5ed6c431355e970391571fe234de9bc9698e73af
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
76
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void compute_function_frequency (void);
81 static void choose_function_section (void);
82 static bool can_predict_insn_p (const_rtx);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return TRUE if frequency FREQ is considered to be hot. */
113
114 static inline bool
115 maybe_hot_frequency_p (int freq)
116 {
117 if (!profile_info || !flag_branch_probabilities)
118 {
119 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
122 return true;
123 }
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
127 return false;
128 return true;
129 }
130
131 /* Return TRUE if frequency FREQ is considered to be hot. */
132
133 static inline bool
134 maybe_hot_count_p (gcov_type count)
135 {
136 if (profile_status != PROFILE_READ)
137 return true;
138 /* Code executed at most once is not hot. */
139 if (profile_info->runs >= count)
140 return false;
141 return (count
142 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
143 }
144
145 /* Return true in case BB can be CPU intensive and should be optimized
146 for maximal performance. */
147
148 bool
149 maybe_hot_bb_p (const_basic_block bb)
150 {
151 if (profile_status == PROFILE_READ)
152 return maybe_hot_count_p (bb->count);
153 return maybe_hot_frequency_p (bb->frequency);
154 }
155
156 /* Return true if the call can be hot. */
157
158 bool
159 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
160 {
161 if (profile_info && flag_branch_probabilities
162 && (edge->count
163 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
164 return false;
165 if (lookup_attribute ("cold", DECL_ATTRIBUTES (edge->callee->decl))
166 || lookup_attribute ("cold", DECL_ATTRIBUTES (edge->caller->decl)))
167 return false;
168 if (lookup_attribute ("hot", DECL_ATTRIBUTES (edge->caller->decl)))
169 return true;
170 if (flag_guess_branch_prob
171 && edge->frequency < (CGRAPH_FREQ_MAX
172 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
173 return false;
174 return true;
175 }
176
177 /* Return true in case BB can be CPU intensive and should be optimized
178 for maximal performance. */
179
180 bool
181 maybe_hot_edge_p (edge e)
182 {
183 if (profile_status == PROFILE_READ)
184 return maybe_hot_count_p (e->count);
185 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
186 }
187
188 /* Return true in case BB is probably never executed. */
189 bool
190 probably_never_executed_bb_p (const_basic_block bb)
191 {
192 if (profile_info && flag_branch_probabilities)
193 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
194 if ((!profile_info || !flag_branch_probabilities)
195 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
196 return true;
197 return false;
198 }
199
200 /* Return true when current function should always be optimized for size. */
201
202 bool
203 optimize_function_for_size_p (struct function *fun)
204 {
205 return (optimize_size
206 || (fun && (fun->function_frequency
207 == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)));
208 }
209
210 /* Return true when current function should always be optimized for speed. */
211
212 bool
213 optimize_function_for_speed_p (struct function *fun)
214 {
215 return !optimize_function_for_size_p (fun);
216 }
217
218 /* Return TRUE when BB should be optimized for size. */
219
220 bool
221 optimize_bb_for_size_p (const_basic_block bb)
222 {
223 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
224 }
225
226 /* Return TRUE when BB should be optimized for speed. */
227
228 bool
229 optimize_bb_for_speed_p (const_basic_block bb)
230 {
231 return !optimize_bb_for_size_p (bb);
232 }
233
234 /* Return TRUE when BB should be optimized for size. */
235
236 bool
237 optimize_edge_for_size_p (edge e)
238 {
239 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
240 }
241
242 /* Return TRUE when BB should be optimized for speed. */
243
244 bool
245 optimize_edge_for_speed_p (edge e)
246 {
247 return !optimize_edge_for_size_p (e);
248 }
249
250 /* Return TRUE when BB should be optimized for size. */
251
252 bool
253 optimize_insn_for_size_p (void)
254 {
255 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
256 }
257
258 /* Return TRUE when BB should be optimized for speed. */
259
260 bool
261 optimize_insn_for_speed_p (void)
262 {
263 return !optimize_insn_for_size_p ();
264 }
265
266 /* Return TRUE when LOOP should be optimized for size. */
267
268 bool
269 optimize_loop_for_size_p (struct loop *loop)
270 {
271 return optimize_bb_for_size_p (loop->header);
272 }
273
274 /* Return TRUE when LOOP should be optimized for speed. */
275
276 bool
277 optimize_loop_for_speed_p (struct loop *loop)
278 {
279 return optimize_bb_for_speed_p (loop->header);
280 }
281
282 /* Return TRUE when LOOP nest should be optimized for speed. */
283
284 bool
285 optimize_loop_nest_for_speed_p (struct loop *loop)
286 {
287 struct loop *l = loop;
288 if (optimize_loop_for_speed_p (loop))
289 return true;
290 l = loop->inner;
291 while (l && l != loop)
292 {
293 if (optimize_loop_for_speed_p (l))
294 return true;
295 if (l->inner)
296 l = l->inner;
297 else if (l->next)
298 l = l->next;
299 else
300 {
301 while (l != loop && !l->next)
302 l = loop_outer (l);
303 if (l != loop)
304 l = l->next;
305 }
306 }
307 return false;
308 }
309
310 /* Return TRUE when LOOP nest should be optimized for size. */
311
312 bool
313 optimize_loop_nest_for_size_p (struct loop *loop)
314 {
315 return !optimize_loop_nest_for_speed_p (loop);
316 }
317
318 /* Return true when edge E is likely to be well predictable by branch
319 predictor. */
320
321 bool
322 predictable_edge_p (edge e)
323 {
324 if (profile_status == PROFILE_ABSENT)
325 return false;
326 if ((e->probability
327 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
328 || (REG_BR_PROB_BASE - e->probability
329 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
330 return true;
331 return false;
332 }
333
334
335 /* Set RTL expansion for BB profile. */
336
337 void
338 rtl_profile_for_bb (basic_block bb)
339 {
340 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
341 }
342
343 /* Set RTL expansion for edge profile. */
344
345 void
346 rtl_profile_for_edge (edge e)
347 {
348 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
349 }
350
351 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
352 void
353 default_rtl_profile (void)
354 {
355 crtl->maybe_hot_insn_p = true;
356 }
357
358 /* Return true if the one of outgoing edges is already predicted by
359 PREDICTOR. */
360
361 bool
362 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
363 {
364 rtx note;
365 if (!INSN_P (BB_END (bb)))
366 return false;
367 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
368 if (REG_NOTE_KIND (note) == REG_BR_PRED
369 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
370 return true;
371 return false;
372 }
373
374 /* This map contains for a basic block the list of predictions for the
375 outgoing edges. */
376
377 static struct pointer_map_t *bb_predictions;
378
379 /* Return true if the one of outgoing edges is already predicted by
380 PREDICTOR. */
381
382 bool
383 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
384 {
385 struct edge_prediction *i;
386 void **preds = pointer_map_contains (bb_predictions, bb);
387
388 if (!preds)
389 return false;
390
391 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
392 if (i->ep_predictor == predictor)
393 return true;
394 return false;
395 }
396
397 /* Return true when the probability of edge is reliable.
398
399 The profile guessing code is good at predicting branch outcome (ie.
400 taken/not taken), that is predicted right slightly over 75% of time.
