decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "alias.h"
35 #include "symtab.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "calls.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "hard-reg-set.h"
42 #include "predict.h"
43 #include "function.h"
44 #include "dominance.h"
45 #include "cfg.h"
46 #include "cfganal.h"
47 #include "basic-block.h"
48 #include "insn-config.h"
49 #include "regs.h"
50 #include "flags.h"
51 #include "profile.h"
52 #include "except.h"
53 #include "diagnostic-core.h"
54 #include "recog.h"
55 #include "expmed.h"
56 #include "dojump.h"
57 #include "explow.h"
58 #include "emit-rtl.h"
59 #include "varasm.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "coverage.h"
63 #include "sreal.h"
64 #include "params.h"
65 #include "target.h"
66 #include "cfgloop.h"
67 #include "tree-ssa-alias.h"
68 #include "internal-fn.h"
69 #include "gimple-expr.h"
70 #include "gimple.h"
71 #include "gimple-iterator.h"
72 #include "gimple-ssa.h"
73 #include "plugin-api.h"
74 #include "ipa-ref.h"
75 #include "cgraph.h"
76 #include "tree-cfg.h"
77 #include "tree-phinodes.h"
78 #include "ssa-iterators.h"
79 #include "tree-ssa-loop-niter.h"
80 #include "tree-ssa-loop.h"
81 #include "tree-pass.h"
82 #include "tree-scalar-evolution.h"
83
84 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
85 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
86 static sreal real_almost_one, real_br_prob_base,
87 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
88
89 static void combine_predictions_for_insn (rtx_insn *, basic_block);
90 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
91 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
92 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
93 static bool can_predict_insn_p (const rtx_insn *);
94
95 /* Information we hold about each branch predictor.
96 Filled using information from predict.def. */
97
98 struct predictor_info
99 {
100 const char *const name; /* Name used in the debugging dumps. */
101 const int hitrate; /* Expected hitrate used by
102 predict_insn_def call. */
103 const int flags;
104 };
105
106 /* Use given predictor without Dempster-Shaffer theory if it matches
107 using first_match heuristics. */
108 #define PRED_FLAG_FIRST_MATCH 1
109
110 /* Recompute hitrate in percent to our representation. */
111
112 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
113
114 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
115 static const struct predictor_info predictor_info[]= {
116 #include "predict.def"
117
118 /* Upper bound on predictors. */
119 {NULL, 0, 0}
120 };
121 #undef DEF_PREDICTOR
122
123 /* Return TRUE if frequency FREQ is considered to be hot. */
124
125 static inline bool
126 maybe_hot_frequency_p (struct function *fun, int freq)
127 {
128 struct cgraph_node *node = cgraph_node::get (fun->decl);
129 if (!profile_info
130 || !opt_for_fn (fun->decl, flag_branch_probabilities))
131 {
132 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
133 return false;
134 if (node->frequency == NODE_FREQUENCY_HOT)
135 return true;
136 }
137 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
138 return true;
139 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
140 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
141 return false;
142 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
143 return false;
144 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
145 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
146 return false;
147 return true;
148 }
149
150 static gcov_type min_count = -1;
151
152 /* Determine the threshold for hot BB counts. */
153
154 gcov_type
155 get_hot_bb_threshold ()
156 {
157 gcov_working_set_t *ws;
158 if (min_count == -1)
159 {
160 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
161 gcc_assert (ws);
162 min_count = ws->min_counter;
163 }
164 return min_count;
165 }
166
167 /* Set the threshold for hot BB counts. */
168
169 void
170 set_hot_bb_threshold (gcov_type min)
171 {
172 min_count = min;
173 }
174
175 /* Return TRUE if frequency FREQ is considered to be hot. */
176
177 bool
178 maybe_hot_count_p (struct function *fun, gcov_type count)
179 {
180 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
181 return true;
182 /* Code executed at most once is not hot. */
183 if (profile_info->runs >= count)
184 return false;
185 return (count >= get_hot_bb_threshold ());
186 }
187
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
190
191 bool
192 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
193 {
194 gcc_checking_assert (fun);
195 if (profile_status_for_fn (fun) == PROFILE_READ)
196 return maybe_hot_count_p (fun, bb->count);
197 return maybe_hot_frequency_p (fun, bb->frequency);
198 }
199
200 /* Return true in case BB can be CPU intensive and should be optimized
201 for maximal performance. */
202
203 bool
204 maybe_hot_edge_p (edge e)
205 {
206 if (profile_status_for_fn (cfun) == PROFILE_READ)
207 return maybe_hot_count_p (cfun, e->count);
208 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
209 }
210
211 /* Return true if profile COUNT and FREQUENCY, or function FUN static
212 node frequency reflects never being executed. */
213
214 static bool
215 probably_never_executed (struct function *fun,
216 gcov_type count, int frequency)
217 {
218 gcc_checking_assert (fun);
219 if (profile_status_for_fn (fun) == PROFILE_READ)
220 {
221 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
222 if (count * unlikely_count_fraction >= profile_info->runs)
223 return false;
224 if (!frequency)
225 return true;
226 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
227 return false;
228 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
229 {
230 gcov_type computed_count;
231 /* Check for possibility of overflow, in which case entry bb count
232 is large enough to do the division first without losing much
233 precision. */
234 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
235 REG_BR_PROB_BASE)
236 {
237 gcov_type scaled_count
238 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
239 unlikely_count_fraction;
240 computed_count = RDIV (scaled_count,
241 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
242 }
243 else
244 {
245 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
246 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
247 computed_count *= frequency * unlikely_count_fraction;
248 }
249 if (computed_count >= profile_info->runs)
250 return false;
251 }
252 return true;
253 }
254 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
255 && (cgraph_node::get (fun->decl)->frequency
256 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
257 return true;
258 return false;
259 }
260
261
262 /* Return true in case BB is probably never executed. */
263
264 bool
265 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
266 {
267 return probably_never_executed (fun, bb->count, bb->frequency);
268 }
269
270
271 /* Return true in case edge E is probably never executed. */
272
273 bool
274 probably_never_executed_edge_p (struct function *fun, edge e)
275 {
276 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
277 }
278
279 /* Return true when current function should always be optimized for size. */
280
281 bool
282 optimize_function_for_size_p (struct function *fun)
283 {
284 if (!fun || !fun->decl)
285 return optimize_size;
286 cgraph_node *n = cgraph_node::get (fun->decl);
287 return n && n->optimize_for_size_p ();
288 }
289
290 /* Return true when current function should always be optimized for speed. */
291
292 bool
293 optimize_function_for_speed_p (struct function *fun)
294 {
295 return !optimize_function_for_size_p (fun);
296 }
297
298 /* Return TRUE when BB should be optimized for size. */
299
300 bool
301 optimize_bb_for_size_p (const_basic_block bb)
302 {
303 return (optimize_function_for_size_p (cfun)
304 || (bb && !maybe_hot_bb_p (cfun, bb)));
305 }
306
307 /* Return TRUE when BB should be optimized for speed. */
308
309 bool
310 optimize_bb_for_speed_p (const_basic_block bb)
311 {
312 return !optimize_bb_for_size_p (bb);
313 }
314
315 /* Return TRUE when BB should be optimized for size. */
316
317 bool
318 optimize_edge_for_size_p (edge e)
319 {
320 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
321 }
322
323 /* Return TRUE when BB should be optimized for speed. */
324
325 bool
326 optimize_edge_for_speed_p (edge e)
327 {
328 return !optimize_edge_for_size_p (e);
329 }
330
331 /* Return TRUE when BB should be optimized for size. */
332
333 bool
334 optimize_insn_for_size_p (void)
335 {
336 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
337 }
338
339 /* Return TRUE when BB should be optimized for speed. */
340
341 bool
342 optimize_insn_for_speed_p (void)
343 {
344 return !optimize_insn_for_size_p ();
345 }
346
347 /* Return TRUE when LOOP should be optimized for size. */
348
349 bool
350 optimize_loop_for_size_p (struct loop *loop)
351 {
352 return optimize_bb_for_size_p (loop->header);
353 }
354
355 /* Return TRUE when LOOP should be optimized for speed. */
356
357 bool
358 optimize_loop_for_speed_p (struct loop *loop)
359 {
360 return optimize_bb_for_speed_p (loop->header);
361 }
362
363 /* Return TRUE when LOOP nest should be optimized for speed. */
364
365 bool
366 optimize_loop_nest_for_speed_p (struct loop *loop)
367 {
368 struct loop *l = loop;
369 if (optimize_loop_for_speed_p (loop))
370 return true;
371 l = loop->inner;
372 while (l && l != loop)
373 {
374 if (optimize_loop_for_speed_p (l))
375 return true;
376 if (l->inner)
377 l = l->inner;
378 else if (l->next)
379 l = l->next;
380 else
381 {
382 while (l != loop && !l->next)
383 l = loop_outer (l);
384 if (l != loop)
385 l = l->next;
386 }
387 }
388 return false;
389 }
390
391 /* Return TRUE when LOOP nest should be optimized for size. */
392
393 bool
394 optimize_loop_nest_for_size_p (struct loop *loop)
395 {
396 return !optimize_loop_nest_for_speed_p (loop);
397 }
398
399 /* Return true when edge E is likely to be well predictable by branch
400 predictor. */
401
402 bool
403 predictable_edge_p (edge e)
404 {
405 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
406 return false;
407 if ((e->probability
408 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
409 || (REG_BR_PROB_BASE - e->probability
410 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
411 return true;
412 return false;
413 }
414
415
416 /* Set RTL expansion for BB profile. */
417
418 void
419 rtl_profile_for_bb (basic_block bb)
420 {
421 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
422 }
423
424 /* Set RTL expansion for edge profile. */
425
426 void
427 rtl_profile_for_edge (edge e)
428 {
429 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
430 }
431
432 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
433 void
434 default_rtl_profile (void)
435 {
436 crtl->maybe_hot_insn_p = true;
437 }
438
439 /* Return true if the one of outgoing edges is already predicted by
440 PREDICTOR. */
441
442 bool
443 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
444 {
445 rtx note;
446 if (!INSN_P (BB_END (bb)))
447 return false;
448 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
449 if (REG_NOTE_KIND (note) == REG_BR_PRED
450 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
451 return true;
452 return false;
453 }
454
455 /* Structure representing predictions in tree level. */
456
457 struct edge_prediction {
458 struct edge_prediction *ep_next;
459 edge ep_edge;
460 enum br_predictor ep_predictor;
461 int ep_probability;
462 };
463
464 /* This map contains for a basic block the list of predictions for the
465 outgoing edges. */
466
467 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
468
469 /* Return true if the one of outgoing edges is already predicted by
470 PREDICTOR. */
471
472 bool
473 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
474 {
475 struct edge_prediction *i;
476 edge_prediction **preds = bb_predictions->get (bb);
477
478 if (!preds)
479 return false;
480
481 for (i = *preds; i; i = i->ep_next)
482 if (i->ep_predictor == predictor)
483 return true;
484 return false;
485 }
486
487 /* Return true when the probability of edge is reliable.
488
489 The profile guessing code is good at predicting branch outcome (ie.
490 taken/not taken), that is predicted right slightly over 75% of time.
