Clean up of new format of -falign-FOO.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "cfgloop.h"
53 #include "gimple-iterator.h"
54 #include "tree-cfg.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-scalar-evolution.h"
58 #include "ipa-utils.h"
59 #include "gimple-pretty-print.h"
60 #include "selftest.h"
61 #include "cfgrtl.h"
62 #include "stringpool.h"
63 #include "attribs.h"
64
65 /* Enum with reasons why a predictor is ignored. */
66
67 enum predictor_reason
68 {
69 REASON_NONE,
70 REASON_IGNORED,
71 REASON_SINGLE_EDGE_DUPLICATE,
72 REASON_EDGE_PAIR_DUPLICATE
73 };
74
75 /* String messages for the aforementioned enum. */
76
77 static const char *reason_messages[] = {"", " (ignored)",
78 " (single edge duplicate)", " (edge pair duplicate)"};
79
80 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
81 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
82 static sreal real_almost_one, real_br_prob_base,
83 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
84
85 static void combine_predictions_for_insn (rtx_insn *, basic_block);
86 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
87 enum predictor_reason, edge);
88 static void predict_paths_leading_to (basic_block, enum br_predictor,
89 enum prediction,
90 struct loop *in_loop = NULL);
91 static void predict_paths_leading_to_edge (edge, enum br_predictor,
92 enum prediction,
93 struct loop *in_loop = NULL);
94 static bool can_predict_insn_p (const rtx_insn *);
95
96 /* Information we hold about each branch predictor.
97 Filled using information from predict.def. */
98
99 struct predictor_info
100 {
101 const char *const name; /* Name used in the debugging dumps. */
102 const int hitrate; /* Expected hitrate used by
103 predict_insn_def call. */
104 const int flags;
105 };
106
107 /* Use given predictor without Dempster-Shaffer theory if it matches
108 using first_match heuristics. */
109 #define PRED_FLAG_FIRST_MATCH 1
110
111 /* Recompute hitrate in percent to our representation. */
112
113 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
114
115 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
116 static const struct predictor_info predictor_info[]= {
117 #include "predict.def"
118
119 /* Upper bound on predictors. */
120 {NULL, 0, 0}
121 };
122 #undef DEF_PREDICTOR
123
124 static gcov_type min_count = -1;
125
126 /* Determine the threshold for hot BB counts. */
127
128 gcov_type
129 get_hot_bb_threshold ()
130 {
131 gcov_working_set_t *ws;
132 if (min_count == -1)
133 {
134 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
135 gcc_assert (ws);
136 min_count = ws->min_counter;
137 }
138 return min_count;
139 }
140
141 /* Set the threshold for hot BB counts. */
142
143 void
144 set_hot_bb_threshold (gcov_type min)
145 {
146 min_count = min;
147 }
148
149 /* Return TRUE if frequency FREQ is considered to be hot. */
150
151 bool
152 maybe_hot_count_p (struct function *fun, profile_count count)
153 {
154 if (!count.initialized_p ())
155 return true;
156 if (count.ipa () == profile_count::zero ())
157 return false;
158 if (!count.ipa_p ())
159 {
160 struct cgraph_node *node = cgraph_node::get (fun->decl);
161 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
162 {
163 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
164 return false;
165 if (node->frequency == NODE_FREQUENCY_HOT)
166 return true;
167 }
168 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
169 return true;
170 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
171 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
172 return false;
173 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
174 return false;
175 if (count.apply_scale (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION), 1)
176 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
177 return false;
178 return true;
179 }
180 /* Code executed at most once is not hot. */
181 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
182 return false;
183 return (count.to_gcov_type () >= get_hot_bb_threshold ());
184 }
185
186 /* Return true in case BB can be CPU intensive and should be optimized
187 for maximal performance. */
188
189 bool
190 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
191 {
192 gcc_checking_assert (fun);
193 return maybe_hot_count_p (fun, bb->count);
194 }
195
196 /* Return true in case BB can be CPU intensive and should be optimized
197 for maximal performance. */
198
199 bool
200 maybe_hot_edge_p (edge e)
201 {
202 return maybe_hot_count_p (cfun, e->count ());
203 }
204
205 /* Return true if profile COUNT and FREQUENCY, or function FUN static
206 node frequency reflects never being executed. */
207
208 static bool
209 probably_never_executed (struct function *fun,
210 profile_count count)
211 {
212 gcc_checking_assert (fun);
213 if (count.ipa () == profile_count::zero ())
214 return true;
215 /* Do not trust adjusted counts. This will make us to drop int cold section
216 code with low execution count as a result of inlining. These low counts
217 are not safe even with read profile and may lead us to dropping
218 code which actually gets executed into cold section of binary that is not
219 desirable. */
220 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
221 {
222 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
223 if (count.apply_scale (unlikely_count_fraction, 1) >= profile_info->runs)
224 return false;
225 return true;
226 }
227 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
228 && (cgraph_node::get (fun->decl)->frequency
229 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
230 return true;
231 return false;
232 }
233
234
235 /* Return true in case BB is probably never executed. */
236
237 bool
238 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
239 {
240 return probably_never_executed (fun, bb->count);
241 }
242
243
244 /* Return true if E is unlikely executed for obvious reasons. */
245
246 static bool
247 unlikely_executed_edge_p (edge e)
248 {
249 return (e->count () == profile_count::zero ()
250 || e->probability == profile_probability::never ())
251 || (e->flags & (EDGE_EH | EDGE_FAKE));
252 }
253
254 /* Return true in case edge E is probably never executed. */
255
256 bool
257 probably_never_executed_edge_p (struct function *fun, edge e)
258 {
259 if (unlikely_executed_edge_p (e))
260 return true;
261 return probably_never_executed (fun, e->count ());
262 }
263
264 /* Return true when current function should always be optimized for size. */
265
266 bool
267 optimize_function_for_size_p (struct function *fun)
268 {
269 if (!fun || !fun->decl)
270 return optimize_size;
271 cgraph_node *n = cgraph_node::get (fun->decl);
272 return n && n->optimize_for_size_p ();
273 }
274
275 /* Return true when current function should always be optimized for speed. */
276
277 bool
278 optimize_function_for_speed_p (struct function *fun)
279 {
280 return !optimize_function_for_size_p (fun);
281 }
282
283 /* Return the optimization type that should be used for the function FUN. */
284
285 optimization_type
286 function_optimization_type (struct function *fun)
287 {
288 return (optimize_function_for_speed_p (fun)
289 ? OPTIMIZE_FOR_SPEED
290 : OPTIMIZE_FOR_SIZE);
291 }
292
293 /* Return TRUE when BB should be optimized for size. */
294
295 bool
296 optimize_bb_for_size_p (const_basic_block bb)
297 {
298 return (optimize_function_for_size_p (cfun)
299 || (bb && !maybe_hot_bb_p (cfun, bb)));
300 }
301
302 /* Return TRUE when BB should be optimized for speed. */
303
304 bool
305 optimize_bb_for_speed_p (const_basic_block bb)
306 {
307 return !optimize_bb_for_size_p (bb);
308 }
309
310 /* Return the optimization type that should be used for block BB. */
311
312 optimization_type
313 bb_optimization_type (const_basic_block bb)
314 {
315 return (optimize_bb_for_speed_p (bb)
316 ? OPTIMIZE_FOR_SPEED
317 : OPTIMIZE_FOR_SIZE);
318 }
319
320 /* Return TRUE when BB should be optimized for size. */
321
322 bool
323 optimize_edge_for_size_p (edge e)
324 {
325 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
326 }
327
328 /* Return TRUE when BB should be optimized for speed. */
329
330 bool
331 optimize_edge_for_speed_p (edge e)
332 {
333 return !optimize_edge_for_size_p (e);
334 }
335
336 /* Return TRUE when BB should be optimized for size. */
337
338 bool
339 optimize_insn_for_size_p (void)
340 {
341 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
342 }
343
344 /* Return TRUE when BB should be optimized for speed. */
345
346 bool
347 optimize_insn_for_speed_p (void)
348 {
349 return !optimize_insn_for_size_p ();
350 }
351
352 /* Return TRUE when LOOP should be optimized for size. */
353
354 bool
355 optimize_loop_for_size_p (struct loop *loop)
356 {
357 return optimize_bb_for_size_p (loop->header);
358 }
359
360 /* Return TRUE when LOOP should be optimized for speed. */
361
362 bool
363 optimize_loop_for_speed_p (struct loop *loop)
364 {
365 return optimize_bb_for_speed_p (loop->header);
366 }
367
368 /* Return TRUE when LOOP nest should be optimized for speed. */
369
370 bool
371 optimize_loop_nest_for_speed_p (struct loop *loop)
372 {
373 struct loop *l = loop;
374 if (optimize_loop_for_speed_p (loop))
375 return true;
376 l = loop->inner;
377 while (l && l != loop)
378 {
379 if (optimize_loop_for_speed_p (l))
380 return true;
381 if (l->inner)
382 l = l->inner;
383 else if (l->next)
384 l = l->next;
385 else
386 {
387 while (l != loop && !l->next)
388 l = loop_outer (l);
389 if (l != loop)
390 l = l->next;
391 }
392 }
393 return false;
394 }
395
396 /* Return TRUE when LOOP nest should be optimized for size. */
397
398 bool
399 optimize_loop_nest_for_size_p (struct loop *loop)
400 {
401 return !optimize_loop_nest_for_speed_p (loop);
402 }
403
404 /* Return true when edge E is likely to be well predictable by branch
405 predictor. */
406
407 bool
408 predictable_edge_p (edge e)
409 {
410 if (!e->probability.initialized_p ())
411 return false;
412 if ((e->probability.to_reg_br_prob_base ()
413 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
414 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
415 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
416 return true;
417 return false;
418 }
419
420
421 /* Set RTL expansion for BB profile. */
422
423 void
424 rtl_profile_for_bb (basic_block bb)
425 {
426 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
427 }
428
429 /* Set RTL expansion for edge profile. */
430
431 void
432 rtl_profile_for_edge (edge e)
433 {
434 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
435 }
436
437 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
438 void
439 default_rtl_profile (void)
440 {
441 crtl->maybe_hot_insn_p = true;
442 }
443
444 /* Return true if the one of outgoing edges is already predicted by
445 PREDICTOR. */
446
447 bool
448 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
449 {
450 rtx note;
451 if (!INSN_P (BB_END (bb)))
452 return false;
453 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
454 if (REG_NOTE_KIND (note) == REG_BR_PRED
455 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
456 return true;
457 return false;
458 }
459
460 /* Structure representing predictions in tree level. */
461
462 struct edge_prediction {
463 struct edge_prediction *ep_next;
464 edge ep_edge;
465 enum br_predictor ep_predictor;
466 int ep_probability;
467 };
468
469 /* This map contains for a basic block the list of predictions for the
470 outgoing edges. */
471
472 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
473
474 /* Return true if the one of outgoing edges is already predicted by
475 PREDICTOR. */
476
477 bool
478 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
479 {
480 struct edge_prediction *i;
481 edge_prediction **preds = bb_predictions->get (bb);
482
483 if (!preds)
484 return false;
485
486 for (i = *preds; i; i = i->ep_next)
487 if (i->ep_predictor == predictor)
488 return true;
489 return false;
490 }
491
492 /* Return true if the one of outgoing edges is already predicted by
493 PREDICTOR for edge E predicted as TAKEN. */
494
495 bool
496 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
497 {
498 struct edge_prediction *i;
499 basic_block bb = e->src;
500 edge_prediction **preds = bb_predictions->get (bb);
501 if (!preds)
502 return false;
503
504 int probability = predictor_info[(int) predictor].hitrate;
505
506 if (taken != TAKEN)
507 probability = REG_BR_PROB_BASE - probability;
508
509 for (i = *preds; i; i = i->ep_next)
510 if (i->ep_predictor == predictor
511 && i->ep_edge == e
512 && i->ep_probability == probability)
513 return true;
514 return false;
515 }
516
517 /* Same predicate as above, working on edges. */
518 bool
519 edge_probability_reliable_p (const_edge e)
520 {
521 return e->probability.probably_reliable_p ();
522 }
523
524 /* Same predicate as edge_probability_reliable_p, working on notes. */
525 bool
526 br_prob_note_reliable_p (const_rtx note)
527 {
528 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
529 return profile_probability::from_reg_br_prob_note
530 (XINT (note, 0)).probably_reliable_p ();
531 }
532
533 static void
534 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
535 {
536 gcc_assert (any_condjump_p (insn));
537 if (!flag_guess_branch_prob)
538 return;
539
540 add_reg_note (insn, REG_BR_PRED,
541 gen_rtx_CONCAT (VOIDmode,
542 GEN_INT ((int) predictor),
543 GEN_INT ((int) probability)));
544 }
545
546 /* Predict insn by given predictor. */
547
548 void
549 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
550 enum prediction taken)
551 {
552 int probability = predictor_info[(int) predictor].hitrate;
553 gcc_assert (probability != PROB_UNINITIALIZED);
554
555 if (taken != TAKEN)
556 probability = REG_BR_PROB_BASE - probability;
557
558 predict_insn (insn, predictor, probability);
559 }
560
561 /* Predict edge E with given probability if possible. */
562
563 void
564 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
565 {
566 rtx_insn *last_insn;
567 last_insn = BB_END (e->src);
568
569 /* We can store the branch prediction information only about
570 conditional jumps. */
571 if (!any_condjump_p (last_insn))
572 return;
573
574 /* We always store probability of branching. */
575 if (e->flags & EDGE_FALLTHRU)
576 probability = REG_BR_PROB_BASE - probability;
577
578 predict_insn (last_insn, predictor, probability);
579 }
580
581 /* Predict edge E with the given PROBABILITY. */
582 void
583 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
584 {
585 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
586 && EDGE_COUNT (e->src->succs) > 1
587 && flag_guess_branch_prob
588 && optimize)
589 {
590 struct edge_prediction *i = XNEW (struct edge_prediction);
591 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
592
593 i->ep_next = preds;
594 preds = i;
595 i->ep_probability = probability;
596 i->ep_predictor = predictor;
597 i->ep_edge = e;
598 }
599 }
600
601 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
602 to the filter function. */
603
604 void
605 filter_predictions (edge_prediction **preds,
606 bool (*filter) (edge_prediction *, void *), void *data)
607 {
608 if (!bb_predictions)
609 return;
610
611 if (preds)
612 {
613 struct edge_prediction **prediction = preds;
614 struct edge_prediction *next;
615
616 while (*prediction)
617 {
618 if ((*filter) (*prediction, data))
619 prediction = &((*prediction)->ep_next);
620 else
621 {
622 next = (*prediction)->ep_next;
623 free (*prediction);
624 *prediction = next;
625 }
626 }
627 }
628 }
629
630 /* Filter function predicate that returns true for a edge predicate P
631 if its edge is equal to DATA. */
632
633 bool
634 equal_edge_p (edge_prediction *p, void *data)
635 {
636 return p->ep_edge == (edge)data;
637 }
638
639 /* Remove all predictions on given basic block that are attached
640 to edge E. */
641 void
642 remove_predictions_associated_with_edge (edge e)
643 {
644 if (!bb_predictions)
645 return;
646
647 edge_prediction **preds = bb_predictions->get (e->src);
648 filter_predictions (preds, equal_edge_p, e);
649 }
650
651 /* Clears the list of predictions stored for BB. */
652
653 static void
654 clear_bb_predictions (basic_block bb)
655 {
656 edge_prediction **preds = bb_predictions->get (bb);
657 struct edge_prediction *pred, *next;
658
659 if (!preds)
660 return;
661
662 for (pred = *preds; pred; pred = next)
663 {
664 next = pred->ep_next;
665 free (pred);
666 }
667 *preds = NULL;
668 }
669
670 /* Return true when we can store prediction on insn INSN.