401 It is however notoriously poor on predicting the probability itself.
402 In general the profile appear a lot flatter (with probabilities closer
403 to 50%) than the reality so it is bad idea to use it to drive optimization
404 such as those disabling dynamic branch prediction for well predictable
405 branches.
406
407 There are two exceptions - edges leading to noreturn edges and edges
408 predicted by number of iterations heuristics are predicted well. This macro
409 should be able to distinguish those, but at the moment it simply check for
410 noreturn heuristic that is only one giving probability over 99% or bellow
411 1%. In future we might want to propagate reliability information across the
412 CFG if we find this information useful on multiple places. */
413 static bool
414 probability_reliable_p (int prob)
415 {
416 return (profile_status == PROFILE_READ
417 || (profile_status == PROFILE_GUESSED
418 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
419 }
420
421 /* Same predicate as above, working on edges. */
422 bool
423 edge_probability_reliable_p (const_edge e)
424 {
425 return probability_reliable_p (e->probability);
426 }
427
428 /* Same predicate as edge_probability_reliable_p, working on notes. */
429 bool
430 br_prob_note_reliable_p (const_rtx note)
431 {
432 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
433 return probability_reliable_p (INTVAL (XEXP (note, 0)));
434 }
435
436 static void
437 predict_insn (rtx insn, enum br_predictor predictor, int probability)
438 {
439 gcc_assert (any_condjump_p (insn));
440 if (!flag_guess_branch_prob)
441 return;
442
443 add_reg_note (insn, REG_BR_PRED,
444 gen_rtx_CONCAT (VOIDmode,
445 GEN_INT ((int) predictor),
446 GEN_INT ((int) probability)));
447 }
448
449 /* Predict insn by given predictor. */
450
451 void
452 predict_insn_def (rtx insn, enum br_predictor predictor,
453 enum prediction taken)
454 {
455 int probability = predictor_info[(int) predictor].hitrate;
456
457 if (taken != TAKEN)
458 probability = REG_BR_PROB_BASE - probability;
459
460 predict_insn (insn, predictor, probability);
461 }
462
463 /* Predict edge E with given probability if possible. */
464
465 void
466 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
467 {
468 rtx last_insn;
469 last_insn = BB_END (e->src);
470
471 /* We can store the branch prediction information only about
472 conditional jumps. */
473 if (!any_condjump_p (last_insn))
474 return;
475
476 /* We always store probability of branching. */
477 if (e->flags & EDGE_FALLTHRU)
478 probability = REG_BR_PROB_BASE - probability;
479
480 predict_insn (last_insn, predictor, probability);
481 }
482
483 /* Predict edge E with the given PROBABILITY. */
484 void
485 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
486 {
487 gcc_assert (profile_status != PROFILE_GUESSED);
488 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
489 && flag_guess_branch_prob && optimize)
490 {
491 struct edge_prediction *i = XNEW (struct edge_prediction);
492 void **preds = pointer_map_insert (bb_predictions, e->src);
493
494 i->ep_next = (struct edge_prediction *) *preds;
495 *preds = i;
496 i->ep_probability = probability;
497 i->ep_predictor = predictor;
498 i->ep_edge = e;
499 }
500 }
501
502 /* Remove all predictions on given basic block that are attached
503 to edge E. */
504 void
505 remove_predictions_associated_with_edge (edge e)
506 {
507 void **preds;
508
509 if (!bb_predictions)
510 return;
511
512 preds = pointer_map_contains (bb_predictions, e->src);
513
514 if (preds)
515 {
516 struct edge_prediction **prediction = (struct edge_prediction **) preds;
517 struct edge_prediction *next;
518
519 while (*prediction)
520 {
521 if ((*prediction)->ep_edge == e)
522 {
523 next = (*prediction)->ep_next;
524 free (*prediction);
525 *prediction = next;
526 }
527 else
528 prediction = &((*prediction)->ep_next);
529 }
530 }
531 }
532
533 /* Clears the list of predictions stored for BB. */
534
535 static void
536 clear_bb_predictions (basic_block bb)
537 {
538 void **preds = pointer_map_contains (bb_predictions, bb);
539 struct edge_prediction *pred, *next;
540
541 if (!preds)
542 return;
543
544 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
545 {
546 next = pred->ep_next;
547 free (pred);
548 }
549 *preds = NULL;
550 }
551
552 /* Return true when we can store prediction on insn INSN.
553 At the moment we represent predictions only on conditional
554 jumps, not at computed jump or other complicated cases. */
555 static bool
556 can_predict_insn_p (const_rtx insn)
557 {
558 return (JUMP_P (insn)
559 && any_condjump_p (insn)
560 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
561 }
562
563 /* Predict edge E by given predictor if possible. */
564
565 void
566 predict_edge_def (edge e, enum br_predictor predictor,
567 enum prediction taken)
568 {
569 int probability = predictor_info[(int) predictor].hitrate;
570
571 if (taken != TAKEN)
572 probability = REG_BR_PROB_BASE - probability;
573
574 predict_edge (e, predictor, probability);
575 }
576
577 /* Invert all branch predictions or probability notes in the INSN. This needs
578 to be done each time we invert the condition used by the jump. */
579
580 void
581 invert_br_probabilities (rtx insn)
582 {
583 rtx note;
584
585 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
586 if (REG_NOTE_KIND (note) == REG_BR_PROB)
587 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
588 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
589 XEXP (XEXP (note, 0), 1)
590 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
591 }
592
593 /* Dump information about the branch prediction to the output file. */
594
595 static void
596 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
597 basic_block bb, int used)
598 {
599 edge e;
600 edge_iterator ei;
601
602 if (!file)
603 return;
604
605 FOR_EACH_EDGE (e, ei, bb->succs)
606 if (! (e->flags & EDGE_FALLTHRU))
607 break;
608
609 fprintf (file, " %s heuristics%s: %.1f%%",
610 predictor_info[predictor].name,
611 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
612
613 if (bb->count)
614 {
615 fprintf (file, " exec ");
616 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
617 if (e)
618 {
619 fprintf (file, " hit ");
620 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
621 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
622 }
623 }
624
625 fprintf (file, "\n");
626 }
627
628 /* We can not predict the probabilities of outgoing edges of bb. Set them
629 evenly and hope for the best. */
630 static void
631 set_even_probabilities (basic_block bb)
632 {
633 int nedges = 0;
634 edge e;
635 edge_iterator ei;
636
637 FOR_EACH_EDGE (e, ei, bb->succs)
638 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
639 nedges ++;
640 FOR_EACH_EDGE (e, ei, bb->succs)
641 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
642 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
643 else
644 e->probability = 0;
645 }
646
647 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
648 note if not already present. Remove now useless REG_BR_PRED notes. */
649
650 static void
651 combine_predictions_for_insn (rtx insn, basic_block bb)
652 {
653 rtx prob_note;
654 rtx *pnote;
655 rtx note;
656 int best_probability = PROB_EVEN;
657 int best_predictor = END_PREDICTORS;
658 int combined_probability = REG_BR_PROB_BASE / 2;
659 int d;
660 bool first_match = false;
661 bool found = false;
662
663 if (!can_predict_insn_p (insn))
664 {
665 set_even_probabilities (bb);
666 return;
667 }
668
669 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
670 pnote = &REG_NOTES (insn);
671 if (dump_file)
672 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
673 bb->index);
674
675 /* We implement "first match" heuristics and use probability guessed
676 by predictor with smallest index. */
677 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
678 if (REG_NOTE_KIND (note) == REG_BR_PRED)
679 {
680 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
681 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
682
683 found = true;
684 if (best_predictor > predictor)
685 best_probability = probability, best_predictor = predictor;
686
687 d = (combined_probability * probability
688 + (REG_BR_PROB_BASE - combined_probability)
689 * (REG_BR_PROB_BASE - probability));
690
691 /* Use FP math to avoid overflows of 32bit integers. */
692 if (d == 0)
693 /* If one probability is 0% and one 100%, avoid division by zero. */
694 combined_probability = REG_BR_PROB_BASE / 2;
695 else
696 combined_probability = (((double) combined_probability) * probability
697 * REG_BR_PROB_BASE / d + 0.5);
698 }
699
700 /* Decide which heuristic to use. In case we didn't match anything,