491 It is however notoriously poor on predicting the probability itself.
492 In general the profile appear a lot flatter (with probabilities closer
493 to 50%) than the reality so it is bad idea to use it to drive optimization
494 such as those disabling dynamic branch prediction for well predictable
495 branches.
496
497 There are two exceptions - edges leading to noreturn edges and edges
498 predicted by number of iterations heuristics are predicted well. This macro
499 should be able to distinguish those, but at the moment it simply check for
500 noreturn heuristic that is only one giving probability over 99% or bellow
501 1%. In future we might want to propagate reliability information across the
502 CFG if we find this information useful on multiple places. */
503 static bool
504 probability_reliable_p (int prob)
505 {
506 return (profile_status_for_fn (cfun) == PROFILE_READ
507 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
508 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
509 }
510
511 /* Same predicate as above, working on edges. */
512 bool
513 edge_probability_reliable_p (const_edge e)
514 {
515 return probability_reliable_p (e->probability);
516 }
517
518 /* Same predicate as edge_probability_reliable_p, working on notes. */
519 bool
520 br_prob_note_reliable_p (const_rtx note)
521 {
522 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
523 return probability_reliable_p (XINT (note, 0));
524 }
525
526 static void
527 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
528 {
529 gcc_assert (any_condjump_p (insn));
530 if (!flag_guess_branch_prob)
531 return;
532
533 add_reg_note (insn, REG_BR_PRED,
534 gen_rtx_CONCAT (VOIDmode,
535 GEN_INT ((int) predictor),
536 GEN_INT ((int) probability)));
537 }
538
539 /* Predict insn by given predictor. */
540
541 void
542 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
543 enum prediction taken)
544 {
545 int probability = predictor_info[(int) predictor].hitrate;
546
547 if (taken != TAKEN)
548 probability = REG_BR_PROB_BASE - probability;
549
550 predict_insn (insn, predictor, probability);
551 }
552
553 /* Predict edge E with given probability if possible. */
554
555 void
556 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
557 {
558 rtx_insn *last_insn;
559 last_insn = BB_END (e->src);
560
561 /* We can store the branch prediction information only about
562 conditional jumps. */
563 if (!any_condjump_p (last_insn))
564 return;
565
566 /* We always store probability of branching. */
567 if (e->flags & EDGE_FALLTHRU)
568 probability = REG_BR_PROB_BASE - probability;
569
570 predict_insn (last_insn, predictor, probability);
571 }
572
573 /* Predict edge E with the given PROBABILITY. */
574 void
575 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
576 {
577 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
578 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
579 1)
580 && flag_guess_branch_prob && optimize)
581 {
582 struct edge_prediction *i = XNEW (struct edge_prediction);
583 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
584
585 i->ep_next = preds;
586 preds = i;
587 i->ep_probability = probability;
588 i->ep_predictor = predictor;
589 i->ep_edge = e;
590 }
591 }
592
593 /* Remove all predictions on given basic block that are attached
594 to edge E. */
595 void
596 remove_predictions_associated_with_edge (edge e)
597 {
598 if (!bb_predictions)
599 return;
600
601 edge_prediction **preds = bb_predictions->get (e->src);
602
603 if (preds)
604 {
605 struct edge_prediction **prediction = preds;
606 struct edge_prediction *next;
607
608 while (*prediction)
609 {
610 if ((*prediction)->ep_edge == e)
611 {
612 next = (*prediction)->ep_next;
613 free (*prediction);
614 *prediction = next;
615 }
616 else
617 prediction = &((*prediction)->ep_next);
618 }
619 }
620 }
621
622 /* Clears the list of predictions stored for BB. */
623
624 static void
625 clear_bb_predictions (basic_block bb)
626 {
627 edge_prediction **preds = bb_predictions->get (bb);
628 struct edge_prediction *pred, *next;
629
630 if (!preds)
631 return;
632
633 for (pred = *preds; pred; pred = next)
634 {
635 next = pred->ep_next;
636 free (pred);
637 }
638 *preds = NULL;
639 }
640
641 /* Return true when we can store prediction on insn INSN.
642 At the moment we represent predictions only on conditional
643 jumps, not at computed jump or other complicated cases. */
644 static bool
645 can_predict_insn_p (const rtx_insn *insn)
646 {
647 return (JUMP_P (insn)
648 && any_condjump_p (insn)
649 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
650 }
651
652 /* Predict edge E by given predictor if possible. */
653
654 void
655 predict_edge_def (edge e, enum br_predictor predictor,
656 enum prediction taken)
657 {
658 int probability = predictor_info[(int) predictor].hitrate;
659
660 if (taken != TAKEN)
661 probability = REG_BR_PROB_BASE - probability;
662
663 predict_edge (e, predictor, probability);
664 }
665
666 /* Invert all branch predictions or probability notes in the INSN. This needs
667 to be done each time we invert the condition used by the jump. */
668
669 void
670 invert_br_probabilities (rtx insn)
671 {
672 rtx note;
673
674 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
675 if (REG_NOTE_KIND (note) == REG_BR_PROB)
676 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
677 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
678 XEXP (XEXP (note, 0), 1)
679 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
680 }
681
682 /* Dump information about the branch prediction to the output file. */
683
684 static void
685 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
686 basic_block bb, int used)
687 {
688 edge e;
689 edge_iterator ei;
690
691 if (!file)
692 return;
693
694 FOR_EACH_EDGE (e, ei, bb->succs)
695 if (! (e->flags & EDGE_FALLTHRU))
696 break;
697
698 fprintf (file, " %s heuristics%s: %.1f%%",
699 predictor_info[predictor].name,
700 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
701
702 if (bb->count)
703 {
704 fprintf (file, " exec %" PRId64, bb->count);
705 if (e)
706 {
707 fprintf (file, " hit %" PRId64, e->count);
708 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
709 }
710 }
711
712 fprintf (file, "\n");
713 }
714
715 /* We can not predict the probabilities of outgoing edges of bb. Set them
716 evenly and hope for the best. */
717 static void
718 set_even_probabilities (basic_block bb)
719 {
720 int nedges = 0;
721 edge e;
722 edge_iterator ei;
723
724 FOR_EACH_EDGE (e, ei, bb->succs)
725 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
726 nedges ++;
727 FOR_EACH_EDGE (e, ei, bb->succs)
728 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
729 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
730 else
731 e->probability = 0;
732 }
733
734 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
735 note if not already present. Remove now useless REG_BR_PRED notes. */
736
737 static void
738 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
739 {
740 rtx prob_note;
741 rtx *pnote;
742 rtx note;
743 int best_probability = PROB_EVEN;
744 enum br_predictor best_predictor = END_PREDICTORS;
745 int combined_probability = REG_BR_PROB_BASE / 2;
746 int d;
747 bool first_match = false;
748 bool found = false;
749
750 if (!can_predict_insn_p (insn))
751 {
752 set_even_probabilities (bb);
753 return;
754 }
755
756 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
757 pnote = &REG_NOTES (insn);
758 if (dump_file)
759 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
760 bb->index);
761
762 /* We implement "first match" heuristics and use probability guessed
763 by predictor with smallest index. */
764 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
765 if (REG_NOTE_KIND (note) == REG_BR_PRED)
766 {
767 enum br_predictor predictor = ((enum br_predictor)
768 INTVAL (XEXP (XEXP (note, 0), 0)));
769 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
770
771 found = true;
772 if (best_predictor > predictor)
773 best_probability = probability, best_predictor = predictor;
774
775 d = (combined_probability * probability
776 + (REG_BR_PROB_BASE - combined_probability)
777 * (REG_BR_PROB_BASE - probability));
778
779 /* Use FP math to avoid overflows of 32bit integers. */
780 if (d == 0)
781 /* If one probability is 0% and one 100%, avoid division by zero. */
782 combined_probability = REG_BR_PROB_BASE / 2;
783 else
784 combined_probability = (((double) combined_probability) * probability
785 * REG_BR_PROB_BASE / d + 0.5);
786 }
787
788 /* Decide which heuristic to use. In case we didn't match anything,
789 use no_prediction heuristic, in case we did match, use either
790 first match or Dempster-Shaffer theory depending on the flags. */
791
792 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
793 first_match = true;
794
795 if (!found)
796 dump_prediction (dump_file, PRED_NO_PREDICTION,
797 combined_probability, bb, true);
798 else
799 {
800 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
801 bb, !first_match);
802 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
803 bb, first_match);
804 }
805
806 if (first_match)
807 combined_probability = best_probability;
808 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
809
810 while (*pnote)
811 {
812 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
813 {
814 enum br_predictor predictor = ((enum br_predictor)
815 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
816 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
817
818 dump_prediction (dump_file, predictor, probability, bb,
819 !first_match || best_predictor == predictor);
820 *pnote = XEXP (*pnote, 1);
821 }
822 else
823 pnote = &XEXP (*pnote, 1);
824 }
825
826 if (!prob_note)
827 {
828 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
829
830 /* Save the prediction into CFG in case we are seeing non-degenerated
831 conditional jump. */
832 if (!single_succ_p (bb))
833 {
834 BRANCH_EDGE (bb)->probability = combined_probability;
835 FALLTHRU_EDGE (bb)->probability
836 = REG_BR_PROB_BASE - combined_probability;
837 }
838 }
839 else if (!single_succ_p (bb))
840 {
841 int prob = XINT (prob_note, 0);
842
843 BRANCH_EDGE (bb)->probability = prob;
844 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
845 }
846 else
847 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
848 }
849
850 /* Combine predictions into single probability and store them into CFG.
851 Remove now useless prediction entries. */
852
853 static void
854 combine_predictions_for_bb (basic_block bb)
855 {
856 int best_probability = PROB_EVEN;
857 enum br_predictor best_predictor = END_PREDICTORS;
858 int combined_probability = REG_BR_PROB_BASE / 2;
859 int d;
860 bool first_match = false;
861 bool found = false;
862 struct edge_prediction *pred;
863 int nedges = 0;
864 edge e, first = NULL, second = NULL;
865 edge_iterator ei;
866
867 FOR_EACH_EDGE (e, ei, bb->succs)
868 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
869 {
870 nedges ++;
871 if (first && !second)
872 second = e;
873 if (!first)
874 first = e;
875 }
876
877 /* When there is no successor or only one choice, prediction is easy.
