR_PROB)
599 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
600 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
601 XEXP (XEXP (note, 0), 1)
602 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
603 }
604
605 /* Dump information about the branch prediction to the output file. */
606
607 static void
608 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
609 basic_block bb, int used)
610 {
611 edge e;
612 edge_iterator ei;
613
614 if (!file)
615 return;
616
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if (! (e->flags & EDGE_FALLTHRU))
619 break;
620
621 fprintf (file, " %s heuristics%s: %.1f%%",
622 predictor_info[predictor].name,
623 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
624
625 if (bb->count)
626 {
627 fprintf (file, " exec ");
628 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
629 if (e)
630 {
631 fprintf (file, " hit ");
632 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
633 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
634 }
635 }
636
637 fprintf (file, "\n");
638 }
639
640 /* We can not predict the probabilities of outgoing edges of bb. Set them
641 evenly and hope for the best. */
642 static void
643 set_even_probabilities (basic_block bb)
644 {
645 int nedges = 0;
646 edge e;
647 edge_iterator ei;
648
649 FOR_EACH_EDGE (e, ei, bb->succs)
650 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
651 nedges ++;
652 FOR_EACH_EDGE (e, ei, bb->succs)
653 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
654 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
655 else
656 e->probability = 0;
657 }
658
659 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
660 note if not already present. Remove now useless REG_BR_PRED notes. */
661
662 static void
663 combine_predictions_for_insn (rtx insn, basic_block bb)
664 {
665 rtx prob_note;
666 rtx *pnote;
667 rtx note;
668 int best_probability = PROB_EVEN;
669 enum br_predictor best_predictor = END_PREDICTORS;
670 int combined_probability = REG_BR_PROB_BASE / 2;
671 int d;
672 bool first_match = false;
673 bool found = false;
674
675 if (!can_predict_insn_p (insn))
676 {
677 set_even_probabilities (bb);
678 return;
679 }
680
681 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
682 pnote = &REG_NOTES (insn);
683 if (dump_file)
684 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
685 bb->index);
686
687 /* We implement "first match" heuristics and use probability guessed
688 by predictor with smallest index. */
689 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
690 if (REG_NOTE_KIND (note) == REG_BR_PRED)
691 {
692 enum br_predictor predictor = ((enum br_predictor)
693 INTVAL (XEXP (XEXP (note, 0), 0)));
694 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
695
696 found = true;
697 if (best_predictor > predictor)
698 best_probability = probability, best_predictor = predictor;
699
700 d = (combined_probability * probability
701 + (REG_BR_PROB_BASE - combined_probability)
702 * (REG_BR_PROB_BASE - probability));
703
704 /* Use FP math to avoid overflows of 32bit integers. */
705 if (d == 0)
706 /* If one probability is 0% and one 100%, avoid division by zero. */
707 combined_probability = REG_BR_PROB_BASE / 2;
708 else
709 combined_probability = (((double) combined_probability) * probability
710 * REG_BR_PROB_BASE / d + 0.5);
711 }
712
713 /* Decide which heuristic to use. In case we didn't match anything,
714 use no_prediction heuristic, in case we did match, use either
715 first match or Dempster-Shaffer theory depending on the flags. */
716
717 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
718 first_match = true;
719
720 if (!found)
721 dump_prediction (dump_file, PRED_NO_PREDICTION,
722 combined_probability, bb, true);
723 else
724 {
725 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
726 bb, !first_match);
727 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
728 bb, first_match);
729 }
730
731 if (first_match)
732 combined_probability = best_probability;
733 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
734
735 while (*pnote)
736 {
737 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
738 {
739 enum br_predictor predictor = ((enum br_predictor)
740 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
741 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
742
743 dump_prediction (dump_file, predictor, probability, bb,
744 !first_match || best_predictor == predictor);
745 *pnote = XEXP (*pnote, 1);
746 }
747 else
748 pnote = &XEXP (*pnote, 1);
749 }
750
751 if (!prob_note)
752 {
753 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
754
755 /* Save the prediction into CFG in case we are seeing non-degenerated
756 conditional jump. */
757 if (!single_succ_p (bb))
758 {
759 BRANCH_EDGE (bb)->probability = combined_probability;
760 FALLTHRU_EDGE (bb)->probability
761 = REG_BR_PROB_BASE - combined_probability;
762 }
763 }
764 else if (!single_succ_p (bb))
765 {
766 int prob = INTVAL (XEXP (prob_note, 0));
767
768 BRANCH_EDGE (bb)->probability = prob;
769 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
770 }
771 else
772 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
773 }
774
775 /* Combine predictions into single probability and store them into CFG.
776 Remove now useless prediction entries. */
777
778 static void
779 combine_predictions_for_bb (basic_block bb)
780 {
781 int best_probability = PROB_EVEN;
782 enum br_predictor best_predictor = END_PREDICTORS;
783 int combined_probability = REG_BR_PROB_BASE / 2;
784 int d;
785 bool first_match = false;
786 bool found = false;
787 struct edge_prediction *pred;
788 int nedges = 0;
789 edge e, first = NULL, second = NULL;
790 edge_iterator ei;
791 void **preds;
792
793 FOR_EACH_EDGE (e, ei, bb->succs)
794 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
795 {
796 nedges ++;
797 if (first && !second)
798 second = e;
799 if (!first)
800 first = e;
801 }
802
803 /* When there is no successor or only one choice, prediction is easy.