671 At the moment we represent predictions only on conditional
672 jumps, not at computed jump or other complicated cases. */
673 static bool
674 can_predict_insn_p (const rtx_insn *insn)
675 {
676 return (JUMP_P (insn)
677 && any_condjump_p (insn)
678 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
679 }
680
681 /* Predict edge E by given predictor if possible. */
682
683 void
684 predict_edge_def (edge e, enum br_predictor predictor,
685 enum prediction taken)
686 {
687 int probability = predictor_info[(int) predictor].hitrate;
688
689 if (taken != TAKEN)
690 probability = REG_BR_PROB_BASE - probability;
691
692 predict_edge (e, predictor, probability);
693 }
694
695 /* Invert all branch predictions or probability notes in the INSN. This needs
696 to be done each time we invert the condition used by the jump. */
697
698 void
699 invert_br_probabilities (rtx insn)
700 {
701 rtx note;
702
703 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
704 if (REG_NOTE_KIND (note) == REG_BR_PROB)
705 XINT (note, 0) = profile_probability::from_reg_br_prob_note
706 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
707 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
708 XEXP (XEXP (note, 0), 1)
709 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
710 }
711
712 /* Dump information about the branch prediction to the output file. */
713
714 static void
715 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
716 basic_block bb, enum predictor_reason reason = REASON_NONE,
717 edge ep_edge = NULL)
718 {
719 edge e = ep_edge;
720 edge_iterator ei;
721
722 if (!file)
723 return;
724
725 if (e == NULL)
726 FOR_EACH_EDGE (e, ei, bb->succs)
727 if (! (e->flags & EDGE_FALLTHRU))
728 break;
729
730 char edge_info_str[128];
731 if (ep_edge)
732 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
733 ep_edge->dest->index);
734 else
735 edge_info_str[0] = '\0';
736
737 fprintf (file, " %s heuristics%s%s: %.1f%%",
738 predictor_info[predictor].name,
739 edge_info_str, reason_messages[reason],
740 probability * 100.0 / REG_BR_PROB_BASE);
741
742 if (bb->count.initialized_p ())
743 {
744 fprintf (file, " exec ");
745 bb->count.dump (file);
746 if (e)
747 {
748 fprintf (file, " hit ");
749 e->count ().dump (file);
750 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
751 / bb->count.to_gcov_type ());
752 }
753 }
754
755 fprintf (file, "\n");
756
757 /* Print output that be easily read by analyze_brprob.py script. We are
758 interested only in counts that are read from GCDA files. */
759 if (dump_file && (dump_flags & TDF_DETAILS)
760 && bb->count.precise_p ()
761 && reason == REASON_NONE)
762 {
763 gcc_assert (e->count ().precise_p ());
764 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
765 predictor_info[predictor].name,
766 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
767 probability * 100.0 / REG_BR_PROB_BASE);
768 }
769 }
770
771 /* Return true if STMT is known to be unlikely executed. */
772
773 static bool
774 unlikely_executed_stmt_p (gimple *stmt)
775 {
776 if (!is_gimple_call (stmt))
777 return false;
778 /* NORETURN attribute alone is not strong enough: exit() may be quite
779 likely executed once during program run. */
780 if (gimple_call_fntype (stmt)
781 && lookup_attribute ("cold",
782 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
783 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
784 return true;
785 tree decl = gimple_call_fndecl (stmt);
786 if (!decl)
787 return false;
788 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
789 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
790 return true;
791
792 cgraph_node *n = cgraph_node::get (decl);
793 if (!n)
794 return false;
795
796 availability avail;
797 n = n->ultimate_alias_target (&avail);
798 if (avail < AVAIL_AVAILABLE)
799 return false;
800 if (!n->analyzed
801 || n->decl == current_function_decl)
802 return false;
803 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
804 }
805
806 /* Return true if BB is unlikely executed. */
807
808 static bool
809 unlikely_executed_bb_p (basic_block bb)
810 {
811 if (bb->count == profile_count::zero ())
812 return true;
813 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
814 return false;
815 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
816 !gsi_end_p (gsi); gsi_next (&gsi))
817 {
818 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
819 return true;
820 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
821 return false;
822 }
823 return false;
824 }
825
826 /* We can not predict the probabilities of outgoing edges of bb. Set them
827 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
828 even probability for all edges not mentioned in the set. These edges
829 are given PROB_VERY_UNLIKELY probability. */
830
831 static void
832 set_even_probabilities (basic_block bb,
833 hash_set<edge> *unlikely_edges = NULL)
834 {
835 unsigned nedges = 0, unlikely_count = 0;
836 edge e = NULL;
837 edge_iterator ei;
838 profile_probability all = profile_probability::always ();
839
840 FOR_EACH_EDGE (e, ei, bb->succs)
841 if (e->probability.initialized_p ())
842 all -= e->probability;
843 else if (!unlikely_executed_edge_p (e))
844 {
845 nedges ++;
846 if (unlikely_edges != NULL && unlikely_edges->contains (e))
847 {
848 all -= profile_probability::very_unlikely ();
849 unlikely_count++;
850 }
851 }
852
853 /* Make the distribution even if all edges are unlikely. */
854 if (unlikely_count == nedges)
855 {
856 unlikely_edges = NULL;
857 unlikely_count = 0;
858 }
859
860 unsigned c = nedges - unlikely_count;
861
862 FOR_EACH_EDGE (e, ei, bb->succs)
863 if (e->probability.initialized_p ())
864 ;
865 else if (!unlikely_executed_edge_p (e))
866 {
867 if (unlikely_edges != NULL && unlikely_edges->contains (e))
868 e->probability = profile_probability::very_unlikely ();
869 else
870 e->probability = all.apply_scale (1, c).guessed ();
871 }
872 else
873 e->probability = profile_probability::never ();
874 }
875
876 /* Add REG_BR_PROB note to JUMP with PROB. */
877
878 void
879 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
880 {
881 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
882 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
883 }
884
885 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
886 note if not already present. Remove now useless REG_BR_PRED notes. */
887
888 static void
889 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
890 {
891 rtx prob_note;
892 rtx *pnote;
893 rtx note;
894 int best_probability = PROB_EVEN;
895 enum br_predictor best_predictor = END_PREDICTORS;
896 int combined_probability = REG_BR_PROB_BASE / 2;
897 int d;
898 bool first_match = false;
899 bool found = false;
900
901 if (!can_predict_insn_p (insn))
902 {
903 set_even_probabilities (bb);
904 return;
905 }
906
907 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
908 pnote = &REG_NOTES (insn);
909 if (dump_file)
910 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
911 bb->index);
912
913 /* We implement "first match" heuristics and use probability guessed
914 by predictor with smallest index. */
915 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
916 if (REG_NOTE_KIND (note) == REG_BR_PRED)
917 {
918 enum br_predictor predictor = ((enum br_predictor)
919 INTVAL (XEXP (XEXP (note, 0), 0)));
920 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
921
922 found = true;
923 if (best_predictor > predictor
924 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
925 best_probability = probability, best_predictor = predictor;
926
927 d = (combined_probability * probability
928 + (REG_BR_PROB_BASE - combined_probability)
929 * (REG_BR_PROB_BASE - probability));
930
931 /* Use FP math to avoid overflows of 32bit integers. */
932 if (d == 0)
933 /* If one probability is 0% and one 100%, avoid division by zero. */
934 combined_probability = REG_BR_PROB_BASE / 2;
935 else
936 combined_probability = (((double) combined_probability) * probability
937 * REG_BR_PROB_BASE / d + 0.5);
938 }
939
940 /* Decide which heuristic to use. In case we didn't match anything,
941 use no_prediction heuristic, in case we did match, use either
942 first match or Dempster-Shaffer theory depending on the flags. */
943
944 if (best_predictor != END_PREDICTORS)
945 first_match = true;
946
947 if (!found)
948 dump_prediction (dump_file, PRED_NO_PREDICTION,
949 combined_probability, bb);
950 else
951 {
952 if (!first_match)
953 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
954 bb, !first_match ? REASON_NONE : REASON_IGNORED);
955 else
956 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
957 bb, first_match ? REASON_NONE : REASON_IGNORED);
958 }
959
960 if (first_match)
961 combined_probability = best_probability;
962 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
963
964 while (*pnote)
965 {
966 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
967 {
968 enum br_predictor predictor = ((enum br_predictor)
969 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
970 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
971
972 dump_prediction (dump_file, predictor, probability, bb,
973 (!first_match || best_predictor == predictor)
974 ? REASON_NONE : REASON_IGNORED);
975 *pnote = XEXP (*pnote, 1);
976 }
977 else
978 pnote = &XEXP (*pnote, 1);
979 }
980
981 if (!prob_note)
982 {
983 profile_probability p
984 = profile_probability::from_reg_br_prob_base (combined_probability);
985 add_reg_br_prob_note (insn, p);
986
987 /* Save the prediction into CFG in case we are seeing non-degenerated
988 conditional jump. */
989 if (!single_succ_p (bb))
990 {
991 BRANCH_EDGE (bb)->probability = p;
992 FALLTHRU_EDGE (bb)->probability
993 = BRANCH_EDGE (bb)->probability.invert ();
994 }
995 }
996 else if (!single_succ_p (bb))
997 {
998 profile_probability prob = profile_probability::from_reg_br_prob_note
999 (XINT (prob_note, 0));
1000
1001 BRANCH_EDGE (bb)->probability = prob;
1002 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1003 }
1004 else
1005 single_succ_edge (bb)->probability = profile_probability::always ();
1006 }
1007
1008 /* Edge prediction hash traits. */
1009
1010 struct predictor_hash: pointer_hash <edge_prediction>
1011 {
1012
1013 static inline hashval_t hash (const edge_prediction *);
1014 static inline bool equal (const edge_prediction *, const edge_prediction *);
1015 };
1016
1017 /* Calculate hash value of an edge prediction P based on predictor and
1018 normalized probability. */
1019
1020 inline hashval_t
1021 predictor_hash::hash (const edge_prediction *p)
1022 {
1023 inchash::hash hstate;
1024 hstate.add_int (p->ep_predictor);
1025
1026 int prob = p->ep_probability;
1027 if (prob > REG_BR_PROB_BASE / 2)
1028 prob = REG_BR_PROB_BASE - prob;
1029
1030 hstate.add_int (prob);
1031
1032 return hstate.end ();