878
879 We are lazy for now and predict only basic blocks with two outgoing
880 edges. It is possible to predict generic case too, but we have to
881 ignore first match heuristics and do more involved combining. Implement
882 this later. */
883 if (nedges != 2)
884 {
885 if (!bb->count)
886 set_even_probabilities (bb);
887 clear_bb_predictions (bb);
888 if (dump_file)
889 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
890 nedges, bb->index);
891 return;
892 }
893
894 if (dump_file)
895 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
896
897 edge_prediction **preds = bb_predictions->get (bb);
898 if (preds)
899 {
900 /* We implement "first match" heuristics and use probability guessed
901 by predictor with smallest index. */
902 for (pred = *preds; pred; pred = pred->ep_next)
903 {
904 enum br_predictor predictor = pred->ep_predictor;
905 int probability = pred->ep_probability;
906
907 if (pred->ep_edge != first)
908 probability = REG_BR_PROB_BASE - probability;
909
910 found = true;
911 /* First match heuristics would be widly confused if we predicted
912 both directions. */
913 if (best_predictor > predictor)
914 {
915 struct edge_prediction *pred2;
916 int prob = probability;
917
918 for (pred2 = (struct edge_prediction *) *preds;
919 pred2; pred2 = pred2->ep_next)
920 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
921 {
922 int probability2 = pred->ep_probability;
923
924 if (pred2->ep_edge != first)
925 probability2 = REG_BR_PROB_BASE - probability2;
926
927 if ((probability < REG_BR_PROB_BASE / 2) !=
928 (probability2 < REG_BR_PROB_BASE / 2))
929 break;
930
931 /* If the same predictor later gave better result, go for it! */
932 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
933 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
934 prob = probability2;
935 }
936 if (!pred2)
937 best_probability = prob, best_predictor = predictor;
938 }
939
940 d = (combined_probability * probability
941 + (REG_BR_PROB_BASE - combined_probability)
942 * (REG_BR_PROB_BASE - probability));
943
944 /* Use FP math to avoid overflows of 32bit integers. */
945 if (d == 0)
946 /* If one probability is 0% and one 100%, avoid division by zero. */
947 combined_probability = REG_BR_PROB_BASE / 2;
948 else
949 combined_probability = (((double) combined_probability)
950 * probability
951 * REG_BR_PROB_BASE / d + 0.5);
952 }
953 }
954
955 /* Decide which heuristic to use. In case we didn't match anything,
956 use no_prediction heuristic, in case we did match, use either
957 first match or Dempster-Shaffer theory depending on the flags. */
958
959 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
960 first_match = true;
961
962 if (!found)
963 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
964 else
965 {
966 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
967 !first_match);
968 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
969 first_match);
970 }
971
972 if (first_match)
973 combined_probability = best_probability;
974 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
975
976 if (preds)
977 {
978 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
979 {
980 enum br_predictor predictor = pred->ep_predictor;
981 int probability = pred->ep_probability;
982
983 if (pred->ep_edge != EDGE_SUCC (bb, 0))
984 probability = REG_BR_PROB_BASE - probability;
985 dump_prediction (dump_file, predictor, probability, bb,
986 !first_match || best_predictor == predictor);
987 }
988 }
989 clear_bb_predictions (bb);
990
991 if (!bb->count)
992 {
993 first->probability = combined_probability;
994 second->probability = REG_BR_PROB_BASE - combined_probability;
995 }
996 }
997
998 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
999 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1000
1001 T1 and T2 should be one of the following cases:
1002 1. T1 is SSA_NAME, T2 is NULL
1003 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1004 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1005
1006 static tree
1007 strips_small_constant (tree t1, tree t2)
1008 {
1009 tree ret = NULL;
1010 int value = 0;
1011
1012 if (!t1)
1013 return NULL;
1014 else if (TREE_CODE (t1) == SSA_NAME)
1015 ret = t1;
1016 else if (tree_fits_shwi_p (t1))
1017 value = tree_to_shwi (t1);
1018 else
1019 return NULL;
1020
1021 if (!t2)
1022 return ret;
1023 else if (tree_fits_shwi_p (t2))
1024 value = tree_to_shwi (t2);
1025 else if (TREE_CODE (t2) == SSA_NAME)
1026 {
1027 if (ret)
1028 return NULL;
1029 else
1030 ret = t2;
1031 }
1032
1033 if (value <= 4 && value >= -4)
1034 return ret;
1035 else
1036 return NULL;
1037 }
1038
1039 /* Return the SSA_NAME in T or T's operands.
1040 Return NULL if SSA_NAME cannot be found. */
1041
1042 static tree
1043 get_base_value (tree t)
1044 {
1045 if (TREE_CODE (t) == SSA_NAME)
1046 return t;
1047
1048 if (!BINARY_CLASS_P (t))
1049 return NULL;
1050
1051 switch (TREE_OPERAND_LENGTH (t))
1052 {
1053 case 1:
1054 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1055 case 2:
1056 return strips_small_constant (TREE_OPERAND (t, 0),
1057 TREE_OPERAND (t, 1));
1058 default:
1059 return NULL;
1060 }
1061 }
1062
1063 /* Check the compare STMT in LOOP. If it compares an induction
1064 variable to a loop invariant, return true, and save
1065 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1066 Otherwise return false and set LOOP_INVAIANT to NULL. */
1067
1068 static bool
1069 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1070 tree *loop_invariant,
1071 enum tree_code *compare_code,
1072 tree *loop_step,
1073 tree *loop_iv_base)
1074 {
1075 tree op0, op1, bound, base;
1076 affine_iv iv0, iv1;
1077 enum tree_code code;
1078 tree step;
1079
1080 code = gimple_cond_code (stmt);
1081 *loop_invariant = NULL;
1082
1083 switch (code)
1084 {
1085 case GT_EXPR:
1086 case GE_EXPR:
1087 case NE_EXPR:
1088 case LT_EXPR:
1089 case LE_EXPR:
1090 case EQ_EXPR:
1091 break;
1092
1093 default:
1094 return false;
1095 }
1096
1097 op0 = gimple_cond_lhs (stmt);
1098 op1 = gimple_cond_rhs (stmt);
1099
1100 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1101 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1102 return false;
1103 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1104 return false;
1105 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1106 return false;
1107 if (TREE_CODE (iv0.step) != INTEGER_CST
1108 || TREE_CODE (iv1.step) != INTEGER_CST)
1109 return false;
1110 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1111 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1112 return false;
1113
1114 if (integer_zerop (iv0.step))
1115 {
1116 if (code != NE_EXPR && code != EQ_EXPR)
1117 code = invert_tree_comparison (code, false);
1118 bound = iv0.base;
1119 base = iv1.base;
1120 if (tree_fits_shwi_p (iv1.step))
1121 step = iv1.step;
1122 else
1123 return false;
1124 }
1125 else
1126 {
1127 bound = iv1.base;
1128 base = iv0.base;
1129 if (tree_fits_shwi_p (iv0.step))
1130 step = iv0.step;
1131 else
1132 return false;
1133 }
1134
1135 if (TREE_CODE (bound) != INTEGER_CST)
1136 bound = get_base_value (bound);
1137 if (!bound)
1138 return false;
1139 if (TREE_CODE (base) != INTEGER_CST)
1140 base = get_base_value (base);
1141 if (!base)
1142 return false;
1143
1144 *loop_invariant = bound;
1145 *compare_code = code;
1146 *loop_step = step;
1147 *loop_iv_base = base;
1148 return true;
1149 }
1150
1151 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1152
1153 static bool
1154 expr_coherent_p (tree t1, tree t2)
1155 {
1156 gimple stmt;
1157 tree ssa_name_1 = NULL;
1158 tree ssa_name_2 = NULL;
1159
1160 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1161 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1162
1163 if (t1 == t2)
1164 return true;
1165
1166 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1167 return true;
1168 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1169 return false;
1170
1171 /* Check to see if t1 is expressed/defined with t2. */
1172 stmt = SSA_NAME_DEF_STMT (t1);
1173 gcc_assert (stmt != NULL);
1174 if (is_gimple_assign (stmt))
1175 {
1176 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1177 if (ssa_name_1 && ssa_name_1 == t2)
1178 return true;
1179 }
1180
1181 /* Check to see if t2 is expressed/defined with t1. */
1182 stmt = SSA_NAME_DEF_STMT (t2);
1183 gcc_assert (stmt != NULL);
1184 if (is_gimple_assign (stmt))
1185 {
1186 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1187 if (ssa_name_2 && ssa_name_2 == t1)
1188 return true;
1189 }
1190
1191 /* Compare if t1 and t2's def_stmts are identical. */
1192 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1193 return true;
1194 else
1195 return false;
1196 }
1197
1198 /* Predict branch probability of BB when BB contains a branch that compares
1199 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1200 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1201
1202 E.g.
1203 for (int i = 0; i < bound; i++) {
1204 if (i < bound - 2)
1205 computation_1();
1206 else
1207 computation_2();
1208 }
1209
1210 In this loop, we will predict the branch inside the loop to be taken. */
1211
1212 static void
1213 predict_iv_comparison (struct loop *loop, basic_block bb,
1214 tree loop_bound_var,
1215 tree loop_iv_base_var,
1216 enum tree_code loop_bound_code,
1217 int loop_bound_step)
1218 {
1219 gimple stmt;
1220 tree compare_var, compare_base;
1221 enum tree_code compare_code;
1222 tree compare_step_var;
1223 edge then_edge;
1224 edge_iterator ei;
1225
1226 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1227 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1228 || predicted_by_p (bb, PRED_LOOP_EXIT))
1229 return;
1230
1231 stmt = last_stmt (bb);
1232 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1233 return;
1234 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1235 loop, &compare_var,
1236 &compare_code,
1237 &compare_step_var,
1238 &compare_base))
1239 return;
1240
1241 /* Find the taken edge. */
1242 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1243 if (then_edge->flags & EDGE_TRUE_VALUE)
1244 break;
1245
1246 /* When comparing an IV to a loop invariant, NE is more likely to be
1247 taken while EQ is more likely to be not-taken. */
1248 if (compare_code == NE_EXPR)
1249 {
1250 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1251 return;
1252 }
1253 else if (compare_code == EQ_EXPR)
1254 {
1255 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1256 return;
1257 }
1258
1259 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1260 return;
1261
1262 /* If loop bound, base and compare bound are all constants, we can
1263 calculate the probability directly. */
1264 if (tree_fits_shwi_p (loop_bound_var)
1265 && tree_fits_shwi_p (compare_var)
1266 && tree_fits_shwi_p (compare_base))
1267 {
1268 int probability;
1269 bool overflow, overall_overflow = false;
1270 widest_int compare_count, tem;
1271
1272 /* (loop_bound - base) / compare_step */
1273 tem = wi::sub (wi::to_widest (loop_bound_var),
1274 wi::to_widest (compare_base), SIGNED, &overflow);
1275 overall_overflow |= overflow;
1276 widest_int loop_count = wi::div_trunc (tem,
1277 wi::to_widest (compare_step_var),
1278 SIGNED, &overflow);
1279 overall_overflow |= overflow;
1280
1281 if (!wi::neg_p (wi::to_widest (compare_step_var))
1282 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1283 {
1284 /* (loop_bound - compare_bound) / compare_step */
1285 tem = wi::sub (wi::to_widest (loop_bound_var),
1286 wi::to_widest (compare_var), SIGNED, &overflow);
1287 overall_overflow |= overflow;
1288 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1289 SIGNED, &overflow);
1290 overall_overflow |= overflow;
1291 }
1292 else
1293 {
1294 /* (compare_bound - base) / compare_step */
1295 tem = wi::sub (wi::to_widest (compare_var),
1296 wi::to_widest (compare_base), SIGNED, &overflow);
1297 overall_overflow |= overflow;
1298 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1299 SIGNED, &overflow);
1300 overall_overflow |= overflow;
1301 }
1302 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1303 ++compare_count;
1304 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1305 ++loop_count;
1306 if (wi::neg_p (compare_count))
1307 compare_count = 0;
1308 if (wi::neg_p (loop_count))
1309 loop_count = 0;
1310 if (loop_count == 0)
1311 probability = 0;
1312 else if (wi::cmps (compare_count, loop_count) == 1)
1313 probability = REG_BR_PROB_BASE;
1314 else
1315 {
1316 tem = compare_count * REG_BR_PROB_BASE;
1317 tem = wi::udiv_trunc (tem, loop_count);
1318 probability = tem.to_uhwi ();
1319 }
1320
1321 if (!overall_overflow)
1322 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1323
1324 return;
1325 }
1326
1327 if (expr_coherent_p (loop_bound_var, compare_var))
1328 {
1329 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1330 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1331 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1332 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1333 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1334 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1335 else if (loop_bound_code == NE_EXPR)
1336 {
1337 /* If the loop backedge condition is "(i != bound)", we do
1338 the comparison based on the step of IV:
1339 * step < 0 : backedge condition is like (i > bound)
1340 * step > 0 : backedge condition is like (i < bound) */
1341 gcc_assert (loop_bound_step != 0);
1342 if (loop_bound_step > 0
1343 && (compare_code == LT_EXPR
1344 || compare_code == LE_EXPR))
1345 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1346 else if (loop_bound_step < 0
1347 && (compare_code == GT_EXPR
1348 || compare_code == GE_EXPR))
1349 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1350 else
1351 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1352 }
1353 else
1354 /* The branch is predicted not-taken if loop_bound_code is
1355 opposite with compare_code. */
1356 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1357 }
1358 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1359 {
1360 /* For cases like:
1361 for (i = s; i < h; i++)
1362 if (i > s + 2) ....