701 use no_prediction heuristic, in case we did match, use either
702 first match or Dempster-Shaffer theory depending on the flags. */
703
704 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
705 first_match = true;
706
707 if (!found)
708 dump_prediction (dump_file, PRED_NO_PREDICTION,
709 combined_probability, bb, true);
710 else
711 {
712 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
713 bb, !first_match);
714 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
715 bb, first_match);
716 }
717
718 if (first_match)
719 combined_probability = best_probability;
720 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
721
722 while (*pnote)
723 {
724 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
725 {
726 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
727 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
728
729 dump_prediction (dump_file, predictor, probability, bb,
730 !first_match || best_predictor == predictor);
731 *pnote = XEXP (*pnote, 1);
732 }
733 else
734 pnote = &XEXP (*pnote, 1);
735 }
736
737 if (!prob_note)
738 {
739 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
740
741 /* Save the prediction into CFG in case we are seeing non-degenerated
742 conditional jump. */
743 if (!single_succ_p (bb))
744 {
745 BRANCH_EDGE (bb)->probability = combined_probability;
746 FALLTHRU_EDGE (bb)->probability
747 = REG_BR_PROB_BASE - combined_probability;
748 }
749 }
750 else if (!single_succ_p (bb))
751 {
752 int prob = INTVAL (XEXP (prob_note, 0));
753
754 BRANCH_EDGE (bb)->probability = prob;
755 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
756 }
757 else
758 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
759 }
760
761 /* Combine predictions into single probability and store them into CFG.
762 Remove now useless prediction entries. */
763
764 static void
765 combine_predictions_for_bb (basic_block bb)
766 {
767 int best_probability = PROB_EVEN;
768 int best_predictor = END_PREDICTORS;
769 int combined_probability = REG_BR_PROB_BASE / 2;
770 int d;
771 bool first_match = false;
772 bool found = false;
773 struct edge_prediction *pred;
774 int nedges = 0;
775 edge e, first = NULL, second = NULL;
776 edge_iterator ei;
777 void **preds;
778
779 FOR_EACH_EDGE (e, ei, bb->succs)
780 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
781 {
782 nedges ++;
783 if (first && !second)
784 second = e;
785 if (!first)
786 first = e;
787 }
788
789 /* When there is no successor or only one choice, prediction is easy.
790
791 We are lazy for now and predict only basic blocks with two outgoing
792 edges. It is possible to predict generic case too, but we have to
793 ignore first match heuristics and do more involved combining. Implement
794 this later. */
795 if (nedges != 2)
796 {
797 if (!bb->count)
798 set_even_probabilities (bb);
799 clear_bb_predictions (bb);
800 if (dump_file)
801 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
802 nedges, bb->index);
803 return;
804 }
805
806 if (dump_file)
807 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
808
809 preds = pointer_map_contains (bb_predictions, bb);
810 if (preds)
811 {
812 /* We implement "first match" heuristics and use probability guessed
813 by predictor with smallest index. */
814 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
815 {
816 int predictor = pred->ep_predictor;
817 int probability = pred->ep_probability;
818
819 if (pred->ep_edge != first)
820 probability = REG_BR_PROB_BASE - probability;
821
822 found = true;
823 if (best_predictor > predictor)
824 best_probability = probability, best_predictor = predictor;
825
826 d = (combined_probability * probability
827 + (REG_BR_PROB_BASE - combined_probability)
828 * (REG_BR_PROB_BASE - probability));
829
830 /* Use FP math to avoid overflows of 32bit integers. */
831 if (d == 0)
832 /* If one probability is 0% and one 100%, avoid division by zero. */
833 combined_probability = REG_BR_PROB_BASE / 2;
834 else
835 combined_probability = (((double) combined_probability)
836 * probability
837 * REG_BR_PROB_BASE / d + 0.5);
838 }
839 }
840
841 /* Decide which heuristic to use. In case we didn't match anything,
842 use no_prediction heuristic, in case we did match, use either
843 first match or Dempster-Shaffer theory depending on the flags. */
844
845 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
846 first_match = true;
847
848 if (!found)
849 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
850 else
851 {
852 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
853 !first_match);
854 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
855 first_match);
856 }
857
858 if (first_match)
859 combined_probability = best_probability;
860 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
861
862 if (preds)
863 {
864 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
865 {
866 int predictor = pred->ep_predictor;
867 int probability = pred->ep_probability;
868
869 if (pred->ep_edge != EDGE_SUCC (bb, 0))
870 probability = REG_BR_PROB_BASE - probability;
871 dump_prediction (dump_file, predictor, probability, bb,
872 !first_match || best_predictor == predictor);
873 }
874 }
875 clear_bb_predictions (bb);
876
877 if (!bb->count)
878 {
879 first->probability = combined_probability;
880 second->probability = REG_BR_PROB_BASE - combined_probability;
881 }
882 }
883
884 /* Predict edge probabilities by exploiting loop structure. */
885
886 static void
887 predict_loops (void)
888 {
889 loop_iterator li;
890 struct loop *loop;
891
892 scev_initialize ();
893
894 /* Try to predict out blocks in a loop that are not part of a
895 natural loop. */
896 FOR_EACH_LOOP (li, loop, 0)
897 {
898 basic_block bb, *bbs;
899 unsigned j, n_exits;
900 VEC (edge, heap) *exits;
901 struct tree_niter_desc niter_desc;
902 edge ex;
903
904 exits = get_loop_exit_edges (loop);
905 n_exits = VEC_length (edge, exits);
906
907 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
908 {
909 tree niter = NULL;
910 HOST_WIDE_INT nitercst;
911 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
912 int probability;
913 enum br_predictor predictor;
914
915 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
916 niter = niter_desc.niter;
917 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
918 niter = loop_niter_by_eval (loop, ex);
919
920 if (TREE_CODE (niter) == INTEGER_CST)
921 {
922 if (host_integerp (niter, 1)
923 && compare_tree_int (niter, max-1) == -1)
924 nitercst = tree_low_cst (niter, 1) + 1;
925 else
926 nitercst = max;
927 predictor = PRED_LOOP_ITERATIONS;
928 }
929 /* If we have just one exit and we can derive some information about
930 the number of iterations of the loop from the statements inside
931 the loop, use it to predict this exit. */
932 else if (n_exits == 1)
933 {
934 nitercst = estimated_loop_iterations_int (loop, false);
935 if (nitercst < 0)
936 continue;
937 if (nitercst > max)
938 nitercst = max;
939
940 predictor = PRED_LOOP_ITERATIONS_GUESSED;
941 }
942 else
943 continue;
944
945 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
946 predict_edge (ex, predictor, probability);
947 }
948 VEC_free (edge, heap, exits);
949
950 bbs = get_loop_body (loop);
951
952 for (j = 0; j < loop->num_nodes; j++)
953 {
954 int header_found = 0;
955 edge e;
956 edge_iterator ei;
957
958 bb = bbs[j];
959
960 /* Bypass loop heuristics on continue statement. These
961 statements construct loops via "non-loop" constructs
962 in the source language and are better to be handled
963 separately. */
964 if (predicted_by_p (bb, PRED_CONTINUE))
965 continue;
966
967 /* Loop branch heuristics - predict an edge back to a
968 loop's head as taken. */
969 if (bb == loop->latch)
970 {
971 e = find_edge (loop->latch, loop->header);
972 if (e)
973 {
974 header_found = 1;
975 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
976 }
977 }
978
979 /* Loop exit heuristics - predict an edge exiting the loop if the
980 conditional has no loop header successors as not taken. */
981 if (!header_found
982 /* If we already used more reliable loop exit predictors, do not
983 bother with PRED_LOOP_EXIT. */
984 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
985 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
986 {
987 /* For loop with many exits we don't want to predict all exits
988 with the pretty large probability, because if all exits are
989 considered in row, the loop would be predicted to iterate
990 almost never. The code to divide probability by number of
991 exits is very rough. It should compute the number of exits
992 taken in each patch through function (not the overall number
993 of exits that might be a lot higher for loops with wide switch
994 statements in them) and compute n-th square root.