1033 }
1034
1035 /* Return true whether edge predictions P1 and P2 use the same predictor and
1036 have equal (or opposed probability). */
1037
1038 inline bool
1039 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1040 {
1041 return (p1->ep_predictor == p2->ep_predictor
1042 && (p1->ep_probability == p2->ep_probability
1043 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1044 }
1045
1046 struct predictor_hash_traits: predictor_hash,
1047 typed_noop_remove <edge_prediction *> {};
1048
1049 /* Return true if edge prediction P is not in DATA hash set. */
1050
1051 static bool
1052 not_removed_prediction_p (edge_prediction *p, void *data)
1053 {
1054 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1055 return !remove->contains (p);
1056 }
1057
1058 /* Prune predictions for a basic block BB. Currently we do following
1059 clean-up steps:
1060
1061 1) remove duplicate prediction that is guessed with the same probability
1062 (different than 1/2) to both edge
1063 2) remove duplicates for a prediction that belongs with the same probability
1064 to a single edge
1065
1066 */
1067
1068 static void
1069 prune_predictions_for_bb (basic_block bb)
1070 {
1071 edge_prediction **preds = bb_predictions->get (bb);
1072
1073 if (preds)
1074 {
1075 hash_table <predictor_hash_traits> s (13);
1076 hash_set <edge_prediction *> remove;
1077
1078 /* Step 1: identify predictors that should be removed. */
1079 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1080 {
1081 edge_prediction *existing = s.find (pred);
1082 if (existing)
1083 {
1084 if (pred->ep_edge == existing->ep_edge
1085 && pred->ep_probability == existing->ep_probability)
1086 {
1087 /* Remove a duplicate predictor. */
1088 dump_prediction (dump_file, pred->ep_predictor,
1089 pred->ep_probability, bb,
1090 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1091
1092 remove.add (pred);
1093 }
1094 else if (pred->ep_edge != existing->ep_edge
1095 && pred->ep_probability == existing->ep_probability
1096 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1097 {
1098 /* Remove both predictors as they predict the same
1099 for both edges. */
1100 dump_prediction (dump_file, existing->ep_predictor,
1101 pred->ep_probability, bb,
1102 REASON_EDGE_PAIR_DUPLICATE,
1103 existing->ep_edge);
1104 dump_prediction (dump_file, pred->ep_predictor,
1105 pred->ep_probability, bb,
1106 REASON_EDGE_PAIR_DUPLICATE,
1107 pred->ep_edge);
1108
1109 remove.add (existing);
1110 remove.add (pred);
1111 }
1112 }
1113
1114 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1115 *slot2 = pred;
1116 }
1117
1118 /* Step 2: Remove predictors. */
1119 filter_predictions (preds, not_removed_prediction_p, &remove);
1120 }
1121 }
1122
1123 /* Combine predictions into single probability and store them into CFG.
1124 Remove now useless prediction entries.
1125 If DRY_RUN is set, only produce dumps and do not modify profile. */
1126
1127 static void
1128 combine_predictions_for_bb (basic_block bb, bool dry_run)
1129 {
1130 int best_probability = PROB_EVEN;
1131 enum br_predictor best_predictor = END_PREDICTORS;
1132 int combined_probability = REG_BR_PROB_BASE / 2;
1133 int d;
1134 bool first_match = false;
1135 bool found = false;
1136 struct edge_prediction *pred;
1137 int nedges = 0;
1138 edge e, first = NULL, second = NULL;
1139 edge_iterator ei;
1140 int nzero = 0;
1141 int nunknown = 0;
1142
1143 FOR_EACH_EDGE (e, ei, bb->succs)
1144 {
1145 if (!unlikely_executed_edge_p (e))
1146 {
1147 nedges ++;
1148 if (first && !second)
1149 second = e;
1150 if (!first)
1151 first = e;
1152 }
1153 else if (!e->probability.initialized_p ())
1154 e->probability = profile_probability::never ();
1155 if (!e->probability.initialized_p ())
1156 nunknown++;
1157 else if (e->probability == profile_probability::never ())
1158 nzero++;
1159 }
1160
1161 /* When there is no successor or only one choice, prediction is easy.
1162
1163 When we have a basic block with more than 2 successors, the situation
1164 is more complicated as DS theory cannot be used literally.
1165 More precisely, let's assume we predicted edge e1 with probability p1,
1166 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1167 need to find probability of e.g. m1({b2}), which we don't know.
1168 The only approximation is to equally distribute 1-p1 to all edges
1169 different from b1.
1170
1171 According to numbers we've got from SPEC2006 benchark, there's only
1172 one interesting reliable predictor (noreturn call), which can be
1173 handled with a bit easier approach. */
1174 if (nedges != 2)
1175 {
1176 hash_set<edge> unlikely_edges (4);
1177
1178 /* Identify all edges that have a probability close to very unlikely.
1179 Doing the approach for very unlikely doesn't worth for doing as
1180 there's no such probability in SPEC2006 benchmark. */
1181 edge_prediction **preds = bb_predictions->get (bb);
1182 if (preds)
1183 for (pred = *preds; pred; pred = pred->ep_next)
1184 if (pred->ep_probability <= PROB_VERY_UNLIKELY)
1185 unlikely_edges.add (pred->ep_edge);
1186
1187 if (!dry_run)
1188 set_even_probabilities (bb, &unlikely_edges);
1189 clear_bb_predictions (bb);
1190 if (dump_file)
1191 {
1192 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1193 if (unlikely_edges.elements () == 0)
1194 fprintf (dump_file,
1195 "%i edges in bb %i predicted to even probabilities\n",
1196 nedges, bb->index);
1197 else
1198 {
1199 fprintf (dump_file,
1200 "%i edges in bb %i predicted with some unlikely edges\n",
1201 nedges, bb->index);
1202 FOR_EACH_EDGE (e, ei, bb->succs)
1203 if (!unlikely_executed_edge_p (e))
1204 dump_prediction (dump_file, PRED_COMBINED,
1205 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1206 }
1207 }
1208 return;
1209 }
1210
1211 if (dump_file)
1212 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1213
1214 prune_predictions_for_bb (bb);
1215
1216 edge_prediction **preds = bb_predictions->get (bb);
1217
1218 if (preds)
1219 {
1220 /* We implement "first match" heuristics and use probability guessed
1221 by predictor with smallest index. */
1222 for (pred = *preds; pred; pred = pred->ep_next)
1223 {
1224 enum br_predictor predictor = pred->ep_predictor;
1225 int probability = pred->ep_probability;
1226
1227 if (pred->ep_edge != first)
1228 probability = REG_BR_PROB_BASE - probability;
1229
1230 found = true;
1231 /* First match heuristics would be widly confused if we predicted
1232 both directions. */
1233 if (best_predictor > predictor
1234 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1235 {
1236 struct edge_prediction *pred2;
1237 int prob = probability;
1238
1239 for (pred2 = (struct edge_prediction *) *preds;
1240 pred2; pred2 = pred2->ep_next)
1241 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1242 {
1243 int probability2 = pred2->ep_probability;
1244
1245 if (pred2->ep_edge != first)
1246 probability2 = REG_BR_PROB_BASE - probability2;
1247
1248 if ((probability < REG_BR_PROB_BASE / 2) !=
1249 (probability2 < REG_BR_PROB_BASE / 2))
1250 break;
1251
1252 /* If the same predictor later gave better result, go for it! */
1253 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1254 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1255 prob = probability2;
1256 }
1257 if (!pred2)
1258 best_probability = prob, best_predictor = predictor;
1259 }
1260
1261 d = (combined_probability * probability
1262 + (REG_BR_PROB_BASE - combined_probability)
1263 * (REG_BR_PROB_BASE - probability));
1264
1265 /* Use FP math to avoid overflows of 32bit integers. */
1266 if (d == 0)
1267 /* If one probability is 0% and one 100%, avoid division by zero. */
1268 combined_probability = REG_BR_PROB_BASE / 2;
1269 else
1270 combined_probability = (((double) combined_probability)
1271 * probability
1272 * REG_BR_PROB_BASE / d + 0.5);
1273 }
1274 }
1275
1276 /* Decide which heuristic to use. In case we didn't match anything,
1277 use no_prediction heuristic, in case we did match, use either
1278 first match or Dempster-Shaffer theory depending on the flags. */
1279
1280 if (best_predictor != END_PREDICTORS)
1281 first_match = true;
1282
1283 if (!found)
1284 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1285 else
1286 {
1287 if (!first_match)
1288 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1289 !first_match ? REASON_NONE : REASON_IGNORED);
1290 else
1291 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1292 first_match ? REASON_NONE : REASON_IGNORED);
1293 }
1294
1295 if (first_match)
1296 combined_probability = best_probability;
1297 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1298
1299 if (preds)
1300 {
1301 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1302 {
1303 enum br_predictor predictor = pred->ep_predictor;
1304 int probability = pred->ep_probability;
1305
1306 dump_prediction (dump_file, predictor, probability, bb,
1307 (!first_match || best_predictor == predictor)
1308 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1309 }
1310 }
1311 clear_bb_predictions (bb);
1312
1313
1314 /* If we have only one successor which is unknown, we can compute missing
1315 probablity. */
1316 if (nunknown == 1)
1317 {
1318 profile_probability prob = profile_probability::always ();
1319 edge missing = NULL;
1320
1321 FOR_EACH_EDGE (e, ei, bb->succs)
1322 if (e->probability.initialized_p ())
1323 prob -= e->probability;
1324 else if (missing == NULL)
1325 missing = e;
1326 else
1327 gcc_unreachable ();
1328 missing->probability = prob;
1329 }
1330 /* If nothing is unknown, we have nothing to update. */
1331 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1332 ;
1333 else if (!dry_run)
1334 {
1335 first->probability
1336 = profile_probability::from_reg_br_prob_base (combined_probability);
1337 second->probability = first->probability.invert ();
1338 }
1339 }
1340
1341 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1342 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1343
1344 T1 and T2 should be one of the following cases:
1345 1. T1 is SSA_NAME, T2 is NULL
1346 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1347 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1348
1349 static tree
1350 strips_small_constant (tree t1, tree t2)
1351 {
1352 tree ret = NULL;
1353 int value = 0;
1354
1355 if (!t1)
1356 return NULL;
1357 else if (TREE_CODE (t1) == SSA_NAME)
1358 ret = t1;
1359 else if (tree_fits_shwi_p (t1))
1360 value = tree_to_shwi (t1);
1361 else
1362 return NULL;
1363
1364 if (!t2)
1365 return ret;
1366 else if (tree_fits_shwi_p (t2))
1367 value = tree_to_shwi (t2);
1368 else if (TREE_CODE (t2) == SSA_NAME)
1369 {
1370 if (ret)
1371 return NULL;
1372 else
1373 ret = t2;
1374 }
1375
1376 if (value <= 4 && value >= -4)
1377 return ret;
1378 else
1379 return NULL;
1380 }
1381
1382 /* Return the SSA_NAME in T or T's operands.