1363 The branch should be predicted taken. */
1364 if (loop_bound_step > 0
1365 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1366 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1367 else if (loop_bound_step < 0
1368 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1369 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1370 else
1371 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1372 }
1373 }
1374
1375 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1376 exits are resulted from short-circuit conditions that will generate an
1377 if_tmp. E.g.:
1378
1379 if (foo() || global > 10)
1380 break;
1381
1382 This will be translated into:
1383
1384 BB3:
1385 loop header...
1386 BB4:
1387 if foo() goto BB6 else goto BB5
1388 BB5:
1389 if global > 10 goto BB6 else goto BB7
1390 BB6:
1391 goto BB7
1392 BB7:
1393 iftmp = (PHI 0(BB5), 1(BB6))
1394 if iftmp == 1 goto BB8 else goto BB3
1395 BB8:
1396 outside of the loop...
1397
1398 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1399 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1400 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1401 exits to predict them using PRED_LOOP_EXIT. */
1402
1403 static void
1404 predict_extra_loop_exits (edge exit_edge)
1405 {
1406 unsigned i;
1407 bool check_value_one;
1408 gimple lhs_def_stmt;
1409 gphi *phi_stmt;
1410 tree cmp_rhs, cmp_lhs;
1411 gimple last;
1412 gcond *cmp_stmt;
1413
1414 last = last_stmt (exit_edge->src);
1415 if (!last)
1416 return;
1417 cmp_stmt = dyn_cast <gcond *> (last);
1418 if (!cmp_stmt)
1419 return;
1420
1421 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1422 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1423 if (!TREE_CONSTANT (cmp_rhs)
1424 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1425 return;
1426 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1427 return;
1428
1429 /* If check_value_one is true, only the phi_args with value '1' will lead
1430 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1431 loop exit. */
1432 check_value_one = (((integer_onep (cmp_rhs))
1433 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1434 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1435
1436 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1437 if (!lhs_def_stmt)
1438 return;
1439
1440 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1441 if (!phi_stmt)
1442 return;
1443
1444 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1445 {
1446 edge e1;
1447 edge_iterator ei;
1448 tree val = gimple_phi_arg_def (phi_stmt, i);
1449 edge e = gimple_phi_arg_edge (phi_stmt, i);
1450
1451 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1452 continue;
1453 if ((check_value_one ^ integer_onep (val)) == 1)
1454 continue;
1455 if (EDGE_COUNT (e->src->succs) != 1)
1456 {
1457 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1458 continue;
1459 }
1460
1461 FOR_EACH_EDGE (e1, ei, e->src->preds)
1462 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1463 }
1464 }
1465
1466 /* Predict edge probabilities by exploiting loop structure. */
1467
1468 static void
1469 predict_loops (void)
1470 {
1471 struct loop *loop;
1472
1473 /* Try to predict out blocks in a loop that are not part of a
1474 natural loop. */
1475 FOR_EACH_LOOP (loop, 0)
1476 {
1477 basic_block bb, *bbs;
1478 unsigned j, n_exits;
1479 vec<edge> exits;
1480 struct tree_niter_desc niter_desc;
1481 edge ex;
1482 struct nb_iter_bound *nb_iter;
1483 enum tree_code loop_bound_code = ERROR_MARK;
1484 tree loop_bound_step = NULL;
1485 tree loop_bound_var = NULL;
1486 tree loop_iv_base = NULL;
1487 gcond *stmt = NULL;
1488
1489 exits = get_loop_exit_edges (loop);
1490 n_exits = exits.length ();
1491 if (!n_exits)
1492 {
1493 exits.release ();
1494 continue;
1495 }
1496
1497 FOR_EACH_VEC_ELT (exits, j, ex)
1498 {
1499 tree niter = NULL;
1500 HOST_WIDE_INT nitercst;
1501 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1502 int probability;
1503 enum br_predictor predictor;
1504
1505 predict_extra_loop_exits (ex);
1506
1507 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1508 niter = niter_desc.niter;
1509 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1510 niter = loop_niter_by_eval (loop, ex);
1511
1512 if (TREE_CODE (niter) == INTEGER_CST)
1513 {
1514 if (tree_fits_uhwi_p (niter)
1515 && max
1516 && compare_tree_int (niter, max - 1) == -1)
1517 nitercst = tree_to_uhwi (niter) + 1;
1518 else
1519 nitercst = max;
1520 predictor = PRED_LOOP_ITERATIONS;
1521 }
1522 /* If we have just one exit and we can derive some information about
1523 the number of iterations of the loop from the statements inside
1524 the loop, use it to predict this exit. */
1525 else if (n_exits == 1)
1526 {
1527 nitercst = estimated_stmt_executions_int (loop);
1528 if (nitercst < 0)
1529 continue;
1530 if (nitercst > max)
1531 nitercst = max;
1532
1533 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1534 }
1535 else
1536 continue;
1537
1538 /* If the prediction for number of iterations is zero, do not
1539 predict the exit edges. */
1540 if (nitercst == 0)
1541 continue;
1542
1543 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1544 predict_edge (ex, predictor, probability);
1545 }
1546 exits.release ();
1547
1548 /* Find information about loop bound variables. */
1549 for (nb_iter = loop->bounds; nb_iter;
1550 nb_iter = nb_iter->next)
1551 if (nb_iter->stmt
1552 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1553 {
1554 stmt = as_a <gcond *> (nb_iter->stmt);
1555 break;
1556 }
1557 if (!stmt && last_stmt (loop->header)
1558 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1559 stmt = as_a <gcond *> (last_stmt (loop->header));
1560 if (stmt)
1561 is_comparison_with_loop_invariant_p (stmt, loop,
1562 &loop_bound_var,
1563 &loop_bound_code,
1564 &loop_bound_step,
1565 &loop_iv_base);
1566
1567 bbs = get_loop_body (loop);
1568
1569 for (j = 0; j < loop->num_nodes; j++)
1570 {
1571 int header_found = 0;
1572 edge e;
1573 edge_iterator ei;
1574
1575 bb = bbs[j];
1576
1577 /* Bypass loop heuristics on continue statement. These
1578 statements construct loops via "non-loop" constructs
1579 in the source language and are better to be handled
1580 separately. */
1581 if (predicted_by_p (bb, PRED_CONTINUE))
1582 continue;
1583
1584 /* Loop branch heuristics - predict an edge back to a
1585 loop's head as taken. */
1586 if (bb == loop->latch)
1587 {
1588 e = find_edge (loop->latch, loop->header);
1589 if (e)
1590 {
1591 header_found = 1;
1592 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1593 }
1594 }
1595
1596 /* Loop exit heuristics - predict an edge exiting the loop if the
1597 conditional has no loop header successors as not taken. */
1598 if (!header_found
1599 /* If we already used more reliable loop exit predictors, do not
1600 bother with PRED_LOOP_EXIT. */
1601 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1602 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1603 {
1604 /* For loop with many exits we don't want to predict all exits
1605 with the pretty large probability, because if all exits are
1606 considered in row, the loop would be predicted to iterate
1607 almost never. The code to divide probability by number of
1608 exits is very rough. It should compute the number of exits
1609 taken in each patch through function (not the overall number
1610 of exits that might be a lot higher for loops with wide switch
1611 statements in them) and compute n-th square root.
1612
1613 We limit the minimal probability by 2% to avoid
1614 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1615 as this was causing regression in perl benchmark containing such
1616 a wide loop. */
1617
1618 int probability = ((REG_BR_PROB_BASE
1619 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1620 / n_exits);
1621 if (probability < HITRATE (2))
1622 probability = HITRATE (2);
1623 FOR_EACH_EDGE (e, ei, bb->succs)
1624 if (e->dest->index < NUM_FIXED_BLOCKS
1625 || !flow_bb_inside_loop_p (loop, e->dest))
1626 predict_edge (e, PRED_LOOP_EXIT, probability);
1627 }
1628 if (loop_bound_var)
1629 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1630 loop_bound_code,
1631 tree_to_shwi (loop_bound_step));
1632 }
1633
1634 /* Free basic blocks from get_loop_body. */
1635 free (bbs);
1636 }
1637 }
1638
1639 /* Attempt to predict probabilities of BB outgoing edges using local
1640 properties. */
1641 static void
1642 bb_estimate_probability_locally (basic_block bb)
1643 {
1644 rtx_insn *last_insn = BB_END (bb);
1645 rtx cond;
1646
1647 if (! can_predict_insn_p (last_insn))
1648 return;
1649 cond = get_condition (last_insn, NULL, false, false);
1650 if (! cond)
1651 return;
1652
1653 /* Try "pointer heuristic."
1654 A comparison ptr == 0 is predicted as false.
1655 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1656 if (COMPARISON_P (cond)
1657 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1658 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1659 {
1660 if (GET_CODE (cond) == EQ)
1661 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1662 else if (GET_CODE (cond) == NE)
1663 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1664 }
1665 else
1666
1667 /* Try "opcode heuristic."