804
805 We are lazy for now and predict only basic blocks with two outgoing
806 edges. It is possible to predict generic case too, but we have to
807 ignore first match heuristics and do more involved combining. Implement
808 this later. */
809 if (nedges != 2)
810 {
811 if (!bb->count)
812 set_even_probabilities (bb);
813 clear_bb_predictions (bb);
814 if (dump_file)
815 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
816 nedges, bb->index);
817 return;
818 }
819
820 if (dump_file)
821 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
822
823 preds = pointer_map_contains (bb_predictions, bb);
824 if (preds)
825 {
826 /* We implement "first match" heuristics and use probability guessed
827 by predictor with smallest index. */
828 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
829 {
830 enum br_predictor predictor = pred->ep_predictor;
831 int probability = pred->ep_probability;
832
833 if (pred->ep_edge != first)
834 probability = REG_BR_PROB_BASE - probability;
835
836 found = true;
837 /* First match heuristics would be widly confused if we predicted
838 both directions. */
839 if (best_predictor > predictor)
840 {
841 struct edge_prediction *pred2;
842 int prob = probability;
843
844 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
845 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
846 {
847 int probability2 = pred->ep_probability;
848
849 if (pred2->ep_edge != first)
850 probability2 = REG_BR_PROB_BASE - probability2;
851
852 if ((probability < REG_BR_PROB_BASE / 2) !=
853 (probability2 < REG_BR_PROB_BASE / 2))
854 break;
855
856 /* If the same predictor later gave better result, go for it! */
857 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
858 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
859 prob = probability2;
860 }
861 if (!pred2)
862 best_probability = prob, best_predictor = predictor;
863 }
864
865 d = (combined_probability * probability
866 + (REG_BR_PROB_BASE - combined_probability)
867 * (REG_BR_PROB_BASE - probability));
868
869 /* Use FP math to avoid overflows of 32bit integers. */
870 if (d == 0)
871 /* If one probability is 0% and one 100%, avoid division by zero. */
872 combined_probability = REG_BR_PROB_BASE / 2;
873 else
874 combined_probability = (((double) combined_probability)
875 * probability
876 * REG_BR_PROB_BASE / d + 0.5);
877 }
878 }
879
880 /* Decide which heuristic to use. In case we didn't match anything,
881 use no_prediction heuristic, in case we did match, use either
882 first match or Dempster-Shaffer theory depending on the flags. */
883
884 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
885 first_match = true;
886
887 if (!found)
888 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
889 else
890 {
891 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
892 !first_match);
893 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
894 first_match);
895 }
896
897 if (first_match)
898 combined_probability = best_probability;
899 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
900
901 if (preds)
902 {
903 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
904 {
905 enum br_predictor predictor = pred->ep_predictor;
906 int probability = pred->ep_probability;
907
908 if (pred->ep_edge != EDGE_SUCC (bb, 0))
909 probability = REG_BR_PROB_BASE - probability;
910 dump_prediction (dump_file, predictor, probability, bb,
911 !first_match || best_predictor == predictor);
912 }
913 }
914 clear_bb_predictions (bb);
915
916 if (!bb->count)
917 {
918 first->probability = combined_probability;
919 second->probability = REG_BR_PROB_BASE - combined_probability;
920 }
921 }
922
923 /* Predict edge probabilities by exploiting loop structure. */
924
925 static void
926 predict_loops (void)
927 {
928 loop_iterator li;
929 struct loop *loop;
930
931 /* Try to predict out blocks in a loop that are not part of a
932 natural loop. */
933 FOR_EACH_LOOP (li, loop, 0)
934 {
935 basic_block bb, *bbs;
936 unsigned j, n_exits;
937 VEC (edge, heap) *exits;
938 struct tree_niter_desc niter_desc;
939 edge ex;
940
941 exits = get_loop_exit_edges (loop);
942 n_exits = VEC_length (edge, exits);
943
944 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
945 {
946 tree niter = NULL;
947 HOST_WIDE_INT nitercst;
948 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
949 int probability;
950 enum br_predictor predictor;
951
952 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
953 niter = niter_desc.niter;
954 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
955 niter = loop_niter_by_eval (loop, ex);
956
957 if (TREE_CODE (niter) == INTEGER_CST)
958 {
959 if (host_integerp (niter, 1)
960 && compare_tree_int (niter, max-1) == -1)
961 nitercst = tree_low_cst (niter, 1) + 1;
962 else
963 nitercst = max;
964 predictor = PRED_LOOP_ITERATIONS;
965 }
966 /* If we have just one exit and we can derive some information about
967 the number of iterations of the loop from the statements inside
968 the loop, use it to predict this exit. */
969 else if (n_exits == 1)
970 {
971 nitercst = estimated_loop_iterations_int (loop, false);
972 if (nitercst < 0)
973 continue;
974 if (nitercst > max)
975 nitercst = max;
976
977 predictor = PRED_LOOP_ITERATIONS_GUESSED;
978 }
979 else
980 continue;
981
982 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
983 predict_edge (ex, predictor, probability);
984 }
985 VEC_free (edge, heap, exits);
986
987 bbs = get_loop_body (loop);
988
989 for (j = 0; j < loop->num_nodes; j++)
990 {
991 int header_found = 0;
992 edge e;
993 edge_iterator ei;
994
995 bb = bbs[j];
996
997 /* Bypass loop heuristics on continue statement. These
998 statements construct loops via "non-loop" constructs
999 in the source language and are better to be handled
1000 separately. */
1001 if (predicted_by_p (bb, PRED_CONTINUE))
1002 continue;
1003
1004 /* Loop branch heuristics - predict an edge back to a
1005 loop's head as taken. */
1006 if (bb == loop->latch)
1007 {
1008 e = find_edge (loop->latch, loop->header);
1009 if (e)
1010 {
1011 header_found = 1;
1012 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1013 }
1014 }
1015
1016 /* Loop exit heuristics - predict an edge exiting the loop if the
1017 conditional has no loop header successors as not taken. */
1018 if (!header_found
1019 /* If we already used more reliable loop exit predictors, do not
1020 bother with PRED_LOOP_EXIT. */
1021 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1022 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1023 {
1024 /* For loop with many exits we don't want to predict all exits
1025 with the pretty large probability, because if all exits are
1026 considered in row, the loop would be predicted to iterate
1027 almost never. The code to divide probability by number of
1028 exits is very rough. It should compute the number of exits
1029 taken in each patch through function (not the overall number
1030 of exits that might be a lot higher for loops with wide switch
1031 statements in them) and compute n-th square root.