995
996 We limit the minimal probability by 2% to avoid
997 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
998 as this was causing regression in perl benchmark containing such
999 a wide loop. */
1000
1001 int probability = ((REG_BR_PROB_BASE
1002 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1003 / n_exits);
1004 if (probability < HITRATE (2))
1005 probability = HITRATE (2);
1006 FOR_EACH_EDGE (e, ei, bb->succs)
1007 if (e->dest->index < NUM_FIXED_BLOCKS
1008 || !flow_bb_inside_loop_p (loop, e->dest))
1009 predict_edge (e, PRED_LOOP_EXIT, probability);
1010 }
1011 }
1012
1013 /* Free basic blocks from get_loop_body. */
1014 free (bbs);
1015 }
1016
1017 scev_finalize ();
1018 }
1019
1020 /* Attempt to predict probabilities of BB outgoing edges using local
1021 properties. */
1022 static void
1023 bb_estimate_probability_locally (basic_block bb)
1024 {
1025 rtx last_insn = BB_END (bb);
1026 rtx cond;
1027
1028 if (! can_predict_insn_p (last_insn))
1029 return;
1030 cond = get_condition (last_insn, NULL, false, false);
1031 if (! cond)
1032 return;
1033
1034 /* Try "pointer heuristic."
1035 A comparison ptr == 0 is predicted as false.
1036 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1037 if (COMPARISON_P (cond)
1038 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1039 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1040 {
1041 if (GET_CODE (cond) == EQ)
1042 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1043 else if (GET_CODE (cond) == NE)
1044 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1045 }
1046 else
1047
1048 /* Try "opcode heuristic."
1049 EQ tests are usually false and NE tests are usually true. Also,
1050 most quantities are positive, so we can make the appropriate guesses
1051 about signed comparisons against zero. */
1052 switch (GET_CODE (cond))
1053 {
1054 case CONST_INT:
1055 /* Unconditional branch. */
1056 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1057 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1058 break;
1059
1060 case EQ:
1061 case UNEQ:
1062 /* Floating point comparisons appears to behave in a very
1063 unpredictable way because of special role of = tests in
1064 FP code. */
1065 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1066 ;
1067 /* Comparisons with 0 are often used for booleans and there is
1068 nothing useful to predict about them. */
1069 else if (XEXP (cond, 1) == const0_rtx
1070 || XEXP (cond, 0) == const0_rtx)
1071 ;
1072 else
1073 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1074 break;
1075
1076 case NE:
1077 case LTGT:
1078 /* Floating point comparisons appears to behave in a very
1079 unpredictable way because of special role of = tests in
1080 FP code. */
1081 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1082 ;
1083 /* Comparisons with 0 are often used for booleans and there is
1084 nothing useful to predict about them. */
1085 else if (XEXP (cond, 1) == const0_rtx
1086 || XEXP (cond, 0) == const0_rtx)
1087 ;
1088 else
1089 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1090 break;
1091
1092 case ORDERED:
1093 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1094 break;
1095
1096 case UNORDERED:
1097 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1098 break;
1099
1100 case LE:
1101 case LT:
1102 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1103 || XEXP (cond, 1) == constm1_rtx)
1104 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1105 break;
1106
1107 case GE:
1108 case GT:
1109 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1110 || XEXP (cond, 1) == constm1_rtx)
1111 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1112 break;
1113
1114 default:
1115 break;
1116 }
1117 }
1118
1119 /* Set edge->probability for each successor edge of BB. */
1120 void
1121 guess_outgoing_edge_probabilities (basic_block bb)
1122 {
1123 bb_estimate_probability_locally (bb);
1124 combine_predictions_for_insn (BB_END (bb), bb);
1125 }
1126 \f
1127 static tree expr_expected_value (tree, bitmap);
1128
1129 /* Helper function for expr_expected_value. */
1130
1131 static tree
1132 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1133 {
1134 gimple def;
1135
1136 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1137 {
1138 if (TREE_CONSTANT (op0))
1139 return op0;
1140
1141 if (code != SSA_NAME)
1142 return NULL_TREE;
1143
1144 def = SSA_NAME_DEF_STMT (op0);
1145
1146 /* If we were already here, break the infinite cycle. */
1147 if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
1148 return NULL;
1149 bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
1150
1151 if (gimple_code (def) == GIMPLE_PHI)
1152 {
1153 /* All the arguments of the PHI node must have the same constant
1154 length. */
1155 int i, n = gimple_phi_num_args (def);
1156 tree val = NULL, new_val;
1157
1158 for (i = 0; i < n; i++)
1159 {
1160 tree arg = PHI_ARG_DEF (def, i);
1161
1162 /* If this PHI has itself as an argument, we cannot
1163 determine the string length of this argument. However,
1164 if we can find an expected constant value for the other
1165 PHI args then we can still be sure that this is
1166 likely a constant. So be optimistic and just
1167 continue with the next argument. */
1168 if (arg == PHI_RESULT (def))
1169 continue;
1170
1171 new_val = expr_expected_value (arg, visited);
1172 if (!new_val)
1173 return NULL;
1174 if (!val)
1175 val = new_val;
1176 else if (!operand_equal_p (val, new_val, false))
1177 return NULL;
1178 }
1179 return val;
1180 }
1181 if (is_gimple_assign (def))
1182 {
1183 if (gimple_assign_lhs (def) != op0)
1184 return NULL;
1185
1186 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1187 gimple_assign_rhs1 (def),
1188 gimple_assign_rhs_code (def),
1189 gimple_assign_rhs2 (def),
1190 visited);
1191 }
1192
1193 if (is_gimple_call (def))
1194 {
1195 tree decl = gimple_call_fndecl (def);
1196 if (!decl)
1197 return NULL;
1198 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1199 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1200 {
1201 tree val;
1202
1203 if (gimple_call_num_args (def) != 2)
1204 return NULL;
1205 val = gimple_call_arg (def, 0);
1206 if (TREE_CONSTANT (val))
1207 return val;
1208 return gimple_call_arg (def, 1);
1209 }
1210 }
1211
1212 return NULL;
1213 }
1214
1215 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1216 {
1217 tree res;
1218 op0 = expr_expected_value (op0, visited);
1219 if (!op0)
1220 return NULL;
1221 op1 = expr_expected_value (op1, visited);
1222 if (!op1)
1223 return NULL;
1224 res = fold_build2 (code, type, op0, op1);
1225 if (TREE_CONSTANT (res))
1226 return res;
1227 return NULL;
1228 }
1229 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1230 {
1231 tree res;
1232 op0 = expr_expected_value (op0, visited);
1233 if (!op0)
1234 return NULL;
1235 res = fold_build1 (code, type, op0);
1236 if (TREE_CONSTANT (res))
1237 return res;
1238 return NULL;
1239 }
1240 return NULL;
1241 }
1242
1243 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1244 The function is used by builtin_expect branch predictor so the evidence
1245 must come from this construct and additional possible constant folding.