1383 Return NULL if SSA_NAME cannot be found. */
1384
1385 static tree
1386 get_base_value (tree t)
1387 {
1388 if (TREE_CODE (t) == SSA_NAME)
1389 return t;
1390
1391 if (!BINARY_CLASS_P (t))
1392 return NULL;
1393
1394 switch (TREE_OPERAND_LENGTH (t))
1395 {
1396 case 1:
1397 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1398 case 2:
1399 return strips_small_constant (TREE_OPERAND (t, 0),
1400 TREE_OPERAND (t, 1));
1401 default:
1402 return NULL;
1403 }
1404 }
1405
1406 /* Check the compare STMT in LOOP. If it compares an induction
1407 variable to a loop invariant, return true, and save
1408 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1409 Otherwise return false and set LOOP_INVAIANT to NULL. */
1410
1411 static bool
1412 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1413 tree *loop_invariant,
1414 enum tree_code *compare_code,
1415 tree *loop_step,
1416 tree *loop_iv_base)
1417 {
1418 tree op0, op1, bound, base;
1419 affine_iv iv0, iv1;
1420 enum tree_code code;
1421 tree step;
1422
1423 code = gimple_cond_code (stmt);
1424 *loop_invariant = NULL;
1425
1426 switch (code)
1427 {
1428 case GT_EXPR:
1429 case GE_EXPR:
1430 case NE_EXPR:
1431 case LT_EXPR:
1432 case LE_EXPR:
1433 case EQ_EXPR:
1434 break;
1435
1436 default:
1437 return false;
1438 }
1439
1440 op0 = gimple_cond_lhs (stmt);
1441 op1 = gimple_cond_rhs (stmt);
1442
1443 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1444 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1445 return false;
1446 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1447 return false;
1448 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1449 return false;
1450 if (TREE_CODE (iv0.step) != INTEGER_CST
1451 || TREE_CODE (iv1.step) != INTEGER_CST)
1452 return false;
1453 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1454 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1455 return false;
1456
1457 if (integer_zerop (iv0.step))
1458 {
1459 if (code != NE_EXPR && code != EQ_EXPR)
1460 code = invert_tree_comparison (code, false);
1461 bound = iv0.base;
1462 base = iv1.base;
1463 if (tree_fits_shwi_p (iv1.step))
1464 step = iv1.step;
1465 else
1466 return false;
1467 }
1468 else
1469 {
1470 bound = iv1.base;
1471 base = iv0.base;
1472 if (tree_fits_shwi_p (iv0.step))
1473 step = iv0.step;
1474 else
1475 return false;
1476 }
1477
1478 if (TREE_CODE (bound) != INTEGER_CST)
1479 bound = get_base_value (bound);
1480 if (!bound)
1481 return false;
1482 if (TREE_CODE (base) != INTEGER_CST)
1483 base = get_base_value (base);
1484 if (!base)
1485 return false;
1486
1487 *loop_invariant = bound;
1488 *compare_code = code;
1489 *loop_step = step;
1490 *loop_iv_base = base;
1491 return true;
1492 }
1493
1494 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1495
1496 static bool
1497 expr_coherent_p (tree t1, tree t2)
1498 {
1499 gimple *stmt;
1500 tree ssa_name_1 = NULL;
1501 tree ssa_name_2 = NULL;
1502
1503 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1504 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1505
1506 if (t1 == t2)
1507 return true;
1508
1509 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1510 return true;
1511 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1512 return false;
1513
1514 /* Check to see if t1 is expressed/defined with t2. */
1515 stmt = SSA_NAME_DEF_STMT (t1);
1516 gcc_assert (stmt != NULL);
1517 if (is_gimple_assign (stmt))
1518 {
1519 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1520 if (ssa_name_1 && ssa_name_1 == t2)
1521 return true;
1522 }
1523
1524 /* Check to see if t2 is expressed/defined with t1. */
1525 stmt = SSA_NAME_DEF_STMT (t2);
1526 gcc_assert (stmt != NULL);
1527 if (is_gimple_assign (stmt))
1528 {
1529 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1530 if (ssa_name_2 && ssa_name_2 == t1)
1531 return true;
1532 }
1533
1534 /* Compare if t1 and t2's def_stmts are identical. */
1535 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1536 return true;
1537 else
1538 return false;
1539 }
1540
1541 /* Return true if E is predicted by one of loop heuristics. */
1542
1543 static bool
1544 predicted_by_loop_heuristics_p (basic_block bb)
1545 {
1546 struct edge_prediction *i;
1547 edge_prediction **preds = bb_predictions->get (bb);
1548
1549 if (!preds)
1550 return false;
1551
1552 for (i = *preds; i; i = i->ep_next)
1553 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1554 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1555 || i->ep_predictor == PRED_LOOP_ITERATIONS
1556 || i->ep_predictor == PRED_LOOP_EXIT
1557 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1558 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1559 return true;
1560 return false;
1561 }
1562
1563 /* Predict branch probability of BB when BB contains a branch that compares
1564 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1565 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1566
1567 E.g.
1568 for (int i = 0; i < bound; i++) {
1569 if (i < bound - 2)
1570 computation_1();
1571 else
1572 computation_2();
1573 }
1574
1575 In this loop, we will predict the branch inside the loop to be taken. */
1576
1577 static void
1578 predict_iv_comparison (struct loop *loop, basic_block bb,
1579 tree loop_bound_var,
1580 tree loop_iv_base_var,
1581 enum tree_code loop_bound_code,
1582 int loop_bound_step)
1583 {
1584 gimple *stmt;
1585 tree compare_var, compare_base;
1586 enum tree_code compare_code;
1587 tree compare_step_var;
1588 edge then_edge;
1589 edge_iterator ei;
1590
1591 if (predicted_by_loop_heuristics_p (bb))
1592 return;
1593
1594 stmt = last_stmt (bb);
1595 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1596 return;
1597 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1598 loop, &compare_var,
1599 &compare_code,
1600 &compare_step_var,
1601 &compare_base))
1602 return;
1603
1604 /* Find the taken edge. */
1605 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1606 if (then_edge->flags & EDGE_TRUE_VALUE)
1607 break;
1608
1609 /* When comparing an IV to a loop invariant, NE is more likely to be
1610 taken while EQ is more likely to be not-taken. */
1611 if (compare_code == NE_EXPR)
1612 {
1613 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1614 return;
1615 }
1616 else if (compare_code == EQ_EXPR)
1617 {
1618 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1619 return;
1620 }
1621
1622 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1623 return;
1624
1625 /* If loop bound, base and compare bound are all constants, we can
1626 calculate the probability directly. */
1627 if (tree_fits_shwi_p (loop_bound_var)
1628 && tree_fits_shwi_p (compare_var)
1629 && tree_fits_shwi_p (compare_base))
1630 {
1631 int probability;
1632 wi::overflow_type overflow;
1633 bool overall_overflow = false;
1634 widest_int compare_count, tem;
1635
1636 /* (loop_bound - base) / compare_step */
1637 tem = wi::sub (wi::to_widest (loop_bound_var),
1638 wi::to_widest (compare_base), SIGNED, &overflow);
1639 overall_overflow |= overflow;
1640 widest_int loop_count = wi::div_trunc (tem,
1641 wi::to_widest (compare_step_var),
1642 SIGNED, &overflow);
1643 overall_overflow |= overflow;
1644
1645 if (!wi::neg_p (wi::to_widest (compare_step_var))
1646 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1647 {
1648 /* (loop_bound - compare_bound) / compare_step */
1649 tem = wi::sub (wi::to_widest (loop_bound_var),
1650 wi::to_widest (compare_var), SIGNED, &overflow);
1651 overall_overflow |= overflow;
1652 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1653 SIGNED, &overflow);
1654 overall_overflow |= overflow;
1655 }
1656 else
1657 {
1658 /* (compare_bound - base) / compare_step */
1659 tem = wi::sub (wi::to_widest (compare_var),
1660 wi::to_widest (compare_base), SIGNED, &overflow);
1661 overall_overflow |= overflow;
1662 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1663 SIGNED, &overflow);
1664 overall_overflow |= overflow;
1665 }
1666 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1667 ++compare_count;
1668 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1669 ++loop_count;
1670 if (wi::neg_p (compare_count))
1671 compare_count = 0;
1672 if (wi::neg_p (loop_count))
1673 loop_count = 0;
1674 if (loop_count == 0)
1675 probability = 0;
1676 else if (wi::cmps (compare_count, loop_count) == 1)
1677 probability = REG_BR_PROB_BASE;
1678 else
1679 {
1680 tem = compare_count * REG_BR_PROB_BASE;
1681 tem = wi::udiv_trunc (tem, loop_count);
1682 probability = tem.to_uhwi ();
1683 }
1684
1685 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1686 if (!overall_overflow)
1687 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1688
1689 return;
1690 }
1691
1692 if (expr_coherent_p (loop_bound_var, compare_var))
1693 {
1694 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1695 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1696 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1697 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1698 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1699 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1700 else if (loop_bound_code == NE_EXPR)
1701 {
1702 /* If the loop backedge condition is "(i != bound)", we do
1703 the comparison based on the step of IV:
1704 * step < 0 : backedge condition is like (i > bound)
1705 * step > 0 : backedge condition is like (i < bound) */
1706 gcc_assert (loop_bound_step != 0);
1707 if (loop_bound_step > 0
1708 && (compare_code == LT_EXPR
1709 || compare_code == LE_EXPR))
1710 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1711 else if (loop_bound_step < 0
1712 && (compare_code == GT_EXPR
1713 || compare_code == GE_EXPR))
1714 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1715 else
1716 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1717 }
1718 else
1719 /* The branch is predicted not-taken if loop_bound_code is
1720 opposite with compare_code. */
1721 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1722 }
1723 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1724 {
1725 /* For cases like:
1726 for (i = s; i < h; i++)
1727 if (i > s + 2) ....
1728 The branch should be predicted taken. */
1729 if (loop_bound_step > 0
1730 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1731 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1732 else if (loop_bound_step < 0
1733 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1734 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1735 else
1736 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1737 }
1738 }
1739
1740 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1741 exits are resulted from short-circuit conditions that will generate an
1742 if_tmp. E.g.:
1743
1744 if (foo() || global > 10)
1745 break;
1746
1747 This will be translated into:
1748
1749 BB3:
1750 loop header...
1751 BB4:
1752 if foo() goto BB6 else goto BB5
1753 BB5:
1754 if global > 10 goto BB6 else goto BB7
1755 BB6:
1756 goto BB7
1757 BB7:
1758 iftmp = (PHI 0(BB5), 1(BB6))
1759 if iftmp == 1 goto BB8 else goto BB3
1760 BB8:
1761 outside of the loop...