1032
1033 We limit the minimal probability by 2% to avoid
1034 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1035 as this was causing regression in perl benchmark containing such
1036 a wide loop. */
1037
1038 int probability = ((REG_BR_PROB_BASE
1039 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1040 / n_exits);
1041 if (probability < HITRATE (2))
1042 probability = HITRATE (2);
1043 FOR_EACH_EDGE (e, ei, bb->succs)
1044 if (e->dest->index < NUM_FIXED_BLOCKS
1045 || !flow_bb_inside_loop_p (loop, e->dest))
1046 predict_edge (e, PRED_LOOP_EXIT, probability);
1047 }
1048 }
1049
1050 /* Free basic blocks from get_loop_body. */
1051 free (bbs);
1052 }
1053 }
1054
1055 /* Attempt to predict probabilities of BB outgoing edges using local
1056 properties. */
1057 static void
1058 bb_estimate_probability_locally (basic_block bb)
1059 {
1060 rtx last_insn = BB_END (bb);
1061 rtx cond;
1062
1063 if (! can_predict_insn_p (last_insn))
1064 return;
1065 cond = get_condition (last_insn, NULL, false, false);
1066 if (! cond)
1067 return;
1068
1069 /* Try "pointer heuristic."
1070 A comparison ptr == 0 is predicted as false.
1071 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1072 if (COMPARISON_P (cond)
1073 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1074 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1075 {
1076 if (GET_CODE (cond) == EQ)
1077 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1078 else if (GET_CODE (cond) == NE)
1079 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1080 }
1081 else
1082
1083 /* Try "opcode heuristic."
1084 EQ tests are usually false and NE tests are usually true. Also,
1085 most quantities are positive, so we can make the appropriate guesses
1086 about signed comparisons against zero. */
1087 switch (GET_CODE (cond))
1088 {
1089 case CONST_INT:
1090 /* Unconditional branch. */
1091 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1092 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1093 break;
1094
1095 case EQ:
1096 case UNEQ:
1097 /* Floating point comparisons appears to behave in a very
1098 unpredictable way because of special role of = tests in
1099 FP code. */
1100 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1101 ;
1102 /* Comparisons with 0 are often used for booleans and there is
1103 nothing useful to predict about them. */
1104 else if (XEXP (cond, 1) == const0_rtx
1105 || XEXP (cond, 0) == const0_rtx)
1106 ;
1107 else
1108 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1109 break;
1110
1111 case NE:
1112 case LTGT:
1113 /* Floating point comparisons appears to behave in a very
1114 unpredictable way because of special role of = tests in
1115 FP code. */
1116 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1117 ;
1118 /* Comparisons with 0 are often used for booleans and there is
1119 nothing useful to predict about them. */
1120 else if (XEXP (cond, 1) == const0_rtx
1121 || XEXP (cond, 0) == const0_rtx)
1122 ;
1123 else
1124 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1125 break;
1126
1127 case ORDERED:
1128 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1129 break;
1130
1131 case UNORDERED:
1132 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1133 break;
1134
1135 case LE:
1136 case LT:
1137 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1138 || XEXP (cond, 1) == constm1_rtx)
1139 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1140 break;
1141
1142 case GE:
1143 case GT:
1144 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1145 || XEXP (cond, 1) == constm1_rtx)
1146 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1147 break;
1148
1149 default:
1150 break;
1151 }
1152 }
1153
1154 /* Set edge->probability for each successor edge of BB. */
1155 void
1156 guess_outgoing_edge_probabilities (basic_block bb)
1157 {
1158 bb_estimate_probability_locally (bb);
1159 combine_predictions_for_insn (BB_END (bb), bb);
1160 }
1161 \f
1162 static tree expr_expected_value (tree, bitmap);
1163
1164 /* Helper function for expr_expected_value. */
1165
1166 static tree
1167 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1168 {
1169 gimple def;
1170
1171 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1172 {
1173 if (TREE_CONSTANT (op0))
1174 return op0;
1175
1176 if (code != SSA_NAME)
1177 return NULL_TREE;
1178
1179 def = SSA_NAME_DEF_STMT (op0);
1180
1181 /* If we were already here, break the infinite cycle. */
1182 if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
1183 return NULL;
1184 bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
1185
1186 if (gimple_code (def) == GIMPLE_PHI)
1187 {
1188 /* All the arguments of the PHI node must have the same constant
1189 length. */
1190 int i, n = gimple_phi_num_args (def);
1191 tree val = NULL, new_val;
1192
1193 for (i = 0; i < n; i++)
1194 {
1195 tree arg = PHI_ARG_DEF (def, i);
1196
1197 /* If this PHI has itself as an argument, we cannot
1198 determine the string length of this argument. However,
1199 if we can find an expected constant value for the other
1200 PHI args then we can still be sure that this is
1201 likely a constant. So be optimistic and just
1202 continue with the next argument. */
1203 if (arg == PHI_RESULT (def))
1204 continue;
1205
1206 new_val = expr_expected_value (arg, visited);
1207 if (!new_val)
1208 return NULL;
1209 if (!val)
1210 val = new_val;
1211 else if (!operand_equal_p (val, new_val, false))
1212 return NULL;
1213 }
1214 return val;
1215 }
1216 if (is_gimple_assign (def))
1217 {
1218 if (gimple_assign_lhs (def) != op0)
1219 return NULL;
1220
1221 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1222 gimple_assign_rhs1 (def),
1223 gimple_assign_rhs_code (def),
1224 gimple_assign_rhs2 (def),
1225 visited);
1226 }
1227
1228 if (is_gimple_call (def))
1229 {
1230 tree decl = gimple_call_fndecl (def);
1231 if (!decl)
1232 return NULL;
1233 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1234 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1235 {
1236 tree val;
1237
1238 if (gimple_call_num_args (def) != 2)
1239 return NULL;
1240 val = gimple_call_arg (def, 0);
1241 if (TREE_CONSTANT (val))
1242 return val;
1243 return gimple_call_arg (def, 1);
1244 }
1245 }
1246
1247 return NULL;
1248 }
1249
1250 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1251 {
1252 tree res;
1253 op0 = expr_expected_value (op0, visited);
1254 if (!op0)
1255 return NULL;
1256 op1 = expr_expected_value (op1, visited);
1257 if (!op1)
1258 return NULL;
1259 res = fold_build2 (code, type, op0, op1);
1260 if (TREE_CONSTANT (res))
1261 return res;
1262 return NULL;
1263 }
1264 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1265 {
1266 tree res;
1267 op0 = expr_expected_value (op0, visited);
1268 if (!op0)
1269 return NULL;
1270 res = fold_build1 (code, type, op0);
1271 if (TREE_CONSTANT (res))
1272 return res;
1273 return NULL;
1274 }
1275 return NULL;
1276 }
1277
1278 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1279 The function is used by builtin_expect branch predictor so the evidence
1280 must come from this construct and additional possible constant folding.
