ident-0b.c: Also skip on 32-bit hppa*-*-hpux*.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "cfgloop.h"
53 #include "gimple-iterator.h"
54 #include "tree-cfg.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-scalar-evolution.h"
58 #include "ipa-utils.h"
59 #include "gimple-pretty-print.h"
60 #include "selftest.h"
61 #include "cfgrtl.h"
62 #include "stringpool.h"
63 #include "attribs.h"
64
65 /* Enum with reasons why a predictor is ignored. */
66
67 enum predictor_reason
68 {
69 REASON_NONE,
70 REASON_IGNORED,
71 REASON_SINGLE_EDGE_DUPLICATE,
72 REASON_EDGE_PAIR_DUPLICATE
73 };
74
75 /* String messages for the aforementioned enum. */
76
77 static const char *reason_messages[] = {"", " (ignored)",
78 " (single edge duplicate)", " (edge pair duplicate)"};
79
80 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
81 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
82 static sreal real_almost_one, real_br_prob_base,
83 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
84
85 static void combine_predictions_for_insn (rtx_insn *, basic_block);
86 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
87 enum predictor_reason, edge);
88 static void predict_paths_leading_to (basic_block, enum br_predictor,
89 enum prediction,
90 struct loop *in_loop = NULL);
91 static void predict_paths_leading_to_edge (edge, enum br_predictor,
92 enum prediction,
93 struct loop *in_loop = NULL);
94 static bool can_predict_insn_p (const rtx_insn *);
95 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
96 static void determine_unlikely_bbs ();
97
98 /* Information we hold about each branch predictor.
99 Filled using information from predict.def. */
100
101 struct predictor_info
102 {
103 const char *const name; /* Name used in the debugging dumps. */
104 const int hitrate; /* Expected hitrate used by
105 predict_insn_def call. */
106 const int flags;
107 };
108
109 /* Use given predictor without Dempster-Shaffer theory if it matches
110 using first_match heuristics. */
111 #define PRED_FLAG_FIRST_MATCH 1
112
113 /* Recompute hitrate in percent to our representation. */
114
115 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
116
117 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
118 static const struct predictor_info predictor_info[]= {
119 #include "predict.def"
120
121 /* Upper bound on predictors. */
122 {NULL, 0, 0}
123 };
124 #undef DEF_PREDICTOR
125
126 static gcov_type min_count = -1;
127
128 /* Determine the threshold for hot BB counts. */
129
130 gcov_type
131 get_hot_bb_threshold ()
132 {
133 if (min_count == -1)
134 {
135 min_count
136 = profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION);
137 if (dump_file)
138 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
139 min_count);
140 }
141 return min_count;
142 }
143
144 /* Set the threshold for hot BB counts. */
145
146 void
147 set_hot_bb_threshold (gcov_type min)
148 {
149 min_count = min;
150 }
151
152 /* Return TRUE if frequency FREQ is considered to be hot. */
153
154 bool
155 maybe_hot_count_p (struct function *fun, profile_count count)
156 {
157 if (!count.initialized_p ())
158 return true;
159 if (count.ipa () == profile_count::zero ())
160 return false;
161 if (!count.ipa_p ())
162 {
163 struct cgraph_node *node = cgraph_node::get (fun->decl);
164 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
165 {
166 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
167 return false;
168 if (node->frequency == NODE_FREQUENCY_HOT)
169 return true;
170 }
171 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
172 return true;
173 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
174 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
175 return false;
176 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
177 return false;
178 if (count.apply_scale (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION), 1)
179 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
180 return false;
181 return true;
182 }
183 /* Code executed at most once is not hot. */
184 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
185 return false;
186 return (count.to_gcov_type () >= get_hot_bb_threshold ());
187 }
188
189 /* Return true in case BB can be CPU intensive and should be optimized
190 for maximal performance. */
191
192 bool
193 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
194 {
195 gcc_checking_assert (fun);
196 return maybe_hot_count_p (fun, bb->count);
197 }
198
199 /* Return true in case BB can be CPU intensive and should be optimized
200 for maximal performance. */
201
202 bool
203 maybe_hot_edge_p (edge e)
204 {
205 return maybe_hot_count_p (cfun, e->count ());
206 }
207
208 /* Return true if profile COUNT and FREQUENCY, or function FUN static
209 node frequency reflects never being executed. */
210
211 static bool
212 probably_never_executed (struct function *fun,
213 profile_count count)
214 {
215 gcc_checking_assert (fun);
216 if (count.ipa () == profile_count::zero ())
217 return true;
218 /* Do not trust adjusted counts. This will make us to drop int cold section
219 code with low execution count as a result of inlining. These low counts
220 are not safe even with read profile and may lead us to dropping
221 code which actually gets executed into cold section of binary that is not
222 desirable. */
223 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
224 {
225 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
226 if (count.apply_scale (unlikely_count_fraction, 1) >= profile_info->runs)
227 return false;
228 return true;
229 }
230 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
231 && (cgraph_node::get (fun->decl)->frequency
232 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
233 return true;
234 return false;
235 }
236
237
238 /* Return true in case BB is probably never executed. */
239
240 bool
241 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
242 {
243 return probably_never_executed (fun, bb->count);
244 }
245
246
247 /* Return true if E is unlikely executed for obvious reasons. */
248
249 static bool
250 unlikely_executed_edge_p (edge e)
251 {
252 return (e->count () == profile_count::zero ()
253 || e->probability == profile_probability::never ())
254 || (e->flags & (EDGE_EH | EDGE_FAKE));
255 }
256
257 /* Return true in case edge E is probably never executed. */
258
259 bool
260 probably_never_executed_edge_p (struct function *fun, edge e)
261 {
262 if (unlikely_executed_edge_p (e))
263 return true;
264 return probably_never_executed (fun, e->count ());
265 }
266
267 /* Return true when current function should always be optimized for size. */
268
269 bool
270 optimize_function_for_size_p (struct function *fun)
271 {
272 if (!fun || !fun->decl)
273 return optimize_size;
274 cgraph_node *n = cgraph_node::get (fun->decl);
275 return n && n->optimize_for_size_p ();
276 }
277
278 /* Return true when current function should always be optimized for speed. */
279
280 bool
281 optimize_function_for_speed_p (struct function *fun)
282 {
283 return !optimize_function_for_size_p (fun);
284 }
285
286 /* Return the optimization type that should be used for the function FUN. */
287
288 optimization_type
289 function_optimization_type (struct function *fun)
290 {
291 return (optimize_function_for_speed_p (fun)
292 ? OPTIMIZE_FOR_SPEED
293 : OPTIMIZE_FOR_SIZE);
294 }
295
296 /* Return TRUE when BB should be optimized for size. */
297
298 bool
299 optimize_bb_for_size_p (const_basic_block bb)
300 {
301 return (optimize_function_for_size_p (cfun)
302 || (bb && !maybe_hot_bb_p (cfun, bb)));
303 }
304
305 /* Return TRUE when BB should be optimized for speed. */
306
307 bool
308 optimize_bb_for_speed_p (const_basic_block bb)
309 {
310 return !optimize_bb_for_size_p (bb);
311 }
312
313 /* Return the optimization type that should be used for block BB. */
314
315 optimization_type
316 bb_optimization_type (const_basic_block bb)
317 {
318 return (optimize_bb_for_speed_p (bb)
319 ? OPTIMIZE_FOR_SPEED
320 : OPTIMIZE_FOR_SIZE);
321 }
322
323 /* Return TRUE when BB should be optimized for size. */
324
325 bool
326 optimize_edge_for_size_p (edge e)
327 {
328 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
329 }
330
331 /* Return TRUE when BB should be optimized for speed. */
332
333 bool
334 optimize_edge_for_speed_p (edge e)
335 {
336 return !optimize_edge_for_size_p (e);
337 }
338
339 /* Return TRUE when BB should be optimized for size. */
340
341 bool
342 optimize_insn_for_size_p (void)
343 {
344 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
345 }
346
347 /* Return TRUE when BB should be optimized for speed. */
348
349 bool
350 optimize_insn_for_speed_p (void)
351 {
352 return !optimize_insn_for_size_p ();
353 }
354
355 /* Return TRUE when LOOP should be optimized for size. */
356
357 bool
358 optimize_loop_for_size_p (struct loop *loop)
359 {
360 return optimize_bb_for_size_p (loop->header);
361 }
362
363 /* Return TRUE when LOOP should be optimized for speed. */
364
365 bool
366 optimize_loop_for_speed_p (struct loop *loop)
367 {
368 return optimize_bb_for_speed_p (loop->header);
369 }
370
371 /* Return TRUE when LOOP nest should be optimized for speed. */
372
373 bool
374 optimize_loop_nest_for_speed_p (struct loop *loop)
375 {
376 struct loop *l = loop;
377 if (optimize_loop_for_speed_p (loop))
378 return true;
379 l = loop->inner;
380 while (l && l != loop)
381 {
382 if (optimize_loop_for_speed_p (l))
383 return true;
384 if (l->inner)
385 l = l->inner;
386 else if (l->next)
387 l = l->next;
388 else
389 {
390 while (l != loop && !l->next)
391 l = loop_outer (l);
392 if (l != loop)
393 l = l->next;
394 }
395 }
396 return false;
397 }
398
399 /* Return TRUE when LOOP nest should be optimized for size. */
400
401 bool
402 optimize_loop_nest_for_size_p (struct loop *loop)
403 {
404 return !optimize_loop_nest_for_speed_p (loop);
405 }
406
407 /* Return true when edge E is likely to be well predictable by branch
408 predictor. */
409
410 bool
411 predictable_edge_p (edge e)
412 {
413 if (!e->probability.initialized_p ())
414 return false;
415 if ((e->probability.to_reg_br_prob_base ()
416 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
417 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
418 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
419 return true;
420 return false;
421 }
422
423
424 /* Set RTL expansion for BB profile. */
425
426 void
427 rtl_profile_for_bb (basic_block bb)
428 {
429 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
430 }
431
432 /* Set RTL expansion for edge profile. */
433
434 void
435 rtl_profile_for_edge (edge e)
436 {
437 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
438 }
439
440 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
441 void
442 default_rtl_profile (void)
443 {
444 crtl->maybe_hot_insn_p = true;
445 }
446
447 /* Return true if the one of outgoing edges is already predicted by
448 PREDICTOR. */
449
450 bool
451 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
452 {
453 rtx note;
454 if (!INSN_P (BB_END (bb)))
455 return false;
456 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
457 if (REG_NOTE_KIND (note) == REG_BR_PRED
458 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
459 return true;
460 return false;
461 }
462
463 /* Structure representing predictions in tree level. */
464
465 struct edge_prediction {
466 struct edge_prediction *ep_next;
467 edge ep_edge;
468 enum br_predictor ep_predictor;
469 int ep_probability;
470 };
471
472 /* This map contains for a basic block the list of predictions for the
473 outgoing edges. */
474
475 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
476
477 /* Return true if the one of outgoing edges is already predicted by
478 PREDICTOR. */
479
480 bool
481 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
482 {
483 struct edge_prediction *i;
484 edge_prediction **preds = bb_predictions->get (bb);
485
486 if (!preds)
487 return false;
488
489 for (i = *preds; i; i = i->ep_next)
490 if (i->ep_predictor == predictor)
491 return true;
492 return false;
493 }
494
495 /* Return true if the one of outgoing edges is already predicted by
496 PREDICTOR for edge E predicted as TAKEN. */
497
498 bool
499 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
500 {
501 struct edge_prediction *i;
502 basic_block bb = e->src;
503 edge_prediction **preds = bb_predictions->get (bb);
504 if (!preds)
505 return false;
506
507 int probability = predictor_info[(int) predictor].hitrate;
508
509 if (taken != TAKEN)
510 probability = REG_BR_PROB_BASE - probability;
511
512 for (i = *preds; i; i = i->ep_next)
513 if (i->ep_predictor == predictor
514 && i->ep_edge == e
515 && i->ep_probability == probability)
516 return true;
517 return false;
518 }
519
520 /* Same predicate as above, working on edges. */
521 bool
522 edge_probability_reliable_p (const_edge e)
523 {
524 return e->probability.probably_reliable_p ();
525 }
526
527 /* Same predicate as edge_probability_reliable_p, working on notes. */
528 bool
529 br_prob_note_reliable_p (const_rtx note)
530 {
531 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
532 return profile_probability::from_reg_br_prob_note
533 (XINT (note, 0)).probably_reliable_p ();
534 }
535
536 static void
537 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
538 {
539 gcc_assert (any_condjump_p (insn));
540 if (!flag_guess_branch_prob)
541 return;
542
543 add_reg_note (insn, REG_BR_PRED,
544 gen_rtx_CONCAT (VOIDmode,
545 GEN_INT ((int) predictor),
546 GEN_INT ((int) probability)));
547 }
548
549 /* Predict insn by given predictor. */
550
551 void
552 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
553 enum prediction taken)
554 {
555 int probability = predictor_info[(int) predictor].hitrate;
556 gcc_assert (probability != PROB_UNINITIALIZED);
557
558 if (taken != TAKEN)
559 probability = REG_BR_PROB_BASE - probability;
560
561 predict_insn (insn, predictor, probability);
562 }
563
564 /* Predict edge E with given probability if possible. */
565
566 void
567 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
568 {
569 rtx_insn *last_insn;
570 last_insn = BB_END (e->src);
571
572 /* We can store the branch prediction information only about
573 conditional jumps. */
574 if (!any_condjump_p (last_insn))
575 return;
576
577 /* We always store probability of branching. */
578 if (e->flags & EDGE_FALLTHRU)
579 probability = REG_BR_PROB_BASE - probability;
580
581 predict_insn (last_insn, predictor, probability);
582 }
583
584 /* Predict edge E with the given PROBABILITY. */
585 void
586 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
587 {
588 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
589 && EDGE_COUNT (e->src->succs) > 1
590 && flag_guess_branch_prob
591 && optimize)
592 {
593 struct edge_prediction *i = XNEW (struct edge_prediction);
594 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
595
596 i->ep_next = preds;
597 preds = i;
598 i->ep_probability = probability;
599 i->ep_predictor = predictor;
600 i->ep_edge = e;
601 }
602 }
603
604 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
605 to the filter function. */
606
607 void
608 filter_predictions (edge_prediction **preds,
609 bool (*filter) (edge_prediction *, void *), void *data)
610 {
611 if (!bb_predictions)
612 return;
613
614 if (preds)
615 {
616 struct edge_prediction **prediction = preds;
617 struct edge_prediction *next;
618
619 while (*prediction)
620 {
621 if ((*filter) (*prediction, data))
622 prediction = &((*prediction)->ep_next);
623 else
624 {
625 next = (*prediction)->ep_next;
626 free (*prediction);
627 *prediction = next;
628 }
629 }
630 }
631 }
632
633 /* Filter function predicate that returns true for a edge predicate P
634 if its edge is equal to DATA. */
635
636 bool
637 equal_edge_p (edge_prediction *p, void *data)
638 {
639 return p->ep_edge == (edge)data;
640 }
641
642 /* Remove all predictions on given basic block that are attached
643 to edge E. */
644 void
645 remove_predictions_associated_with_edge (edge e)
646 {
647 if (!bb_predictions)
648 return;
649
650 edge_prediction **preds = bb_predictions->get (e->src);
651 filter_predictions (preds, equal_edge_p, e);
652 }
653
654 /* Clears the list of predictions stored for BB. */
655
656 static void
657 clear_bb_predictions (basic_block bb)
658 {
659 edge_prediction **preds = bb_predictions->get (bb);
660 struct edge_prediction *pred, *next;
661
662 if (!preds)
663 return;
664
665 for (pred = *preds; pred; pred = next)
666 {
667 next = pred->ep_next;
668 free (pred);
669 }
670 *preds = NULL;
671 }
672
673 /* Return true when we can store prediction on insn INSN.