1762
1763 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1764 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1765 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1766 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1767
1768 static void
1769 predict_extra_loop_exits (edge exit_edge)
1770 {
1771 unsigned i;
1772 bool check_value_one;
1773 gimple *lhs_def_stmt;
1774 gphi *phi_stmt;
1775 tree cmp_rhs, cmp_lhs;
1776 gimple *last;
1777 gcond *cmp_stmt;
1778
1779 last = last_stmt (exit_edge->src);
1780 if (!last)
1781 return;
1782 cmp_stmt = dyn_cast <gcond *> (last);
1783 if (!cmp_stmt)
1784 return;
1785
1786 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1787 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1788 if (!TREE_CONSTANT (cmp_rhs)
1789 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1790 return;
1791 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1792 return;
1793
1794 /* If check_value_one is true, only the phi_args with value '1' will lead
1795 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1796 loop exit. */
1797 check_value_one = (((integer_onep (cmp_rhs))
1798 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1799 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1800
1801 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1802 if (!lhs_def_stmt)
1803 return;
1804
1805 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1806 if (!phi_stmt)
1807 return;
1808
1809 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1810 {
1811 edge e1;
1812 edge_iterator ei;
1813 tree val = gimple_phi_arg_def (phi_stmt, i);
1814 edge e = gimple_phi_arg_edge (phi_stmt, i);
1815
1816 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1817 continue;
1818 if ((check_value_one ^ integer_onep (val)) == 1)
1819 continue;
1820 if (EDGE_COUNT (e->src->succs) != 1)
1821 {
1822 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1823 continue;
1824 }
1825
1826 FOR_EACH_EDGE (e1, ei, e->src->preds)
1827 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1828 }
1829 }
1830
1831
1832 /* Predict edge probabilities by exploiting loop structure. */
1833
1834 static void
1835 predict_loops (void)
1836 {
1837 struct loop *loop;
1838 basic_block bb;
1839 hash_set <struct loop *> with_recursion(10);
1840
1841 FOR_EACH_BB_FN (bb, cfun)
1842 {
1843 gimple_stmt_iterator gsi;
1844 tree decl;
1845
1846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1847 if (is_gimple_call (gsi_stmt (gsi))
1848 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1849 && recursive_call_p (current_function_decl, decl))
1850 {
1851 loop = bb->loop_father;
1852 while (loop && !with_recursion.add (loop))
1853 loop = loop_outer (loop);
1854 }
1855 }
1856
1857 /* Try to predict out blocks in a loop that are not part of a
1858 natural loop. */
1859 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1860 {
1861 basic_block bb, *bbs;
1862 unsigned j, n_exits = 0;
1863 vec<edge> exits;
1864 struct tree_niter_desc niter_desc;
1865 edge ex;
1866 struct nb_iter_bound *nb_iter;
1867 enum tree_code loop_bound_code = ERROR_MARK;
1868 tree loop_bound_step = NULL;
1869 tree loop_bound_var = NULL;
1870 tree loop_iv_base = NULL;
1871 gcond *stmt = NULL;
1872 bool recursion = with_recursion.contains (loop);
1873
1874 exits = get_loop_exit_edges (loop);
1875 FOR_EACH_VEC_ELT (exits, j, ex)
1876 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1877 n_exits ++;
1878 if (!n_exits)
1879 {
1880 exits.release ();
1881 continue;
1882 }
1883
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1885 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1886 loop->num, recursion ? " (with recursion)":"", n_exits);
1887 if (dump_file && (dump_flags & TDF_DETAILS)
1888 && max_loop_iterations_int (loop) >= 0)
1889 {
1890 fprintf (dump_file,
1891 "Loop %d iterates at most %i times.\n", loop->num,
1892 (int)max_loop_iterations_int (loop));
1893 }
1894 if (dump_file && (dump_flags & TDF_DETAILS)
1895 && likely_max_loop_iterations_int (loop) >= 0)
1896 {
1897 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1898 loop->num, (int)likely_max_loop_iterations_int (loop));
1899 }
1900
1901 FOR_EACH_VEC_ELT (exits, j, ex)
1902 {
1903 tree niter = NULL;
1904 HOST_WIDE_INT nitercst;
1905 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1906 int probability;
1907 enum br_predictor predictor;
1908 widest_int nit;
1909
1910 if (unlikely_executed_edge_p (ex)
1911 || (ex->flags & EDGE_ABNORMAL_CALL))
1912 continue;
1913 /* Loop heuristics do not expect exit conditional to be inside
1914 inner loop. We predict from innermost to outermost loop. */
1915 if (predicted_by_loop_heuristics_p (ex->src))
1916 {
1917 if (dump_file && (dump_flags & TDF_DETAILS))
1918 fprintf (dump_file, "Skipping exit %i->%i because "
1919 "it is already predicted.\n",
1920 ex->src->index, ex->dest->index);
1921 continue;
1922 }
1923 predict_extra_loop_exits (ex);
1924
1925 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1926 niter = niter_desc.niter;
1927 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1928 niter = loop_niter_by_eval (loop, ex);
1929 if (dump_file && (dump_flags & TDF_DETAILS)
1930 && TREE_CODE (niter) == INTEGER_CST)
1931 {
1932 fprintf (dump_file, "Exit %i->%i %d iterates ",
1933 ex->src->index, ex->dest->index,
1934 loop->num);
1935 print_generic_expr (dump_file, niter, TDF_SLIM);
1936 fprintf (dump_file, " times.\n");
1937 }
1938
1939 if (TREE_CODE (niter) == INTEGER_CST)
1940 {
1941 if (tree_fits_uhwi_p (niter)
1942 && max
1943 && compare_tree_int (niter, max - 1) == -1)
1944 nitercst = tree_to_uhwi (niter) + 1;
1945 else
1946 nitercst = max;
1947 predictor = PRED_LOOP_ITERATIONS;
1948 }
1949 /* If we have just one exit and we can derive some information about
1950 the number of iterations of the loop from the statements inside
1951 the loop, use it to predict this exit. */
1952 else if (n_exits == 1
1953 && estimated_stmt_executions (loop, &nit))
1954 {
1955 if (wi::gtu_p (nit, max))
1956 nitercst = max;
1957 else
1958 nitercst = nit.to_shwi ();
1959 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1960 }
1961 /* If we have likely upper bound, trust it for very small iteration
1962 counts. Such loops would otherwise get mispredicted by standard
1963 LOOP_EXIT heuristics. */
1964 else if (n_exits == 1
1965 && likely_max_stmt_executions (loop, &nit)
1966 && wi::ltu_p (nit,
1967 RDIV (REG_BR_PROB_BASE,
1968 REG_BR_PROB_BASE
1969 - predictor_info
1970 [recursion
1971 ? PRED_LOOP_EXIT_WITH_RECURSION
1972 : PRED_LOOP_EXIT].hitrate)))
1973 {
1974 nitercst = nit.to_shwi ();
1975 predictor = PRED_LOOP_ITERATIONS_MAX;
1976 }
1977 else
1978 {
1979 if (dump_file && (dump_flags & TDF_DETAILS))
1980 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
1981 ex->src->index, ex->dest->index);
1982 continue;
1983 }
1984
1985 if (dump_file && (dump_flags & TDF_DETAILS))
1986 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
1987 (int)nitercst, predictor_info[predictor].name);
1988 /* If the prediction for number of iterations is zero, do not
1989 predict the exit edges. */
1990 if (nitercst == 0)
1991 continue;
1992
1993 probability = RDIV (REG_BR_PROB_BASE, nitercst);
1994 predict_edge (ex, predictor, probability);
1995 }
1996 exits.release ();
1997
1998 /* Find information about loop bound variables. */
1999 for (nb_iter = loop->bounds; nb_iter;
2000 nb_iter = nb_iter->next)
2001 if (nb_iter->stmt
2002 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2003 {
2004 stmt = as_a <gcond *> (nb_iter->stmt);
2005 break;
2006 }
2007 if (!stmt && last_stmt (loop->header)
2008 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2009 stmt = as_a <gcond *> (last_stmt (loop->header));
2010 if (stmt)
2011 is_comparison_with_loop_invariant_p (stmt, loop,
2012 &loop_bound_var,
2013 &loop_bound_code,
2014 &loop_bound_step,
2015 &loop_iv_base);
2016
2017 bbs = get_loop_body (loop);
2018
2019 for (j = 0; j < loop->num_nodes; j++)
2020 {
2021 edge e;
2022 edge_iterator ei;
2023
2024 bb = bbs[j];
2025
2026 /* Bypass loop heuristics on continue statement. These
2027 statements construct loops via "non-loop" constructs
2028 in the source language and are better to be handled
2029 separately. */
2030 if (predicted_by_p (bb, PRED_CONTINUE))
2031 {
2032 if (dump_file && (dump_flags & TDF_DETAILS))
2033 fprintf (dump_file, "BB %i predicted by continue.\n",
2034 bb->index);
2035 continue;
2036 }
2037
2038 /* If we already used more reliable loop exit predictors, do not
2039 bother with PRED_LOOP_EXIT. */
2040 if (!predicted_by_loop_heuristics_p (bb))
2041 {
2042 /* For loop with many exits we don't want to predict all exits
2043 with the pretty large probability, because if all exits are
2044 considered in row, the loop would be predicted to iterate
2045 almost never. The code to divide probability by number of
2046 exits is very rough. It should compute the number of exits
2047 taken in each patch through function (not the overall number
2048 of exits that might be a lot higher for loops with wide switch
2049 statements in them) and compute n-th square root.
2050
2051 We limit the minimal probability by 2% to avoid
2052 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2053 as this was causing regression in perl benchmark containing such
2054 a wide loop. */
2055
2056 int probability = ((REG_BR_PROB_BASE
2057 - predictor_info
2058 [recursion
2059 ? PRED_LOOP_EXIT_WITH_RECURSION
2060 : PRED_LOOP_EXIT].hitrate)
2061 / n_exits);
2062 if (probability < HITRATE (2))
2063 probability = HITRATE (2);
2064 FOR_EACH_EDGE (e, ei, bb->succs)
2065 if (e->dest->index < NUM_FIXED_BLOCKS
2066 || !flow_bb_inside_loop_p (loop, e->dest))
2067 {
2068 if (dump_file && (dump_flags & TDF_DETAILS))
2069 fprintf (dump_file,
2070 "Predicting exit %i->%i with prob %i.\n",
2071 e->src->index, e->dest->index, probability);
2072 predict_edge (e,
2073 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2074 : PRED_LOOP_EXIT, probability);
2075 }
2076 }
2077 if (loop_bound_var)
2078 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2079 loop_bound_code,
2080 tree_to_shwi (loop_bound_step));
2081 }
2082
2083 /* In the following code
2084 for (loop1)
2085 if (cond)
2086 for (loop2)
2087 body;
2088 guess that cond is unlikely. */
2089 if (loop_outer (loop)->num)
2090 {
2091 basic_block bb = NULL;
2092 edge preheader_edge = loop_preheader_edge (loop);
2093
2094 if (single_pred_p (preheader_edge->src)
2095 && single_succ_p (preheader_edge->src))
2096 preheader_edge = single_pred_edge (preheader_edge->src);
2097
2098 gimple *stmt = last_stmt (preheader_edge->src);
2099 /* Pattern match fortran loop preheader:
2100 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2101 _17 = (logical(kind=4)) _16;
2102 if (_17 != 0)
2103 goto <bb 11>;
2104 else
2105 goto <bb 13>;
2106
2107 Loop guard branch prediction says nothing about duplicated loop
2108 headers produced by fortran frontend and in this case we want
2109 to predict paths leading to this preheader. */
2110
2111 if (stmt
2112 && gimple_code (stmt) == GIMPLE_COND
2113 && gimple_cond_code (stmt) == NE_EXPR
2114 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2115 && integer_zerop (gimple_cond_rhs (stmt)))
2116 {
2117 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2118 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2119 && gimple_expr_code (call_stmt) == NOP_EXPR
2120 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2121 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2122 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2123 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2124 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2125 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2126 == PRED_FORTRAN_LOOP_PREHEADER)
2127 bb = preheader_edge->src;
2128 }
2129 if (!bb)
2130 {
2131 if (!dominated_by_p (CDI_DOMINATORS,
2132 loop_outer (loop)->latch, loop->header))
2133 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2134 recursion
2135 ? PRED_LOOP_GUARD_WITH_RECURSION
2136 : PRED_LOOP_GUARD,
2137 NOT_TAKEN,
2138 loop_outer (loop));
2139 }
2140 else
2141 {
2142 if (!dominated_by_p (CDI_DOMINATORS,
2143 loop_outer (loop)->latch, bb))
2144 predict_paths_leading_to (bb,
2145 recursion
2146 ? PRED_LOOP_GUARD_WITH_RECURSION
2147 : PRED_LOOP_GUARD,
2148 NOT_TAKEN,
2149 loop_outer (loop));
2150 }
2151 }
2152
2153 /* Free basic blocks from get_loop_body. */
2154 free (bbs);
2155 }
2156 }
2157
2158 /* Attempt to predict probabilities of BB outgoing edges using local
2159 properties. */
2160 static void
2161 bb_estimate_probability_locally (basic_block bb)
2162 {
2163 rtx_insn *last_insn = BB_END (bb);
2164 rtx cond;
2165
2166 if (! can_predict_insn_p (last_insn))
2167 return;
2168 cond = get_condition (last_insn, NULL, false, false);
2169 if (! cond)
2170 return;
2171
2172 /* Try "pointer heuristic."
2173 A comparison ptr == 0 is predicted as false.
2174 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2175 if (COMPARISON_P (cond)
2176 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2177 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2178 {
2179 if (GET_CODE (cond) == EQ)
2180 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2181 else if (GET_CODE (cond) == NE)
2182 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2183 }
2184 else
2185
2186 /* Try "opcode heuristic."