1281
1282 We may want to implement more involved value guess (such as value range
1283 propagation based prediction), but such tricks shall go to new
1284 implementation. */
1285
1286 static tree
1287 expr_expected_value (tree expr, bitmap visited)
1288 {
1289 enum tree_code code;
1290 tree op0, op1;
1291
1292 if (TREE_CONSTANT (expr))
1293 return expr;
1294
1295 extract_ops_from_tree (expr, &code, &op0, &op1);
1296 return expr_expected_value_1 (TREE_TYPE (expr),
1297 op0, code, op1, visited);
1298 }
1299
1300 \f
1301 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1302 we no longer need. */
1303 static unsigned int
1304 strip_predict_hints (void)
1305 {
1306 basic_block bb;
1307 gimple ass_stmt;
1308 tree var;
1309
1310 FOR_EACH_BB (bb)
1311 {
1312 gimple_stmt_iterator bi;
1313 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1314 {
1315 gimple stmt = gsi_stmt (bi);
1316
1317 if (gimple_code (stmt) == GIMPLE_PREDICT)
1318 {
1319 gsi_remove (&bi, true);
1320 continue;
1321 }
1322 else if (gimple_code (stmt) == GIMPLE_CALL)
1323 {
1324 tree fndecl = gimple_call_fndecl (stmt);
1325
1326 if (fndecl
1327 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1328 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1329 && gimple_call_num_args (stmt) == 2)
1330 {
1331 var = gimple_call_lhs (stmt);
1332 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1333
1334 gsi_replace (&bi, ass_stmt, true);
1335 }
1336 }
1337 gsi_next (&bi);
1338 }
1339 }
1340 return 0;
1341 }
1342 \f
1343 /* Predict using opcode of the last statement in basic block. */
1344 static void
1345 tree_predict_by_opcode (basic_block bb)
1346 {
1347 gimple stmt = last_stmt (bb);
1348 edge then_edge;
1349 tree op0, op1;
1350 tree type;
1351 tree val;
1352 enum tree_code cmp;
1353 bitmap visited;
1354 edge_iterator ei;
1355
1356 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1357 return;
1358 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1359 if (then_edge->flags & EDGE_TRUE_VALUE)
1360 break;
1361 op0 = gimple_cond_lhs (stmt);
1362 op1 = gimple_cond_rhs (stmt);
1363 cmp = gimple_cond_code (stmt);
1364 type = TREE_TYPE (op0);
1365 visited = BITMAP_ALLOC (NULL);
1366 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1367 BITMAP_FREE (visited);
1368 if (val)
1369 {
1370 if (integer_zerop (val))
1371 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1372 else
1373 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1374 return;
1375 }
1376 /* Try "pointer heuristic."
1377 A comparison ptr == 0 is predicted as false.
1378 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1379 if (POINTER_TYPE_P (type))
1380 {
1381 if (cmp == EQ_EXPR)
1382 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1383 else if (cmp == NE_EXPR)
1384 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1385 }
1386 else
1387
1388 /* Try "opcode heuristic."
1389 EQ tests are usually false and NE tests are usually true. Also,
1390 most quantities are positive, so we can make the appropriate guesses
1391 about signed comparisons against zero. */
1392 switch (cmp)
1393 {
1394 case EQ_EXPR:
1395 case UNEQ_EXPR:
1396 /* Floating point comparisons appears to behave in a very
1397 unpredictable way because of special role of = tests in
1398 FP code. */
1399 if (FLOAT_TYPE_P (type))
1400 ;
1401 /* Comparisons with 0 are often used for booleans and there is
1402 nothing useful to predict about them. */
1403 else if (integer_zerop (op0) || integer_zerop (op1))
1404 ;
1405 else
1406 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1407 break;
1408
1409 case NE_EXPR:
1410 case LTGT_EXPR:
1411 /* Floating point comparisons appears to behave in a very
1412 unpredictable way because of special role of = tests in
1413 FP code. */
1414 if (FLOAT_TYPE_P (type))
1415 ;
1416 /* Comparisons with 0 are often used for booleans and there is
1417 nothing useful to predict about them. */
1418 else if (integer_zerop (op0)
1419 || integer_zerop (op1))
1420 ;
1421 else
1422 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1423 break;
1424
1425 case ORDERED_EXPR:
1426 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1427 break;
1428
1429 case UNORDERED_EXPR:
1430 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1431 break;
1432
1433 case LE_EXPR:
1434 case LT_EXPR:
1435 if (integer_zerop (op1)
1436 || integer_onep (op1)
1437 || integer_all_onesp (op1)
1438 || real_zerop (op1)
1439 || real_onep (op1)
1440 || real_minus_onep (op1))
1441 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1442 break;
1443
1444 case GE_EXPR:
1445 case GT_EXPR:
1446 if (integer_zerop (op1)
1447 || integer_onep (op1)
1448 || integer_all_onesp (op1)
1449 || real_zerop (op1)
1450 || real_onep (op1)
1451 || real_minus_onep (op1))
1452 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1453 break;
1454
1455 default:
1456 break;
1457 }
1458 }
1459
1460 /* Try to guess whether the value of return means error code. */
1461
1462 static enum br_predictor
1463 return_prediction (tree val, enum prediction *prediction)
1464 {
1465 /* VOID. */
1466 if (!val)
1467 return PRED_NO_PREDICTION;
1468 /* Different heuristics for pointers and scalars. */
1469 if (POINTER_TYPE_P (TREE_TYPE (val)))
1470 {
1471 /* NULL is usually not returned. */
1472 if (integer_zerop (val))
1473 {
1474 *prediction = NOT_TAKEN;
1475 return PRED_NULL_RETURN;
1476 }
1477 }
1478 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1479 {
1480 /* Negative return values are often used to indicate
1481 errors. */
1482 if (TREE_CODE (val) == INTEGER_CST
1483 && tree_int_cst_sgn (val) < 0)
1484 {
1485 *prediction = NOT_TAKEN;
1486 return PRED_NEGATIVE_RETURN;
1487 }
1488 /* Constant return values seems to be commonly taken.