1246
1247 We may want to implement more involved value guess (such as value range
1248 propagation based prediction), but such tricks shall go to new
1249 implementation. */
1250
1251 static tree
1252 expr_expected_value (tree expr, bitmap visited)
1253 {
1254 enum tree_code code;
1255 tree op0, op1;
1256
1257 if (TREE_CONSTANT (expr))
1258 return expr;
1259
1260 extract_ops_from_tree (expr, &code, &op0, &op1);
1261 return expr_expected_value_1 (TREE_TYPE (expr),
1262 op0, code, op1, visited);
1263 }
1264
1265 \f
1266 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1267 we no longer need. */
1268 static unsigned int
1269 strip_predict_hints (void)
1270 {
1271 basic_block bb;
1272 gimple ass_stmt;
1273 tree var;
1274
1275 FOR_EACH_BB (bb)
1276 {
1277 gimple_stmt_iterator bi;
1278 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1279 {
1280 gimple stmt = gsi_stmt (bi);
1281
1282 if (gimple_code (stmt) == GIMPLE_PREDICT)
1283 {
1284 gsi_remove (&bi, true);
1285 continue;
1286 }
1287 else if (gimple_code (stmt) == GIMPLE_CALL)
1288 {
1289 tree fndecl = gimple_call_fndecl (stmt);
1290
1291 if (fndecl
1292 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1293 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1294 && gimple_call_num_args (stmt) == 2)
1295 {
1296 var = gimple_call_lhs (stmt);
1297 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1298
1299 gsi_replace (&bi, ass_stmt, true);
1300 }
1301 }
1302 gsi_next (&bi);
1303 }
1304 }
1305 return 0;
1306 }
1307 \f
1308 /* Predict using opcode of the last statement in basic block. */
1309 static void
1310 tree_predict_by_opcode (basic_block bb)
1311 {
1312 gimple stmt = last_stmt (bb);
1313 edge then_edge;
1314 tree op0, op1;
1315 tree type;
1316 tree val;
1317 enum tree_code cmp;
1318 bitmap visited;
1319 edge_iterator ei;
1320
1321 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1322 return;
1323 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1324 if (then_edge->flags & EDGE_TRUE_VALUE)
1325 break;
1326 op0 = gimple_cond_lhs (stmt);
1327 op1 = gimple_cond_rhs (stmt);
1328 cmp = gimple_cond_code (stmt);
1329 type = TREE_TYPE (op0);
1330 visited = BITMAP_ALLOC (NULL);
1331 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1332 BITMAP_FREE (visited);
1333 if (val)
1334 {
1335 if (integer_zerop (val))
1336 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1337 else
1338 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1339 return;
1340 }
1341 /* Try "pointer heuristic."
1342 A comparison ptr == 0 is predicted as false.
1343 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1344 if (POINTER_TYPE_P (type))
1345 {
1346 if (cmp == EQ_EXPR)
1347 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1348 else if (cmp == NE_EXPR)
1349 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1350 }
1351 else
1352
1353 /* Try "opcode heuristic."
1354 EQ tests are usually false and NE tests are usually true. Also,
1355 most quantities are positive, so we can make the appropriate guesses
1356 about signed comparisons against zero. */
1357 switch (cmp)
1358 {
1359 case EQ_EXPR:
1360 case UNEQ_EXPR:
1361 /* Floating point comparisons appears to behave in a very
1362 unpredictable way because of special role of = tests in
1363 FP code. */
1364 if (FLOAT_TYPE_P (type))
1365 ;
1366 /* Comparisons with 0 are often used for booleans and there is
1367 nothing useful to predict about them. */
1368 else if (integer_zerop (op0) || integer_zerop (op1))
1369 ;
1370 else
1371 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1372 break;
1373
1374 case NE_EXPR:
1375 case LTGT_EXPR:
1376 /* Floating point comparisons appears to behave in a very
1377 unpredictable way because of special role of = tests in
1378 FP code. */
1379 if (FLOAT_TYPE_P (type))
1380 ;
1381 /* Comparisons with 0 are often used for booleans and there is
1382 nothing useful to predict about them. */
1383 else if (integer_zerop (op0)
1384 || integer_zerop (op1))
1385 ;
1386 else
1387 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1388 break;
1389
1390 case ORDERED_EXPR:
1391 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1392 break;
1393
1394 case UNORDERED_EXPR:
1395 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1396 break;
1397
1398 case LE_EXPR:
1399 case LT_EXPR:
1400 if (integer_zerop (op1)
1401 || integer_onep (op1)
1402 || integer_all_onesp (op1)
1403 || real_zerop (op1)
1404 || real_onep (op1)
1405 || real_minus_onep (op1))
1406 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1407 break;
1408
1409 case GE_EXPR:
1410 case GT_EXPR:
1411 if (integer_zerop (op1)
1412 || integer_onep (op1)
1413 || integer_all_onesp (op1)
1414 || real_zerop (op1)
1415 || real_onep (op1)
1416 || real_minus_onep (op1))
1417 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1418 break;
1419
1420 default:
1421 break;
1422 }
1423 }
1424
1425 /* Try to guess whether the value of return means error code. */
1426
1427 static enum br_predictor
1428 return_prediction (tree val, enum prediction *prediction)
1429 {
1430 /* VOID. */
1431 if (!val)
1432 return PRED_NO_PREDICTION;
1433 /* Different heuristics for pointers and scalars. */
1434 if (POINTER_TYPE_P (TREE_TYPE (val)))
1435 {
1436 /* NULL is usually not returned. */
1437 if (integer_zerop (val))
1438 {
1439 *prediction = NOT_TAKEN;
1440 return PRED_NULL_RETURN;
1441 }
1442 }
1443 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1444 {
1445 /* Negative return values are often used to indicate
1446 errors. */
1447 if (TREE_CODE (val) == INTEGER_CST
1448 && tree_int_cst_sgn (val) < 0)
1449 {
1450 *prediction = NOT_TAKEN;
1451 return PRED_NEGATIVE_RETURN;
1452 }
1453 /* Constant return values seems to be commonly taken.