674 At the moment we represent predictions only on conditional
675 jumps, not at computed jump or other complicated cases. */
676 static bool
677 can_predict_insn_p (const rtx_insn *insn)
678 {
679 return (JUMP_P (insn)
680 && any_condjump_p (insn)
681 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
682 }
683
684 /* Predict edge E by given predictor if possible. */
685
686 void
687 predict_edge_def (edge e, enum br_predictor predictor,
688 enum prediction taken)
689 {
690 int probability = predictor_info[(int) predictor].hitrate;
691
692 if (taken != TAKEN)
693 probability = REG_BR_PROB_BASE - probability;
694
695 predict_edge (e, predictor, probability);
696 }
697
698 /* Invert all branch predictions or probability notes in the INSN. This needs
699 to be done each time we invert the condition used by the jump. */
700
701 void
702 invert_br_probabilities (rtx insn)
703 {
704 rtx note;
705
706 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
707 if (REG_NOTE_KIND (note) == REG_BR_PROB)
708 XINT (note, 0) = profile_probability::from_reg_br_prob_note
709 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
710 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
711 XEXP (XEXP (note, 0), 1)
712 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
713 }
714
715 /* Dump information about the branch prediction to the output file. */
716
717 static void
718 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
719 basic_block bb, enum predictor_reason reason = REASON_NONE,
720 edge ep_edge = NULL)
721 {
722 edge e = ep_edge;
723 edge_iterator ei;
724
725 if (!file)
726 return;
727
728 if (e == NULL)
729 FOR_EACH_EDGE (e, ei, bb->succs)
730 if (! (e->flags & EDGE_FALLTHRU))
731 break;
732
733 char edge_info_str[128];
734 if (ep_edge)
735 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
736 ep_edge->dest->index);
737 else
738 edge_info_str[0] = '\0';
739
740 fprintf (file, " %s heuristics%s%s: %.2f%%",
741 predictor_info[predictor].name,
742 edge_info_str, reason_messages[reason],
743 probability * 100.0 / REG_BR_PROB_BASE);
744
745 if (bb->count.initialized_p ())
746 {
747 fprintf (file, " exec ");
748 bb->count.dump (file);
749 if (e)
750 {
751 fprintf (file, " hit ");
752 e->count ().dump (file);
753 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
754 / bb->count.to_gcov_type ());
755 }
756 }
757
758 fprintf (file, "\n");
759
760 /* Print output that be easily read by analyze_brprob.py script. We are
761 interested only in counts that are read from GCDA files. */
762 if (dump_file && (dump_flags & TDF_DETAILS)
763 && bb->count.precise_p ()
764 && reason == REASON_NONE)
765 {
766 gcc_assert (e->count ().precise_p ());
767 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
768 predictor_info[predictor].name,
769 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
770 probability * 100.0 / REG_BR_PROB_BASE);
771 }
772 }
773
774 /* Return true if STMT is known to be unlikely executed. */
775
776 static bool
777 unlikely_executed_stmt_p (gimple *stmt)
778 {
779 if (!is_gimple_call (stmt))
780 return false;
781 /* NORETURN attribute alone is not strong enough: exit() may be quite
782 likely executed once during program run. */
783 if (gimple_call_fntype (stmt)
784 && lookup_attribute ("cold",
785 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
786 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
787 return true;
788 tree decl = gimple_call_fndecl (stmt);
789 if (!decl)
790 return false;
791 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
792 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
793 return true;
794
795 cgraph_node *n = cgraph_node::get (decl);
796 if (!n)
797 return false;
798
799 availability avail;
800 n = n->ultimate_alias_target (&avail);
801 if (avail < AVAIL_AVAILABLE)
802 return false;
803 if (!n->analyzed
804 || n->decl == current_function_decl)
805 return false;
806 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
807 }
808
809 /* Return true if BB is unlikely executed. */
810
811 static bool
812 unlikely_executed_bb_p (basic_block bb)
813 {
814 if (bb->count == profile_count::zero ())
815 return true;
816 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
817 return false;
818 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
819 !gsi_end_p (gsi); gsi_next (&gsi))
820 {
821 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
822 return true;
823 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
824 return false;
825 }
826 return false;
827 }
828
829 /* We cannot predict the probabilities of outgoing edges of bb. Set them
830 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
831 even probability for all edges not mentioned in the set. These edges
832 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
833 if we have exactly one likely edge, make the other edges predicted
834 as not probable. */
835
836 static void
837 set_even_probabilities (basic_block bb,
838 hash_set<edge> *unlikely_edges = NULL,
839 hash_set<edge_prediction *> *likely_edges = NULL)
840 {
841 unsigned nedges = 0, unlikely_count = 0;
842 edge e = NULL;
843 edge_iterator ei;
844 profile_probability all = profile_probability::always ();
845
846 FOR_EACH_EDGE (e, ei, bb->succs)
847 if (e->probability.initialized_p ())
848 all -= e->probability;
849 else if (!unlikely_executed_edge_p (e))
850 {
851 nedges++;
852 if (unlikely_edges != NULL && unlikely_edges->contains (e))
853 {
854 all -= profile_probability::very_unlikely ();
855 unlikely_count++;
856 }
857 }
858
859 /* Make the distribution even if all edges are unlikely. */
860 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
861 if (unlikely_count == nedges)
862 {
863 unlikely_edges = NULL;
864 unlikely_count = 0;
865 }
866
867 /* If we have one likely edge, then use its probability and distribute
868 remaining probabilities as even. */
869 if (likely_count == 1)
870 {
871 FOR_EACH_EDGE (e, ei, bb->succs)
872 if (e->probability.initialized_p ())
873 ;
874 else if (!unlikely_executed_edge_p (e))
875 {
876 edge_prediction *prediction = *likely_edges->begin ();
877 int p = prediction->ep_probability;
878 profile_probability prob
879 = profile_probability::from_reg_br_prob_base (p);
880
881 if (prediction->ep_edge == e)
882 e->probability = prob;
883 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
884 e->probability = profile_probability::very_unlikely ();
885 else
886 {
887 profile_probability remainder = prob.invert ();
888 remainder -= profile_probability::very_unlikely ()
889 .apply_scale (unlikely_count, 1);
890 int count = nedges - unlikely_count - 1;
891 gcc_assert (count >= 0);
892
893 e->probability = remainder.apply_scale (1, count);
894 }
895 }
896 else
897 e->probability = profile_probability::never ();
898 }
899 else
900 {
901 /* Make all unlikely edges unlikely and the rest will have even
902 probability. */
903 unsigned scale = nedges - unlikely_count;
904 FOR_EACH_EDGE (e, ei, bb->succs)
905 if (e->probability.initialized_p ())
906 ;
907 else if (!unlikely_executed_edge_p (e))
908 {
909 if (unlikely_edges != NULL && unlikely_edges->contains (e))
910 e->probability = profile_probability::very_unlikely ();
911 else
912 e->probability = all.apply_scale (1, scale);
913 }
914 else
915 e->probability = profile_probability::never ();
916 }
917 }
918
919 /* Add REG_BR_PROB note to JUMP with PROB. */
920
921 void
922 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
923 {
924 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
925 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
926 }
927
928 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
929 note if not already present. Remove now useless REG_BR_PRED notes. */
930
931 static void
932 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
933 {
934 rtx prob_note;
935 rtx *pnote;
936 rtx note;
937 int best_probability = PROB_EVEN;
938 enum br_predictor best_predictor = END_PREDICTORS;
939 int combined_probability = REG_BR_PROB_BASE / 2;
940 int d;
941 bool first_match = false;
942 bool found = false;
943
944 if (!can_predict_insn_p (insn))
945 {
946 set_even_probabilities (bb);
947 return;
948 }
949
950 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
951 pnote = &REG_NOTES (insn);
952 if (dump_file)
953 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
954 bb->index);
955
956 /* We implement "first match" heuristics and use probability guessed
957 by predictor with smallest index. */
958 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
959 if (REG_NOTE_KIND (note) == REG_BR_PRED)
960 {
961 enum br_predictor predictor = ((enum br_predictor)
962 INTVAL (XEXP (XEXP (note, 0), 0)));
963 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
964
965 found = true;
966 if (best_predictor > predictor
967 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
968 best_probability = probability, best_predictor = predictor;
969
970 d = (combined_probability * probability
971 + (REG_BR_PROB_BASE - combined_probability)
972 * (REG_BR_PROB_BASE - probability));
973
974 /* Use FP math to avoid overflows of 32bit integers. */
975 if (d == 0)
976 /* If one probability is 0% and one 100%, avoid division by zero. */
977 combined_probability = REG_BR_PROB_BASE / 2;
978 else
979 combined_probability = (((double) combined_probability) * probability
980 * REG_BR_PROB_BASE / d + 0.5);
981 }
982
983 /* Decide which heuristic to use. In case we didn't match anything,
984 use no_prediction heuristic, in case we did match, use either
985 first match or Dempster-Shaffer theory depending on the flags. */
986
987 if (best_predictor != END_PREDICTORS)
988 first_match = true;
989
990 if (!found)
991 dump_prediction (dump_file, PRED_NO_PREDICTION,
992 combined_probability, bb);
993 else
994 {
995 if (!first_match)
996 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
997 bb, !first_match ? REASON_NONE : REASON_IGNORED);
998 else
999 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
1000 bb, first_match ? REASON_NONE : REASON_IGNORED);
1001 }
1002
1003 if (first_match)
1004 combined_probability = best_probability;
1005 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1006
1007 while (*pnote)
1008 {
1009 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1010 {
1011 enum br_predictor predictor = ((enum br_predictor)
1012 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1013 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1014
1015 dump_prediction (dump_file, predictor, probability, bb,
1016 (!first_match || best_predictor == predictor)
1017 ? REASON_NONE : REASON_IGNORED);
1018 *pnote = XEXP (*pnote, 1);
1019 }
1020 else
1021 pnote = &XEXP (*pnote, 1);
1022 }
1023
1024 if (!prob_note)
1025 {
1026 profile_probability p
1027 = profile_probability::from_reg_br_prob_base (combined_probability);
1028 add_reg_br_prob_note (insn, p);
1029
1030 /* Save the prediction into CFG in case we are seeing non-degenerated
1031 conditional jump. */
1032 if (!single_succ_p (bb))
1033 {
1034 BRANCH_EDGE (bb)->probability = p;
1035 FALLTHRU_EDGE (bb)->probability
1036 = BRANCH_EDGE (bb)->probability.invert ();
1037 }
1038 }
1039 else if (!single_succ_p (bb))
1040 {
1041 profile_probability prob = profile_probability::from_reg_br_prob_note
1042 (XINT (prob_note, 0));
1043
1044 BRANCH_EDGE (bb)->probability = prob;
1045 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1046 }
1047 else
1048 single_succ_edge (bb)->probability = profile_probability::always ();
1049 }
1050
1051 /* Edge prediction hash traits. */
1052
1053 struct predictor_hash: pointer_hash <edge_prediction>
1054 {
1055
1056 static inline hashval_t hash (const edge_prediction *);
1057 static inline bool equal (const edge_prediction *, const edge_prediction *);
1058 };
1059
1060 /* Calculate hash value of an edge prediction P based on predictor and
1061 normalized probability. */
1062
1063 inline hashval_t
1064 predictor_hash::hash (const edge_prediction *p)
1065 {
1066 inchash::hash hstate;
1067 hstate.add_int (p->ep_predictor);
1068
1069 int prob = p->ep_probability;
1070 if (prob > REG_BR_PROB_BASE / 2)
1071 prob = REG_BR_PROB_BASE - prob;
1072
1073 hstate.add_int (prob);
1074
1075 return hstate.end ();
1076 }
1077
1078 /* Return true whether edge predictions P1 and P2 use the same predictor and
1079 have equal (or opposed probability). */
1080
1081 inline bool
1082 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1083 {
1084 return (p1->ep_predictor == p2->ep_predictor
1085 && (p1->ep_probability == p2->ep_probability
1086 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1087 }
1088
1089 struct predictor_hash_traits: predictor_hash,
1090 typed_noop_remove <edge_prediction *> {};
1091
1092 /* Return true if edge prediction P is not in DATA hash set. */
1093
1094 static bool
1095 not_removed_prediction_p (edge_prediction *p, void *data)
1096 {
1097 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1098 return !remove->contains (p);
1099 }
1100
1101 /* Prune predictions for a basic block BB. Currently we do following
1102 clean-up steps:
1103
1104 1) remove duplicate prediction that is guessed with the same probability
1105 (different than 1/2) to both edge
1106 2) remove duplicates for a prediction that belongs with the same probability
1107 to a single edge
1108
1109 */
1110
1111 static void
1112 prune_predictions_for_bb (basic_block bb)
1113 {
1114 edge_prediction **preds = bb_predictions->get (bb);
1115
1116 if (preds)
1117 {
1118 hash_table <predictor_hash_traits> s (13);
1119 hash_set <edge_prediction *> remove;
1120
1121 /* Step 1: identify predictors that should be removed. */
1122 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1123 {
1124 edge_prediction *existing = s.find (pred);
1125 if (existing)
1126 {
1127 if (pred->ep_edge == existing->ep_edge
1128 && pred->ep_probability == existing->ep_probability)
1129 {
1130 /* Remove a duplicate predictor. */
1131 dump_prediction (dump_file, pred->ep_predictor,
1132 pred->ep_probability, bb,
1133 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1134
1135 remove.add (pred);
1136 }
1137 else if (pred->ep_edge != existing->ep_edge
1138 && pred->ep_probability == existing->ep_probability
1139 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1140 {
1141 /* Remove both predictors as they predict the same
1142 for both edges. */
1143 dump_prediction (dump_file, existing->ep_predictor,
1144 pred->ep_probability, bb,
1145 REASON_EDGE_PAIR_DUPLICATE,
1146 existing->ep_edge);
1147 dump_prediction (dump_file, pred->ep_predictor,
1148 pred->ep_probability, bb,
1149 REASON_EDGE_PAIR_DUPLICATE,
1150 pred->ep_edge);
1151
1152 remove.add (existing);
1153 remove.add (pred);
1154 }
1155 }
1156
1157 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1158 *slot2 = pred;
1159 }
1160
1161 /* Step 2: Remove predictors. */
1162 filter_predictions (preds, not_removed_prediction_p, &remove);
1163 }
1164 }
1165
1166 /* Combine predictions into single probability and store them into CFG.
1167 Remove now useless prediction entries.
1168 If DRY_RUN is set, only produce dumps and do not modify profile. */
1169
1170 static void
1171 combine_predictions_for_bb (basic_block bb, bool dry_run)
1172 {
1173 int best_probability = PROB_EVEN;
1174 enum br_predictor best_predictor = END_PREDICTORS;
1175 int combined_probability = REG_BR_PROB_BASE / 2;
1176 int d;
1177 bool first_match = false;
1178 bool found = false;
1179 struct edge_prediction *pred;
1180 int nedges = 0;
1181 edge e, first = NULL, second = NULL;
1182 edge_iterator ei;
1183 int nzero = 0;
1184 int nunknown = 0;
1185
1186 FOR_EACH_EDGE (e, ei, bb->succs)
1187 {
1188 if (!unlikely_executed_edge_p (e))
1189 {
1190 nedges ++;
1191 if (first && !second)
1192 second = e;
1193 if (!first)
1194 first = e;
1195 }
1196 else if (!e->probability.initialized_p ())
1197 e->probability = profile_probability::never ();
1198 if (!e->probability.initialized_p ())
1199 nunknown++;
1200 else if (e->probability == profile_probability::never ())
1201 nzero++;
1202 }
1203
1204 /* When there is no successor or only one choice, prediction is easy.
1205
1206 When we have a basic block with more than 2 successors, the situation
1207 is more complicated as DS theory cannot be used literally.
1208 More precisely, let's assume we predicted edge e1 with probability p1,
1209 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1210 need to find probability of e.g. m1({b2}), which we don't know.
1211 The only approximation is to equally distribute 1-p1 to all edges
1212 different from b1.
1213
1214 According to numbers we've got from SPEC2006 benchark, there's only
1215 one interesting reliable predictor (noreturn call), which can be
1216 handled with a bit easier approach. */
1217 if (nedges != 2)
1218 {
1219 hash_set<edge> unlikely_edges (4);
1220 hash_set<edge_prediction *> likely_edges (4);
1221
1222 /* Identify all edges that have a probability close to very unlikely.