2187 EQ tests are usually false and NE tests are usually true. Also,
2188 most quantities are positive, so we can make the appropriate guesses
2189 about signed comparisons against zero. */
2190 switch (GET_CODE (cond))
2191 {
2192 case CONST_INT:
2193 /* Unconditional branch. */
2194 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2195 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2196 break;
2197
2198 case EQ:
2199 case UNEQ:
2200 /* Floating point comparisons appears to behave in a very
2201 unpredictable way because of special role of = tests in
2202 FP code. */
2203 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2204 ;
2205 /* Comparisons with 0 are often used for booleans and there is
2206 nothing useful to predict about them. */
2207 else if (XEXP (cond, 1) == const0_rtx
2208 || XEXP (cond, 0) == const0_rtx)
2209 ;
2210 else
2211 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2212 break;
2213
2214 case NE:
2215 case LTGT:
2216 /* Floating point comparisons appears to behave in a very
2217 unpredictable way because of special role of = tests in
2218 FP code. */
2219 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2220 ;
2221 /* Comparisons with 0 are often used for booleans and there is
2222 nothing useful to predict about them. */
2223 else if (XEXP (cond, 1) == const0_rtx
2224 || XEXP (cond, 0) == const0_rtx)
2225 ;
2226 else
2227 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2228 break;
2229
2230 case ORDERED:
2231 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2232 break;
2233
2234 case UNORDERED:
2235 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2236 break;
2237
2238 case LE:
2239 case LT:
2240 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2241 || XEXP (cond, 1) == constm1_rtx)
2242 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2243 break;
2244
2245 case GE:
2246 case GT:
2247 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2248 || XEXP (cond, 1) == constm1_rtx)
2249 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2250 break;
2251
2252 default:
2253 break;
2254 }
2255 }
2256
2257 /* Set edge->probability for each successor edge of BB. */
2258 void
2259 guess_outgoing_edge_probabilities (basic_block bb)
2260 {
2261 bb_estimate_probability_locally (bb);
2262 combine_predictions_for_insn (BB_END (bb), bb);
2263 }
2264 \f
2265 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
2266
2267 /* Helper function for expr_expected_value. */
2268
2269 static tree
2270 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2271 tree op1, bitmap visited, enum br_predictor *predictor)
2272 {
2273 gimple *def;
2274
2275 if (predictor)
2276 *predictor = PRED_UNCONDITIONAL;
2277
2278 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2279 {
2280 if (TREE_CONSTANT (op0))
2281 return op0;
2282
2283 if (code == IMAGPART_EXPR)
2284 {
2285 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2286 {
2287 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2288 if (is_gimple_call (def)
2289 && gimple_call_internal_p (def)
2290 && (gimple_call_internal_fn (def)
2291 == IFN_ATOMIC_COMPARE_EXCHANGE))
2292 {
2293 /* Assume that any given atomic operation has low contention,
2294 and thus the compare-and-swap operation succeeds. */
2295 if (predictor)
2296 *predictor = PRED_COMPARE_AND_SWAP;
2297 return build_one_cst (TREE_TYPE (op0));
2298 }
2299 }
2300 }
2301
2302 if (code != SSA_NAME)
2303 return NULL_TREE;
2304
2305 def = SSA_NAME_DEF_STMT (op0);
2306
2307 /* If we were already here, break the infinite cycle. */
2308 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2309 return NULL;
2310
2311 if (gimple_code (def) == GIMPLE_PHI)
2312 {
2313 /* All the arguments of the PHI node must have the same constant
2314 length. */
2315 int i, n = gimple_phi_num_args (def);
2316 tree val = NULL, new_val;
2317
2318 for (i = 0; i < n; i++)
2319 {
2320 tree arg = PHI_ARG_DEF (def, i);
2321 enum br_predictor predictor2;
2322
2323 /* If this PHI has itself as an argument, we cannot
2324 determine the string length of this argument. However,
2325 if we can find an expected constant value for the other
2326 PHI args then we can still be sure that this is
2327 likely a constant. So be optimistic and just
2328 continue with the next argument. */
2329 if (arg == PHI_RESULT (def))
2330 continue;
2331
2332 new_val = expr_expected_value (arg, visited, &predictor2);
2333
2334 /* It is difficult to combine value predictors. Simply assume
2335 that later predictor is weaker and take its prediction. */
2336 if (predictor && *predictor < predictor2)
2337 *predictor = predictor2;
2338 if (!new_val)
2339 return NULL;
2340 if (!val)
2341 val = new_val;
2342 else if (!operand_equal_p (val, new_val, false))
2343 return NULL;
2344 }
2345 return val;
2346 }
2347 if (is_gimple_assign (def))
2348 {
2349 if (gimple_assign_lhs (def) != op0)
2350 return NULL;
2351
2352 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2353 gimple_assign_rhs1 (def),
2354 gimple_assign_rhs_code (def),
2355 gimple_assign_rhs2 (def),
2356 visited, predictor);
2357 }
2358
2359 if (is_gimple_call (def))
2360 {
2361 tree decl = gimple_call_fndecl (def);
2362 if (!decl)
2363 {
2364 if (gimple_call_internal_p (def)
2365 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2366 {
2367 gcc_assert (gimple_call_num_args (def) == 3);
2368 tree val = gimple_call_arg (def, 0);
2369 if (TREE_CONSTANT (val))
2370 return val;
2371 if (predictor)
2372 {
2373 tree val2 = gimple_call_arg (def, 2);
2374 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2375 && tree_fits_uhwi_p (val2)
2376 && tree_to_uhwi (val2) < END_PREDICTORS);
2377 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2378 }
2379 return gimple_call_arg (def, 1);
2380 }
2381 return NULL;
2382 }
2383 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2384 switch (DECL_FUNCTION_CODE (decl))
2385 {
2386 case BUILT_IN_EXPECT:
2387 {
2388 tree val;
2389 if (gimple_call_num_args (def) != 2)
2390 return NULL;
2391 val = gimple_call_arg (def, 0);
2392 if (TREE_CONSTANT (val))
2393 return val;
2394 if (predictor)
2395 *predictor = PRED_BUILTIN_EXPECT;
2396 return gimple_call_arg (def, 1);
2397 }
2398
2399 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2400 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2401 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2402 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2403 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2404 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2405 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2406 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2407 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2408 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2409 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2410 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2411 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2412 /* Assume that any given atomic operation has low contention,
2413 and thus the compare-and-swap operation succeeds. */
2414 if (predictor)
2415 *predictor = PRED_COMPARE_AND_SWAP;
2416 return boolean_true_node;
2417 default:
2418 break;
2419 }
2420 }
2421
2422 return NULL;
2423 }
2424
2425 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2426 {
2427 tree res;
2428 enum br_predictor predictor2;
2429 op0 = expr_expected_value (op0, visited, predictor);
2430 if (!op0)
2431 return NULL;
2432 op1 = expr_expected_value (op1, visited, &predictor2);
2433 if (predictor && *predictor < predictor2)
2434 *predictor = predictor2;
2435 if (!op1)
2436 return NULL;
2437 res = fold_build2 (code, type, op0, op1);
2438 if (TREE_CONSTANT (res))
2439 return res;
2440 return NULL;
2441 }
2442 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2443 {
2444 tree res;
2445 op0 = expr_expected_value (op0, visited, predictor);
2446 if (!op0)
2447 return NULL;
2448 res = fold_build1 (code, type, op0);
2449 if (TREE_CONSTANT (res))
2450 return res;
2451 return NULL;
2452 }
2453 return NULL;
2454 }
2455
2456 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2457 The function is used by builtin_expect branch predictor so the evidence
2458 must come from this construct and additional possible constant folding.
2459
2460 We may want to implement more involved value guess (such as value range
2461 propagation based prediction), but such tricks shall go to new
2462 implementation. */
2463
2464 static tree
2465 expr_expected_value (tree expr, bitmap visited,
2466 enum br_predictor *predictor)
2467 {
2468 enum tree_code code;
2469 tree op0, op1;
2470
2471 if (TREE_CONSTANT (expr))
2472 {
2473 if (predictor)
2474 *predictor = PRED_UNCONDITIONAL;
2475 return expr;
2476 }
2477
2478 extract_ops_from_tree (expr, &code, &op0, &op1);
2479 return expr_expected_value_1 (TREE_TYPE (expr),
2480 op0, code, op1, visited, predictor);
2481 }
2482 \f
2483 /* Predict using opcode of the last statement in basic block. */
2484 static void
2485 tree_predict_by_opcode (basic_block bb)
2486 {
2487 gimple *stmt = last_stmt (bb);
2488 edge then_edge;
2489 tree op0, op1;
2490 tree type;
2491 tree val;
2492 enum tree_code cmp;
2493 edge_iterator ei;
2494 enum br_predictor predictor;
2495
2496 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2497 return;
2498 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2499 if (then_edge->flags & EDGE_TRUE_VALUE)
2500 break;
2501 op0 = gimple_cond_lhs (stmt);
2502 op1 = gimple_cond_rhs (stmt);
2503 cmp = gimple_cond_code (stmt);
2504 type = TREE_TYPE (op0);
2505 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2506 &predictor);
2507 if (val && TREE_CODE (val) == INTEGER_CST)
2508 {
2509 if (predictor == PRED_BUILTIN_EXPECT)
2510 {
2511 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2512
2513 gcc_assert (percent >= 0 && percent <= 100);
2514 if (integer_zerop (val))
2515 percent = 100 - percent;
2516 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2517 }
2518 else
2519 predict_edge_def (then_edge, predictor,
2520 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2521 }
2522 /* Try "pointer heuristic."
2523 A comparison ptr == 0 is predicted as false.
2524 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2525 if (POINTER_TYPE_P (type))
2526 {
2527 if (cmp == EQ_EXPR)
2528 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2529 else if (cmp == NE_EXPR)
2530 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2531 }
2532 else
2533
2534 /* Try "opcode heuristic."
2535 EQ tests are usually false and NE tests are usually true. Also,
2536 most quantities are positive, so we can make the appropriate guesses
2537 about signed comparisons against zero. */
2538 switch (cmp)
2539 {
2540 case EQ_EXPR:
2541 case UNEQ_EXPR:
2542 /* Floating point comparisons appears to behave in a very
2543 unpredictable way because of special role of = tests in
2544 FP code. */
2545 if (FLOAT_TYPE_P (type))
2546 ;
2547 /* Comparisons with 0 are often used for booleans and there is
2548 nothing useful to predict about them. */
2549 else if (integer_zerop (op0) || integer_zerop (op1))
2550 ;
2551 else
2552 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2553 break;
2554
2555 case NE_EXPR:
2556 case LTGT_EXPR:
2557 /* Floating point comparisons appears to behave in a very
2558 unpredictable way because of special role of = tests in
2559 FP code. */
2560 if (FLOAT_TYPE_P (type))
2561 ;
2562 /* Comparisons with 0 are often used for booleans and there is
2563 nothing useful to predict about them. */
2564 else if (integer_zerop (op0)
2565 || integer_zerop (op1))
2566 ;
2567 else
2568 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2569 break;
2570
2571 case ORDERED_EXPR:
2572 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2573 break;
2574
2575 case UNORDERED_EXPR:
2576 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2577 break;
2578
2579 case LE_EXPR:
2580 case LT_EXPR:
2581 if (integer_zerop (op1)
2582 || integer_onep (op1)
2583 || integer_all_onesp (op1)
2584 || real_zerop (op1)
2585 || real_onep (op1)
2586 || real_minus_onep (op1))
2587 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2588 break;
2589
2590 case GE_EXPR:
2591 case GT_EXPR:
2592 if (integer_zerop (op1)
2593 || integer_onep (op1)
2594 || integer_all_onesp (op1)
2595 || real_zerop (op1)
2596 || real_onep (op1)
2597 || real_minus_onep (op1))
2598 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2599 break;
2600
2601 default:
2602 break;
2603 }
2604 }
2605
2606 /* Returns TRUE if the STMT is exit(0) like statement. */
2607
2608 static bool
2609 is_exit_with_zero_arg (const gimple *stmt)
2610 {
2611 /* This is not exit, _exit or _Exit. */
2612 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2613 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2614 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2615 return false;
2616
2617 /* Argument is an interger zero. */
2618 return integer_zerop (gimple_call_arg (stmt, 0));
2619 }
2620
2621 /* Try to guess whether the value of return means error code. */
2622
2623 static enum br_predictor
2624 return_prediction (tree val, enum prediction *prediction)
2625 {
2626 /* VOID. */
2627 if (!val)
2628 return PRED_NO_PREDICTION;
2629 /* Different heuristics for pointers and scalars. */
2630 if (POINTER_TYPE_P (TREE_TYPE (val)))
2631 {
2632 /* NULL is usually not returned. */
2633 if (integer_zerop (val))
2634 {
2635 *prediction = NOT_TAKEN;
2636 return PRED_NULL_RETURN;
2637 }
2638 }
2639 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2640 {
2641 /* Negative return values are often used to indicate
2642 errors. */
2643 if (TREE_CODE (val) == INTEGER_CST
2644 && tree_int_cst_sgn (val) < 0)
2645 {
2646 *prediction = NOT_TAKEN;
2647 return PRED_NEGATIVE_RETURN;
2648 }
2649 /* Constant return values seems to be commonly taken.