1489 Zero/one often represent booleans so exclude them from the
1490 heuristics. */
1491 if (TREE_CONSTANT (val)
1492 && (!integer_zerop (val) && !integer_onep (val)))
1493 {
1494 *prediction = TAKEN;
1495 return PRED_CONST_RETURN;
1496 }
1497 }
1498 return PRED_NO_PREDICTION;
1499 }
1500
1501 /* Find the basic block with return expression and look up for possible
1502 return value trying to apply RETURN_PREDICTION heuristics. */
1503 static void
1504 apply_return_prediction (void)
1505 {
1506 gimple return_stmt = NULL;
1507 tree return_val;
1508 edge e;
1509 gimple phi;
1510 int phi_num_args, i;
1511 enum br_predictor pred;
1512 enum prediction direction;
1513 edge_iterator ei;
1514
1515 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1516 {
1517 return_stmt = last_stmt (e->src);
1518 if (return_stmt
1519 && gimple_code (return_stmt) == GIMPLE_RETURN)
1520 break;
1521 }
1522 if (!e)
1523 return;
1524 return_val = gimple_return_retval (return_stmt);
1525 if (!return_val)
1526 return;
1527 if (TREE_CODE (return_val) != SSA_NAME
1528 || !SSA_NAME_DEF_STMT (return_val)
1529 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1530 return;
1531 phi = SSA_NAME_DEF_STMT (return_val);
1532 phi_num_args = gimple_phi_num_args (phi);
1533 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1534
1535 /* Avoid the degenerate case where all return values form the function
1536 belongs to same category (ie they are all positive constants)
1537 so we can hardly say something about them. */
1538 for (i = 1; i < phi_num_args; i++)
1539 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1540 break;
1541 if (i != phi_num_args)
1542 for (i = 0; i < phi_num_args; i++)
1543 {
1544 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1545 if (pred != PRED_NO_PREDICTION)
1546 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1547 direction);
1548 }
1549 }
1550
1551 /* Look for basic block that contains unlikely to happen events
1552 (such as noreturn calls) and mark all paths leading to execution
1553 of this basic blocks as unlikely. */
1554
1555 static void
1556 tree_bb_level_predictions (void)
1557 {
1558 basic_block bb;
1559 bool has_return_edges = false;
1560 edge e;
1561 edge_iterator ei;
1562
1563 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1564 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1565 {
1566 has_return_edges = true;
1567 break;
1568 }
1569
1570 apply_return_prediction ();
1571
1572 FOR_EACH_BB (bb)
1573 {
1574 gimple_stmt_iterator gsi;
1575
1576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1577 {
1578 gimple stmt = gsi_stmt (gsi);
1579 tree decl;
1580
1581 if (is_gimple_call (stmt))
1582 {
1583 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1584 && has_return_edges)
1585 predict_paths_leading_to (bb, PRED_NORETURN,
1586 NOT_TAKEN);
1587 decl = gimple_call_fndecl (stmt);
1588 if (decl
1589 && lookup_attribute ("cold",
1590 DECL_ATTRIBUTES (decl)))
1591 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1592 NOT_TAKEN);
1593 }
1594 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1595 {
1596 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1597 gimple_predict_outcome (stmt));
1598 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1599 hints to callers. */
1600 }
1601 }
1602 }
1603 }
1604
1605 #ifdef ENABLE_CHECKING
1606
1607 /* Callback for pointer_map_traverse, asserts that the pointer map is
1608 empty. */
1609
1610 static bool
1611 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1612 void *data ATTRIBUTE_UNUSED)
1613 {
1614 gcc_assert (!*value);
1615 return false;
1616 }
1617 #endif
1618
1619 /* Predict branch probabilities and estimate profile for basic block BB. */
1620
1621 static void
1622 tree_estimate_probability_bb (basic_block bb)
1623 {
1624 edge e;
1625 edge_iterator ei;
1626 gimple last;
1627
1628 FOR_EACH_EDGE (e, ei, bb->succs)
1629 {
1630 /* Predict early returns to be probable, as we've already taken
1631 care for error returns and other cases are often used for
1632 fast paths through function.
1633
1634 Since we've already removed the return statements, we are
1635 looking for CFG like:
1636
1637 if (conditional)
1638 {
1639 ..
1640 goto return_block
1641 }
1642 some other blocks
1643 return_block:
1644 return_stmt. */
1645 if (e->dest != bb->next_bb
1646 && e->dest != EXIT_BLOCK_PTR
1647 && single_succ_p (e->dest)
1648 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1649 && (last = last_stmt (e->dest)) != NULL
1650 && gimple_code (last) == GIMPLE_RETURN)
1651 {
1652 edge e1;
1653 edge_iterator ei1;
1654
1655 if (single_succ_p (bb))
1656 {
1657 FOR_EACH_EDGE (e1, ei1, bb->preds)
1658 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1659 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1660 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1661 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1662 }
1663 else
1664 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1665 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1666 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1667 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1668 }
1669
1670 /* Look for block we are guarding (ie we dominate it,
1671 but it doesn't postdominate us). */
1672 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1673 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1674 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1675 {
1676 gimple_stmt_iterator bi;
1677
1678 /* The call heuristic claims that a guarded function call
1679 is improbable. This is because such calls are often used
1680 to signal exceptional situations such as printing error
1681 messages. */
1682 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1683 gsi_next (&bi))
1684 {
1685 gimple stmt = gsi_stmt (bi);
1686 if (is_gimple_call (stmt)
1687 /* Constant and pure calls are hardly used to signalize
1688 something exceptional. */
1689 && gimple_has_side_effects (stmt))
1690 {
1691 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1692 break;
1693 }
1694 }
1695 }
1696 }
1697 tree_predict_by_opcode (bb);
1698 }
1699
1700 /* Predict branch probabilities and estimate profile of the tree CFG.