1223 Doing the approach for very unlikely doesn't worth for doing as
1224 there's no such probability in SPEC2006 benchmark. */
1225 edge_prediction **preds = bb_predictions->get (bb);
1226 if (preds)
1227 for (pred = *preds; pred; pred = pred->ep_next)
1228 {
1229 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1230 || pred->ep_predictor == PRED_COLD_LABEL)
1231 unlikely_edges.add (pred->ep_edge);
1232 if (pred->ep_probability >= PROB_VERY_LIKELY
1233 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1234 || pred->ep_predictor == PRED_HOT_LABEL)
1235 likely_edges.add (pred);
1236 }
1237
1238 if (!dry_run)
1239 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1240 clear_bb_predictions (bb);
1241 if (dump_file)
1242 {
1243 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1244 if (unlikely_edges.elements () == 0)
1245 fprintf (dump_file,
1246 "%i edges in bb %i predicted to even probabilities\n",
1247 nedges, bb->index);
1248 else
1249 {
1250 fprintf (dump_file,
1251 "%i edges in bb %i predicted with some unlikely edges\n",
1252 nedges, bb->index);
1253 FOR_EACH_EDGE (e, ei, bb->succs)
1254 if (!unlikely_executed_edge_p (e))
1255 dump_prediction (dump_file, PRED_COMBINED,
1256 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1257 }
1258 }
1259 return;
1260 }
1261
1262 if (dump_file)
1263 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1264
1265 prune_predictions_for_bb (bb);
1266
1267 edge_prediction **preds = bb_predictions->get (bb);
1268
1269 if (preds)
1270 {
1271 /* We implement "first match" heuristics and use probability guessed
1272 by predictor with smallest index. */
1273 for (pred = *preds; pred; pred = pred->ep_next)
1274 {
1275 enum br_predictor predictor = pred->ep_predictor;
1276 int probability = pred->ep_probability;
1277
1278 if (pred->ep_edge != first)
1279 probability = REG_BR_PROB_BASE - probability;
1280
1281 found = true;
1282 /* First match heuristics would be widly confused if we predicted
1283 both directions. */
1284 if (best_predictor > predictor
1285 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1286 {
1287 struct edge_prediction *pred2;
1288 int prob = probability;
1289
1290 for (pred2 = (struct edge_prediction *) *preds;
1291 pred2; pred2 = pred2->ep_next)
1292 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1293 {
1294 int probability2 = pred2->ep_probability;
1295
1296 if (pred2->ep_edge != first)
1297 probability2 = REG_BR_PROB_BASE - probability2;
1298
1299 if ((probability < REG_BR_PROB_BASE / 2) !=
1300 (probability2 < REG_BR_PROB_BASE / 2))
1301 break;
1302
1303 /* If the same predictor later gave better result, go for it! */
1304 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1305 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1306 prob = probability2;
1307 }
1308 if (!pred2)
1309 best_probability = prob, best_predictor = predictor;
1310 }
1311
1312 d = (combined_probability * probability
1313 + (REG_BR_PROB_BASE - combined_probability)
1314 * (REG_BR_PROB_BASE - probability));
1315
1316 /* Use FP math to avoid overflows of 32bit integers. */
1317 if (d == 0)
1318 /* If one probability is 0% and one 100%, avoid division by zero. */
1319 combined_probability = REG_BR_PROB_BASE / 2;
1320 else
1321 combined_probability = (((double) combined_probability)
1322 * probability
1323 * REG_BR_PROB_BASE / d + 0.5);
1324 }
1325 }
1326
1327 /* Decide which heuristic to use. In case we didn't match anything,
1328 use no_prediction heuristic, in case we did match, use either
1329 first match or Dempster-Shaffer theory depending on the flags. */
1330
1331 if (best_predictor != END_PREDICTORS)
1332 first_match = true;
1333
1334 if (!found)
1335 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1336 else
1337 {
1338 if (!first_match)
1339 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1340 !first_match ? REASON_NONE : REASON_IGNORED);
1341 else
1342 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1343 first_match ? REASON_NONE : REASON_IGNORED);
1344 }
1345
1346 if (first_match)
1347 combined_probability = best_probability;
1348 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1349
1350 if (preds)
1351 {
1352 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1353 {
1354 enum br_predictor predictor = pred->ep_predictor;
1355 int probability = pred->ep_probability;
1356
1357 dump_prediction (dump_file, predictor, probability, bb,
1358 (!first_match || best_predictor == predictor)
1359 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1360 }
1361 }
1362 clear_bb_predictions (bb);
1363
1364
1365 /* If we have only one successor which is unknown, we can compute missing
1366 probablity. */
1367 if (nunknown == 1)
1368 {
1369 profile_probability prob = profile_probability::always ();
1370 edge missing = NULL;
1371
1372 FOR_EACH_EDGE (e, ei, bb->succs)
1373 if (e->probability.initialized_p ())
1374 prob -= e->probability;
1375 else if (missing == NULL)
1376 missing = e;
1377 else
1378 gcc_unreachable ();
1379 missing->probability = prob;
1380 }
1381 /* If nothing is unknown, we have nothing to update. */
1382 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1383 ;
1384 else if (!dry_run)
1385 {
1386 first->probability
1387 = profile_probability::from_reg_br_prob_base (combined_probability);
1388 second->probability = first->probability.invert ();
1389 }
1390 }
1391
1392 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1393 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1394
1395 T1 and T2 should be one of the following cases:
1396 1. T1 is SSA_NAME, T2 is NULL
1397 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1398 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1399
1400 static tree
1401 strips_small_constant (tree t1, tree t2)
1402 {
1403 tree ret = NULL;
1404 int value = 0;
1405
1406 if (!t1)
1407 return NULL;
1408 else if (TREE_CODE (t1) == SSA_NAME)
1409 ret = t1;
1410 else if (tree_fits_shwi_p (t1))
1411 value = tree_to_shwi (t1);
1412 else
1413 return NULL;
1414
1415 if (!t2)
1416 return ret;
1417 else if (tree_fits_shwi_p (t2))
1418 value = tree_to_shwi (t2);
1419 else if (TREE_CODE (t2) == SSA_NAME)
1420 {
1421 if (ret)
1422 return NULL;
1423 else
1424 ret = t2;
1425 }
1426
1427 if (value <= 4 && value >= -4)
1428 return ret;
1429 else
1430 return NULL;
1431 }
1432
1433 /* Return the SSA_NAME in T or T's operands.
1434 Return NULL if SSA_NAME cannot be found. */
1435
1436 static tree
1437 get_base_value (tree t)
1438 {
1439 if (TREE_CODE (t) == SSA_NAME)
1440 return t;
1441
1442 if (!BINARY_CLASS_P (t))
1443 return NULL;
1444
1445 switch (TREE_OPERAND_LENGTH (t))
1446 {
1447 case 1:
1448 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1449 case 2:
1450 return strips_small_constant (TREE_OPERAND (t, 0),
1451 TREE_OPERAND (t, 1));
1452 default:
1453 return NULL;
1454 }
1455 }
1456
1457 /* Check the compare STMT in LOOP. If it compares an induction
1458 variable to a loop invariant, return true, and save
1459 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1460 Otherwise return false and set LOOP_INVAIANT to NULL. */
1461
1462 static bool
1463 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1464 tree *loop_invariant,
1465 enum tree_code *compare_code,
1466 tree *loop_step,
1467 tree *loop_iv_base)
1468 {
1469 tree op0, op1, bound, base;
1470 affine_iv iv0, iv1;
1471 enum tree_code code;
1472 tree step;
1473
1474 code = gimple_cond_code (stmt);
1475 *loop_invariant = NULL;
1476
1477 switch (code)
1478 {
1479 case GT_EXPR:
1480 case GE_EXPR:
1481 case NE_EXPR:
1482 case LT_EXPR:
1483 case LE_EXPR:
1484 case EQ_EXPR:
1485 break;
1486
1487 default:
1488 return false;
1489 }
1490
1491 op0 = gimple_cond_lhs (stmt);
1492 op1 = gimple_cond_rhs (stmt);
1493
1494 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1495 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1496 return false;
1497 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1498 return false;
1499 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1500 return false;
1501 if (TREE_CODE (iv0.step) != INTEGER_CST
1502 || TREE_CODE (iv1.step) != INTEGER_CST)
1503 return false;
1504 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1505 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1506 return false;
1507
1508 if (integer_zerop (iv0.step))
1509 {
1510 if (code != NE_EXPR && code != EQ_EXPR)
1511 code = invert_tree_comparison (code, false);
1512 bound = iv0.base;
1513 base = iv1.base;
1514 if (tree_fits_shwi_p (iv1.step))
1515 step = iv1.step;
1516 else
1517 return false;
1518 }
1519 else
1520 {
1521 bound = iv1.base;
1522 base = iv0.base;
1523 if (tree_fits_shwi_p (iv0.step))
1524 step = iv0.step;
1525 else
1526 return false;
1527 }
1528
1529 if (TREE_CODE (bound) != INTEGER_CST)
1530 bound = get_base_value (bound);
1531 if (!bound)
1532 return false;
1533 if (TREE_CODE (base) != INTEGER_CST)
1534 base = get_base_value (base);
1535 if (!base)
1536 return false;
1537
1538 *loop_invariant = bound;
1539 *compare_code = code;
1540 *loop_step = step;
1541 *loop_iv_base = base;
1542 return true;
1543 }
1544
1545 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1546
1547 static bool
1548 expr_coherent_p (tree t1, tree t2)
1549 {
1550 gimple *stmt;
1551 tree ssa_name_1 = NULL;
1552 tree ssa_name_2 = NULL;
1553
1554 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1555 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1556
1557 if (t1 == t2)
1558 return true;
1559
1560 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1561 return true;
1562 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1563 return false;
1564
1565 /* Check to see if t1 is expressed/defined with t2. */
1566 stmt = SSA_NAME_DEF_STMT (t1);
1567 gcc_assert (stmt != NULL);
1568 if (is_gimple_assign (stmt))
1569 {
1570 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1571 if (ssa_name_1 && ssa_name_1 == t2)
1572 return true;
1573 }
1574
1575 /* Check to see if t2 is expressed/defined with t1. */
1576 stmt = SSA_NAME_DEF_STMT (t2);
1577 gcc_assert (stmt != NULL);
1578 if (is_gimple_assign (stmt))
1579 {
1580 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1581 if (ssa_name_2 && ssa_name_2 == t1)
1582 return true;
1583 }
1584
1585 /* Compare if t1 and t2's def_stmts are identical. */
1586 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1587 return true;
1588 else
1589 return false;
1590 }
1591
1592 /* Return true if E is predicted by one of loop heuristics. */
1593
1594 static bool
1595 predicted_by_loop_heuristics_p (basic_block bb)
1596 {
1597 struct edge_prediction *i;
1598 edge_prediction **preds = bb_predictions->get (bb);
1599
1600 if (!preds)
1601 return false;
1602
1603 for (i = *preds; i; i = i->ep_next)
1604 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1605 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1606 || i->ep_predictor == PRED_LOOP_ITERATIONS
1607 || i->ep_predictor == PRED_LOOP_EXIT
1608 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1609 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1610 return true;
1611 return false;
1612 }
1613
1614 /* Predict branch probability of BB when BB contains a branch that compares
1615 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1616 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1617
1618 E.g.
1619 for (int i = 0; i < bound; i++) {
1620 if (i < bound - 2)
1621 computation_1();
1622 else
1623 computation_2();
1624 }
1625
1626 In this loop, we will predict the branch inside the loop to be taken. */
1627
1628 static void
1629 predict_iv_comparison (struct loop *loop, basic_block bb,
1630 tree loop_bound_var,
1631 tree loop_iv_base_var,
1632 enum tree_code loop_bound_code,
1633 int loop_bound_step)
1634 {
1635 gimple *stmt;
1636 tree compare_var, compare_base;
1637 enum tree_code compare_code;
1638 tree compare_step_var;
1639 edge then_edge;
1640 edge_iterator ei;
1641
1642 if (predicted_by_loop_heuristics_p (bb))
1643 return;
1644
1645 stmt = last_stmt (bb);
1646 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1647 return;
1648 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1649 loop, &compare_var,
1650 &compare_code,
1651 &compare_step_var,
1652 &compare_base))
1653 return;
1654
1655 /* Find the taken edge. */
1656 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1657 if (then_edge->flags & EDGE_TRUE_VALUE)
1658 break;
1659
1660 /* When comparing an IV to a loop invariant, NE is more likely to be
1661 taken while EQ is more likely to be not-taken. */
1662 if (compare_code == NE_EXPR)
1663 {
1664 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1665 return;
1666 }
1667 else if (compare_code == EQ_EXPR)
1668 {
1669 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1670 return;
1671 }
1672
1673 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1674 return;
1675
1676 /* If loop bound, base and compare bound are all constants, we can
1677 calculate the probability directly. */
1678 if (tree_fits_shwi_p (loop_bound_var)
1679 && tree_fits_shwi_p (compare_var)
1680 && tree_fits_shwi_p (compare_base))
1681 {
1682 int probability;
1683 wi::overflow_type overflow;
1684 bool overall_overflow = false;
1685 widest_int compare_count, tem;
1686
1687 /* (loop_bound - base) / compare_step */
1688 tem = wi::sub (wi::to_widest (loop_bound_var),
1689 wi::to_widest (compare_base), SIGNED, &overflow);
1690 overall_overflow |= overflow;
1691 widest_int loop_count = wi::div_trunc (tem,
1692 wi::to_widest (compare_step_var),
1693 SIGNED, &overflow);
1694 overall_overflow |= overflow;
1695
1696 if (!wi::neg_p (wi::to_widest (compare_step_var))
1697 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1698 {
1699 /* (loop_bound - compare_bound) / compare_step */
1700 tem = wi::sub (wi::to_widest (loop_bound_var),
1701 wi::to_widest (compare_var), SIGNED, &overflow);
1702 overall_overflow |= overflow;
1703 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1704 SIGNED, &overflow);
1705 overall_overflow |= overflow;
1706 }
1707 else
1708 {
1709 /* (compare_bound - base) / compare_step */
1710 tem = wi::sub (wi::to_widest (compare_var),
1711 wi::to_widest (compare_base), SIGNED, &overflow);
1712 overall_overflow |= overflow;
1713 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1714 SIGNED, &overflow);
1715 overall_overflow |= overflow;
1716 }
1717 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1718 ++compare_count;
1719 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1720 ++loop_count;
1721 if (wi::neg_p (compare_count))
1722 compare_count = 0;
1723 if (wi::neg_p (loop_count))
1724 loop_count = 0;
1725 if (loop_count == 0)
1726 probability = 0;
1727 else if (wi::cmps (compare_count, loop_count) == 1)
1728 probability = REG_BR_PROB_BASE;
1729 else
1730 {
1731 tem = compare_count * REG_BR_PROB_BASE;
1732 tem = wi::udiv_trunc (tem, loop_count);
1733 probability = tem.to_uhwi ();
1734 }
1735
1736 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1737 if (!overall_overflow)
1738 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1739
1740 return;
1741 }
1742
1743 if (expr_coherent_p (loop_bound_var, compare_var))
1744 {
1745 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1746 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1747 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1748 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1749 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1750 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1751 else if (loop_bound_code == NE_EXPR)
1752 {
1753 /* If the loop backedge condition is "(i != bound)", we do
1754 the comparison based on the step of IV:
1755 * step < 0 : backedge condition is like (i > bound)
1756 * step > 0 : backedge condition is like (i < bound) */
1757 gcc_assert (loop_bound_step != 0);
1758 if (loop_bound_step > 0
1759 && (compare_code == LT_EXPR
1760 || compare_code == LE_EXPR))
1761 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1762 else if (loop_bound_step < 0
1763 && (compare_code == GT_EXPR
1764 || compare_code == GE_EXPR))
1765 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1766 else
1767 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1768 }
1769 else
1770 /* The branch is predicted not-taken if loop_bound_code is
1771 opposite with compare_code. */
1772 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1773 }
1774 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1775 {
1776 /* For cases like:
1777 for (i = s; i < h; i++)
1778 if (i > s + 2) ....
1779 The branch should be predicted taken. */
1780 if (loop_bound_step > 0
1781 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1782 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1783 else if (loop_bound_step < 0
1784 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1785 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1786 else
1787 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1788 }
1789 }
1790
1791 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1792 exits are resulted from short-circuit conditions that will generate an
1793 if_tmp. E.g.:
1794
1795 if (foo() || global > 10)
1796 break;
1797
1798 This will be translated into:
1799
1800 BB3:
1801 loop header...
1802 BB4:
1803 if foo() goto BB6 else goto BB5
1804 BB5:
1805 if global > 10 goto BB6 else goto BB7
1806 BB6:
1807 goto BB7
1808 BB7:
1809 iftmp = (PHI 0(BB5), 1(BB6))
1810 if iftmp == 1 goto BB8 else goto BB3
1811 BB8:
1812 outside of the loop...