1454 Zero/one often represent booleans so exclude them from the
1455 heuristics. */
1456 if (TREE_CONSTANT (val)
1457 && (!integer_zerop (val) && !integer_onep (val)))
1458 {
1459 *prediction = TAKEN;
1460 return PRED_CONST_RETURN;
1461 }
1462 }
1463 return PRED_NO_PREDICTION;
1464 }
1465
1466 /* Find the basic block with return expression and look up for possible
1467 return value trying to apply RETURN_PREDICTION heuristics. */
1468 static void
1469 apply_return_prediction (void)
1470 {
1471 gimple return_stmt = NULL;
1472 tree return_val;
1473 edge e;
1474 gimple phi;
1475 int phi_num_args, i;
1476 enum br_predictor pred;
1477 enum prediction direction;
1478 edge_iterator ei;
1479
1480 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1481 {
1482 return_stmt = last_stmt (e->src);
1483 if (return_stmt
1484 && gimple_code (return_stmt) == GIMPLE_RETURN)
1485 break;
1486 }
1487 if (!e)
1488 return;
1489 return_val = gimple_return_retval (return_stmt);
1490 if (!return_val)
1491 return;
1492 if (TREE_CODE (return_val) != SSA_NAME
1493 || !SSA_NAME_DEF_STMT (return_val)
1494 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1495 return;
1496 phi = SSA_NAME_DEF_STMT (return_val);
1497 phi_num_args = gimple_phi_num_args (phi);
1498 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1499
1500 /* Avoid the degenerate case where all return values form the function
1501 belongs to same category (ie they are all positive constants)
1502 so we can hardly say something about them. */
1503 for (i = 1; i < phi_num_args; i++)
1504 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1505 break;
1506 if (i != phi_num_args)
1507 for (i = 0; i < phi_num_args; i++)
1508 {
1509 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1510 if (pred != PRED_NO_PREDICTION)
1511 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1512 direction);
1513 }
1514 }
1515
1516 /* Look for basic block that contains unlikely to happen events
1517 (such as noreturn calls) and mark all paths leading to execution
1518 of this basic blocks as unlikely. */
1519
1520 static void
1521 tree_bb_level_predictions (void)
1522 {
1523 basic_block bb;
1524
1525 apply_return_prediction ();
1526
1527 FOR_EACH_BB (bb)
1528 {
1529 gimple_stmt_iterator gsi;
1530
1531 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1532 {
1533 gimple stmt = gsi_stmt (gsi);
1534 tree decl;
1535
1536 if (is_gimple_call (stmt))
1537 {
1538 if (gimple_call_flags (stmt) & ECF_NORETURN)
1539 predict_paths_leading_to (bb, PRED_NORETURN,
1540 NOT_TAKEN);
1541 decl = gimple_call_fndecl (stmt);
1542 if (decl
1543 && lookup_attribute ("cold",
1544 DECL_ATTRIBUTES (decl)))
1545 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1546 NOT_TAKEN);
1547 }
1548 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1549 {
1550 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1551 gimple_predict_outcome (stmt));
1552 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1553 hints to callers. */
1554 }
1555 }
1556 }
1557 }
1558
1559 #ifdef ENABLE_CHECKING
1560
1561 /* Callback for pointer_map_traverse, asserts that the pointer map is
1562 empty. */
1563
1564 static bool
1565 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1566 void *data ATTRIBUTE_UNUSED)
1567 {
1568 gcc_assert (!*value);
1569 return false;
1570 }
1571 #endif
1572
1573 /* Predict branch probabilities and estimate profile of the tree CFG. */
1574 static unsigned int
1575 tree_estimate_probability (void)
1576 {
1577 basic_block bb;
1578
1579 loop_optimizer_init (0);
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1581 flow_loops_dump (dump_file, NULL, 0);
1582
1583 add_noreturn_fake_exit_edges ();
1584 connect_infinite_loops_to_exit ();
1585 /* We use loop_niter_by_eval, which requires that the loops have
1586 preheaders. */
1587 create_preheaders (CP_SIMPLE_PREHEADERS);
1588 calculate_dominance_info (CDI_POST_DOMINATORS);
1589
1590 bb_predictions = pointer_map_create ();
1591 tree_bb_level_predictions ();
1592
1593 mark_irreducible_loops ();
1594 record_loop_exits ();
1595 if (number_of_loops () > 1)
1596 predict_loops ();
1597
1598 FOR_EACH_BB (bb)
1599 {
1600 edge e;
1601 edge_iterator ei;
1602
1603 FOR_EACH_EDGE (e, ei, bb->succs)
1604 {
1605 /* Predict early returns to be probable, as we've already taken
1606 care for error returns and other cases are often used for
1607 fast paths through function.
1608
1609 Since we've already removed the return statements, we are
1610 looking for CFG like:
1611
1612 if (conditional)
1613 {
1614 ..
1615 goto return_block
1616 }
1617 some other blocks
1618 return_block:
1619 return_stmt. */
1620 if (e->dest != bb->next_bb
1621 && e->dest != EXIT_BLOCK_PTR
1622 && single_succ_p (e->dest)
1623 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1624 && gimple_code (last_stmt (e->dest)) == GIMPLE_RETURN)
1625 {
1626 edge e1;
1627 edge_iterator ei1;
1628
1629 if (single_succ_p (bb))
1630 {
1631 FOR_EACH_EDGE (e1, ei1, bb->preds)
1632 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1633 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1634 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1635 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1636 }
1637 else
1638 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1639 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1640 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1641 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1642 }
1643
1644 /* Look for block we are guarding (ie we dominate it,
1645 but it doesn't postdominate us). */
1646 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1647 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1648 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1649 {
1650 gimple_stmt_iterator bi;
1651
1652 /* The call heuristic claims that a guarded function call
1653 is improbable. This is because such calls are often used
1654 to signal exceptional situations such as printing error
1655 messages. */
1656 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1657 gsi_next (&bi))
1658 {
1659 gimple stmt = gsi_stmt (bi);
1660 if (is_gimple_call (stmt)
1661 /* Constant and pure calls are hardly used to signalize
1662 something exceptional. */
1663 && gimple_has_side_effects (stmt))
1664 {
1665 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1666 break;
1667 }
1668 }
1669 }
1670 }
1671 tree_predict_by_opcode (bb);
1672 }
1673 FOR_EACH_BB (bb)
1674 combine_predictions_for_bb (bb);
1675
1676 #ifdef ENABLE_CHECKING
1677 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1678 #endif
1679 pointer_map_destroy (bb_predictions);
1680 bb_predictions = NULL;
1681
1682 estimate_bb_frequencies ();
1683 free_dominance_info (CDI_POST_DOMINATORS);
1684 remove_fake_exit_edges ();
1685 loop_optimizer_finalize ();
1686 if (dump_file && (dump_flags & TDF_DETAILS))
1687 gimple_dump_cfg (dump_file, dump_flags);
1688 if (profile_status == PROFILE_ABSENT)
1689 profile_status = PROFILE_GUESSED;
1690 return 0;
1691 }
1692 \f
1693 /* Predict edges to successors of CUR whose sources are not postdominated by
1694 BB by PRED and recurse to all postdominators. */
1695
1696 static void
1697 predict_paths_for_bb (basic_block cur, basic_block bb,
1698 enum br_predictor pred,
1699 enum prediction taken)
1700 {
1701 edge e;
1702 edge_iterator ei;
1703 basic_block son;
1704
1705 /* We are looking for all edges forming edge cut induced by
1706 set of all blocks postdominated by BB. */
1707 FOR_EACH_EDGE (e, ei, cur->preds)
1708 if (e->src->index >= NUM_FIXED_BLOCKS
1709 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1710 {
1711 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1712 predict_edge_def (e, pred, taken);
1713 }
1714 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1715 son;
1716 son = next_dom_son (CDI_POST_DOMINATORS, son))
1717 predict_paths_for_bb (son, bb, pred, taken);
1718 }
1719
1720 /* Sets branch probabilities according to PREDiction and
1721 FLAGS. */
1722
1723 static void
1724 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1725 enum prediction taken)
1726 {
1727 predict_paths_for_bb (bb, bb, pred, taken);
1728 }
1729 \f
1730 /* This is used to carry information about basic blocks. It is
1731 attached to the AUX field of the standard CFG block. */
1732
1733 typedef struct block_info_def
1734 {
1735 /* Estimated frequency of execution of basic_block. */
1736 sreal frequency;
1737
1738 /* To keep queue of basic blocks to process. */
1739 basic_block next;
1740
1741 /* Number of predecessors we need to visit first. */
1742 int npredecessors;
1743 } *block_info;
1744
1745 /* Similar information for edges. */
1746 typedef struct edge_info_def
1747 {
1748 /* In case edge is a loopback edge, the probability edge will be reached
1749 in case header is. Estimated number of iterations of the loop can be
1750 then computed as 1 / (1 - back_edge_prob). */
1751 sreal back_edge_prob;
1752 /* True if the edge is a loopback edge in the natural loop. */
1753 unsigned int back_edge:1;
1754 } *edge_info;
1755
1756 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1757 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1758
1759 /* Helper function for estimate_bb_frequencies.