2650 Zero/one often represent booleans so exclude them from the
2651 heuristics. */
2652 if (TREE_CONSTANT (val)
2653 && (!integer_zerop (val) && !integer_onep (val)))
2654 {
2655 *prediction = NOT_TAKEN;
2656 return PRED_CONST_RETURN;
2657 }
2658 }
2659 return PRED_NO_PREDICTION;
2660 }
2661
2662 /* Return zero if phi result could have values other than -1, 0 or 1,
2663 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2664 values are used or likely. */
2665
2666 static int
2667 zero_one_minusone (gphi *phi, int limit)
2668 {
2669 int phi_num_args = gimple_phi_num_args (phi);
2670 int ret = 0;
2671 for (int i = 0; i < phi_num_args; i++)
2672 {
2673 tree t = PHI_ARG_DEF (phi, i);
2674 if (TREE_CODE (t) != INTEGER_CST)
2675 continue;
2676 wide_int w = wi::to_wide (t);
2677 if (w == -1)
2678 ret |= 1;
2679 else if (w == 0)
2680 ret |= 2;
2681 else if (w == 1)
2682 ret |= 4;
2683 else
2684 return 0;
2685 }
2686 for (int i = 0; i < phi_num_args; i++)
2687 {
2688 tree t = PHI_ARG_DEF (phi, i);
2689 if (TREE_CODE (t) == INTEGER_CST)
2690 continue;
2691 if (TREE_CODE (t) != SSA_NAME)
2692 return 0;
2693 gimple *g = SSA_NAME_DEF_STMT (t);
2694 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2695 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2696 {
2697 ret |= r;
2698 continue;
2699 }
2700 if (!is_gimple_assign (g))
2701 return 0;
2702 if (gimple_assign_cast_p (g))
2703 {
2704 tree rhs1 = gimple_assign_rhs1 (g);
2705 if (TREE_CODE (rhs1) != SSA_NAME
2706 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2707 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2708 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2709 return 0;
2710 ret |= (2 | 4);
2711 continue;
2712 }
2713 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2714 return 0;
2715 ret |= (2 | 4);
2716 }
2717 return ret;
2718 }
2719
2720 /* Find the basic block with return expression and look up for possible
2721 return value trying to apply RETURN_PREDICTION heuristics. */
2722 static void
2723 apply_return_prediction (void)
2724 {
2725 greturn *return_stmt = NULL;
2726 tree return_val;
2727 edge e;
2728 gphi *phi;
2729 int phi_num_args, i;
2730 enum br_predictor pred;
2731 enum prediction direction;
2732 edge_iterator ei;
2733
2734 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2735 {
2736 gimple *last = last_stmt (e->src);
2737 if (last
2738 && gimple_code (last) == GIMPLE_RETURN)
2739 {
2740 return_stmt = as_a <greturn *> (last);
2741 break;
2742 }
2743 }
2744 if (!e)
2745 return;
2746 return_val = gimple_return_retval (return_stmt);
2747 if (!return_val)
2748 return;
2749 if (TREE_CODE (return_val) != SSA_NAME
2750 || !SSA_NAME_DEF_STMT (return_val)
2751 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2752 return;
2753 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2754 phi_num_args = gimple_phi_num_args (phi);
2755 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2756
2757 /* Avoid the case where the function returns -1, 0 and 1 values and
2758 nothing else. Those could be qsort etc. comparison functions
2759 where the negative return isn't less probable than positive.
2760 For this require that the function returns at least -1 or 1
2761 or -1 and a boolean value or comparison result, so that functions
2762 returning just -1 and 0 are treated as if -1 represents error value. */
2763 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2764 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2765 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2766 if (int r = zero_one_minusone (phi, 3))
2767 if ((r & (1 | 4)) == (1 | 4))
2768 return;
2769
2770 /* Avoid the degenerate case where all return values form the function
2771 belongs to same category (ie they are all positive constants)
2772 so we can hardly say something about them. */
2773 for (i = 1; i < phi_num_args; i++)
2774 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2775 break;
2776 if (i != phi_num_args)
2777 for (i = 0; i < phi_num_args; i++)
2778 {
2779 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2780 if (pred != PRED_NO_PREDICTION)
2781 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2782 direction);
2783 }
2784 }
2785
2786 /* Look for basic block that contains unlikely to happen events
2787 (such as noreturn calls) and mark all paths leading to execution
2788 of this basic blocks as unlikely. */
2789
2790 static void
2791 tree_bb_level_predictions (void)
2792 {
2793 basic_block bb;
2794 bool has_return_edges = false;
2795 edge e;
2796 edge_iterator ei;
2797
2798 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2799 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
2800 {
2801 has_return_edges = true;
2802 break;
2803 }
2804
2805 apply_return_prediction ();
2806
2807 FOR_EACH_BB_FN (bb, cfun)
2808 {
2809 gimple_stmt_iterator gsi;
2810
2811 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2812 {
2813 gimple *stmt = gsi_stmt (gsi);
2814 tree decl;
2815
2816 if (is_gimple_call (stmt))
2817 {
2818 if (gimple_call_noreturn_p (stmt)
2819 && has_return_edges
2820 && !is_exit_with_zero_arg (stmt))
2821 predict_paths_leading_to (bb, PRED_NORETURN,
2822 NOT_TAKEN);
2823 decl = gimple_call_fndecl (stmt);
2824 if (decl
2825 && lookup_attribute ("cold",
2826 DECL_ATTRIBUTES (decl)))
2827 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2828 NOT_TAKEN);
2829 if (decl && recursive_call_p (current_function_decl, decl))
2830 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
2831 NOT_TAKEN);
2832 }
2833 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2834 {
2835 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2836 gimple_predict_outcome (stmt));
2837 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2838 hints to callers. */
2839 }
2840 }
2841 }
2842 }
2843
2844 /* Callback for hash_map::traverse, asserts that the pointer map is
2845 empty. */
2846
2847 bool
2848 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2849 void *)
2850 {
2851 gcc_assert (!value);
2852 return false;
2853 }
2854
2855 /* Predict branch probabilities and estimate profile for basic block BB.
2856 When LOCAL_ONLY is set do not use any global properties of CFG. */
2857
2858 static void
2859 tree_estimate_probability_bb (basic_block bb, bool local_only)
2860 {
2861 edge e;
2862 edge_iterator ei;
2863
2864 FOR_EACH_EDGE (e, ei, bb->succs)
2865 {
2866 /* Look for block we are guarding (ie we dominate it,
2867 but it doesn't postdominate us). */
2868 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2869 && !local_only
2870 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2871 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2872 {
2873 gimple_stmt_iterator bi;
2874
2875 /* The call heuristic claims that a guarded function call
2876 is improbable. This is because such calls are often used
2877 to signal exceptional situations such as printing error
2878 messages. */
2879 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2880 gsi_next (&bi))
2881 {
2882 gimple *stmt = gsi_stmt (bi);
2883 if (is_gimple_call (stmt)
2884 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
2885 /* Constant and pure calls are hardly used to signalize
2886 something exceptional. */
2887 && gimple_has_side_effects (stmt))
2888 {
2889 if (gimple_call_fndecl (stmt))
2890 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2891 else if (virtual_method_call_p (gimple_call_fn (stmt)))
2892 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
2893 else
2894 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
2895 break;
2896 }
2897 }
2898 }
2899 }
2900 tree_predict_by_opcode (bb);
2901 }
2902
2903 /* Predict branch probabilities and estimate profile of the tree CFG.
2904 This function can be called from the loop optimizers to recompute
2905 the profile information.
2906 If DRY_RUN is set, do not modify CFG and only produce dump files. */
2907
2908 void
2909 tree_estimate_probability (bool dry_run)
2910 {
2911 basic_block bb;
2912
2913 add_noreturn_fake_exit_edges ();
2914 connect_infinite_loops_to_exit ();
2915 /* We use loop_niter_by_eval, which requires that the loops have
2916 preheaders. */
2917 create_preheaders (CP_SIMPLE_PREHEADERS);
2918 calculate_dominance_info (CDI_POST_DOMINATORS);
2919
2920 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2921 tree_bb_level_predictions ();
2922 record_loop_exits ();
2923
2924 if (number_of_loops (cfun) > 1)
2925 predict_loops ();
2926
2927 FOR_EACH_BB_FN (bb, cfun)
2928 tree_estimate_probability_bb (bb, false);
2929
2930 FOR_EACH_BB_FN (bb, cfun)
2931 combine_predictions_for_bb (bb, dry_run);
2932
2933 if (flag_checking)
2934 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2935
2936 delete bb_predictions;
2937 bb_predictions = NULL;
2938
2939 if (!dry_run)
2940 estimate_bb_frequencies (false);
2941 free_dominance_info (CDI_POST_DOMINATORS);
2942 remove_fake_exit_edges ();
2943 }
2944
2945 /* Set edge->probability for each successor edge of BB. */
2946 void
2947 tree_guess_outgoing_edge_probabilities (basic_block bb)
2948 {
2949 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2950 tree_estimate_probability_bb (bb, true);
2951 combine_predictions_for_bb (bb, false);
2952 if (flag_checking)
2953 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2954 delete bb_predictions;
2955 bb_predictions = NULL;
2956 }
2957 \f
2958 /* Predict edges to successors of CUR whose sources are not postdominated by
2959 BB by PRED and recurse to all postdominators. */
2960
2961 static void
2962 predict_paths_for_bb (basic_block cur, basic_block bb,
2963 enum br_predictor pred,
2964 enum prediction taken,
2965 bitmap visited, struct loop *in_loop = NULL)
2966 {
2967 edge e;
2968 edge_iterator ei;
2969 basic_block son;
2970
2971 /* If we exited the loop or CUR is unconditional in the loop, there is
2972 nothing to do. */
2973 if (in_loop
2974 && (!flow_bb_inside_loop_p (in_loop, cur)
2975 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
2976 return;
2977
2978 /* We are looking for all edges forming edge cut induced by
2979 set of all blocks postdominated by BB. */
2980 FOR_EACH_EDGE (e, ei, cur->preds)
2981 if (e->src->index >= NUM_FIXED_BLOCKS
2982 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2983 {
2984 edge e2;
2985 edge_iterator ei2;
2986 bool found = false;
2987
2988 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2989 if (unlikely_executed_edge_p (e))
2990 continue;
2991 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2992
2993 /* See if there is an edge from e->src that is not abnormal
2994 and does not lead to BB and does not exit the loop. */
2995 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2996 if (e2 != e
2997 && !unlikely_executed_edge_p (e2)
2998 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
2999 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3000 {
3001 found = true;
3002 break;
3003 }
3004
3005 /* If there is non-abnormal path leaving e->src, predict edge
3006 using predictor. Otherwise we need to look for paths
3007 leading to e->src.