1813
1814 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1815 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1816 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1817 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1818
1819 static void
1820 predict_extra_loop_exits (edge exit_edge)
1821 {
1822 unsigned i;
1823 bool check_value_one;
1824 gimple *lhs_def_stmt;
1825 gphi *phi_stmt;
1826 tree cmp_rhs, cmp_lhs;
1827 gimple *last;
1828 gcond *cmp_stmt;
1829
1830 last = last_stmt (exit_edge->src);
1831 if (!last)
1832 return;
1833 cmp_stmt = dyn_cast <gcond *> (last);
1834 if (!cmp_stmt)
1835 return;
1836
1837 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1838 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1839 if (!TREE_CONSTANT (cmp_rhs)
1840 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1841 return;
1842 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1843 return;
1844
1845 /* If check_value_one is true, only the phi_args with value '1' will lead
1846 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1847 loop exit. */
1848 check_value_one = (((integer_onep (cmp_rhs))
1849 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1850 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1851
1852 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1853 if (!lhs_def_stmt)
1854 return;
1855
1856 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1857 if (!phi_stmt)
1858 return;
1859
1860 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1861 {
1862 edge e1;
1863 edge_iterator ei;
1864 tree val = gimple_phi_arg_def (phi_stmt, i);
1865 edge e = gimple_phi_arg_edge (phi_stmt, i);
1866
1867 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1868 continue;
1869 if ((check_value_one ^ integer_onep (val)) == 1)
1870 continue;
1871 if (EDGE_COUNT (e->src->succs) != 1)
1872 {
1873 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1874 continue;
1875 }
1876
1877 FOR_EACH_EDGE (e1, ei, e->src->preds)
1878 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1879 }
1880 }
1881
1882
1883 /* Predict edge probabilities by exploiting loop structure. */
1884
1885 static void
1886 predict_loops (void)
1887 {
1888 struct loop *loop;
1889 basic_block bb;
1890 hash_set <struct loop *> with_recursion(10);
1891
1892 FOR_EACH_BB_FN (bb, cfun)
1893 {
1894 gimple_stmt_iterator gsi;
1895 tree decl;
1896
1897 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1898 if (is_gimple_call (gsi_stmt (gsi))
1899 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1900 && recursive_call_p (current_function_decl, decl))
1901 {
1902 loop = bb->loop_father;
1903 while (loop && !with_recursion.add (loop))
1904 loop = loop_outer (loop);
1905 }
1906 }
1907
1908 /* Try to predict out blocks in a loop that are not part of a
1909 natural loop. */
1910 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1911 {
1912 basic_block bb, *bbs;
1913 unsigned j, n_exits = 0;
1914 vec<edge> exits;
1915 struct tree_niter_desc niter_desc;
1916 edge ex;
1917 struct nb_iter_bound *nb_iter;
1918 enum tree_code loop_bound_code = ERROR_MARK;
1919 tree loop_bound_step = NULL;
1920 tree loop_bound_var = NULL;
1921 tree loop_iv_base = NULL;
1922 gcond *stmt = NULL;
1923 bool recursion = with_recursion.contains (loop);
1924
1925 exits = get_loop_exit_edges (loop);
1926 FOR_EACH_VEC_ELT (exits, j, ex)
1927 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1928 n_exits ++;
1929 if (!n_exits)
1930 {
1931 exits.release ();
1932 continue;
1933 }
1934
1935 if (dump_file && (dump_flags & TDF_DETAILS))
1936 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1937 loop->num, recursion ? " (with recursion)":"", n_exits);
1938 if (dump_file && (dump_flags & TDF_DETAILS)
1939 && max_loop_iterations_int (loop) >= 0)
1940 {
1941 fprintf (dump_file,
1942 "Loop %d iterates at most %i times.\n", loop->num,
1943 (int)max_loop_iterations_int (loop));
1944 }
1945 if (dump_file && (dump_flags & TDF_DETAILS)
1946 && likely_max_loop_iterations_int (loop) >= 0)
1947 {
1948 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1949 loop->num, (int)likely_max_loop_iterations_int (loop));
1950 }
1951
1952 FOR_EACH_VEC_ELT (exits, j, ex)
1953 {
1954 tree niter = NULL;
1955 HOST_WIDE_INT nitercst;
1956 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1957 int probability;
1958 enum br_predictor predictor;
1959 widest_int nit;
1960
1961 if (unlikely_executed_edge_p (ex)
1962 || (ex->flags & EDGE_ABNORMAL_CALL))
1963 continue;
1964 /* Loop heuristics do not expect exit conditional to be inside
1965 inner loop. We predict from innermost to outermost loop. */
1966 if (predicted_by_loop_heuristics_p (ex->src))
1967 {
1968 if (dump_file && (dump_flags & TDF_DETAILS))
1969 fprintf (dump_file, "Skipping exit %i->%i because "
1970 "it is already predicted.\n",
1971 ex->src->index, ex->dest->index);
1972 continue;
1973 }
1974 predict_extra_loop_exits (ex);
1975
1976 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1977 niter = niter_desc.niter;
1978 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1979 niter = loop_niter_by_eval (loop, ex);
1980 if (dump_file && (dump_flags & TDF_DETAILS)
1981 && TREE_CODE (niter) == INTEGER_CST)
1982 {
1983 fprintf (dump_file, "Exit %i->%i %d iterates ",
1984 ex->src->index, ex->dest->index,
1985 loop->num);
1986 print_generic_expr (dump_file, niter, TDF_SLIM);
1987 fprintf (dump_file, " times.\n");
1988 }
1989
1990 if (TREE_CODE (niter) == INTEGER_CST)
1991 {
1992 if (tree_fits_uhwi_p (niter)
1993 && max
1994 && compare_tree_int (niter, max - 1) == -1)
1995 nitercst = tree_to_uhwi (niter) + 1;
1996 else
1997 nitercst = max;
1998 predictor = PRED_LOOP_ITERATIONS;
1999 }
2000 /* If we have just one exit and we can derive some information about
2001 the number of iterations of the loop from the statements inside
2002 the loop, use it to predict this exit. */
2003 else if (n_exits == 1
2004 && estimated_stmt_executions (loop, &nit))
2005 {
2006 if (wi::gtu_p (nit, max))
2007 nitercst = max;
2008 else
2009 nitercst = nit.to_shwi ();
2010 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2011 }
2012 /* If we have likely upper bound, trust it for very small iteration
2013 counts. Such loops would otherwise get mispredicted by standard
2014 LOOP_EXIT heuristics. */
2015 else if (n_exits == 1
2016 && likely_max_stmt_executions (loop, &nit)
2017 && wi::ltu_p (nit,
2018 RDIV (REG_BR_PROB_BASE,
2019 REG_BR_PROB_BASE
2020 - predictor_info
2021 [recursion
2022 ? PRED_LOOP_EXIT_WITH_RECURSION
2023 : PRED_LOOP_EXIT].hitrate)))
2024 {
2025 nitercst = nit.to_shwi ();
2026 predictor = PRED_LOOP_ITERATIONS_MAX;
2027 }
2028 else
2029 {
2030 if (dump_file && (dump_flags & TDF_DETAILS))
2031 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2032 ex->src->index, ex->dest->index);
2033 continue;
2034 }
2035
2036 if (dump_file && (dump_flags & TDF_DETAILS))
2037 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2038 (int)nitercst, predictor_info[predictor].name);
2039 /* If the prediction for number of iterations is zero, do not
2040 predict the exit edges. */
2041 if (nitercst == 0)
2042 continue;
2043
2044 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2045 predict_edge (ex, predictor, probability);
2046 }
2047 exits.release ();
2048
2049 /* Find information about loop bound variables. */
2050 for (nb_iter = loop->bounds; nb_iter;
2051 nb_iter = nb_iter->next)
2052 if (nb_iter->stmt
2053 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2054 {
2055 stmt = as_a <gcond *> (nb_iter->stmt);
2056 break;
2057 }
2058 if (!stmt && last_stmt (loop->header)
2059 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2060 stmt = as_a <gcond *> (last_stmt (loop->header));
2061 if (stmt)
2062 is_comparison_with_loop_invariant_p (stmt, loop,
2063 &loop_bound_var,
2064 &loop_bound_code,
2065 &loop_bound_step,
2066 &loop_iv_base);
2067
2068 bbs = get_loop_body (loop);
2069
2070 for (j = 0; j < loop->num_nodes; j++)
2071 {
2072 edge e;
2073 edge_iterator ei;
2074
2075 bb = bbs[j];
2076
2077 /* Bypass loop heuristics on continue statement. These
2078 statements construct loops via "non-loop" constructs
2079 in the source language and are better to be handled
2080 separately. */
2081 if (predicted_by_p (bb, PRED_CONTINUE))
2082 {
2083 if (dump_file && (dump_flags & TDF_DETAILS))
2084 fprintf (dump_file, "BB %i predicted by continue.\n",
2085 bb->index);
2086 continue;
2087 }
2088
2089 /* If we already used more reliable loop exit predictors, do not
2090 bother with PRED_LOOP_EXIT. */
2091 if (!predicted_by_loop_heuristics_p (bb))
2092 {
2093 /* For loop with many exits we don't want to predict all exits
2094 with the pretty large probability, because if all exits are
2095 considered in row, the loop would be predicted to iterate
2096 almost never. The code to divide probability by number of
2097 exits is very rough. It should compute the number of exits
2098 taken in each patch through function (not the overall number
2099 of exits that might be a lot higher for loops with wide switch
2100 statements in them) and compute n-th square root.
2101
2102 We limit the minimal probability by 2% to avoid
2103 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2104 as this was causing regression in perl benchmark containing such
2105 a wide loop. */
2106
2107 int probability = ((REG_BR_PROB_BASE
2108 - predictor_info
2109 [recursion
2110 ? PRED_LOOP_EXIT_WITH_RECURSION
2111 : PRED_LOOP_EXIT].hitrate)
2112 / n_exits);
2113 if (probability < HITRATE (2))
2114 probability = HITRATE (2);
2115 FOR_EACH_EDGE (e, ei, bb->succs)
2116 if (e->dest->index < NUM_FIXED_BLOCKS
2117 || !flow_bb_inside_loop_p (loop, e->dest))
2118 {
2119 if (dump_file && (dump_flags & TDF_DETAILS))
2120 fprintf (dump_file,
2121 "Predicting exit %i->%i with prob %i.\n",
2122 e->src->index, e->dest->index, probability);
2123 predict_edge (e,
2124 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2125 : PRED_LOOP_EXIT, probability);
2126 }
2127 }
2128 if (loop_bound_var)
2129 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2130 loop_bound_code,
2131 tree_to_shwi (loop_bound_step));
2132 }
2133
2134 /* In the following code
2135 for (loop1)
2136 if (cond)
2137 for (loop2)
2138 body;
2139 guess that cond is unlikely. */
2140 if (loop_outer (loop)->num)
2141 {
2142 basic_block bb = NULL;
2143 edge preheader_edge = loop_preheader_edge (loop);
2144
2145 if (single_pred_p (preheader_edge->src)
2146 && single_succ_p (preheader_edge->src))
2147 preheader_edge = single_pred_edge (preheader_edge->src);
2148
2149 gimple *stmt = last_stmt (preheader_edge->src);
2150 /* Pattern match fortran loop preheader:
2151 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2152 _17 = (logical(kind=4)) _16;
2153 if (_17 != 0)
2154 goto <bb 11>;
2155 else
2156 goto <bb 13>;
2157
2158 Loop guard branch prediction says nothing about duplicated loop
2159 headers produced by fortran frontend and in this case we want
2160 to predict paths leading to this preheader. */
2161
2162 if (stmt
2163 && gimple_code (stmt) == GIMPLE_COND
2164 && gimple_cond_code (stmt) == NE_EXPR
2165 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2166 && integer_zerop (gimple_cond_rhs (stmt)))
2167 {
2168 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2169 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2170 && gimple_expr_code (call_stmt) == NOP_EXPR
2171 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2172 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2173 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2174 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2175 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2176 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2177 == PRED_FORTRAN_LOOP_PREHEADER)
2178 bb = preheader_edge->src;
2179 }
2180 if (!bb)
2181 {
2182 if (!dominated_by_p (CDI_DOMINATORS,
2183 loop_outer (loop)->latch, loop->header))
2184 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2185 recursion
2186 ? PRED_LOOP_GUARD_WITH_RECURSION
2187 : PRED_LOOP_GUARD,
2188 NOT_TAKEN,
2189 loop_outer (loop));
2190 }
2191 else
2192 {
2193 if (!dominated_by_p (CDI_DOMINATORS,
2194 loop_outer (loop)->latch, bb))
2195 predict_paths_leading_to (bb,
2196 recursion
2197 ? PRED_LOOP_GUARD_WITH_RECURSION
2198 : PRED_LOOP_GUARD,
2199 NOT_TAKEN,
2200 loop_outer (loop));
2201 }
2202 }
2203
2204 /* Free basic blocks from get_loop_body. */
2205 free (bbs);
2206 }
2207 }
2208
2209 /* Attempt to predict probabilities of BB outgoing edges using local
2210 properties. */
2211 static void
2212 bb_estimate_probability_locally (basic_block bb)
2213 {
2214 rtx_insn *last_insn = BB_END (bb);
2215 rtx cond;
2216
2217 if (! can_predict_insn_p (last_insn))
2218 return;
2219 cond = get_condition (last_insn, NULL, false, false);
2220 if (! cond)
2221 return;
2222
2223 /* Try "pointer heuristic."
2224 A comparison ptr == 0 is predicted as false.
2225 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2226 if (COMPARISON_P (cond)
2227 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2228 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2229 {
2230 if (GET_CODE (cond) == EQ)
2231 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2232 else if (GET_CODE (cond) == NE)
2233 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2234 }
2235 else
2236
2237 /* Try "opcode heuristic."