1701 This function can be called from the loop optimizers to recompute
1702 the profile information. */
1703
1704 void
1705 tree_estimate_probability (void)
1706 {
1707 basic_block bb;
1708
1709 add_noreturn_fake_exit_edges ();
1710 connect_infinite_loops_to_exit ();
1711 /* We use loop_niter_by_eval, which requires that the loops have
1712 preheaders. */
1713 create_preheaders (CP_SIMPLE_PREHEADERS);
1714 calculate_dominance_info (CDI_POST_DOMINATORS);
1715
1716 bb_predictions = pointer_map_create ();
1717 tree_bb_level_predictions ();
1718 record_loop_exits ();
1719
1720 if (number_of_loops () > 1)
1721 predict_loops ();
1722
1723 FOR_EACH_BB (bb)
1724 tree_estimate_probability_bb (bb);
1725
1726 FOR_EACH_BB (bb)
1727 combine_predictions_for_bb (bb);
1728
1729 #ifdef ENABLE_CHECKING
1730 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1731 #endif
1732 pointer_map_destroy (bb_predictions);
1733 bb_predictions = NULL;
1734
1735 estimate_bb_frequencies ();
1736 free_dominance_info (CDI_POST_DOMINATORS);
1737 remove_fake_exit_edges ();
1738 }
1739
1740 /* Predict branch probabilities and estimate profile of the tree CFG.
1741 This is the driver function for PASS_PROFILE. */
1742
1743 static unsigned int
1744 tree_estimate_probability_driver (void)
1745 {
1746 unsigned nb_loops;
1747
1748 loop_optimizer_init (0);
1749 if (dump_file && (dump_flags & TDF_DETAILS))
1750 flow_loops_dump (dump_file, NULL, 0);
1751
1752 mark_irreducible_loops ();
1753
1754 nb_loops = number_of_loops ();
1755 if (nb_loops > 1)
1756 scev_initialize ();
1757
1758 tree_estimate_probability ();
1759
1760 if (nb_loops > 1)
1761 scev_finalize ();
1762
1763 loop_optimizer_finalize ();
1764 if (dump_file && (dump_flags & TDF_DETAILS))
1765 gimple_dump_cfg (dump_file, dump_flags);
1766 if (profile_status == PROFILE_ABSENT)
1767 profile_status = PROFILE_GUESSED;
1768 return 0;
1769 }
1770 \f
1771 /* Predict edges to successors of CUR whose sources are not postdominated by
1772 BB by PRED and recurse to all postdominators. */
1773
1774 static void
1775 predict_paths_for_bb (basic_block cur, basic_block bb,
1776 enum br_predictor pred,
1777 enum prediction taken)
1778 {
1779 edge e;
1780 edge_iterator ei;
1781 basic_block son;
1782
1783 /* We are looking for all edges forming edge cut induced by
1784 set of all blocks postdominated by BB. */
1785 FOR_EACH_EDGE (e, ei, cur->preds)
1786 if (e->src->index >= NUM_FIXED_BLOCKS
1787 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1788 {
1789 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1790 predict_edge_def (e, pred, taken);
1791 }
1792 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1793 son;
1794 son = next_dom_son (CDI_POST_DOMINATORS, son))
1795 predict_paths_for_bb (son, bb, pred, taken);
1796 }
1797
1798 /* Sets branch probabilities according to PREDiction and
1799 FLAGS. */
1800
1801 static void
1802 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1803 enum prediction taken)
1804 {
1805 predict_paths_for_bb (bb, bb, pred, taken);
1806 }
1807 \f
1808 /* This is used to carry information about basic blocks. It is
1809 attached to the AUX field of the standard CFG block. */
1810
1811 typedef struct block_info_def
1812 {
1813 /* Estimated frequency of execution of basic_block. */
1814 sreal frequency;
1815
1816 /* To keep queue of basic blocks to process. */
1817 basic_block next;
1818
1819 /* Number of predecessors we need to visit first. */
1820 int npredecessors;
1821 } *block_info;
1822
1823 /* Similar information for edges. */
1824 typedef struct edge_info_def
1825 {
1826 /* In case edge is a loopback edge, the probability edge will be reached
1827 in case header is. Estimated number of iterations of the loop can be
1828 then computed as 1 / (1 - back_edge_prob). */
1829 sreal back_edge_prob;
1830 /* True if the edge is a loopback edge in the natural loop. */
1831 unsigned int back_edge:1;
1832 } *edge_info;
1833
1834 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1835 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1836
1837 /* Helper function for estimate_bb_frequencies.