1668 EQ tests are usually false and NE tests are usually true. Also,
1669 most quantities are positive, so we can make the appropriate guesses
1670 about signed comparisons against zero. */
1671 switch (GET_CODE (cond))
1672 {
1673 case CONST_INT:
1674 /* Unconditional branch. */
1675 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1676 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1677 break;
1678
1679 case EQ:
1680 case UNEQ:
1681 /* Floating point comparisons appears to behave in a very
1682 unpredictable way because of special role of = tests in
1683 FP code. */
1684 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1685 ;
1686 /* Comparisons with 0 are often used for booleans and there is
1687 nothing useful to predict about them. */
1688 else if (XEXP (cond, 1) == const0_rtx
1689 || XEXP (cond, 0) == const0_rtx)
1690 ;
1691 else
1692 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1693 break;
1694
1695 case NE:
1696 case LTGT:
1697 /* Floating point comparisons appears to behave in a very
1698 unpredictable way because of special role of = tests in
1699 FP code. */
1700 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1701 ;
1702 /* Comparisons with 0 are often used for booleans and there is
1703 nothing useful to predict about them. */
1704 else if (XEXP (cond, 1) == const0_rtx
1705 || XEXP (cond, 0) == const0_rtx)
1706 ;
1707 else
1708 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1709 break;
1710
1711 case ORDERED:
1712 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1713 break;
1714
1715 case UNORDERED:
1716 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1717 break;
1718
1719 case LE:
1720 case LT:
1721 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1722 || XEXP (cond, 1) == constm1_rtx)
1723 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1724 break;
1725
1726 case GE:
1727 case GT:
1728 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1729 || XEXP (cond, 1) == constm1_rtx)
1730 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1731 break;
1732
1733 default:
1734 break;
1735 }
1736 }
1737
1738 /* Set edge->probability for each successor edge of BB. */
1739 void
1740 guess_outgoing_edge_probabilities (basic_block bb)
1741 {
1742 bb_estimate_probability_locally (bb);
1743 combine_predictions_for_insn (BB_END (bb), bb);
1744 }
1745 \f
1746 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1747
1748 /* Helper function for expr_expected_value. */
1749
1750 static tree
1751 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1752 tree op1, bitmap visited, enum br_predictor *predictor)
1753 {
1754 gimple def;
1755
1756 if (predictor)
1757 *predictor = PRED_UNCONDITIONAL;
1758
1759 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1760 {
1761 if (TREE_CONSTANT (op0))
1762 return op0;
1763
1764 if (code != SSA_NAME)
1765 return NULL_TREE;
1766
1767 def = SSA_NAME_DEF_STMT (op0);
1768
1769 /* If we were already here, break the infinite cycle. */
1770 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1771 return NULL;
1772
1773 if (gimple_code (def) == GIMPLE_PHI)
1774 {
1775 /* All the arguments of the PHI node must have the same constant
1776 length. */
1777 int i, n = gimple_phi_num_args (def);
1778 tree val = NULL, new_val;
1779
1780 for (i = 0; i < n; i++)
1781 {
1782 tree arg = PHI_ARG_DEF (def, i);
1783 enum br_predictor predictor2;
1784
1785 /* If this PHI has itself as an argument, we cannot
1786 determine the string length of this argument. However,
1787 if we can find an expected constant value for the other
1788 PHI args then we can still be sure that this is
1789 likely a constant. So be optimistic and just
1790 continue with the next argument. */
1791 if (arg == PHI_RESULT (def))
1792 continue;
1793
1794 new_val = expr_expected_value (arg, visited, &predictor2);
1795
1796 /* It is difficult to combine value predictors. Simply assume
1797 that later predictor is weaker and take its prediction. */
1798 if (predictor && *predictor < predictor2)
1799 *predictor = predictor2;
1800 if (!new_val)
1801 return NULL;
1802 if (!val)
1803 val = new_val;
1804 else if (!operand_equal_p (val, new_val, false))
1805 return NULL;
1806 }
1807 return val;
1808 }
1809 if (is_gimple_assign (def))
1810 {
1811 if (gimple_assign_lhs (def) != op0)
1812 return NULL;
1813
1814 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1815 gimple_assign_rhs1 (def),
1816 gimple_assign_rhs_code (def),
1817 gimple_assign_rhs2 (def),
1818 visited, predictor);
1819 }
1820
1821 if (is_gimple_call (def))
1822 {
1823 tree decl = gimple_call_fndecl (def);
1824 if (!decl)
1825 {
1826 if (gimple_call_internal_p (def)
1827 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1828 {
1829 gcc_assert (gimple_call_num_args (def) == 3);
1830 tree val = gimple_call_arg (def, 0);
1831 if (TREE_CONSTANT (val))
1832 return val;
1833 if (predictor)
1834 {
1835 tree val2 = gimple_call_arg (def, 2);
1836 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1837 && tree_fits_uhwi_p (val2)
1838 && tree_to_uhwi (val2) < END_PREDICTORS);
1839 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1840 }
1841 return gimple_call_arg (def, 1);
1842 }
1843 return NULL;
1844 }
1845 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1846 switch (DECL_FUNCTION_CODE (decl))
1847 {
1848 case BUILT_IN_EXPECT:
1849 {
1850 tree val;
1851 if (gimple_call_num_args (def) != 2)
1852 return NULL;
1853 val = gimple_call_arg (def, 0);
1854 if (TREE_CONSTANT (val))
1855 return val;
1856 if (predictor)
1857 *predictor = PRED_BUILTIN_EXPECT;
1858 return gimple_call_arg (def, 1);
1859 }
1860
1861 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1862 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1863 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1864 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1865 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1866 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1867 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1868 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1869 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1870 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1871 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1872 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1873 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1874 /* Assume that any given atomic operation has low contention,
1875 and thus the compare-and-swap operation succeeds. */
1876 if (predictor)
1877 *predictor = PRED_COMPARE_AND_SWAP;
1878 return boolean_true_node;
1879 default:
1880 break;
1881 }
1882 }
1883
1884 return NULL;
1885 }
1886
1887 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1888 {
1889 tree res;
1890 enum br_predictor predictor2;
1891 op0 = expr_expected_value (op0, visited, predictor);
1892 if (!op0)
1893 return NULL;
1894 op1 = expr_expected_value (op1, visited, &predictor2);
1895 if (predictor && *predictor < predictor2)
1896 *predictor = predictor2;
1897 if (!op1)
1898 return NULL;
1899 res = fold_build2 (code, type, op0, op1);
1900 if (TREE_CONSTANT (res))
1901 return res;
1902 return NULL;
1903 }
1904 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1905 {
1906 tree res;
1907 op0 = expr_expected_value (op0, visited, predictor);
1908 if (!op0)
1909 return NULL;
1910 res = fold_build1 (code, type, op0);
1911 if (TREE_CONSTANT (res))
1912 return res;
1913 return NULL;
1914 }
1915 return NULL;
1916 }
1917
1918 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1919 The function is used by builtin_expect branch predictor so the evidence
1920 must come from this construct and additional possible constant folding.
1921
1922 We may want to implement more involved value guess (such as value range
1923 propagation based prediction), but such tricks shall go to new
1924 implementation. */
1925
1926 static tree
1927 expr_expected_value (tree expr, bitmap visited,
1928 enum br_predictor *predictor)
1929 {
1930 enum tree_code code;
1931 tree op0, op1;
1932
1933 if (TREE_CONSTANT (expr))
1934 {
1935 if (predictor)
1936 *predictor = PRED_UNCONDITIONAL;
1937 return expr;
1938 }
1939
1940 extract_ops_from_tree (expr, &code, &op0, &op1);
1941 return expr_expected_value_1 (TREE_TYPE (expr),
1942 op0, code, op1, visited, predictor);
1943 }
1944 \f
1945 /* Predict using opcode of the last statement in basic block. */
1946 static void
1947 tree_predict_by_opcode (basic_block bb)
1948 {
1949 gimple stmt = last_stmt (bb);
1950 edge then_edge;
1951 tree op0, op1;
1952 tree type;
1953 tree val;
1954 enum tree_code cmp;
1955 bitmap visited;
1956 edge_iterator ei;
1957 enum br_predictor predictor;
1958
1959 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1960 return;
1961 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1962 if (then_edge->flags & EDGE_TRUE_VALUE)
1963 break;
1964 op0 = gimple_cond_lhs (stmt);
1965 op1 = gimple_cond_rhs (stmt);
1966 cmp = gimple_cond_code (stmt);
1967 type = TREE_TYPE (op0);
1968 visited = BITMAP_ALLOC (NULL);
1969 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1970 &predictor);
1971 BITMAP_FREE (visited);
1972 if (val && TREE_CODE (val) == INTEGER_CST)
1973 {
1974 if (predictor == PRED_BUILTIN_EXPECT)
1975 {
1976 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
1977
1978 gcc_assert (percent >= 0 && percent <= 100);
1979 if (integer_zerop (val))
1980 percent = 100 - percent;
1981 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
1982 }
1983 else
1984 predict_edge (then_edge, predictor,
1985 integer_zerop (val) ? NOT_TAKEN : TAKEN);
1986 }
1987 /* Try "pointer heuristic."
1988 A comparison ptr == 0 is predicted as false.
1989 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1990 if (POINTER_TYPE_P (type))
1991 {
1992 if (cmp == EQ_EXPR)
1993 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1994 else if (cmp == NE_EXPR)
1995 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1996 }
1997 else
1998
1999 /* Try "opcode heuristic."
2000 EQ tests are usually false and NE tests are usually true. Also,
2001 most quantities are positive, so we can make the appropriate guesses
2002 about signed comparisons against zero. */
2003 switch (cmp)
2004 {
2005 case EQ_EXPR:
2006 case UNEQ_EXPR:
2007 /* Floating point comparisons appears to behave in a very
2008 unpredictable way because of special role of = tests in
2009 FP code. */
2010 if (FLOAT_TYPE_P (type))
2011 ;
2012 /* Comparisons with 0 are often used for booleans and there is
2013 nothing useful to predict about them. */
2014 else if (integer_zerop (op0) || integer_zerop (op1))
2015 ;
2016 else
2017 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2018 break;
2019
2020 case NE_EXPR:
2021 case LTGT_EXPR:
2022 /* Floating point comparisons appears to behave in a very
2023 unpredictable way because of special role of = tests in
2024 FP code. */
2025 if (FLOAT_TYPE_P (type))
2026 ;
2027 /* Comparisons with 0 are often used for booleans and there is
2028 nothing useful to predict about them. */
2029 else if (integer_zerop (op0)
2030 || integer_zerop (op1))
2031 ;
2032 else
2033 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2034 break;
2035
2036 case ORDERED_EXPR:
2037 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2038 break;
2039
2040 case UNORDERED_EXPR:
2041 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2042 break;
2043
2044 case LE_EXPR:
2045 case LT_EXPR:
2046 if (integer_zerop (op1)
2047 || integer_onep (op1)
2048 || integer_all_onesp (op1)
2049 || real_zerop (op1)
2050 || real_onep (op1)
2051 || real_minus_onep (op1))
2052 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2053 break;
2054
2055 case GE_EXPR:
2056 case GT_EXPR:
2057 if (integer_zerop (op1)
2058 || integer_onep (op1)
2059 || integer_all_onesp (op1)
2060 || real_zerop (op1)
2061 || real_onep (op1)
2062 || real_minus_onep (op1))
2063 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2064 break;
2065
2066 default:
2067 break;
2068 }
2069 }
2070
2071 /* Try to guess whether the value of return means error code. */
2072
2073 static enum br_predictor
2074 return_prediction (tree val, enum prediction *prediction)
2075 {
2076 /* VOID. */
2077 if (!val)
2078 return PRED_NO_PREDICTION;
2079 /* Different heuristics for pointers and scalars. */
2080 if (POINTER_TYPE_P (TREE_TYPE (val)))
2081 {
2082 /* NULL is usually not returned. */
2083 if (integer_zerop (val))
2084 {
2085 *prediction = NOT_TAKEN;
2086 return PRED_NULL_RETURN;
2087 }
2088 }
2089 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2090 {
2091 /* Negative return values are often used to indicate
2092 errors. */
2093 if (TREE_CODE (val) == INTEGER_CST
2094 && tree_int_cst_sgn (val) < 0)
2095 {
2096 *prediction = NOT_TAKEN;
2097 return PRED_NEGATIVE_RETURN;
2098 }
2099 /* Constant return values seems to be commonly taken.