2238 EQ tests are usually false and NE tests are usually true. Also,
2239 most quantities are positive, so we can make the appropriate guesses
2240 about signed comparisons against zero. */
2241 switch (GET_CODE (cond))
2242 {
2243 case CONST_INT:
2244 /* Unconditional branch. */
2245 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2246 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2247 break;
2248
2249 case EQ:
2250 case UNEQ:
2251 /* Floating point comparisons appears to behave in a very
2252 unpredictable way because of special role of = tests in
2253 FP code. */
2254 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2255 ;
2256 /* Comparisons with 0 are often used for booleans and there is
2257 nothing useful to predict about them. */
2258 else if (XEXP (cond, 1) == const0_rtx
2259 || XEXP (cond, 0) == const0_rtx)
2260 ;
2261 else
2262 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2263 break;
2264
2265 case NE:
2266 case LTGT:
2267 /* Floating point comparisons appears to behave in a very
2268 unpredictable way because of special role of = tests in
2269 FP code. */
2270 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2271 ;
2272 /* Comparisons with 0 are often used for booleans and there is
2273 nothing useful to predict about them. */
2274 else if (XEXP (cond, 1) == const0_rtx
2275 || XEXP (cond, 0) == const0_rtx)
2276 ;
2277 else
2278 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2279 break;
2280
2281 case ORDERED:
2282 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2283 break;
2284
2285 case UNORDERED:
2286 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2287 break;
2288
2289 case LE:
2290 case LT:
2291 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2292 || XEXP (cond, 1) == constm1_rtx)
2293 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2294 break;
2295
2296 case GE:
2297 case GT:
2298 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2299 || XEXP (cond, 1) == constm1_rtx)
2300 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2301 break;
2302
2303 default:
2304 break;
2305 }
2306 }
2307
2308 /* Set edge->probability for each successor edge of BB. */
2309 void
2310 guess_outgoing_edge_probabilities (basic_block bb)
2311 {
2312 bb_estimate_probability_locally (bb);
2313 combine_predictions_for_insn (BB_END (bb), bb);
2314 }
2315 \f
2316 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2317 HOST_WIDE_INT *probability);
2318
2319 /* Helper function for expr_expected_value. */
2320
2321 static tree
2322 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2323 tree op1, bitmap visited, enum br_predictor *predictor,
2324 HOST_WIDE_INT *probability)
2325 {
2326 gimple *def;
2327
2328 /* Reset returned probability value. */
2329 *probability = -1;
2330 *predictor = PRED_UNCONDITIONAL;
2331
2332 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2333 {
2334 if (TREE_CONSTANT (op0))
2335 return op0;
2336
2337 if (code == IMAGPART_EXPR)
2338 {
2339 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2340 {
2341 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2342 if (is_gimple_call (def)
2343 && gimple_call_internal_p (def)
2344 && (gimple_call_internal_fn (def)
2345 == IFN_ATOMIC_COMPARE_EXCHANGE))
2346 {
2347 /* Assume that any given atomic operation has low contention,
2348 and thus the compare-and-swap operation succeeds. */
2349 *predictor = PRED_COMPARE_AND_SWAP;
2350 return build_one_cst (TREE_TYPE (op0));
2351 }
2352 }
2353 }
2354
2355 if (code != SSA_NAME)
2356 return NULL_TREE;
2357
2358 def = SSA_NAME_DEF_STMT (op0);
2359
2360 /* If we were already here, break the infinite cycle. */
2361 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2362 return NULL;
2363
2364 if (gimple_code (def) == GIMPLE_PHI)
2365 {
2366 /* All the arguments of the PHI node must have the same constant
2367 length. */
2368 int i, n = gimple_phi_num_args (def);
2369 tree val = NULL, new_val;
2370
2371 for (i = 0; i < n; i++)
2372 {
2373 tree arg = PHI_ARG_DEF (def, i);
2374 enum br_predictor predictor2;
2375
2376 /* If this PHI has itself as an argument, we cannot
2377 determine the string length of this argument. However,
2378 if we can find an expected constant value for the other
2379 PHI args then we can still be sure that this is
2380 likely a constant. So be optimistic and just
2381 continue with the next argument. */
2382 if (arg == PHI_RESULT (def))
2383 continue;
2384
2385 HOST_WIDE_INT probability2;
2386 new_val = expr_expected_value (arg, visited, &predictor2,
2387 &probability2);
2388
2389 /* It is difficult to combine value predictors. Simply assume
2390 that later predictor is weaker and take its prediction. */
2391 if (*predictor < predictor2)
2392 {
2393 *predictor = predictor2;
2394 *probability = probability2;
2395 }
2396 if (!new_val)
2397 return NULL;
2398 if (!val)
2399 val = new_val;
2400 else if (!operand_equal_p (val, new_val, false))
2401 return NULL;
2402 }
2403 return val;
2404 }
2405 if (is_gimple_assign (def))
2406 {
2407 if (gimple_assign_lhs (def) != op0)
2408 return NULL;
2409
2410 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2411 gimple_assign_rhs1 (def),
2412 gimple_assign_rhs_code (def),
2413 gimple_assign_rhs2 (def),
2414 visited, predictor, probability);
2415 }
2416
2417 if (is_gimple_call (def))
2418 {
2419 tree decl = gimple_call_fndecl (def);
2420 if (!decl)
2421 {
2422 if (gimple_call_internal_p (def)
2423 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2424 {
2425 gcc_assert (gimple_call_num_args (def) == 3);
2426 tree val = gimple_call_arg (def, 0);
2427 if (TREE_CONSTANT (val))
2428 return val;
2429 tree val2 = gimple_call_arg (def, 2);
2430 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2431 && tree_fits_uhwi_p (val2)
2432 && tree_to_uhwi (val2) < END_PREDICTORS);
2433 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2434 if (*predictor == PRED_BUILTIN_EXPECT)
2435 *probability
2436 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2437 return gimple_call_arg (def, 1);
2438 }
2439 return NULL;
2440 }
2441
2442 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW (decl))
2443 {
2444 if (predictor)
2445 *predictor = PRED_MALLOC_NONNULL;
2446 return boolean_true_node;
2447 }
2448
2449 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2450 switch (DECL_FUNCTION_CODE (decl))
2451 {
2452 case BUILT_IN_EXPECT:
2453 {
2454 tree val;
2455 if (gimple_call_num_args (def) != 2)
2456 return NULL;
2457 val = gimple_call_arg (def, 0);
2458 if (TREE_CONSTANT (val))
2459 return val;
2460 *predictor = PRED_BUILTIN_EXPECT;
2461 *probability
2462 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2463 return gimple_call_arg (def, 1);
2464 }
2465 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2466 {
2467 tree val;
2468 if (gimple_call_num_args (def) != 3)
2469 return NULL;
2470 val = gimple_call_arg (def, 0);
2471 if (TREE_CONSTANT (val))
2472 return val;
2473 /* Compute final probability as:
2474 probability * REG_BR_PROB_BASE. */
2475 tree prob = gimple_call_arg (def, 2);
2476 tree t = TREE_TYPE (prob);
2477 tree base = build_int_cst (integer_type_node,
2478 REG_BR_PROB_BASE);
2479 base = build_real_from_int_cst (t, base);
2480 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2481 MULT_EXPR, t, prob, base);
2482 if (TREE_CODE (r) != REAL_CST)
2483 {
2484 error_at (gimple_location (def),
2485 "probability %qE must be "
2486 "constant floating-point expression", prob);
2487 return NULL;
2488 }
2489 HOST_WIDE_INT probi
2490 = real_to_integer (TREE_REAL_CST_PTR (r));
2491 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2492 {
2493 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2494 *probability = probi;
2495 }
2496 else
2497 error_at (gimple_location (def),
2498 "probability %qE is outside "
2499 "the range [0.0, 1.0]", prob);
2500
2501 return gimple_call_arg (def, 1);
2502 }
2503
2504 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2505 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2506 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2507 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2508 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2509 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2510 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2511 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2512 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2513 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2514 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2515 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2516 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2517 /* Assume that any given atomic operation has low contention,
2518 and thus the compare-and-swap operation succeeds. */
2519 *predictor = PRED_COMPARE_AND_SWAP;
2520 return boolean_true_node;
2521 case BUILT_IN_REALLOC:
2522 if (predictor)
2523 *predictor = PRED_MALLOC_NONNULL;
2524 return boolean_true_node;
2525 default:
2526 break;
2527 }
2528 }
2529
2530 return NULL;
2531 }
2532
2533 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2534 {
2535 tree res;
2536 enum br_predictor predictor2;
2537 HOST_WIDE_INT probability2;
2538 op0 = expr_expected_value (op0, visited, predictor, probability);
2539 if (!op0)
2540 return NULL;
2541 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2542 if (!op1)
2543 return NULL;
2544 res = fold_build2 (code, type, op0, op1);
2545 if (TREE_CODE (res) == INTEGER_CST
2546 && TREE_CODE (op0) == INTEGER_CST
2547 && TREE_CODE (op1) == INTEGER_CST)
2548 {
2549 /* Combine binary predictions. */
2550 if (*probability != -1 || probability2 != -1)
2551 {
2552 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2553 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2554 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2555 }
2556
2557 if (*predictor < predictor2)
2558 *predictor = predictor2;
2559
2560 return res;
2561 }
2562 return NULL;
2563 }
2564 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2565 {
2566 tree res;
2567 op0 = expr_expected_value (op0, visited, predictor, probability);
2568 if (!op0)
2569 return NULL;
2570 res = fold_build1 (code, type, op0);
2571 if (TREE_CONSTANT (res))
2572 return res;
2573 return NULL;
2574 }
2575 return NULL;
2576 }
2577
2578 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2579 The function is used by builtin_expect branch predictor so the evidence
2580 must come from this construct and additional possible constant folding.
2581
2582 We may want to implement more involved value guess (such as value range
2583 propagation based prediction), but such tricks shall go to new
2584 implementation. */
2585
2586 static tree
2587 expr_expected_value (tree expr, bitmap visited,
2588 enum br_predictor *predictor,
2589 HOST_WIDE_INT *probability)
2590 {
2591 enum tree_code code;
2592 tree op0, op1;
2593
2594 if (TREE_CONSTANT (expr))
2595 {
2596 *predictor = PRED_UNCONDITIONAL;
2597 *probability = -1;
2598 return expr;
2599 }
2600
2601 extract_ops_from_tree (expr, &code, &op0, &op1);
2602 return expr_expected_value_1 (TREE_TYPE (expr),
2603 op0, code, op1, visited, predictor,
2604 probability);
2605 }
2606 \f
2607
2608 /* Return probability of a PREDICTOR. If the predictor has variable
2609 probability return passed PROBABILITY. */
2610
2611 static HOST_WIDE_INT
2612 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2613 {
2614 switch (predictor)
2615 {
2616 case PRED_BUILTIN_EXPECT:
2617 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2618 gcc_assert (probability != -1);
2619 return probability;
2620 default:
2621 gcc_assert (probability == -1);
2622 return predictor_info[(int) predictor].hitrate;
2623 }
2624 }
2625
2626 /* Predict using opcode of the last statement in basic block. */
2627 static void
2628 tree_predict_by_opcode (basic_block bb)
2629 {
2630 gimple *stmt = last_stmt (bb);
2631 edge then_edge;
2632 tree op0, op1;
2633 tree type;
2634 tree val;
2635 enum tree_code cmp;
2636 edge_iterator ei;
2637 enum br_predictor predictor;
2638 HOST_WIDE_INT probability;
2639
2640 if (!stmt)
2641 return;
2642
2643 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2644 {
2645 tree index = gimple_switch_index (sw);
2646 tree val = expr_expected_value (index, auto_bitmap (),
2647 &predictor, &probability);
2648 if (val && TREE_CODE (val) == INTEGER_CST)
2649 {
2650 edge e = find_taken_edge_switch_expr (sw, val);
2651 if (predictor == PRED_BUILTIN_EXPECT)
2652 {
2653 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2654 gcc_assert (percent >= 0 && percent <= 100);
2655 predict_edge (e, PRED_BUILTIN_EXPECT,
2656 HITRATE (percent));
2657 }
2658 else
2659 predict_edge_def (e, predictor, TAKEN);
2660 }
2661 }
2662
2663 if (gimple_code (stmt) != GIMPLE_COND)
2664 return;
2665 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2666 if (then_edge->flags & EDGE_TRUE_VALUE)
2667 break;
2668 op0 = gimple_cond_lhs (stmt);
2669 op1 = gimple_cond_rhs (stmt);
2670 cmp = gimple_cond_code (stmt);
2671 type = TREE_TYPE (op0);
2672 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2673 &predictor, &probability);
2674 if (val && TREE_CODE (val) == INTEGER_CST)
2675 {
2676 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2677 if (integer_zerop (val))
2678 prob = REG_BR_PROB_BASE - prob;
2679 predict_edge (then_edge, predictor, prob);
2680 }
2681 /* Try "pointer heuristic."
2682 A comparison ptr == 0 is predicted as false.
2683 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2684 if (POINTER_TYPE_P (type))
2685 {
2686 if (cmp == EQ_EXPR)
2687 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2688 else if (cmp == NE_EXPR)
2689 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2690 }
2691 else
2692
2693 /* Try "opcode heuristic."
2694 EQ tests are usually false and NE tests are usually true. Also,
2695 most quantities are positive, so we can make the appropriate guesses
2696 about signed comparisons against zero. */
2697 switch (cmp)
2698 {
2699 case EQ_EXPR:
2700 case UNEQ_EXPR:
2701 /* Floating point comparisons appears to behave in a very
2702 unpredictable way because of special role of = tests in
2703 FP code. */
2704 if (FLOAT_TYPE_P (type))
2705 ;
2706 /* Comparisons with 0 are often used for booleans and there is
2707 nothing useful to predict about them. */
2708 else if (integer_zerop (op0) || integer_zerop (op1))
2709 ;
2710 else
2711 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2712 break;
2713
2714 case NE_EXPR:
2715 case LTGT_EXPR:
2716 /* Floating point comparisons appears to behave in a very
2717 unpredictable way because of special role of = tests in
2718 FP code. */
2719 if (FLOAT_TYPE_P (type))
2720 ;
2721 /* Comparisons with 0 are often used for booleans and there is
2722 nothing useful to predict about them. */
2723 else if (integer_zerop (op0)
2724 || integer_zerop (op1))
2725 ;
2726 else
2727 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2728 break;
2729
2730 case ORDERED_EXPR:
2731 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2732 break;
2733
2734 case UNORDERED_EXPR:
2735 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2736 break;
2737
2738 case LE_EXPR:
2739 case LT_EXPR:
2740 if (integer_zerop (op1)
2741 || integer_onep (op1)
2742 || integer_all_onesp (op1)
2743 || real_zerop (op1)
2744 || real_onep (op1)
2745 || real_minus_onep (op1))
2746 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2747 break;
2748
2749 case GE_EXPR:
2750 case GT_EXPR:
2751 if (integer_zerop (op1)
2752 || integer_onep (op1)
2753 || integer_all_onesp (op1)
2754 || real_zerop (op1)
2755 || real_onep (op1)
2756 || real_minus_onep (op1))
2757 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2758 break;
2759
2760 default:
2761 break;
2762 }
2763 }
2764
2765 /* Returns TRUE if the STMT is exit(0) like statement. */
2766
2767 static bool
2768 is_exit_with_zero_arg (const gimple *stmt)
2769 {
2770 /* This is not exit, _exit or _Exit. */
2771 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2772 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2773 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2774 return false;
2775
2776 /* Argument is an interger zero. */
2777 return integer_zerop (gimple_call_arg (stmt, 0));
2778 }
2779
2780 /* Try to guess whether the value of return means error code. */
2781
2782 static enum br_predictor
2783 return_prediction (tree val, enum prediction *prediction)
2784 {
2785 /* VOID. */
2786 if (!val)
2787 return PRED_NO_PREDICTION;
2788 /* Different heuristics for pointers and scalars. */
2789 if (POINTER_TYPE_P (TREE_TYPE (val)))
2790 {
2791 /* NULL is usually not returned. */
2792 if (integer_zerop (val))
2793 {
2794 *prediction = NOT_TAKEN;
2795 return PRED_NULL_RETURN;
2796 }
2797 }
2798 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2799 {
2800 /* Negative return values are often used to indicate
2801 errors. */
2802 if (TREE_CODE (val) == INTEGER_CST
2803 && tree_int_cst_sgn (val) < 0)
2804 {
2805 *prediction = NOT_TAKEN;
2806 return PRED_NEGATIVE_RETURN;
2807 }
2808 /* Constant return values seems to be commonly taken.
2809 Zero/one often represent booleans so exclude them from the
2810 heuristics. */
2811 if (TREE_CONSTANT (val)
2812 && (!integer_zerop (val) && !integer_onep (val)))
2813 {
2814 *prediction = NOT_TAKEN;
2815 return PRED_CONST_RETURN;
2816 }
2817 }
2818 return PRED_NO_PREDICTION;
2819 }
2820
2821 /* Return zero if phi result could have values other than -1, 0 or 1,
2822 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2823 values are used or likely. */
2824
2825 static int
2826 zero_one_minusone (gphi *phi, int limit)
2827 {
2828 int phi_num_args = gimple_phi_num_args (phi);
2829 int ret = 0;
2830 for (int i = 0; i < phi_num_args; i++)
2831 {
2832 tree t = PHI_ARG_DEF (phi, i);
2833 if (TREE_CODE (t) != INTEGER_CST)
2834 continue;
2835 wide_int w = wi::to_wide (t);
2836 if (w == -1)
2837 ret |= 1;
2838 else if (w == 0)
2839 ret |= 2;
2840 else if (w == 1)
2841 ret |= 4;
2842 else
2843 return 0;
2844 }
2845 for (int i = 0; i < phi_num_args; i++)
2846 {
2847 tree t = PHI_ARG_DEF (phi, i);
2848 if (TREE_CODE (t) == INTEGER_CST)
2849 continue;
2850 if (TREE_CODE (t) != SSA_NAME)
2851 return 0;
2852 gimple *g = SSA_NAME_DEF_STMT (t);
2853 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2854 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2855 {
2856 ret |= r;
2857 continue;
2858 }
2859 if (!is_gimple_assign (g))
2860 return 0;
2861 if (gimple_assign_cast_p (g))
2862 {
2863 tree rhs1 = gimple_assign_rhs1 (g);
2864 if (TREE_CODE (rhs1) != SSA_NAME
2865 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2866 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2867 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2868 return 0;
2869 ret |= (2 | 4);
2870 continue;
2871 }
2872 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2873 return 0;
2874 ret |= (2 | 4);
2875 }
2876 return ret;
2877 }
2878
2879 /* Find the basic block with return expression and look up for possible
2880 return value trying to apply RETURN_PREDICTION heuristics. */
2881 static void
2882 apply_return_prediction (void)
2883 {
2884 greturn *return_stmt = NULL;
2885 tree return_val;
2886 edge e;
2887 gphi *phi;
2888 int phi_num_args, i;
2889 enum br_predictor pred;
2890 enum prediction direction;
2891 edge_iterator ei;
2892
2893 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2894 {
2895 gimple *last = last_stmt (e->src);
2896 if (last
2897 && gimple_code (last) == GIMPLE_RETURN)
2898 {
2899 return_stmt = as_a <greturn *> (last);
2900 break;
2901 }
2902 }
2903 if (!e)
2904 return;
2905 return_val = gimple_return_retval (return_stmt);
2906 if (!return_val)
2907 return;
2908 if (TREE_CODE (return_val) != SSA_NAME
2909 || !SSA_NAME_DEF_STMT (return_val)
2910 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2911 return;
2912 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2913 phi_num_args = gimple_phi_num_args (phi);
2914 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2915
2916 /* Avoid the case where the function returns -1, 0 and 1 values and
2917 nothing else. Those could be qsort etc. comparison functions
2918 where the negative return isn't less probable than positive.