1838 Propagate the frequencies in blocks marked in
1839 TOVISIT, starting in HEAD. */
1840
1841 static void
1842 propagate_freq (basic_block head, bitmap tovisit)
1843 {
1844 basic_block bb;
1845 basic_block last;
1846 unsigned i;
1847 edge e;
1848 basic_block nextbb;
1849 bitmap_iterator bi;
1850
1851 /* For each basic block we need to visit count number of his predecessors
1852 we need to visit first. */
1853 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1854 {
1855 edge_iterator ei;
1856 int count = 0;
1857
1858 /* The outermost "loop" includes the exit block, which we can not
1859 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1860 directly. Do the same for the entry block. */
1861 bb = BASIC_BLOCK (i);
1862
1863 FOR_EACH_EDGE (e, ei, bb->preds)
1864 {
1865 bool visit = bitmap_bit_p (tovisit, e->src->index);
1866
1867 if (visit && !(e->flags & EDGE_DFS_BACK))
1868 count++;
1869 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1870 fprintf (dump_file,
1871 "Irreducible region hit, ignoring edge to %i->%i\n",
1872 e->src->index, bb->index);
1873 }
1874 BLOCK_INFO (bb)->npredecessors = count;
1875 }
1876
1877 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1878 last = head;
1879 for (bb = head; bb; bb = nextbb)
1880 {
1881 edge_iterator ei;
1882 sreal cyclic_probability, frequency;
1883
1884 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1885 memcpy (&frequency, &real_zero, sizeof (real_zero));
1886
1887 nextbb = BLOCK_INFO (bb)->next;
1888 BLOCK_INFO (bb)->next = NULL;
1889
1890 /* Compute frequency of basic block. */
1891 if (bb != head)
1892 {
1893 #ifdef ENABLE_CHECKING
1894 FOR_EACH_EDGE (e, ei, bb->preds)
1895 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1896 || (e->flags & EDGE_DFS_BACK));
1897 #endif
1898
1899 FOR_EACH_EDGE (e, ei, bb->preds)
1900 if (EDGE_INFO (e)->back_edge)
1901 {
1902 sreal_add (&cyclic_probability, &cyclic_probability,
1903 &EDGE_INFO (e)->back_edge_prob);
1904 }
1905 else if (!(e->flags & EDGE_DFS_BACK))
1906 {
1907 sreal tmp;
1908
1909 /* frequency += (e->probability
1910 * BLOCK_INFO (e->src)->frequency /
1911 REG_BR_PROB_BASE); */
1912
1913 sreal_init (&tmp, e->probability, 0);
1914 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1915 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1916 sreal_add (&frequency, &frequency, &tmp);
1917 }
1918
1919 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1920 {
1921 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1922 sizeof (frequency));
1923 }
1924 else
1925 {
1926 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1927 {
1928 memcpy (&cyclic_probability, &real_almost_one,
1929 sizeof (real_almost_one));
1930 }
1931
1932 /* BLOCK_INFO (bb)->frequency = frequency
1933 / (1 - cyclic_probability) */
1934
1935 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1936 sreal_div (&BLOCK_INFO (bb)->frequency,
1937 &frequency, &cyclic_probability);
1938 }
1939 }
1940
1941 bitmap_clear_bit (tovisit, bb->index);
1942
1943 e = find_edge (bb, head);
1944 if (e)
1945 {
1946 sreal tmp;
1947
1948 /* EDGE_INFO (e)->back_edge_prob
1949 = ((e->probability * BLOCK_INFO (bb)->frequency)
1950 / REG_BR_PROB_BASE); */
1951
1952 sreal_init (&tmp, e->probability, 0);
1953 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1954 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1955 &tmp, &real_inv_br_prob_base);
1956 }
1957
1958 /* Propagate to successor blocks. */
1959 FOR_EACH_EDGE (e, ei, bb->succs)
1960 if (!(e->flags & EDGE_DFS_BACK)
1961 && BLOCK_INFO (e->dest)->npredecessors)
1962 {
1963 BLOCK_INFO (e->dest)->npredecessors--;
1964 if (!BLOCK_INFO (e->dest)->npredecessors)
1965 {
1966 if (!nextbb)
1967 nextbb = e->dest;
1968 else
1969 BLOCK_INFO (last)->next = e->dest;
1970
1971 last = e->dest;
1972 }
1973 }
1974 }
1975 }
1976
1977 /* Estimate probabilities of loopback edges in loops at same nest level. */
1978
1979 static void
1980 estimate_loops_at_level (struct loop *first_loop)
1981 {
1982 struct loop *loop;
1983
1984 for (loop = first_loop; loop; loop = loop->next)
1985 {
1986 edge e;
1987 basic_block *bbs;
1988 unsigned i;
1989 bitmap tovisit = BITMAP_ALLOC (NULL);
1990
1991 estimate_loops_at_level (loop->inner);
1992
1993 /* Find current loop back edge and mark it. */
1994 e = loop_latch_edge (loop);
1995 EDGE_INFO (e)->back_edge = 1;
1996
1997 bbs = get_loop_body (loop);
1998 for (i = 0; i < loop->num_nodes; i++)
1999 bitmap_set_bit (tovisit, bbs[i]->index);
2000 free (bbs);
2001 propagate_freq (loop->header, tovisit);
2002 BITMAP_FREE (tovisit);
2003 }
2004 }
2005
2006 /* Propagates frequencies through structure of loops. */
2007
2008 static void
2009 estimate_loops (void)
2010 {
2011 bitmap tovisit = BITMAP_ALLOC (NULL);
2012 basic_block bb;
2013
2014 /* Start by estimating the frequencies in the loops. */
2015 if (number_of_loops () > 1)
2016 estimate_loops_at_level (current_loops->tree_root->inner);
2017
2018 /* Now propagate the frequencies through all the blocks. */
2019 FOR_ALL_BB (bb)
2020 {
2021 bitmap_set_bit (tovisit, bb->index);
2022 }
2023 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2024 BITMAP_FREE (tovisit);
2025 }
2026
2027 /* Convert counts measured by profile driven feedback to frequencies.