2100 Zero/one often represent booleans so exclude them from the
2101 heuristics. */
2102 if (TREE_CONSTANT (val)
2103 && (!integer_zerop (val) && !integer_onep (val)))
2104 {
2105 *prediction = TAKEN;
2106 return PRED_CONST_RETURN;
2107 }
2108 }
2109 return PRED_NO_PREDICTION;
2110 }
2111
2112 /* Find the basic block with return expression and look up for possible
2113 return value trying to apply RETURN_PREDICTION heuristics. */
2114 static void
2115 apply_return_prediction (void)
2116 {
2117 greturn *return_stmt = NULL;
2118 tree return_val;
2119 edge e;
2120 gphi *phi;
2121 int phi_num_args, i;
2122 enum br_predictor pred;
2123 enum prediction direction;
2124 edge_iterator ei;
2125
2126 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2127 {
2128 gimple last = last_stmt (e->src);
2129 if (last
2130 && gimple_code (last) == GIMPLE_RETURN)
2131 {
2132 return_stmt = as_a <greturn *> (last);
2133 break;
2134 }
2135 }
2136 if (!e)
2137 return;
2138 return_val = gimple_return_retval (return_stmt);
2139 if (!return_val)
2140 return;
2141 if (TREE_CODE (return_val) != SSA_NAME
2142 || !SSA_NAME_DEF_STMT (return_val)
2143 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2144 return;
2145 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2146 phi_num_args = gimple_phi_num_args (phi);
2147 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2148
2149 /* Avoid the degenerate case where all return values form the function
2150 belongs to same category (ie they are all positive constants)
2151 so we can hardly say something about them. */
2152 for (i = 1; i < phi_num_args; i++)
2153 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2154 break;
2155 if (i != phi_num_args)
2156 for (i = 0; i < phi_num_args; i++)
2157 {
2158 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2159 if (pred != PRED_NO_PREDICTION)
2160 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2161 direction);
2162 }
2163 }
2164
2165 /* Look for basic block that contains unlikely to happen events
2166 (such as noreturn calls) and mark all paths leading to execution
2167 of this basic blocks as unlikely. */
2168
2169 static void
2170 tree_bb_level_predictions (void)
2171 {
2172 basic_block bb;
2173 bool has_return_edges = false;
2174 edge e;
2175 edge_iterator ei;
2176
2177 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2178 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2179 {
2180 has_return_edges = true;
2181 break;
2182 }
2183
2184 apply_return_prediction ();
2185
2186 FOR_EACH_BB_FN (bb, cfun)
2187 {
2188 gimple_stmt_iterator gsi;
2189
2190 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2191 {
2192 gimple stmt = gsi_stmt (gsi);
2193 tree decl;
2194
2195 if (is_gimple_call (stmt))
2196 {
2197 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2198 && has_return_edges)
2199 predict_paths_leading_to (bb, PRED_NORETURN,
2200 NOT_TAKEN);
2201 decl = gimple_call_fndecl (stmt);
2202 if (decl
2203 && lookup_attribute ("cold",
2204 DECL_ATTRIBUTES (decl)))
2205 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2206 NOT_TAKEN);
2207 }
2208 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2209 {
2210 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2211 gimple_predict_outcome (stmt));
2212 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2213 hints to callers. */
2214 }
2215 }
2216 }
2217 }
2218
2219 #ifdef ENABLE_CHECKING
2220
2221 /* Callback for hash_map::traverse, asserts that the pointer map is
2222 empty. */
2223
2224 bool
2225 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2226 void *)
2227 {
2228 gcc_assert (!value);
2229 return false;
2230 }
2231 #endif
2232
2233 /* Predict branch probabilities and estimate profile for basic block BB. */
2234
2235 static void
2236 tree_estimate_probability_bb (basic_block bb)
2237 {
2238 edge e;
2239 edge_iterator ei;
2240 gimple last;
2241
2242 FOR_EACH_EDGE (e, ei, bb->succs)
2243 {
2244 /* Predict edges to user labels with attributes. */
2245 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2246 {
2247 gimple_stmt_iterator gi;
2248 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2249 {
2250 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2251 tree decl;
2252
2253 if (!label_stmt)
2254 break;
2255 decl = gimple_label_label (label_stmt);
2256 if (DECL_ARTIFICIAL (decl))
2257 continue;
2258
2259 /* Finally, we have a user-defined label. */
2260 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2261 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2262 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2263 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2264 }
2265 }
2266
2267 /* Predict early returns to be probable, as we've already taken
2268 care for error returns and other cases are often used for
2269 fast paths through function.
2270
2271 Since we've already removed the return statements, we are
2272 looking for CFG like:
2273
2274 if (conditional)
2275 {
2276 ..
2277 goto return_block
2278 }
2279 some other blocks
2280 return_block:
2281 return_stmt. */
2282 if (e->dest != bb->next_bb
2283 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2284 && single_succ_p (e->dest)
2285 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2286 && (last = last_stmt (e->dest)) != NULL
2287 && gimple_code (last) == GIMPLE_RETURN)
2288 {
2289 edge e1;
2290 edge_iterator ei1;
2291
2292 if (single_succ_p (bb))
2293 {
2294 FOR_EACH_EDGE (e1, ei1, bb->preds)
2295 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2296 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2297 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2298 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2299 }
2300 else
2301 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2302 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2303 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2304 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2305 }
2306
2307 /* Look for block we are guarding (ie we dominate it,
2308 but it doesn't postdominate us). */
2309 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2310 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2311 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2312 {
2313 gimple_stmt_iterator bi;
2314
2315 /* The call heuristic claims that a guarded function call
2316 is improbable. This is because such calls are often used
2317 to signal exceptional situations such as printing error
2318 messages. */
2319 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2320 gsi_next (&bi))
2321 {
2322 gimple stmt = gsi_stmt (bi);
2323 if (is_gimple_call (stmt)
2324 /* Constant and pure calls are hardly used to signalize
2325 something exceptional. */
2326 && gimple_has_side_effects (stmt))
2327 {
2328 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2329 break;
2330 }
2331 }
2332 }
2333 }
2334 tree_predict_by_opcode (bb);
2335 }
2336
2337 /* Predict branch probabilities and estimate profile of the tree CFG.
2338 This function can be called from the loop optimizers to recompute
2339 the profile information. */
2340
2341 void
2342 tree_estimate_probability (void)
2343 {
2344 basic_block bb;
2345
2346 add_noreturn_fake_exit_edges ();
2347 connect_infinite_loops_to_exit ();
2348 /* We use loop_niter_by_eval, which requires that the loops have
2349 preheaders. */
2350 create_preheaders (CP_SIMPLE_PREHEADERS);
2351 calculate_dominance_info (CDI_POST_DOMINATORS);
2352
2353 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2354 tree_bb_level_predictions ();
2355 record_loop_exits ();
2356
2357 if (number_of_loops (cfun) > 1)
2358 predict_loops ();
2359
2360 FOR_EACH_BB_FN (bb, cfun)
2361 tree_estimate_probability_bb (bb);
2362
2363 FOR_EACH_BB_FN (bb, cfun)
2364 combine_predictions_for_bb (bb);
2365
2366 #ifdef ENABLE_CHECKING
2367 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2368 #endif
2369 delete bb_predictions;
2370 bb_predictions = NULL;
2371
2372 estimate_bb_frequencies (false);
2373 free_dominance_info (CDI_POST_DOMINATORS);
2374 remove_fake_exit_edges ();
2375 }
2376 \f
2377 /* Predict edges to successors of CUR whose sources are not postdominated by
2378 BB by PRED and recurse to all postdominators. */
2379
2380 static void
2381 predict_paths_for_bb (basic_block cur, basic_block bb,
2382 enum br_predictor pred,
2383 enum prediction taken,
2384 bitmap visited)
2385 {
2386 edge e;
2387 edge_iterator ei;
2388 basic_block son;
2389
2390 /* We are looking for all edges forming edge cut induced by
2391 set of all blocks postdominated by BB. */
2392 FOR_EACH_EDGE (e, ei, cur->preds)
2393 if (e->src->index >= NUM_FIXED_BLOCKS
2394 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2395 {
2396 edge e2;
2397 edge_iterator ei2;
2398 bool found = false;
2399
2400 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2401 if (e->flags & (EDGE_EH | EDGE_FAKE))
2402 continue;
2403 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2404
2405 /* See if there is an edge from e->src that is not abnormal
2406 and does not lead to BB. */
2407 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2408 if (e2 != e
2409 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2410 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2411 {
2412 found = true;
2413 break;
2414 }
2415
2416 /* If there is non-abnormal path leaving e->src, predict edge
2417 using predictor. Otherwise we need to look for paths
2418 leading to e->src.
2419
2420 The second may lead to infinite loop in the case we are predicitng
2421 regions that are only reachable by abnormal edges. We simply
2422 prevent visiting given BB twice. */
2423 if (found)
2424 predict_edge_def (e, pred, taken);
2425 else if (bitmap_set_bit (visited, e->src->index))
2426 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2427 }
2428 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2429 son;
2430 son = next_dom_son (CDI_POST_DOMINATORS, son))
2431 predict_paths_for_bb (son, bb, pred, taken, visited);
2432 }
2433
2434 /* Sets branch probabilities according to PREDiction and
2435 FLAGS. */
2436
2437 static void
2438 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2439 enum prediction taken)
2440 {
2441 bitmap visited = BITMAP_ALLOC (NULL);
2442 predict_paths_for_bb (bb, bb, pred, taken, visited);
2443 BITMAP_FREE (visited);
2444 }
2445
2446 /* Like predict_paths_leading_to but take edge instead of basic block. */
2447
2448 static void
2449 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2450 enum prediction taken)
2451 {
2452 bool has_nonloop_edge = false;
2453 edge_iterator ei;
2454 edge e2;
2455
2456 basic_block bb = e->src;
2457 FOR_EACH_EDGE (e2, ei, bb->succs)
2458 if (e2->dest != e->src && e2->dest != e->dest
2459 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2460 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2461 {
2462 has_nonloop_edge = true;
2463 break;
2464 }
2465 if (!has_nonloop_edge)
2466 {
2467 bitmap visited = BITMAP_ALLOC (NULL);
2468 predict_paths_for_bb (bb, bb, pred, taken, visited);
2469 BITMAP_FREE (visited);
2470 }
2471 else
2472 predict_edge_def (e, pred, taken);
2473 }
2474 \f
2475 /* This is used to carry information about basic blocks. It is
2476 attached to the AUX field of the standard CFG block. */
2477
2478 struct block_info
2479 {
2480 /* Estimated frequency of execution of basic_block. */
2481 sreal frequency;
2482
2483 /* To keep queue of basic blocks to process. */
2484 basic_block next;
2485
2486 /* Number of predecessors we need to visit first. */
2487 int npredecessors;
2488 };
2489
2490 /* Similar information for edges. */
2491 struct edge_prob_info
2492 {
2493 /* In case edge is a loopback edge, the probability edge will be reached
2494 in case header is. Estimated number of iterations of the loop can be
2495 then computed as 1 / (1 - back_edge_prob). */
2496 sreal back_edge_prob;
2497 /* True if the edge is a loopback edge in the natural loop. */
2498 unsigned int back_edge:1;
2499 };
2500
2501 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2502 #undef EDGE_INFO
2503 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2504
2505 /* Helper function for estimate_bb_frequencies.