2919 For this require that the function returns at least -1 or 1
2920 or -1 and a boolean value or comparison result, so that functions
2921 returning just -1 and 0 are treated as if -1 represents error value. */
2922 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2923 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2924 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2925 if (int r = zero_one_minusone (phi, 3))
2926 if ((r & (1 | 4)) == (1 | 4))
2927 return;
2928
2929 /* Avoid the degenerate case where all return values form the function
2930 belongs to same category (ie they are all positive constants)
2931 so we can hardly say something about them. */
2932 for (i = 1; i < phi_num_args; i++)
2933 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2934 break;
2935 if (i != phi_num_args)
2936 for (i = 0; i < phi_num_args; i++)
2937 {
2938 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2939 if (pred != PRED_NO_PREDICTION)
2940 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2941 direction);
2942 }
2943 }
2944
2945 /* Look for basic block that contains unlikely to happen events
2946 (such as noreturn calls) and mark all paths leading to execution
2947 of this basic blocks as unlikely. */
2948
2949 static void
2950 tree_bb_level_predictions (void)
2951 {
2952 basic_block bb;
2953 bool has_return_edges = false;
2954 edge e;
2955 edge_iterator ei;
2956
2957 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2958 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
2959 {
2960 has_return_edges = true;
2961 break;
2962 }
2963
2964 apply_return_prediction ();
2965
2966 FOR_EACH_BB_FN (bb, cfun)
2967 {
2968 gimple_stmt_iterator gsi;
2969
2970 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2971 {
2972 gimple *stmt = gsi_stmt (gsi);
2973 tree decl;
2974
2975 if (is_gimple_call (stmt))
2976 {
2977 if (gimple_call_noreturn_p (stmt)
2978 && has_return_edges
2979 && !is_exit_with_zero_arg (stmt))
2980 predict_paths_leading_to (bb, PRED_NORETURN,
2981 NOT_TAKEN);
2982 decl = gimple_call_fndecl (stmt);
2983 if (decl
2984 && lookup_attribute ("cold",
2985 DECL_ATTRIBUTES (decl)))
2986 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2987 NOT_TAKEN);
2988 if (decl && recursive_call_p (current_function_decl, decl))
2989 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
2990 NOT_TAKEN);
2991 }
2992 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2993 {
2994 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2995 gimple_predict_outcome (stmt));
2996 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2997 hints to callers. */
2998 }
2999 }
3000 }
3001 }
3002
3003 /* Callback for hash_map::traverse, asserts that the pointer map is
3004 empty. */
3005
3006 bool
3007 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3008 void *)
3009 {
3010 gcc_assert (!value);
3011 return false;
3012 }
3013
3014 /* Predict branch probabilities and estimate profile for basic block BB.
3015 When LOCAL_ONLY is set do not use any global properties of CFG. */
3016
3017 static void
3018 tree_estimate_probability_bb (basic_block bb, bool local_only)
3019 {
3020 edge e;
3021 edge_iterator ei;
3022
3023 FOR_EACH_EDGE (e, ei, bb->succs)
3024 {
3025 /* Look for block we are guarding (ie we dominate it,
3026 but it doesn't postdominate us). */
3027 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3028 && !local_only
3029 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3030 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3031 {
3032 gimple_stmt_iterator bi;
3033
3034 /* The call heuristic claims that a guarded function call
3035 is improbable. This is because such calls are often used
3036 to signal exceptional situations such as printing error
3037 messages. */
3038 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3039 gsi_next (&bi))
3040 {
3041 gimple *stmt = gsi_stmt (bi);
3042 if (is_gimple_call (stmt)
3043 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3044 /* Constant and pure calls are hardly used to signalize
3045 something exceptional. */
3046 && gimple_has_side_effects (stmt))
3047 {
3048 if (gimple_call_fndecl (stmt))
3049 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3050 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3051 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3052 else
3053 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3054 break;
3055 }
3056 }
3057 }
3058 }
3059 tree_predict_by_opcode (bb);
3060 }
3061
3062 /* Predict branch probabilities and estimate profile of the tree CFG.
3063 This function can be called from the loop optimizers to recompute
3064 the profile information.
3065 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3066
3067 void
3068 tree_estimate_probability (bool dry_run)
3069 {
3070 basic_block bb;
3071
3072 add_noreturn_fake_exit_edges ();
3073 connect_infinite_loops_to_exit ();
3074 /* We use loop_niter_by_eval, which requires that the loops have
3075 preheaders. */
3076 create_preheaders (CP_SIMPLE_PREHEADERS);
3077 calculate_dominance_info (CDI_POST_DOMINATORS);
3078 /* Decide which edges are known to be unlikely. This improves later
3079 branch prediction. */
3080 determine_unlikely_bbs ();
3081
3082 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3083 tree_bb_level_predictions ();
3084 record_loop_exits ();
3085
3086 if (number_of_loops (cfun) > 1)
3087 predict_loops ();
3088
3089 FOR_EACH_BB_FN (bb, cfun)
3090 tree_estimate_probability_bb (bb, false);
3091
3092 FOR_EACH_BB_FN (bb, cfun)
3093 combine_predictions_for_bb (bb, dry_run);
3094
3095 if (flag_checking)
3096 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3097
3098 delete bb_predictions;
3099 bb_predictions = NULL;
3100
3101 if (!dry_run)
3102 estimate_bb_frequencies (false);
3103 free_dominance_info (CDI_POST_DOMINATORS);
3104 remove_fake_exit_edges ();
3105 }
3106
3107 /* Set edge->probability for each successor edge of BB. */
3108 void
3109 tree_guess_outgoing_edge_probabilities (basic_block bb)
3110 {
3111 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3112 tree_estimate_probability_bb (bb, true);
3113 combine_predictions_for_bb (bb, false);
3114 if (flag_checking)
3115 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3116 delete bb_predictions;
3117 bb_predictions = NULL;
3118 }
3119 \f
3120 /* Predict edges to successors of CUR whose sources are not postdominated by
3121 BB by PRED and recurse to all postdominators. */
3122
3123 static void
3124 predict_paths_for_bb (basic_block cur, basic_block bb,
3125 enum br_predictor pred,
3126 enum prediction taken,
3127 bitmap visited, struct loop *in_loop = NULL)
3128 {
3129 edge e;
3130 edge_iterator ei;
3131 basic_block son;
3132
3133 /* If we exited the loop or CUR is unconditional in the loop, there is
3134 nothing to do. */
3135 if (in_loop
3136 && (!flow_bb_inside_loop_p (in_loop, cur)
3137 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3138 return;
3139
3140 /* We are looking for all edges forming edge cut induced by
3141 set of all blocks postdominated by BB. */
3142 FOR_EACH_EDGE (e, ei, cur->preds)
3143 if (e->src->index >= NUM_FIXED_BLOCKS
3144 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3145 {
3146 edge e2;
3147 edge_iterator ei2;
3148 bool found = false;
3149
3150 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3151 if (unlikely_executed_edge_p (e))
3152 continue;
3153 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3154
3155 /* See if there is an edge from e->src that is not abnormal
3156 and does not lead to BB and does not exit the loop. */
3157 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3158 if (e2 != e
3159 && !unlikely_executed_edge_p (e2)
3160 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3161 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3162 {
3163 found = true;
3164 break;
3165 }
3166
3167 /* If there is non-abnormal path leaving e->src, predict edge
3168 using predictor. Otherwise we need to look for paths
3169 leading to e->src.
3170
3171 The second may lead to infinite loop in the case we are predicitng
3172 regions that are only reachable by abnormal edges. We simply
3173 prevent visiting given BB twice. */
3174 if (found)
3175 {
3176 if (!edge_predicted_by_p (e, pred, taken))
3177 predict_edge_def (e, pred, taken);
3178 }
3179 else if (bitmap_set_bit (visited, e->src->index))
3180 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3181 }
3182 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3183 son;
3184 son = next_dom_son (CDI_POST_DOMINATORS, son))
3185 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3186 }
3187
3188 /* Sets branch probabilities according to PREDiction and
3189 FLAGS. */
3190
3191 static void
3192 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3193 enum prediction taken, struct loop *in_loop)
3194 {
3195 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3196 }
3197
3198 /* Like predict_paths_leading_to but take edge instead of basic block. */
3199
3200 static void
3201 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3202 enum prediction taken, struct loop *in_loop)
3203 {
3204 bool has_nonloop_edge = false;
3205 edge_iterator ei;
3206 edge e2;
3207
3208 basic_block bb = e->src;
3209 FOR_EACH_EDGE (e2, ei, bb->succs)
3210 if (e2->dest != e->src && e2->dest != e->dest
3211 && !unlikely_executed_edge_p (e)
3212 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3213 {
3214 has_nonloop_edge = true;
3215 break;
3216 }
3217 if (!has_nonloop_edge)
3218 {
3219 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3220 }
3221 else
3222 predict_edge_def (e, pred, taken);
3223 }
3224 \f
3225 /* This is used to carry information about basic blocks. It is
3226 attached to the AUX field of the standard CFG block. */
3227
3228 struct block_info
3229 {
3230 /* Estimated frequency of execution of basic_block. */
3231 sreal frequency;
3232
3233 /* To keep queue of basic blocks to process. */
3234 basic_block next;
3235
3236 /* Number of predecessors we need to visit first. */
3237 int npredecessors;
3238 };
3239
3240 /* Similar information for edges. */
3241 struct edge_prob_info
3242 {
3243 /* In case edge is a loopback edge, the probability edge will be reached
3244 in case header is. Estimated number of iterations of the loop can be
3245 then computed as 1 / (1 - back_edge_prob). */
3246 sreal back_edge_prob;
3247 /* True if the edge is a loopback edge in the natural loop. */
3248 unsigned int back_edge:1;
3249 };
3250
3251 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3252 #undef EDGE_INFO
3253 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3254
3255 /* Helper function for estimate_bb_frequencies.
3256 Propagate the frequencies in blocks marked in
3257 TOVISIT, starting in HEAD. */
3258
3259 static void
3260 propagate_freq (basic_block head, bitmap tovisit)
3261 {
3262 basic_block bb;
3263 basic_block last;
3264 unsigned i;
3265 edge e;
3266 basic_block nextbb;
3267 bitmap_iterator bi;
3268
3269 /* For each basic block we need to visit count number of his predecessors
3270 we need to visit first. */
3271 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3272 {
3273 edge_iterator ei;
3274 int count = 0;
3275
3276 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3277
3278 FOR_EACH_EDGE (e, ei, bb->preds)
3279 {
3280 bool visit = bitmap_bit_p (tovisit, e->src->index);
3281
3282 if (visit && !(e->flags & EDGE_DFS_BACK))
3283 count++;
3284 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3285 fprintf (dump_file,
3286 "Irreducible region hit, ignoring edge to %i->%i\n",
3287 e->src->index, bb->index);
3288 }
3289 BLOCK_INFO (bb)->npredecessors = count;
3290 /* When function never returns, we will never process exit block. */
3291 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3292 bb->count = profile_count::zero ();
3293 }
3294
3295 BLOCK_INFO (head)->frequency = 1;
3296 last = head;
3297 for (bb = head; bb; bb = nextbb)
3298 {
3299 edge_iterator ei;
3300 sreal cyclic_probability = 0;
3301 sreal frequency = 0;
3302
3303 nextbb = BLOCK_INFO (bb)->next;
3304 BLOCK_INFO (bb)->next = NULL;
3305
3306 /* Compute frequency of basic block. */
3307 if (bb != head)
3308 {
3309 if (flag_checking)
3310 FOR_EACH_EDGE (e, ei, bb->preds)
3311 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3312 || (e->flags & EDGE_DFS_BACK));
3313
3314 FOR_EACH_EDGE (e, ei, bb->preds)
3315 if (EDGE_INFO (e)->back_edge)
3316 {
3317 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3318 }
3319 else if (!(e->flags & EDGE_DFS_BACK))
3320 {
3321 /* frequency += (e->probability
3322 * BLOCK_INFO (e->src)->frequency /
3323 REG_BR_PROB_BASE); */
3324
3325 /* FIXME: Graphite is producing edges with no profile. Once
3326 this is fixed, drop this. */
3327 sreal tmp = e->probability.initialized_p () ?
3328 e->probability.to_reg_br_prob_base () : 0;
3329 tmp *= BLOCK_INFO (e->src)->frequency;
3330 tmp *= real_inv_br_prob_base;
3331 frequency += tmp;
3332 }
3333
3334 if (cyclic_probability == 0)
3335 {
3336 BLOCK_INFO (bb)->frequency = frequency;
3337 }
3338 else
3339 {
3340 if (cyclic_probability > real_almost_one)
3341 cyclic_probability = real_almost_one;
3342
3343 /* BLOCK_INFO (bb)->frequency = frequency
3344 / (1 - cyclic_probability) */
3345
3346 cyclic_probability = sreal (1) - cyclic_probability;
3347 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
3348 }
3349 }
3350
3351 bitmap_clear_bit (tovisit, bb->index);
3352
3353 e = find_edge (bb, head);
3354 if (e)
3355 {
3356 /* EDGE_INFO (e)->back_edge_prob
3357 = ((e->probability * BLOCK_INFO (bb)->frequency)
3358 / REG_BR_PROB_BASE); */
3359
3360 /* FIXME: Graphite is producing edges with no profile. Once
3361 this is fixed, drop this. */
3362 sreal tmp = e->probability.initialized_p () ?
3363 e->probability.to_reg_br_prob_base () : 0;
3364 tmp *= BLOCK_INFO (bb)->frequency;
3365 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
3366 }
3367
3368 /* Propagate to successor blocks. */
3369 FOR_EACH_EDGE (e, ei, bb->succs)
3370 if (!(e->flags & EDGE_DFS_BACK)
3371 && BLOCK_INFO (e->dest)->npredecessors)
3372 {
3373 BLOCK_INFO (e->dest)->npredecessors--;
3374 if (!BLOCK_INFO (e->dest)->npredecessors)
3375 {
3376 if (!nextbb)
3377 nextbb = e->dest;
3378 else
3379 BLOCK_INFO (last)->next = e->dest;
3380
3381 last = e->dest;
3382 }
3383 }
3384 }
3385 }
3386
3387 /* Estimate frequencies in loops at same nest level. */
3388
3389 static void
3390 estimate_loops_at_level (struct loop *first_loop)
3391 {
3392 struct loop *loop;
3393
3394 for (loop = first_loop; loop; loop = loop->next)
3395 {
3396 edge e;
3397 basic_block *bbs;
3398 unsigned i;
3399 auto_bitmap tovisit;
3400
3401 estimate_loops_at_level (loop->inner);
3402
3403 /* Find current loop back edge and mark it. */
3404 e = loop_latch_edge (loop);
3405 EDGE_INFO (e)->back_edge = 1;
3406
3407 bbs = get_loop_body (loop);
3408 for (i = 0; i < loop->num_nodes; i++)
3409 bitmap_set_bit (tovisit, bbs[i]->index);
3410 free (bbs);
3411 propagate_freq (loop->header, tovisit);
3412 }
3413 }
3414
3415 /* Propagates frequencies through structure of loops. */
3416
3417 static void
3418 estimate_loops (void)
3419 {
3420 auto_bitmap tovisit;
3421 basic_block bb;
3422
3423 /* Start by estimating the frequencies in the loops. */
3424 if (number_of_loops (cfun) > 1)
3425 estimate_loops_at_level (current_loops->tree_root->inner);
3426
3427 /* Now propagate the frequencies through all the blocks. */
3428 FOR_ALL_BB_FN (bb, cfun)
3429 {
3430 bitmap_set_bit (tovisit, bb->index);
3431 }
3432 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
3433 }
3434
3435 /* Drop the profile for NODE to guessed, and update its frequency based on
3436 whether it is expected to be hot given the CALL_COUNT. */
3437
3438 static void
3439 drop_profile (struct cgraph_node *node, profile_count call_count)
3440 {
3441 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3442 /* In the case where this was called by another function with a
3443 dropped profile, call_count will be 0. Since there are no
3444 non-zero call counts to this function, we don't know for sure
3445 whether it is hot, and therefore it will be marked normal below. */
3446 bool hot = maybe_hot_count_p (NULL, call_count);
3447
3448 if (dump_file)
3449 fprintf (dump_file,
3450 "Dropping 0 profile for %s. %s based on calls.\n",
3451 node->dump_name (),
3452 hot ? "Function is hot" : "Function is normal");
3453 /* We only expect to miss profiles for functions that are reached
3454 via non-zero call edges in cases where the function may have
3455 been linked from another module or library (COMDATs and extern
3456 templates). See the comments below for handle_missing_profiles.