2028 Return nonzero iff there was any nonzero execution count. */
2029
2030 int
2031 counts_to_freqs (void)
2032 {
2033 gcov_type count_max, true_count_max = 0;
2034 basic_block bb;
2035
2036 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2037 true_count_max = MAX (bb->count, true_count_max);
2038
2039 count_max = MAX (true_count_max, 1);
2040 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2041 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2042
2043 return true_count_max;
2044 }
2045
2046 /* Return true if function is likely to be expensive, so there is no point to
2047 optimize performance of prologue, epilogue or do inlining at the expense
2048 of code size growth. THRESHOLD is the limit of number of instructions
2049 function can execute at average to be still considered not expensive. */
2050
2051 bool
2052 expensive_function_p (int threshold)
2053 {
2054 unsigned int sum = 0;
2055 basic_block bb;
2056 unsigned int limit;
2057
2058 /* We can not compute accurately for large thresholds due to scaled
2059 frequencies. */
2060 gcc_assert (threshold <= BB_FREQ_MAX);
2061
2062 /* Frequencies are out of range. This either means that function contains
2063 internal loop executing more than BB_FREQ_MAX times or profile feedback
2064 is available and function has not been executed at all. */
2065 if (ENTRY_BLOCK_PTR->frequency == 0)
2066 return true;
2067
2068 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2069 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2070 FOR_EACH_BB (bb)
2071 {
2072 rtx insn;
2073
2074 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2075 insn = NEXT_INSN (insn))
2076 if (active_insn_p (insn))
2077 {
2078 sum += bb->frequency;
2079 if (sum > limit)
2080 return true;
2081 }
2082 }
2083
2084 return false;
2085 }
2086
2087 /* Estimate basic blocks frequency by given branch probabilities. */
2088
2089 void
2090 estimate_bb_frequencies (void)
2091 {
2092 basic_block bb;
2093 sreal freq_max;
2094
2095 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2096 {
2097 static int real_values_initialized = 0;
2098
2099 if (!real_values_initialized)
2100 {
2101 real_values_initialized = 1;
2102 sreal_init (&real_zero, 0, 0);
2103 sreal_init (&real_one, 1, 0);
2104 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2105 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2106 sreal_init (&real_one_half, 1, -1);
2107 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2108 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2109 }
2110
2111 mark_dfs_back_edges ();
2112
2113 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2114
2115 /* Set up block info for each basic block. */
2116 alloc_aux_for_blocks (sizeof (struct block_info_def));
2117 alloc_aux_for_edges (sizeof (struct edge_info_def));
2118 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2119 {
2120 edge e;
2121 edge_iterator ei;
2122
2123 FOR_EACH_EDGE (e, ei, bb->succs)
2124 {
2125 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2126 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2127 &EDGE_INFO (e)->back_edge_prob,
2128 &real_inv_br_prob_base);
2129 }
2130 }
2131
2132 /* First compute probabilities locally for each loop from innermost
2133 to outermost to examine probabilities for back edges. */
2134 estimate_loops ();
2135
2136 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2137 FOR_EACH_BB (bb)
2138 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2139 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2140
2141 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2142 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2143 {
2144 sreal tmp;
2145
2146 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2147 sreal_add (&tmp, &tmp, &real_one_half);
2148 bb->frequency = sreal_to_int (&tmp);
2149 }
2150
2151 free_aux_for_blocks ();
2152 free_aux_for_edges ();
2153 }
2154 compute_function_frequency ();
2155 if (flag_reorder_functions)
2156 choose_function_section ();
2157 }
2158
2159 /* Decide whether function is hot, cold or unlikely executed. */
2160 void
2161 compute_function_frequency (void)
2162 {
2163 basic_block bb;
2164 struct cgraph_node *node = cgraph_node (current_function_decl);
2165
2166 if (!profile_info || !flag_branch_probabilities)
2167 {
2168 int flags = flags_from_decl_or_type (current_function_decl);
2169 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2170 != NULL)
2171 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2172 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2173 != NULL)
2174 node->frequency = NODE_FREQUENCY_HOT;
2175 else if (flags & ECF_NORETURN)
2176 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2177 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2178 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2179 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2180 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2181 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2182 return;
2183 }
2184 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2185 FOR_EACH_BB (bb)
2186 {
2187 if (maybe_hot_bb_p (bb))
2188 {
2189 node->frequency = NODE_FREQUENCY_HOT;
2190 return;
2191 }
2192 if (!probably_never_executed_bb_p (bb))
2193 node->frequency = NODE_FREQUENCY_NORMAL;
2194 }
2195 }
2196
2197 /* Choose appropriate section for the function. */
2198 static void
2199 choose_function_section (void)
2200 {
2201 struct cgraph_node *node = cgraph_node (current_function_decl);
2202 if (DECL_SECTION_NAME (current_function_decl)
2203 || !targetm.have_named_sections
2204 /* Theoretically we can split the gnu.linkonce text section too,
2205 but this requires more work as the frequency needs to match
2206 for all generated objects so we need to merge the frequency
2207 of all instances. For now just never set frequency for these. */
2208 || DECL_ONE_ONLY (current_function_decl))
2209 return;
2210
2211 /* If we are doing the partitioning optimization, let the optimization
2212 choose the correct section into which to put things. */
2213
2214 if (flag_reorder_blocks_and_partition)
2215 return;
2216
2217 if (node->frequency == NODE_FREQUENCY_HOT)
2218 DECL_SECTION_NAME (current_function_decl) =
2219 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2220 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
2221 DECL_SECTION_NAME (current_function_decl) =
2222 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2223 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2224 }
2225
2226 static bool
2227 gate_estimate_probability (void)
2228 {
2229 return flag_guess_branch_prob;
2230 }
2231
2232 /* Build PREDICT_EXPR. */
2233 tree
2234 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2235 {
2236 tree t = build1 (PREDICT_EXPR, void_type_node,
2237 build_int_cst (NULL, predictor));
2238 SET_PREDICT_EXPR_OUTCOME (t, taken);
2239 return t;
2240 }
2241
2242 const char *
2243 predictor_name (enum br_predictor predictor)
2244 {
2245 return predictor_info[predictor].name;
2246 }
2247
2248 struct gimple_opt_pass pass_profile =
2249 {
2250 {
2251 GIMPLE_PASS,
2252 "profile", /* name */
2253 gate_estimate_probability, /* gate */
2254 tree_estimate_probability_driver, /* execute */
2255 NULL, /* sub */
2256 NULL, /* next */
2257 0, /* static_pass_number */
2258 TV_BRANCH_PROB, /* tv_id */
2259 PROP_cfg, /* properties_required */
2260 0, /* properties_provided */
2261 0, /* properties_destroyed */
2262 0, /* todo_flags_start */
2263 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2264 }
2265 };
2266
2267 struct gimple_opt_pass pass_strip_predict_hints =
2268 {
2269 {
2270 GIMPLE_PASS,
2271 "*strip_predict_hints", /* name */
2272 NULL, /* gate */
2273 strip_predict_hints, /* execute */
2274 NULL, /* sub */
2275 NULL, /* next */
2276 0, /* static_pass_number */
2277 TV_BRANCH_PROB, /* tv_id */
2278 PROP_cfg, /* properties_required */
2279 0, /* properties_provided */
2280 0, /* properties_destroyed */
2281 0, /* todo_flags_start */
2282 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2283 }
2284 };