1760 Propagate the frequencies in blocks marked in
1761 TOVISIT, starting in HEAD. */
1762
1763 static void
1764 propagate_freq (basic_block head, bitmap tovisit)
1765 {
1766 basic_block bb;
1767 basic_block last;
1768 unsigned i;
1769 edge e;
1770 basic_block nextbb;
1771 bitmap_iterator bi;
1772
1773 /* For each basic block we need to visit count number of his predecessors
1774 we need to visit first. */
1775 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1776 {
1777 edge_iterator ei;
1778 int count = 0;
1779
1780 /* The outermost "loop" includes the exit block, which we can not
1781 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1782 directly. Do the same for the entry block. */
1783 bb = BASIC_BLOCK (i);
1784
1785 FOR_EACH_EDGE (e, ei, bb->preds)
1786 {
1787 bool visit = bitmap_bit_p (tovisit, e->src->index);
1788
1789 if (visit && !(e->flags & EDGE_DFS_BACK))
1790 count++;
1791 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1792 fprintf (dump_file,
1793 "Irreducible region hit, ignoring edge to %i->%i\n",
1794 e->src->index, bb->index);
1795 }
1796 BLOCK_INFO (bb)->npredecessors = count;
1797 }
1798
1799 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1800 last = head;
1801 for (bb = head; bb; bb = nextbb)
1802 {
1803 edge_iterator ei;
1804 sreal cyclic_probability, frequency;
1805
1806 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1807 memcpy (&frequency, &real_zero, sizeof (real_zero));
1808
1809 nextbb = BLOCK_INFO (bb)->next;
1810 BLOCK_INFO (bb)->next = NULL;
1811
1812 /* Compute frequency of basic block. */
1813 if (bb != head)
1814 {
1815 #ifdef ENABLE_CHECKING
1816 FOR_EACH_EDGE (e, ei, bb->preds)
1817 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1818 || (e->flags & EDGE_DFS_BACK));
1819 #endif
1820
1821 FOR_EACH_EDGE (e, ei, bb->preds)
1822 if (EDGE_INFO (e)->back_edge)
1823 {
1824 sreal_add (&cyclic_probability, &cyclic_probability,
1825 &EDGE_INFO (e)->back_edge_prob);
1826 }
1827 else if (!(e->flags & EDGE_DFS_BACK))
1828 {
1829 sreal tmp;
1830
1831 /* frequency += (e->probability
1832 * BLOCK_INFO (e->src)->frequency /
1833 REG_BR_PROB_BASE); */
1834
1835 sreal_init (&tmp, e->probability, 0);
1836 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1837 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1838 sreal_add (&frequency, &frequency, &tmp);
1839 }
1840
1841 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1842 {
1843 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1844 sizeof (frequency));
1845 }
1846 else
1847 {
1848 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1849 {
1850 memcpy (&cyclic_probability, &real_almost_one,
1851 sizeof (real_almost_one));
1852 }
1853
1854 /* BLOCK_INFO (bb)->frequency = frequency
1855 / (1 - cyclic_probability) */
1856
1857 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1858 sreal_div (&BLOCK_INFO (bb)->frequency,
1859 &frequency, &cyclic_probability);
1860 }
1861 }
1862
1863 bitmap_clear_bit (tovisit, bb->index);
1864
1865 e = find_edge (bb, head);
1866 if (e)
1867 {
1868 sreal tmp;
1869
1870 /* EDGE_INFO (e)->back_edge_prob
1871 = ((e->probability * BLOCK_INFO (bb)->frequency)
1872 / REG_BR_PROB_BASE); */
1873
1874 sreal_init (&tmp, e->probability, 0);
1875 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1876 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1877 &tmp, &real_inv_br_prob_base);
1878 }
1879
1880 /* Propagate to successor blocks. */
1881 FOR_EACH_EDGE (e, ei, bb->succs)
1882 if (!(e->flags & EDGE_DFS_BACK)
1883 && BLOCK_INFO (e->dest)->npredecessors)
1884 {
1885 BLOCK_INFO (e->dest)->npredecessors--;
1886 if (!BLOCK_INFO (e->dest)->npredecessors)
1887 {
1888 if (!nextbb)
1889 nextbb = e->dest;
1890 else
1891 BLOCK_INFO (last)->next = e->dest;
1892
1893 last = e->dest;
1894 }
1895 }
1896 }
1897 }
1898
1899 /* Estimate probabilities of loopback edges in loops at same nest level. */
1900
1901 static void
1902 estimate_loops_at_level (struct loop *first_loop)
1903 {
1904 struct loop *loop;
1905
1906 for (loop = first_loop; loop; loop = loop->next)
1907 {
1908 edge e;
1909 basic_block *bbs;
1910 unsigned i;
1911 bitmap tovisit = BITMAP_ALLOC (NULL);
1912
1913 estimate_loops_at_level (loop->inner);
1914
1915 /* Find current loop back edge and mark it. */
1916 e = loop_latch_edge (loop);
1917 EDGE_INFO (e)->back_edge = 1;
1918
1919 bbs = get_loop_body (loop);
1920 for (i = 0; i < loop->num_nodes; i++)
1921 bitmap_set_bit (tovisit, bbs[i]->index);
1922 free (bbs);
1923 propagate_freq (loop->header, tovisit);
1924 BITMAP_FREE (tovisit);
1925 }
1926 }
1927
1928 /* Propagates frequencies through structure of loops. */
1929
1930 static void
1931 estimate_loops (void)
1932 {
1933 bitmap tovisit = BITMAP_ALLOC (NULL);
1934 basic_block bb;
1935
1936 /* Start by estimating the frequencies in the loops. */
1937 if (number_of_loops () > 1)
1938 estimate_loops_at_level (current_loops->tree_root->inner);
1939
1940 /* Now propagate the frequencies through all the blocks. */
1941 FOR_ALL_BB (bb)
1942 {
1943 bitmap_set_bit (tovisit, bb->index);
1944 }
1945 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1946 BITMAP_FREE (tovisit);
1947 }
1948
1949 /* Convert counts measured by profile driven feedback to frequencies.