3457 Also, only warn in cases where the missing counts exceed the
3458 number of training runs. In certain cases with an execv followed
3459 by a no-return call the profile for the no-return call is not
3460 dumped and there can be a mismatch. */
3461 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3462 && call_count > profile_info->runs)
3463 {
3464 if (flag_profile_correction)
3465 {
3466 if (dump_file)
3467 fprintf (dump_file,
3468 "Missing counts for called function %s\n",
3469 node->dump_name ());
3470 }
3471 else
3472 warning (0, "Missing counts for called function %s",
3473 node->dump_name ());
3474 }
3475
3476 basic_block bb;
3477 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3478 {
3479 bool clear_zeros
3480 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3481 FOR_ALL_BB_FN (bb, fn)
3482 if (clear_zeros || !(bb->count == profile_count::zero ()))
3483 bb->count = bb->count.guessed_local ();
3484 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3485 }
3486 else
3487 {
3488 FOR_ALL_BB_FN (bb, fn)
3489 bb->count = profile_count::uninitialized ();
3490 fn->cfg->count_max = profile_count::uninitialized ();
3491 }
3492
3493 struct cgraph_edge *e;
3494 for (e = node->callees; e; e = e->next_callee)
3495 e->count = gimple_bb (e->call_stmt)->count;
3496 for (e = node->indirect_calls; e; e = e->next_callee)
3497 e->count = gimple_bb (e->call_stmt)->count;
3498 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3499
3500 profile_status_for_fn (fn)
3501 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3502 node->frequency
3503 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3504 }
3505
3506 /* In the case of COMDAT routines, multiple object files will contain the same
3507 function and the linker will select one for the binary. In that case
3508 all the other copies from the profile instrument binary will be missing
3509 profile counts. Look for cases where this happened, due to non-zero
3510 call counts going to 0-count functions, and drop the profile to guessed
3511 so that we can use the estimated probabilities and avoid optimizing only
3512 for size.
3513
3514 The other case where the profile may be missing is when the routine
3515 is not going to be emitted to the object file, e.g. for "extern template"
3516 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3517 all other cases of non-zero calls to 0-count functions. */
3518
3519 void
3520 handle_missing_profiles (void)
3521 {
3522 struct cgraph_node *node;
3523 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
3524 auto_vec<struct cgraph_node *, 64> worklist;
3525
3526 /* See if 0 count function has non-0 count callers. In this case we
3527 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3528 FOR_EACH_DEFINED_FUNCTION (node)
3529 {
3530 struct cgraph_edge *e;
3531 profile_count call_count = profile_count::zero ();
3532 gcov_type max_tp_first_run = 0;
3533 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3534
3535 if (node->count.ipa ().nonzero_p ())
3536 continue;
3537 for (e = node->callers; e; e = e->next_caller)
3538 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3539 {
3540 call_count = call_count + e->count.ipa ();
3541
3542 if (e->caller->tp_first_run > max_tp_first_run)
3543 max_tp_first_run = e->caller->tp_first_run;
3544 }
3545
3546 /* If time profile is missing, let assign the maximum that comes from
3547 caller functions. */
3548 if (!node->tp_first_run && max_tp_first_run)
3549 node->tp_first_run = max_tp_first_run + 1;
3550
3551 if (call_count > 0
3552 && fn && fn->cfg
3553 && (call_count.apply_scale (unlikely_count_fraction, 1)
3554 >= profile_info->runs))
3555 {
3556 drop_profile (node, call_count);
3557 worklist.safe_push (node);
3558 }
3559 }
3560
3561 /* Propagate the profile dropping to other 0-count COMDATs that are
3562 potentially called by COMDATs we already dropped the profile on. */
3563 while (worklist.length () > 0)
3564 {
3565 struct cgraph_edge *e;
3566
3567 node = worklist.pop ();
3568 for (e = node->callees; e; e = e->next_caller)
3569 {
3570 struct cgraph_node *callee = e->callee;
3571 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3572
3573 if (!(e->count.ipa () == profile_count::zero ())
3574 && callee->count.ipa ().nonzero_p ())
3575 continue;
3576 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3577 && fn && fn->cfg
3578 && profile_status_for_fn (fn) == PROFILE_READ)
3579 {
3580 drop_profile (node, profile_count::zero ());
3581 worklist.safe_push (callee);
3582 }
3583 }
3584 }
3585 }
3586
3587 /* Convert counts measured by profile driven feedback to frequencies.
3588 Return nonzero iff there was any nonzero execution count. */
3589
3590 bool
3591 update_max_bb_count (void)
3592 {
3593 profile_count true_count_max = profile_count::uninitialized ();
3594 basic_block bb;
3595
3596 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3597 true_count_max = true_count_max.max (bb->count);
3598
3599 cfun->cfg->count_max = true_count_max;
3600
3601 return true_count_max.ipa ().nonzero_p ();
3602 }
3603
3604 /* Return true if function is likely to be expensive, so there is no point to
3605 optimize performance of prologue, epilogue or do inlining at the expense
3606 of code size growth. THRESHOLD is the limit of number of instructions
3607 function can execute at average to be still considered not expensive. */
3608
3609 bool
3610 expensive_function_p (int threshold)
3611 {
3612 basic_block bb;
3613
3614 /* If profile was scaled in a way entry block has count 0, then the function
3615 is deifnitly taking a lot of time. */
3616 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3617 return true;
3618
3619 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3620 (cfun)->count.apply_scale (threshold, 1);
3621 profile_count sum = profile_count::zero ();
3622 FOR_EACH_BB_FN (bb, cfun)
3623 {
3624 rtx_insn *insn;
3625
3626 if (!bb->count.initialized_p ())
3627 {
3628 if (dump_file)
3629 fprintf (dump_file, "Function is considered expensive because"
3630 " count of bb %i is not initialized\n", bb->index);
3631 return true;
3632 }
3633
3634 FOR_BB_INSNS (bb, insn)
3635 if (active_insn_p (insn))
3636 {
3637 sum += bb->count;
3638 if (sum > limit)
3639 return true;
3640 }
3641 }
3642
3643 return false;
3644 }
3645
3646 /* All basic blocks that are reachable only from unlikely basic blocks are
3647 unlikely. */
3648
3649 void
3650 propagate_unlikely_bbs_forward (void)
3651 {
3652 auto_vec<basic_block, 64> worklist;
3653 basic_block bb;
3654 edge_iterator ei;
3655 edge e;
3656
3657 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3658 {
3659 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3660 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3661
3662 while (worklist.length () > 0)
3663 {
3664 bb = worklist.pop ();
3665 FOR_EACH_EDGE (e, ei, bb->succs)
3666 if (!(e->count () == profile_count::zero ())
3667 && !(e->dest->count == profile_count::zero ())
3668 && !e->dest->aux)
3669 {
3670 e->dest->aux = (void *)(size_t) 1;
3671 worklist.safe_push (e->dest);
3672 }
3673 }
3674 }
3675
3676 FOR_ALL_BB_FN (bb, cfun)
3677 {
3678 if (!bb->aux)
3679 {
3680 if (!(bb->count == profile_count::zero ())
3681 && (dump_file && (dump_flags & TDF_DETAILS)))
3682 fprintf (dump_file,
3683 "Basic block %i is marked unlikely by forward prop\n",
3684 bb->index);
3685 bb->count = profile_count::zero ();
3686 }
3687 else
3688 bb->aux = NULL;
3689 }
3690 }
3691
3692 /* Determine basic blocks/edges that are known to be unlikely executed and set
3693 their counters to zero.
3694 This is done with first identifying obviously unlikely BBs/edges and then
3695 propagating in both directions. */
3696
3697 static void
3698 determine_unlikely_bbs ()
3699 {
3700 basic_block bb;
3701 auto_vec<basic_block, 64> worklist;
3702 edge_iterator ei;
3703 edge e;
3704
3705 FOR_EACH_BB_FN (bb, cfun)
3706 {
3707 if (!(bb->count == profile_count::zero ())
3708 && unlikely_executed_bb_p (bb))
3709 {
3710 if (dump_file && (dump_flags & TDF_DETAILS))
3711 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3712 bb->index);
3713 bb->count = profile_count::zero ();
3714 }
3715
3716 FOR_EACH_EDGE (e, ei, bb->succs)
3717 if (!(e->probability == profile_probability::never ())
3718 && unlikely_executed_edge_p (e))
3719 {
3720 if (dump_file && (dump_flags & TDF_DETAILS))
3721 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3722 bb->index, e->dest->index);
3723 e->probability = profile_probability::never ();
3724 }
3725
3726 gcc_checking_assert (!bb->aux);
3727 }
3728 propagate_unlikely_bbs_forward ();
3729
3730 auto_vec<int, 64> nsuccs;
3731 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun));
3732 FOR_ALL_BB_FN (bb, cfun)
3733 if (!(bb->count == profile_count::zero ())
3734 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3735 {
3736 nsuccs[bb->index] = 0;
3737 FOR_EACH_EDGE (e, ei, bb->succs)
3738 if (!(e->probability == profile_probability::never ())
3739 && !(e->dest->count == profile_count::zero ()))
3740 nsuccs[bb->index]++;
3741 if (!nsuccs[bb->index])
3742 worklist.safe_push (bb);
3743 }
3744 while (worklist.length () > 0)
3745 {
3746 bb = worklist.pop ();
3747 if (bb->count == profile_count::zero ())
3748 continue;
3749 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3750 {
3751 bool found = false;
3752 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3753 !gsi_end_p (gsi); gsi_next (&gsi))
3754 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3755 /* stmt_can_terminate_bb_p special cases noreturns because it
3756 assumes that fake edges are created. We want to know that
3757 noreturn alone does not imply BB to be unlikely. */
3758 || (is_gimple_call (gsi_stmt (gsi))
3759 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3760 {
3761 found = true;
3762 break;
3763 }
3764 if (found)
3765 continue;
3766 }
3767 if (dump_file && (dump_flags & TDF_DETAILS))
3768 fprintf (dump_file,
3769 "Basic block %i is marked unlikely by backward prop\n",
3770 bb->index);
3771 bb->count = profile_count::zero ();
3772 FOR_EACH_EDGE (e, ei, bb->preds)
3773 if (!(e->probability == profile_probability::never ()))
3774 {
3775 if (!(e->src->count == profile_count::zero ()))
3776 {
3777 gcc_checking_assert (nsuccs[e->src->index] > 0);
3778 nsuccs[e->src->index]--;
3779 if (!nsuccs[e->src->index])
3780 worklist.safe_push (e->src);
3781 }
3782 }
3783 }
3784 /* Finally all edges from non-0 regions to 0 are unlikely. */
3785 FOR_ALL_BB_FN (bb, cfun)
3786 {
3787 if (!(bb->count == profile_count::zero ()))
3788 FOR_EACH_EDGE (e, ei, bb->succs)
3789 if (!(e->probability == profile_probability::never ())
3790 && e->dest->count == profile_count::zero ())
3791 {
3792 if (dump_file && (dump_flags & TDF_DETAILS))
3793 fprintf (dump_file, "Edge %i->%i is unlikely because "
3794 "it enters unlikely block\n",
3795 bb->index, e->dest->index);
3796 e->probability = profile_probability::never ();
3797 }
3798
3799 edge other = NULL;
3800
3801 FOR_EACH_EDGE (e, ei, bb->succs)
3802 if (e->probability == profile_probability::never ())
3803 ;
3804 else if (other)
3805 {
3806 other = NULL;
3807 break;
3808 }
3809 else
3810 other = e;
3811 if (other
3812 && !(other->probability == profile_probability::always ()))
3813 {
3814 if (dump_file && (dump_flags & TDF_DETAILS))
3815 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3816 bb->index, other->dest->index);
3817 other->probability = profile_probability::always ();
3818 }
3819 }
3820 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3821 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3822 }
3823
3824 /* Estimate and propagate basic block frequencies using the given branch
3825 probabilities. If FORCE is true, the frequencies are used to estimate
3826 the counts even when there are already non-zero profile counts. */
3827
3828 void
3829 estimate_bb_frequencies (bool force)
3830 {
3831 basic_block bb;
3832 sreal freq_max;
3833
3834 determine_unlikely_bbs ();
3835
3836 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3837 || !update_max_bb_count ())
3838 {
3839 static int real_values_initialized = 0;
3840
3841 if (!real_values_initialized)
3842 {
3843 real_values_initialized = 1;
3844 real_br_prob_base = REG_BR_PROB_BASE;
3845 /* Scaling frequencies up to maximal profile count may result in
3846 frequent overflows especially when inlining loops.