2506 Propagate the frequencies in blocks marked in
2507 TOVISIT, starting in HEAD. */
2508
2509 static void
2510 propagate_freq (basic_block head, bitmap tovisit)
2511 {
2512 basic_block bb;
2513 basic_block last;
2514 unsigned i;
2515 edge e;
2516 basic_block nextbb;
2517 bitmap_iterator bi;
2518
2519 /* For each basic block we need to visit count number of his predecessors
2520 we need to visit first. */
2521 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2522 {
2523 edge_iterator ei;
2524 int count = 0;
2525
2526 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2527
2528 FOR_EACH_EDGE (e, ei, bb->preds)
2529 {
2530 bool visit = bitmap_bit_p (tovisit, e->src->index);
2531
2532 if (visit && !(e->flags & EDGE_DFS_BACK))
2533 count++;
2534 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2535 fprintf (dump_file,
2536 "Irreducible region hit, ignoring edge to %i->%i\n",
2537 e->src->index, bb->index);
2538 }
2539 BLOCK_INFO (bb)->npredecessors = count;
2540 /* When function never returns, we will never process exit block. */
2541 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2542 bb->count = bb->frequency = 0;
2543 }
2544
2545 BLOCK_INFO (head)->frequency = 1;
2546 last = head;
2547 for (bb = head; bb; bb = nextbb)
2548 {
2549 edge_iterator ei;
2550 sreal cyclic_probability = 0;
2551 sreal frequency = 0;
2552
2553 nextbb = BLOCK_INFO (bb)->next;
2554 BLOCK_INFO (bb)->next = NULL;
2555
2556 /* Compute frequency of basic block. */
2557 if (bb != head)
2558 {
2559 #ifdef ENABLE_CHECKING
2560 FOR_EACH_EDGE (e, ei, bb->preds)
2561 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2562 || (e->flags & EDGE_DFS_BACK));
2563 #endif
2564
2565 FOR_EACH_EDGE (e, ei, bb->preds)
2566 if (EDGE_INFO (e)->back_edge)
2567 {
2568 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2569 }
2570 else if (!(e->flags & EDGE_DFS_BACK))
2571 {
2572 /* frequency += (e->probability
2573 * BLOCK_INFO (e->src)->frequency /
2574 REG_BR_PROB_BASE); */
2575
2576 sreal tmp = e->probability;
2577 tmp *= BLOCK_INFO (e->src)->frequency;
2578 tmp *= real_inv_br_prob_base;
2579 frequency += tmp;
2580 }
2581
2582 if (cyclic_probability == 0)
2583 {
2584 BLOCK_INFO (bb)->frequency = frequency;
2585 }
2586 else
2587 {
2588 if (cyclic_probability > real_almost_one)
2589 cyclic_probability = real_almost_one;
2590
2591 /* BLOCK_INFO (bb)->frequency = frequency
2592 / (1 - cyclic_probability) */
2593
2594 cyclic_probability = sreal (1) - cyclic_probability;
2595 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2596 }
2597 }
2598
2599 bitmap_clear_bit (tovisit, bb->index);
2600
2601 e = find_edge (bb, head);
2602 if (e)
2603 {
2604 /* EDGE_INFO (e)->back_edge_prob
2605 = ((e->probability * BLOCK_INFO (bb)->frequency)
2606 / REG_BR_PROB_BASE); */
2607
2608 sreal tmp = e->probability;
2609 tmp *= BLOCK_INFO (bb)->frequency;
2610 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2611 }
2612
2613 /* Propagate to successor blocks. */
2614 FOR_EACH_EDGE (e, ei, bb->succs)
2615 if (!(e->flags & EDGE_DFS_BACK)
2616 && BLOCK_INFO (e->dest)->npredecessors)
2617 {
2618 BLOCK_INFO (e->dest)->npredecessors--;
2619 if (!BLOCK_INFO (e->dest)->npredecessors)
2620 {
2621 if (!nextbb)
2622 nextbb = e->dest;
2623 else
2624 BLOCK_INFO (last)->next = e->dest;
2625
2626 last = e->dest;
2627 }
2628 }
2629 }
2630 }
2631
2632 /* Estimate frequencies in loops at same nest level. */
2633
2634 static void
2635 estimate_loops_at_level (struct loop *first_loop)
2636 {
2637 struct loop *loop;
2638
2639 for (loop = first_loop; loop; loop = loop->next)
2640 {
2641 edge e;
2642 basic_block *bbs;
2643 unsigned i;
2644 bitmap tovisit = BITMAP_ALLOC (NULL);
2645
2646 estimate_loops_at_level (loop->inner);
2647
2648 /* Find current loop back edge and mark it. */
2649 e = loop_latch_edge (loop);
2650 EDGE_INFO (e)->back_edge = 1;
2651
2652 bbs = get_loop_body (loop);
2653 for (i = 0; i < loop->num_nodes; i++)
2654 bitmap_set_bit (tovisit, bbs[i]->index);
2655 free (bbs);
2656 propagate_freq (loop->header, tovisit);
2657 BITMAP_FREE (tovisit);
2658 }
2659 }
2660
2661 /* Propagates frequencies through structure of loops. */
2662
2663 static void
2664 estimate_loops (void)
2665 {
2666 bitmap tovisit = BITMAP_ALLOC (NULL);
2667 basic_block bb;
2668
2669 /* Start by estimating the frequencies in the loops. */
2670 if (number_of_loops (cfun) > 1)
2671 estimate_loops_at_level (current_loops->tree_root->inner);
2672
2673 /* Now propagate the frequencies through all the blocks. */
2674 FOR_ALL_BB_FN (bb, cfun)
2675 {
2676 bitmap_set_bit (tovisit, bb->index);
2677 }
2678 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2679 BITMAP_FREE (tovisit);
2680 }
2681
2682 /* Drop the profile for NODE to guessed, and update its frequency based on
2683 whether it is expected to be hot given the CALL_COUNT. */
2684
2685 static void
2686 drop_profile (struct cgraph_node *node, gcov_type call_count)
2687 {
2688 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2689 /* In the case where this was called by another function with a
2690 dropped profile, call_count will be 0. Since there are no
2691 non-zero call counts to this function, we don't know for sure
2692 whether it is hot, and therefore it will be marked normal below. */
2693 bool hot = maybe_hot_count_p (NULL, call_count);
2694
2695 if (dump_file)
2696 fprintf (dump_file,
2697 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2698 node->name (), node->order,
2699 hot ? "Function is hot" : "Function is normal");
2700 /* We only expect to miss profiles for functions that are reached
2701 via non-zero call edges in cases where the function may have
2702 been linked from another module or library (COMDATs and extern
2703 templates). See the comments below for handle_missing_profiles.
2704 Also, only warn in cases where the missing counts exceed the
2705 number of training runs. In certain cases with an execv followed
2706 by a no-return call the profile for the no-return call is not
2707 dumped and there can be a mismatch. */
2708 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2709 && call_count > profile_info->runs)
2710 {
2711 if (flag_profile_correction)
2712 {
2713 if (dump_file)
2714 fprintf (dump_file,
2715 "Missing counts for called function %s/%i\n",
2716 node->name (), node->order);
2717 }
2718 else
2719 warning (0, "Missing counts for called function %s/%i",
2720 node->name (), node->order);
2721 }
2722
2723 profile_status_for_fn (fn)
2724 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2725 node->frequency
2726 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2727 }
2728
2729 /* In the case of COMDAT routines, multiple object files will contain the same
2730 function and the linker will select one for the binary. In that case
2731 all the other copies from the profile instrument binary will be missing
2732 profile counts. Look for cases where this happened, due to non-zero
2733 call counts going to 0-count functions, and drop the profile to guessed
2734 so that we can use the estimated probabilities and avoid optimizing only
2735 for size.
2736
2737 The other case where the profile may be missing is when the routine
2738 is not going to be emitted to the object file, e.g. for "extern template"
2739 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2740 all other cases of non-zero calls to 0-count functions. */
2741
2742 void
2743 handle_missing_profiles (void)
2744 {
2745 struct cgraph_node *node;
2746 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2747 vec<struct cgraph_node *> worklist;
2748 worklist.create (64);
2749
2750 /* See if 0 count function has non-0 count callers. In this case we
2751 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2752 FOR_EACH_DEFINED_FUNCTION (node)
2753 {
2754 struct cgraph_edge *e;
2755 gcov_type call_count = 0;
2756 gcov_type max_tp_first_run = 0;
2757 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2758
2759 if (node->count)
2760 continue;
2761 for (e = node->callers; e; e = e->next_caller)
2762 {
2763 call_count += e->count;
2764
2765 if (e->caller->tp_first_run > max_tp_first_run)
2766 max_tp_first_run = e->caller->tp_first_run;
2767 }
2768
2769 /* If time profile is missing, let assign the maximum that comes from
2770 caller functions. */
2771 if (!node->tp_first_run && max_tp_first_run)
2772 node->tp_first_run = max_tp_first_run + 1;
2773
2774 if (call_count
2775 && fn && fn->cfg
2776 && (call_count * unlikely_count_fraction >= profile_info->runs))
2777 {
2778 drop_profile (node, call_count);
2779 worklist.safe_push (node);
2780 }
2781 }
2782
2783 /* Propagate the profile dropping to other 0-count COMDATs that are
2784 potentially called by COMDATs we already dropped the profile on. */
2785 while (worklist.length () > 0)
2786 {
2787 struct cgraph_edge *e;
2788
2789 node = worklist.pop ();
2790 for (e = node->callees; e; e = e->next_caller)
2791 {
2792 struct cgraph_node *callee = e->callee;
2793 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2794
2795 if (callee->count > 0)
2796 continue;
2797 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2798 && profile_status_for_fn (fn) == PROFILE_READ)
2799 {
2800 drop_profile (node, 0);
2801 worklist.safe_push (callee);
2802 }
2803 }
2804 }
2805 worklist.release ();
2806 }
2807
2808 /* Convert counts measured by profile driven feedback to frequencies.