1950 Return nonzero iff there was any nonzero execution count. */
1951
1952 int
1953 counts_to_freqs (void)
1954 {
1955 gcov_type count_max, true_count_max = 0;
1956 basic_block bb;
1957
1958 FOR_EACH_BB (bb)
1959 true_count_max = MAX (bb->count, true_count_max);
1960
1961 count_max = MAX (true_count_max, 1);
1962 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1963 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1964
1965 return true_count_max;
1966 }
1967
1968 /* Return true if function is likely to be expensive, so there is no point to
1969 optimize performance of prologue, epilogue or do inlining at the expense
1970 of code size growth. THRESHOLD is the limit of number of instructions
1971 function can execute at average to be still considered not expensive. */
1972
1973 bool
1974 expensive_function_p (int threshold)
1975 {
1976 unsigned int sum = 0;
1977 basic_block bb;
1978 unsigned int limit;
1979
1980 /* We can not compute accurately for large thresholds due to scaled
1981 frequencies. */
1982 gcc_assert (threshold <= BB_FREQ_MAX);
1983
1984 /* Frequencies are out of range. This either means that function contains
1985 internal loop executing more than BB_FREQ_MAX times or profile feedback
1986 is available and function has not been executed at all. */
1987 if (ENTRY_BLOCK_PTR->frequency == 0)
1988 return true;
1989
1990 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1991 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1992 FOR_EACH_BB (bb)
1993 {
1994 rtx insn;
1995
1996 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1997 insn = NEXT_INSN (insn))
1998 if (active_insn_p (insn))
1999 {
2000 sum += bb->frequency;
2001 if (sum > limit)
2002 return true;
2003 }
2004 }
2005
2006 return false;
2007 }
2008
2009 /* Estimate basic blocks frequency by given branch probabilities. */
2010
2011 void
2012 estimate_bb_frequencies (void)
2013 {
2014 basic_block bb;
2015 sreal freq_max;
2016
2017 if (cfun->function_frequency != PROFILE_READ || !counts_to_freqs ())
2018 {
2019 static int real_values_initialized = 0;
2020
2021 if (!real_values_initialized)
2022 {
2023 real_values_initialized = 1;
2024 sreal_init (&real_zero, 0, 0);
2025 sreal_init (&real_one, 1, 0);
2026 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2027 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2028 sreal_init (&real_one_half, 1, -1);
2029 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2030 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2031 }
2032
2033 mark_dfs_back_edges ();
2034
2035 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2036
2037 /* Set up block info for each basic block. */
2038 alloc_aux_for_blocks (sizeof (struct block_info_def));
2039 alloc_aux_for_edges (sizeof (struct edge_info_def));
2040 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2041 {
2042 edge e;
2043 edge_iterator ei;
2044
2045 FOR_EACH_EDGE (e, ei, bb->succs)
2046 {
2047 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2048 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2049 &EDGE_INFO (e)->back_edge_prob,
2050 &real_inv_br_prob_base);
2051 }
2052 }
2053
2054 /* First compute probabilities locally for each loop from innermost
2055 to outermost to examine probabilities for back edges. */
2056 estimate_loops ();
2057
2058 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2059 FOR_EACH_BB (bb)
2060 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2061 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2062
2063 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2064 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2065 {
2066 sreal tmp;
2067
2068 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2069 sreal_add (&tmp, &tmp, &real_one_half);
2070 bb->frequency = sreal_to_int (&tmp);
2071 }
2072
2073 free_aux_for_blocks ();
2074 free_aux_for_edges ();
2075 }
2076 compute_function_frequency ();
2077 if (flag_reorder_functions)
2078 choose_function_section ();
2079 }
2080
2081 /* Decide whether function is hot, cold or unlikely executed. */
2082 static void
2083 compute_function_frequency (void)
2084 {
2085 basic_block bb;
2086
2087 if (!profile_info || !flag_branch_probabilities)
2088 {
2089 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2090 != NULL)
2091 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2092 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2093 != NULL)
2094 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2095 return;
2096 }
2097 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2098 FOR_EACH_BB (bb)
2099 {
2100 if (maybe_hot_bb_p (bb))
2101 {
2102 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2103 return;
2104 }
2105 if (!probably_never_executed_bb_p (bb))
2106 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
2107 }
2108 }
2109
2110 /* Choose appropriate section for the function. */
2111 static void
2112 choose_function_section (void)
2113 {
2114 if (DECL_SECTION_NAME (current_function_decl)
2115 || !targetm.have_named_sections
2116 /* Theoretically we can split the gnu.linkonce text section too,
2117 but this requires more work as the frequency needs to match
2118 for all generated objects so we need to merge the frequency
2119 of all instances. For now just never set frequency for these. */
2120 || DECL_ONE_ONLY (current_function_decl))
2121 return;
2122
2123 /* If we are doing the partitioning optimization, let the optimization
2124 choose the correct section into which to put things. */
2125
2126 if (flag_reorder_blocks_and_partition)
2127 return;
2128
2129 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
2130 DECL_SECTION_NAME (current_function_decl) =
2131 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2132 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
2133 DECL_SECTION_NAME (current_function_decl) =
2134 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2135 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2136 }
2137
2138 static bool
2139 gate_estimate_probability (void)
2140 {
2141 return flag_guess_branch_prob;
2142 }
2143
2144 /* Build PREDICT_EXPR. */
2145 tree
2146 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2147 {
2148 tree t = build1 (PREDICT_EXPR, void_type_node,
2149 build_int_cst (NULL, predictor));
2150 PREDICT_EXPR_OUTCOME (t) = taken;
2151 return t;
2152 }
2153
2154 const char *
2155 predictor_name (enum br_predictor predictor)
2156 {
2157 return predictor_info[predictor].name;
2158 }
2159
2160 struct gimple_opt_pass pass_profile =
2161 {
2162 {
2163 GIMPLE_PASS,
2164 "profile", /* name */
2165 gate_estimate_probability, /* gate */
2166 tree_estimate_probability, /* execute */
2167 NULL, /* sub */
2168 NULL, /* next */
2169 0, /* static_pass_number */
2170 TV_BRANCH_PROB, /* tv_id */
2171 PROP_cfg, /* properties_required */
2172 0, /* properties_provided */
2173 0, /* properties_destroyed */
2174 0, /* todo_flags_start */
2175 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2176 }
2177 };
2178
2179 struct gimple_opt_pass pass_strip_predict_hints =
2180 {
2181 {
2182 GIMPLE_PASS,
2183 NULL, /* name */
2184 NULL, /* gate */
2185 strip_predict_hints, /* execute */
2186 NULL, /* sub */
2187 NULL, /* next */
2188 0, /* static_pass_number */
2189 TV_BRANCH_PROB, /* tv_id */
2190 PROP_cfg, /* properties_required */
2191 0, /* properties_provided */
2192 0, /* properties_destroyed */
2193 0, /* todo_flags_start */
2194 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2195 }
2196 };