3847 Small scalling results in unnecesary precision loss. Stay in
3848 the half of the (exponential) range. */
3849 real_bb_freq_max = (uint64_t)1 << (profile_count::n_bits / 2);
3850 real_one_half = sreal (1, -1);
3851 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
3852 real_almost_one = sreal (1) - real_inv_br_prob_base;
3853 }
3854
3855 mark_dfs_back_edges ();
3856
3857 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3858 profile_probability::always ();
3859
3860 /* Set up block info for each basic block. */
3861 alloc_aux_for_blocks (sizeof (block_info));
3862 alloc_aux_for_edges (sizeof (edge_prob_info));
3863 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3864 {
3865 edge e;
3866 edge_iterator ei;
3867
3868 FOR_EACH_EDGE (e, ei, bb->succs)
3869 {
3870 /* FIXME: Graphite is producing edges with no profile. Once
3871 this is fixed, drop this. */
3872 if (e->probability.initialized_p ())
3873 EDGE_INFO (e)->back_edge_prob
3874 = e->probability.to_reg_br_prob_base ();
3875 else
3876 EDGE_INFO (e)->back_edge_prob = REG_BR_PROB_BASE / 2;
3877 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
3878 }
3879 }
3880
3881 /* First compute frequencies locally for each loop from innermost
3882 to outermost to examine frequencies for back edges. */
3883 estimate_loops ();
3884
3885 freq_max = 0;
3886 FOR_EACH_BB_FN (bb, cfun)
3887 if (freq_max < BLOCK_INFO (bb)->frequency)
3888 freq_max = BLOCK_INFO (bb)->frequency;
3889
3890 freq_max = real_bb_freq_max / freq_max;
3891 if (freq_max < 16)
3892 freq_max = 16;
3893 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3894 cfun->cfg->count_max = profile_count::uninitialized ();
3895 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3896 {
3897 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
3898 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3899
3900 /* If we have profile feedback in which this function was never
3901 executed, then preserve this info. */
3902 if (!(bb->count == profile_count::zero ()))
3903 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3904 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3905 }
3906
3907 free_aux_for_blocks ();
3908 free_aux_for_edges ();
3909 }
3910 compute_function_frequency ();
3911 }
3912
3913 /* Decide whether function is hot, cold or unlikely executed. */
3914 void
3915 compute_function_frequency (void)
3916 {
3917 basic_block bb;
3918 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3919
3920 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3921 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3922 node->only_called_at_startup = true;
3923 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3924 node->only_called_at_exit = true;
3925
3926 if (profile_status_for_fn (cfun) != PROFILE_READ)
3927 {
3928 int flags = flags_from_decl_or_type (current_function_decl);
3929 if ((ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ()
3930 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3931 || lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3932 != NULL)
3933 {
3934 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3935 warn_function_cold (current_function_decl);
3936 }
3937 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3938 != NULL)
3939 node->frequency = NODE_FREQUENCY_HOT;
3940 else if (flags & ECF_NORETURN)
3941 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3942 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3943 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3944 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3945 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3946 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3947 return;
3948 }
3949
3950 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3951 warn_function_cold (current_function_decl);
3952 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3953 return;
3954 FOR_EACH_BB_FN (bb, cfun)
3955 {
3956 if (maybe_hot_bb_p (cfun, bb))
3957 {
3958 node->frequency = NODE_FREQUENCY_HOT;
3959 return;
3960 }
3961 if (!probably_never_executed_bb_p (cfun, bb))
3962 node->frequency = NODE_FREQUENCY_NORMAL;
3963 }
3964 }
3965
3966 /* Build PREDICT_EXPR. */
3967 tree
3968 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3969 {
3970 tree t = build1 (PREDICT_EXPR, void_type_node,
3971 build_int_cst (integer_type_node, predictor));
3972 SET_PREDICT_EXPR_OUTCOME (t, taken);
3973 return t;
3974 }
3975
3976 const char *
3977 predictor_name (enum br_predictor predictor)
3978 {
3979 return predictor_info[predictor].name;
3980 }
3981
3982 /* Predict branch probabilities and estimate profile of the tree CFG. */
3983
3984 namespace {
3985
3986 const pass_data pass_data_profile =
3987 {
3988 GIMPLE_PASS, /* type */
3989 "profile_estimate", /* name */
3990 OPTGROUP_NONE, /* optinfo_flags */
3991 TV_BRANCH_PROB, /* tv_id */
3992 PROP_cfg, /* properties_required */
3993 0, /* properties_provided */
3994 0, /* properties_destroyed */
3995 0, /* todo_flags_start */
3996 0, /* todo_flags_finish */
3997 };
3998
3999 class pass_profile : public gimple_opt_pass
4000 {
4001 public:
4002 pass_profile (gcc::context *ctxt)
4003 : gimple_opt_pass (pass_data_profile, ctxt)
4004 {}
4005
4006 /* opt_pass methods: */
4007 virtual bool gate (function *) { return flag_guess_branch_prob; }
4008 virtual unsigned int execute (function *);
4009
4010 }; // class pass_profile
4011
4012 unsigned int
4013 pass_profile::execute (function *fun)
4014 {
4015 unsigned nb_loops;
4016
4017 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4018 return 0;
4019
4020 loop_optimizer_init (LOOPS_NORMAL);
4021 if (dump_file && (dump_flags & TDF_DETAILS))
4022 flow_loops_dump (dump_file, NULL, 0);
4023
4024 mark_irreducible_loops ();
4025
4026 nb_loops = number_of_loops (fun);
4027 if (nb_loops > 1)
4028 scev_initialize ();
4029
4030 tree_estimate_probability (false);
4031
4032 if (nb_loops > 1)
4033 scev_finalize ();
4034
4035 loop_optimizer_finalize ();
4036 if (dump_file && (dump_flags & TDF_DETAILS))
4037 gimple_dump_cfg (dump_file, dump_flags);
4038 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4039 profile_status_for_fn (fun) = PROFILE_GUESSED;
4040 if (dump_file && (dump_flags & TDF_DETAILS))
4041 {
4042 struct loop *loop;
4043 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
4044 if (loop->header->count.initialized_p ())
4045 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
4046 loop->num,
4047 (int)expected_loop_iterations_unbounded (loop));
4048 }
4049 return 0;
4050 }
4051
4052 } // anon namespace
4053
4054 gimple_opt_pass *
4055 make_pass_profile (gcc::context *ctxt)
4056 {
4057 return new pass_profile (ctxt);
4058 }
4059
4060 /* Return true when PRED predictor should be removed after early
4061 tree passes. Most of the predictors are beneficial to survive
4062 as early inlining can also distribute then into caller's bodies. */
4063
4064 static bool
4065 strip_predictor_early (enum br_predictor pred)
4066 {
4067 switch (pred)
4068 {
4069 case PRED_TREE_EARLY_RETURN:
4070 return true;
4071 default:
4072 return false;
4073 }
4074 }
4075
4076 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4077 we no longer need. EARLY is set to true when called from early
4078 optimizations. */
4079
4080 unsigned int
4081 strip_predict_hints (function *fun, bool early)
4082 {
4083 basic_block bb;
4084 gimple *ass_stmt;
4085 tree var;
4086 bool changed = false;
4087
4088 FOR_EACH_BB_FN (bb, fun)
4089 {
4090 gimple_stmt_iterator bi;
4091 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4092 {
4093 gimple *stmt = gsi_stmt (bi);
4094
4095 if (gimple_code (stmt) == GIMPLE_PREDICT)
4096 {
4097 if (!early
4098 || strip_predictor_early (gimple_predict_predictor (stmt)))
4099 {
4100 gsi_remove (&bi, true);
4101 changed = true;
4102 continue;
4103 }
4104 }
4105 else if (is_gimple_call (stmt))
4106 {
4107 tree fndecl = gimple_call_fndecl (stmt);
4108
4109 if (!early
4110 && ((fndecl != NULL_TREE
4111 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4112 && gimple_call_num_args (stmt) == 2)
4113 || (fndecl != NULL_TREE
4114 && fndecl_built_in_p (fndecl,
4115 BUILT_IN_EXPECT_WITH_PROBABILITY)
4116 && gimple_call_num_args (stmt) == 3)
4117 || (gimple_call_internal_p (stmt)
4118 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4119 {
4120 var = gimple_call_lhs (stmt);
4121 changed = true;
4122 if (var)
4123 {
4124 ass_stmt
4125 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4126 gsi_replace (&bi, ass_stmt, true);
4127 }
4128 else
4129 {
4130 gsi_remove (&bi, true);
4131 continue;
4132 }
4133 }
4134 }
4135 gsi_next (&bi);
4136 }
4137 }
4138 return changed ? TODO_cleanup_cfg : 0;
4139 }
4140
4141 namespace {
4142
4143 const pass_data pass_data_strip_predict_hints =
4144 {
4145 GIMPLE_PASS, /* type */
4146 "*strip_predict_hints", /* name */
4147 OPTGROUP_NONE, /* optinfo_flags */
4148 TV_BRANCH_PROB, /* tv_id */
4149 PROP_cfg, /* properties_required */
4150 0, /* properties_provided */
4151 0, /* properties_destroyed */
4152 0, /* todo_flags_start */
4153 0, /* todo_flags_finish */
4154 };
4155
4156 class pass_strip_predict_hints : public gimple_opt_pass
4157 {
4158 public:
4159 pass_strip_predict_hints (gcc::context *ctxt)
4160 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4161 {}
4162
4163 /* opt_pass methods: */
4164 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
4165 void set_pass_param (unsigned int n, bool param)
4166 {
4167 gcc_assert (n == 0);
4168 early_p = param;
4169 }
4170
4171 virtual unsigned int execute (function *);
4172
4173 private:
4174 bool early_p;
4175
4176 }; // class pass_strip_predict_hints
4177
4178 unsigned int
4179 pass_strip_predict_hints::execute (function *fun)
4180 {
4181 return strip_predict_hints (fun, early_p);
4182 }
4183
4184 } // anon namespace
4185
4186 gimple_opt_pass *
4187 make_pass_strip_predict_hints (gcc::context *ctxt)
4188 {
4189 return new pass_strip_predict_hints (ctxt);
4190 }
4191
4192 /* Rebuild function frequencies. Passes are in general expected to
4193 maintain profile by hand, however in some cases this is not possible:
4194 for example when inlining several functions with loops freuqencies might run
4195 out of scale and thus needs to be recomputed. */
4196
4197 void
4198 rebuild_frequencies (void)
4199 {
4200 timevar_push (TV_REBUILD_FREQUENCIES);
4201
4202 /* When the max bb count in the function is small, there is a higher
4203 chance that there were truncation errors in the integer scaling
4204 of counts by inlining and other optimizations. This could lead
4205 to incorrect classification of code as being cold when it isn't.
4206 In that case, force the estimation of bb counts/frequencies from the
4207 branch probabilities, rather than computing frequencies from counts,
4208 which may also lead to frequencies incorrectly reduced to 0. There
4209 is less precision in the probabilities, so we only do this for small
4210 max counts. */
4211 cfun->cfg->count_max = profile_count::uninitialized ();
4212 basic_block bb;
4213 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4214 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4215
4216 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4217 {
4218 loop_optimizer_init (0);
4219 add_noreturn_fake_exit_edges ();
4220 mark_irreducible_loops ();
4221 connect_infinite_loops_to_exit ();
4222 estimate_bb_frequencies (true);
4223 remove_fake_exit_edges ();
4224 loop_optimizer_finalize ();
4225 }
4226 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4227 update_max_bb_count ();
4228 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4229 && !flag_guess_branch_prob)
4230 ;
4231 else
4232 gcc_unreachable ();
4233 timevar_pop (TV_REBUILD_FREQUENCIES);
4234 }
4235
4236 /* Perform a dry run of the branch prediction pass and report comparsion of
4237 the predicted and real profile into the dump file. */
4238
4239 void
4240 report_predictor_hitrates (void)
4241 {
4242 unsigned nb_loops;
4243
4244 loop_optimizer_init (LOOPS_NORMAL);
4245 if (dump_file && (dump_flags & TDF_DETAILS))
4246 flow_loops_dump (dump_file, NULL, 0);
4247
4248 mark_irreducible_loops ();
4249
4250 nb_loops = number_of_loops (cfun);
4251 if (nb_loops > 1)
4252 scev_initialize ();
4253
4254 tree_estimate_probability (true);
4255
4256 if (nb_loops > 1)
4257 scev_finalize ();
4258
4259 loop_optimizer_finalize ();
4260 }
4261
4262 /* Force edge E to be cold.
4263 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4264 keep low probability to represent possible error in a guess. This is used
4265 i.e. in case we predict loop to likely iterate given number of times but
4266 we are not 100% sure.
4267
4268 This function locally updates profile without attempt to keep global
4269 consistency which cannot be reached in full generality without full profile
4270 rebuild from probabilities alone. Doing so is not necessarily a good idea
4271 because frequencies and counts may be more realistic then probabilities.
4272
4273 In some cases (such as for elimination of early exits during full loop
4274 unrolling) the caller can ensure that profile will get consistent
4275 afterwards. */
4276
4277 void
4278 force_edge_cold (edge e, bool impossible)
4279 {
4280 profile_count count_sum = profile_count::zero ();
4281 profile_probability prob_sum = profile_probability::never ();
4282 edge_iterator ei;
4283 edge e2;
4284 bool uninitialized_exit = false;
4285
4286 /* When branch probability guesses are not known, then do nothing. */
4287 if (!impossible && !e->count ().initialized_p ())
4288 return;
4289
4290 profile_probability goal = (impossible ? profile_probability::never ()
4291 : profile_probability::very_unlikely ());
4292
4293 /* If edge is already improbably or cold, just return. */
4294 if (e->probability <= goal
4295 && (!impossible || e->count () == profile_count::zero ()))
4296 return;
4297 FOR_EACH_EDGE (e2, ei, e->src->succs)
4298 if (e2 != e)
4299 {
4300 if (e->flags & EDGE_FAKE)
4301 continue;
4302 if (e2->count ().initialized_p ())
4303 count_sum += e2->count ();
4304 if (e2->probability.initialized_p ())
4305 prob_sum += e2->probability;
4306 else
4307 uninitialized_exit = true;
4308 }
4309
4310 /* If we are not guessing profiles but have some other edges out,
4311 just assume the control flow goes elsewhere. */
4312 if (uninitialized_exit)
4313 e->probability = goal;
4314 /* If there are other edges out of e->src, redistribute probabilitity
4315 there. */
4316 else if (prob_sum > profile_probability::never ())
4317 {
4318 if (!(e->probability < goal))
4319 e->probability = goal;
4320
4321 profile_probability prob_comp = prob_sum / e->probability.invert ();
4322
4323 if (dump_file && (dump_flags & TDF_DETAILS))
4324 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4325 "probability to other edges.\n",
4326 e->src->index, e->dest->index,
4327 impossible ? "impossible" : "cold");
4328 FOR_EACH_EDGE (e2, ei, e->src->succs)
4329 if (e2 != e)
4330 {
4331 e2->probability /= prob_comp;
4332 }
4333 if (current_ir_type () != IR_GIMPLE
4334 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4335 update_br_prob_note (e->src);
4336 }
4337 /* If all edges out of e->src are unlikely, the basic block itself
4338 is unlikely. */
4339 else
4340 {
4341 if (prob_sum == profile_probability::never ())
4342 e->probability = profile_probability::always ();
4343 else
4344 {
4345 if (impossible)
4346 e->probability = profile_probability::never ();
4347 /* If BB has some edges out that are not impossible, we cannot
4348 assume that BB itself is. */
4349 impossible = false;
4350 }
4351 if (current_ir_type () != IR_GIMPLE
4352 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4353 update_br_prob_note (e->src);
4354 if (e->src->count == profile_count::zero ())
4355 return;
4356 if (count_sum == profile_count::zero () && impossible)
4357 {
4358 bool found = false;
4359 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4360 ;
4361 else if (current_ir_type () == IR_GIMPLE)
4362 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4363 !gsi_end_p (gsi); gsi_next (&gsi))
4364 {
4365 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4366 {
4367 found = true;
4368 break;
4369 }
4370 }
4371 /* FIXME: Implement RTL path. */
4372 else
4373 found = true;
4374 if (!found)
4375 {
4376 if (dump_file && (dump_flags & TDF_DETAILS))
4377 fprintf (dump_file,
4378 "Making bb %i impossible and dropping count to 0.\n",
4379 e->src->index);
4380 e->src->count = profile_count::zero ();
4381 FOR_EACH_EDGE (e2, ei, e->src->preds)
4382 force_edge_cold (e2, impossible);
4383 return;
4384 }
4385 }
4386
4387 /* If we did not adjusting, the source basic block has no likely edeges
4388 leaving other direction. In that case force that bb cold, too.
4389 This in general is difficult task to do, but handle special case when
4390 BB has only one predecestor. This is common case when we are updating
4391 after loop transforms. */
4392 if (!(prob_sum > profile_probability::never ())
4393 && count_sum == profile_count::zero ()
4394 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4395 > (impossible ? 0 : 1))
4396 {
4397 int old_frequency = e->src->count.to_frequency (cfun);
4398 if (dump_file && (dump_flags & TDF_DETAILS))
4399 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4400 impossible ? "impossible" : "cold");
4401 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4402 impossible ? 0 : 1);
4403 if (impossible)
4404 e->src->count = profile_count::zero ();
4405 else
4406 e->src->count = e->count ().apply_scale (new_frequency,
4407 old_frequency);
4408 force_edge_cold (single_pred_edge (e->src), impossible);
4409 }
4410 else if (dump_file && (dump_flags & TDF_DETAILS)
4411 && maybe_hot_bb_p (cfun, e->src))
4412 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4413 impossible ? "impossible" : "cold");
4414 }
4415 }
4416
4417 #if CHECKING_P
4418
4419 namespace selftest {
4420
4421 /* Test that value range of predictor values defined in predict.def is
4422 within range (50, 100]. */
4423
4424 struct branch_predictor
4425 {
4426 const char *name;
4427 int probability;
4428 };
4429
4430 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4431
4432 static void
4433 test_prediction_value_range ()
4434 {
4435 branch_predictor predictors[] = {
4436 #include "predict.def"
4437 { NULL, PROB_UNINITIALIZED }
4438 };
4439
4440 for (unsigned i = 0; predictors[i].name != NULL; i++)
4441 {
4442 if (predictors[i].probability == PROB_UNINITIALIZED)
4443 continue;
4444
4445 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4446 ASSERT_TRUE (p >= 50 && p <= 100);
4447 }
4448 }
4449
4450 #undef DEF_PREDICTOR
4451
4452 /* Run all of the selfests within this file. */
4453
4454 void
4455 predict_c_tests ()
4456 {
4457 test_prediction_value_range ();
4458 }
4459
4460 } // namespace selftest
4461 #endif /* CHECKING_P. */