2809 Return nonzero iff there was any nonzero execution count. */
2810
2811 int
2812 counts_to_freqs (void)
2813 {
2814 gcov_type count_max, true_count_max = 0;
2815 basic_block bb;
2816
2817 /* Don't overwrite the estimated frequencies when the profile for
2818 the function is missing. We may drop this function PROFILE_GUESSED
2819 later in drop_profile (). */
2820 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2821 return 0;
2822
2823 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2824 true_count_max = MAX (bb->count, true_count_max);
2825
2826 count_max = MAX (true_count_max, 1);
2827 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2828 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2829
2830 return true_count_max;
2831 }
2832
2833 /* Return true if function is likely to be expensive, so there is no point to
2834 optimize performance of prologue, epilogue or do inlining at the expense
2835 of code size growth. THRESHOLD is the limit of number of instructions
2836 function can execute at average to be still considered not expensive. */
2837
2838 bool
2839 expensive_function_p (int threshold)
2840 {
2841 unsigned int sum = 0;
2842 basic_block bb;
2843 unsigned int limit;
2844
2845 /* We can not compute accurately for large thresholds due to scaled
2846 frequencies. */
2847 gcc_assert (threshold <= BB_FREQ_MAX);
2848
2849 /* Frequencies are out of range. This either means that function contains
2850 internal loop executing more than BB_FREQ_MAX times or profile feedback
2851 is available and function has not been executed at all. */
2852 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2853 return true;
2854
2855 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2856 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2857 FOR_EACH_BB_FN (bb, cfun)
2858 {
2859 rtx_insn *insn;
2860
2861 FOR_BB_INSNS (bb, insn)
2862 if (active_insn_p (insn))
2863 {
2864 sum += bb->frequency;
2865 if (sum > limit)
2866 return true;
2867 }
2868 }
2869
2870 return false;
2871 }
2872
2873 /* Estimate and propagate basic block frequencies using the given branch
2874 probabilities. If FORCE is true, the frequencies are used to estimate
2875 the counts even when there are already non-zero profile counts. */
2876
2877 void
2878 estimate_bb_frequencies (bool force)
2879 {
2880 basic_block bb;
2881 sreal freq_max;
2882
2883 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2884 {
2885 static int real_values_initialized = 0;
2886
2887 if (!real_values_initialized)
2888 {
2889 real_values_initialized = 1;
2890 real_br_prob_base = REG_BR_PROB_BASE;
2891 real_bb_freq_max = BB_FREQ_MAX;
2892 real_one_half = sreal (1, -1);
2893 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
2894 real_almost_one = sreal (1) - real_inv_br_prob_base;
2895 }
2896
2897 mark_dfs_back_edges ();
2898
2899 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2900 REG_BR_PROB_BASE;
2901
2902 /* Set up block info for each basic block. */
2903 alloc_aux_for_blocks (sizeof (block_info));
2904 alloc_aux_for_edges (sizeof (edge_prob_info));
2905 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2906 {
2907 edge e;
2908 edge_iterator ei;
2909
2910 FOR_EACH_EDGE (e, ei, bb->succs)
2911 {
2912 EDGE_INFO (e)->back_edge_prob = e->probability;
2913 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2914 }
2915 }
2916
2917 /* First compute frequencies locally for each loop from innermost
2918 to outermost to examine frequencies for back edges. */
2919 estimate_loops ();
2920
2921 freq_max = 0;
2922 FOR_EACH_BB_FN (bb, cfun)
2923 if (freq_max < BLOCK_INFO (bb)->frequency)
2924 freq_max = BLOCK_INFO (bb)->frequency;
2925
2926 freq_max = real_bb_freq_max / freq_max;
2927 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2928 {
2929 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2930 bb->frequency = tmp.to_int ();
2931 }
2932
2933 free_aux_for_blocks ();
2934 free_aux_for_edges ();
2935 }
2936 compute_function_frequency ();
2937 }
2938
2939 /* Decide whether function is hot, cold or unlikely executed. */
2940 void
2941 compute_function_frequency (void)
2942 {
2943 basic_block bb;
2944 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2945
2946 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2947 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2948 node->only_called_at_startup = true;
2949 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2950 node->only_called_at_exit = true;
2951
2952 if (profile_status_for_fn (cfun) != PROFILE_READ)
2953 {
2954 int flags = flags_from_decl_or_type (current_function_decl);
2955 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2956 != NULL)
2957 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2958 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2959 != NULL)
2960 node->frequency = NODE_FREQUENCY_HOT;
2961 else if (flags & ECF_NORETURN)
2962 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2963 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2964 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2965 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2966 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2967 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2968 return;
2969 }
2970
2971 /* Only first time try to drop function into unlikely executed.
2972 After inlining the roundoff errors may confuse us.
2973 Ipa-profile pass will drop functions only called from unlikely
2974 functions to unlikely and that is most of what we care about. */
2975 if (!cfun->after_inlining)
2976 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2977 FOR_EACH_BB_FN (bb, cfun)
2978 {
2979 if (maybe_hot_bb_p (cfun, bb))
2980 {
2981 node->frequency = NODE_FREQUENCY_HOT;
2982 return;
2983 }
2984 if (!probably_never_executed_bb_p (cfun, bb))
2985 node->frequency = NODE_FREQUENCY_NORMAL;
2986 }
2987 }
2988
2989 /* Build PREDICT_EXPR. */
2990 tree
2991 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2992 {
2993 tree t = build1 (PREDICT_EXPR, void_type_node,
2994 build_int_cst (integer_type_node, predictor));
2995 SET_PREDICT_EXPR_OUTCOME (t, taken);
2996 return t;
2997 }
2998
2999 const char *
3000 predictor_name (enum br_predictor predictor)
3001 {
3002 return predictor_info[predictor].name;
3003 }
3004
3005 /* Predict branch probabilities and estimate profile of the tree CFG. */
3006
3007 namespace {
3008
3009 const pass_data pass_data_profile =
3010 {
3011 GIMPLE_PASS, /* type */
3012 "profile_estimate", /* name */
3013 OPTGROUP_NONE, /* optinfo_flags */
3014 TV_BRANCH_PROB, /* tv_id */
3015 PROP_cfg, /* properties_required */
3016 0, /* properties_provided */
3017 0, /* properties_destroyed */
3018 0, /* todo_flags_start */
3019 0, /* todo_flags_finish */
3020 };
3021
3022 class pass_profile : public gimple_opt_pass
3023 {
3024 public:
3025 pass_profile (gcc::context *ctxt)
3026 : gimple_opt_pass (pass_data_profile, ctxt)
3027 {}
3028
3029 /* opt_pass methods: */
3030 virtual bool gate (function *) { return flag_guess_branch_prob; }
3031 virtual unsigned int execute (function *);
3032
3033 }; // class pass_profile
3034
3035 unsigned int
3036 pass_profile::execute (function *fun)
3037 {
3038 unsigned nb_loops;
3039
3040 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3041 return 0;
3042
3043 loop_optimizer_init (LOOPS_NORMAL);
3044 if (dump_file && (dump_flags & TDF_DETAILS))
3045 flow_loops_dump (dump_file, NULL, 0);
3046
3047 mark_irreducible_loops ();
3048
3049 nb_loops = number_of_loops (fun);
3050 if (nb_loops > 1)
3051 scev_initialize ();
3052
3053 tree_estimate_probability ();
3054
3055 if (nb_loops > 1)
3056 scev_finalize ();
3057
3058 loop_optimizer_finalize ();
3059 if (dump_file && (dump_flags & TDF_DETAILS))
3060 gimple_dump_cfg (dump_file, dump_flags);
3061 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3062 profile_status_for_fn (fun) = PROFILE_GUESSED;
3063 return 0;
3064 }
3065
3066 } // anon namespace
3067
3068 gimple_opt_pass *
3069 make_pass_profile (gcc::context *ctxt)
3070 {
3071 return new pass_profile (ctxt);
3072 }
3073
3074 namespace {
3075
3076 const pass_data pass_data_strip_predict_hints =
3077 {
3078 GIMPLE_PASS, /* type */
3079 "*strip_predict_hints", /* name */
3080 OPTGROUP_NONE, /* optinfo_flags */
3081 TV_BRANCH_PROB, /* tv_id */
3082 PROP_cfg, /* properties_required */
3083 0, /* properties_provided */
3084 0, /* properties_destroyed */
3085 0, /* todo_flags_start */
3086 0, /* todo_flags_finish */
3087 };
3088
3089 class pass_strip_predict_hints : public gimple_opt_pass
3090 {
3091 public:
3092 pass_strip_predict_hints (gcc::context *ctxt)
3093 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3094 {}
3095
3096 /* opt_pass methods: */
3097 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3098 virtual unsigned int execute (function *);
3099
3100 }; // class pass_strip_predict_hints
3101
3102 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3103 we no longer need. */
3104 unsigned int
3105 pass_strip_predict_hints::execute (function *fun)
3106 {
3107 basic_block bb;
3108 gimple ass_stmt;
3109 tree var;
3110
3111 FOR_EACH_BB_FN (bb, fun)
3112 {
3113 gimple_stmt_iterator bi;
3114 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3115 {
3116 gimple stmt = gsi_stmt (bi);
3117
3118 if (gimple_code (stmt) == GIMPLE_PREDICT)
3119 {
3120 gsi_remove (&bi, true);
3121 continue;
3122 }
3123 else if (is_gimple_call (stmt))
3124 {
3125 tree fndecl = gimple_call_fndecl (stmt);
3126
3127 if ((fndecl
3128 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3129 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3130 && gimple_call_num_args (stmt) == 2)
3131 || (gimple_call_internal_p (stmt)
3132 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3133 {
3134 var = gimple_call_lhs (stmt);
3135 if (var)
3136 {
3137 ass_stmt
3138 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3139 gsi_replace (&bi, ass_stmt, true);
3140 }
3141 else
3142 {
3143 gsi_remove (&bi, true);
3144 continue;
3145 }
3146 }
3147 }
3148 gsi_next (&bi);
3149 }
3150 }
3151 return 0;
3152 }
3153
3154 } // anon namespace
3155
3156 gimple_opt_pass *
3157 make_pass_strip_predict_hints (gcc::context *ctxt)
3158 {
3159 return new pass_strip_predict_hints (ctxt);
3160 }
3161
3162 /* Rebuild function frequencies. Passes are in general expected to
3163 maintain profile by hand, however in some cases this is not possible:
3164 for example when inlining several functions with loops freuqencies might run
3165 out of scale and thus needs to be recomputed. */
3166
3167 void
3168 rebuild_frequencies (void)
3169 {
3170 timevar_push (TV_REBUILD_FREQUENCIES);
3171
3172 /* When the max bb count in the function is small, there is a higher
3173 chance that there were truncation errors in the integer scaling
3174 of counts by inlining and other optimizations. This could lead
3175 to incorrect classification of code as being cold when it isn't.
3176 In that case, force the estimation of bb counts/frequencies from the
3177 branch probabilities, rather than computing frequencies from counts,
3178 which may also lead to frequencies incorrectly reduced to 0. There
3179 is less precision in the probabilities, so we only do this for small
3180 max counts. */
3181 gcov_type count_max = 0;
3182 basic_block bb;
3183 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3184 count_max = MAX (bb->count, count_max);
3185
3186 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3187 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3188 && count_max < REG_BR_PROB_BASE/10))
3189 {
3190 loop_optimizer_init (0);
3191 add_noreturn_fake_exit_edges ();
3192 mark_irreducible_loops ();
3193 connect_infinite_loops_to_exit ();
3194 estimate_bb_frequencies (true);
3195 remove_fake_exit_edges ();
3196 loop_optimizer_finalize ();
3197 }
3198 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3199 counts_to_freqs ();
3200 else
3201 gcc_unreachable ();
3202 timevar_pop (TV_REBUILD_FREQUENCIES);
3203 }