3008
3009 The second may lead to infinite loop in the case we are predicitng
3010 regions that are only reachable by abnormal edges. We simply
3011 prevent visiting given BB twice. */
3012 if (found)
3013 {
3014 if (!edge_predicted_by_p (e, pred, taken))
3015 predict_edge_def (e, pred, taken);
3016 }
3017 else if (bitmap_set_bit (visited, e->src->index))
3018 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3019 }
3020 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3021 son;
3022 son = next_dom_son (CDI_POST_DOMINATORS, son))
3023 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3024 }
3025
3026 /* Sets branch probabilities according to PREDiction and
3027 FLAGS. */
3028
3029 static void
3030 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3031 enum prediction taken, struct loop *in_loop)
3032 {
3033 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3034 }
3035
3036 /* Like predict_paths_leading_to but take edge instead of basic block. */
3037
3038 static void
3039 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3040 enum prediction taken, struct loop *in_loop)
3041 {
3042 bool has_nonloop_edge = false;
3043 edge_iterator ei;
3044 edge e2;
3045
3046 basic_block bb = e->src;
3047 FOR_EACH_EDGE (e2, ei, bb->succs)
3048 if (e2->dest != e->src && e2->dest != e->dest
3049 && !unlikely_executed_edge_p (e)
3050 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3051 {
3052 has_nonloop_edge = true;
3053 break;
3054 }
3055 if (!has_nonloop_edge)
3056 {
3057 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3058 }
3059 else
3060 predict_edge_def (e, pred, taken);
3061 }
3062 \f
3063 /* This is used to carry information about basic blocks. It is
3064 attached to the AUX field of the standard CFG block. */
3065
3066 struct block_info
3067 {
3068 /* Estimated frequency of execution of basic_block. */
3069 sreal frequency;
3070
3071 /* To keep queue of basic blocks to process. */
3072 basic_block next;
3073
3074 /* Number of predecessors we need to visit first. */
3075 int npredecessors;
3076 };
3077
3078 /* Similar information for edges. */
3079 struct edge_prob_info
3080 {
3081 /* In case edge is a loopback edge, the probability edge will be reached
3082 in case header is. Estimated number of iterations of the loop can be
3083 then computed as 1 / (1 - back_edge_prob). */
3084 sreal back_edge_prob;
3085 /* True if the edge is a loopback edge in the natural loop. */
3086 unsigned int back_edge:1;
3087 };
3088
3089 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3090 #undef EDGE_INFO
3091 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3092
3093 /* Helper function for estimate_bb_frequencies.
3094 Propagate the frequencies in blocks marked in
3095 TOVISIT, starting in HEAD. */
3096
3097 static void
3098 propagate_freq (basic_block head, bitmap tovisit)
3099 {
3100 basic_block bb;
3101 basic_block last;
3102 unsigned i;
3103 edge e;
3104 basic_block nextbb;
3105 bitmap_iterator bi;
3106
3107 /* For each basic block we need to visit count number of his predecessors
3108 we need to visit first. */
3109 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3110 {
3111 edge_iterator ei;
3112 int count = 0;
3113
3114 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3115
3116 FOR_EACH_EDGE (e, ei, bb->preds)
3117 {
3118 bool visit = bitmap_bit_p (tovisit, e->src->index);
3119
3120 if (visit && !(e->flags & EDGE_DFS_BACK))
3121 count++;
3122 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3123 fprintf (dump_file,
3124 "Irreducible region hit, ignoring edge to %i->%i\n",
3125 e->src->index, bb->index);
3126 }
3127 BLOCK_INFO (bb)->npredecessors = count;
3128 /* When function never returns, we will never process exit block. */
3129 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3130 bb->count = profile_count::zero ();
3131 }
3132
3133 BLOCK_INFO (head)->frequency = 1;
3134 last = head;
3135 for (bb = head; bb; bb = nextbb)
3136 {
3137 edge_iterator ei;
3138 sreal cyclic_probability = 0;
3139 sreal frequency = 0;
3140
3141 nextbb = BLOCK_INFO (bb)->next;
3142 BLOCK_INFO (bb)->next = NULL;
3143
3144 /* Compute frequency of basic block. */
3145 if (bb != head)
3146 {
3147 if (flag_checking)
3148 FOR_EACH_EDGE (e, ei, bb->preds)
3149 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3150 || (e->flags & EDGE_DFS_BACK));
3151
3152 FOR_EACH_EDGE (e, ei, bb->preds)
3153 if (EDGE_INFO (e)->back_edge)
3154 {
3155 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3156 }
3157 else if (!(e->flags & EDGE_DFS_BACK))
3158 {
3159 /* frequency += (e->probability
3160 * BLOCK_INFO (e->src)->frequency /
3161 REG_BR_PROB_BASE); */
3162
3163 /* FIXME: Graphite is producing edges with no profile. Once
3164 this is fixed, drop this. */
3165 sreal tmp = e->probability.initialized_p () ?
3166 e->probability.to_reg_br_prob_base () : 0;
3167 tmp *= BLOCK_INFO (e->src)->frequency;
3168 tmp *= real_inv_br_prob_base;
3169 frequency += tmp;
3170 }
3171
3172 if (cyclic_probability == 0)
3173 {
3174 BLOCK_INFO (bb)->frequency = frequency;
3175 }
3176 else
3177 {
3178 if (cyclic_probability > real_almost_one)
3179 cyclic_probability = real_almost_one;
3180
3181 /* BLOCK_INFO (bb)->frequency = frequency
3182 / (1 - cyclic_probability) */
3183
3184 cyclic_probability = sreal (1) - cyclic_probability;
3185 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
3186 }
3187 }
3188
3189 bitmap_clear_bit (tovisit, bb->index);
3190
3191 e = find_edge (bb, head);
3192 if (e)
3193 {
3194 /* EDGE_INFO (e)->back_edge_prob
3195 = ((e->probability * BLOCK_INFO (bb)->frequency)
3196 / REG_BR_PROB_BASE); */
3197
3198 /* FIXME: Graphite is producing edges with no profile. Once
3199 this is fixed, drop this. */
3200 sreal tmp = e->probability.initialized_p () ?
3201 e->probability.to_reg_br_prob_base () : 0;
3202 tmp *= BLOCK_INFO (bb)->frequency;
3203 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
3204 }
3205
3206 /* Propagate to successor blocks. */
3207 FOR_EACH_EDGE (e, ei, bb->succs)
3208 if (!(e->flags & EDGE_DFS_BACK)
3209 && BLOCK_INFO (e->dest)->npredecessors)
3210 {
3211 BLOCK_INFO (e->dest)->npredecessors--;
3212 if (!BLOCK_INFO (e->dest)->npredecessors)
3213 {
3214 if (!nextbb)
3215 nextbb = e->dest;
3216 else
3217 BLOCK_INFO (last)->next = e->dest;
3218
3219 last = e->dest;
3220 }
3221 }
3222 }
3223 }
3224
3225 /* Estimate frequencies in loops at same nest level. */
3226
3227 static void
3228 estimate_loops_at_level (struct loop *first_loop)
3229 {
3230 struct loop *loop;
3231
3232 for (loop = first_loop; loop; loop = loop->next)
3233 {
3234 edge e;
3235 basic_block *bbs;
3236 unsigned i;
3237 auto_bitmap tovisit;
3238
3239 estimate_loops_at_level (loop->inner);
3240
3241 /* Find current loop back edge and mark it. */
3242 e = loop_latch_edge (loop);
3243 EDGE_INFO (e)->back_edge = 1;
3244
3245 bbs = get_loop_body (loop);
3246 for (i = 0; i < loop->num_nodes; i++)
3247 bitmap_set_bit (tovisit, bbs[i]->index);
3248 free (bbs);
3249 propagate_freq (loop->header, tovisit);
3250 }
3251 }
3252
3253 /* Propagates frequencies through structure of loops. */
3254
3255 static void
3256 estimate_loops (void)
3257 {
3258 auto_bitmap tovisit;
3259 basic_block bb;
3260
3261 /* Start by estimating the frequencies in the loops. */
3262 if (number_of_loops (cfun) > 1)
3263 estimate_loops_at_level (current_loops->tree_root->inner);
3264
3265 /* Now propagate the frequencies through all the blocks. */
3266 FOR_ALL_BB_FN (bb, cfun)
3267 {
3268 bitmap_set_bit (tovisit, bb->index);
3269 }
3270 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
3271 }
3272
3273 /* Drop the profile for NODE to guessed, and update its frequency based on
3274 whether it is expected to be hot given the CALL_COUNT. */
3275
3276 static void
3277 drop_profile (struct cgraph_node *node, profile_count call_count)
3278 {
3279 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3280 /* In the case where this was called by another function with a
3281 dropped profile, call_count will be 0. Since there are no
3282 non-zero call counts to this function, we don't know for sure
3283 whether it is hot, and therefore it will be marked normal below. */
3284 bool hot = maybe_hot_count_p (NULL, call_count);
3285
3286 if (dump_file)
3287 fprintf (dump_file,
3288 "Dropping 0 profile for %s. %s based on calls.\n",
3289 node->dump_name (),
3290 hot ? "Function is hot" : "Function is normal");
3291 /* We only expect to miss profiles for functions that are reached
3292 via non-zero call edges in cases where the function may have
3293 been linked from another module or library (COMDATs and extern
3294 templates). See the comments below for handle_missing_profiles.
3295 Also, only warn in cases where the missing counts exceed the
3296 number of training runs. In certain cases with an execv followed
3297 by a no-return call the profile for the no-return call is not
3298 dumped and there can be a mismatch. */
3299 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3300 && call_count > profile_info->runs)
3301 {
3302 if (flag_profile_correction)
3303 {
3304 if (dump_file)
3305 fprintf (dump_file,
3306 "Missing counts for called function %s\n",
3307 node->dump_name ());
3308 }
3309 else
3310 warning (0, "Missing counts for called function %s",
3311 node->dump_name ());
3312 }
3313
3314 basic_block bb;
3315 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3316 {
3317 bool clear_zeros
3318 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3319 FOR_ALL_BB_FN (bb, fn)
3320 if (clear_zeros || !(bb->count == profile_count::zero ()))
3321 bb->count = bb->count.guessed_local ();
3322 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3323 }
3324 else
3325 {
3326 FOR_ALL_BB_FN (bb, fn)
3327 bb->count = profile_count::uninitialized ();
3328 fn->cfg->count_max = profile_count::uninitialized ();
3329 }
3330
3331 struct cgraph_edge *e;
3332 for (e = node->callees; e; e = e->next_callee)
3333 e->count = gimple_bb (e->call_stmt)->count;
3334 for (e = node->indirect_calls; e; e = e->next_callee)
3335 e->count = gimple_bb (e->call_stmt)->count;
3336 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3337
3338 profile_status_for_fn (fn)
3339 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3340 node->frequency
3341 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3342 }
3343
3344 /* In the case of COMDAT routines, multiple object files will contain the same
3345 function and the linker will select one for the binary. In that case
3346 all the other copies from the profile instrument binary will be missing
3347 profile counts. Look for cases where this happened, due to non-zero
3348 call counts going to 0-count functions, and drop the profile to guessed
3349 so that we can use the estimated probabilities and avoid optimizing only
3350 for size.
3351
3352 The other case where the profile may be missing is when the routine
3353 is not going to be emitted to the object file, e.g. for "extern template"
3354 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3355 all other cases of non-zero calls to 0-count functions. */
3356
3357 void
3358 handle_missing_profiles (void)
3359 {
3360 struct cgraph_node *node;
3361 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
3362 auto_vec<struct cgraph_node *, 64> worklist;
3363
3364 /* See if 0 count function has non-0 count callers. In this case we
3365 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3366 FOR_EACH_DEFINED_FUNCTION (node)
3367 {
3368 struct cgraph_edge *e;
3369 profile_count call_count = profile_count::zero ();
3370 gcov_type max_tp_first_run = 0;
3371 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3372
3373 if (node->count.ipa ().nonzero_p ())
3374 continue;
3375 for (e = node->callers; e; e = e->next_caller)
3376 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3377 {
3378 call_count = call_count + e->count.ipa ();
3379
3380 if (e->caller->tp_first_run > max_tp_first_run)
3381 max_tp_first_run = e->caller->tp_first_run;
3382 }
3383
3384 /* If time profile is missing, let assign the maximum that comes from
3385 caller functions. */
3386 if (!node->tp_first_run && max_tp_first_run)
3387 node->tp_first_run = max_tp_first_run + 1;
3388
3389 if (call_count > 0
3390 && fn && fn->cfg
3391 && (call_count.apply_scale (unlikely_count_fraction, 1)
3392 >= profile_info->runs))
3393 {
3394 drop_profile (node, call_count);
3395 worklist.safe_push (node);
3396 }
3397 }
3398
3399 /* Propagate the profile dropping to other 0-count COMDATs that are
3400 potentially called by COMDATs we already dropped the profile on. */
3401 while (worklist.length () > 0)
3402 {
3403 struct cgraph_edge *e;
3404
3405 node = worklist.pop ();
3406 for (e = node->callees; e; e = e->next_caller)
3407 {
3408 struct cgraph_node *callee = e->callee;
3409 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3410
3411 if (!(e->count.ipa () == profile_count::zero ())
3412 && callee->count.ipa ().nonzero_p ())
3413 continue;
3414 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3415 && fn && fn->cfg
3416 && profile_status_for_fn (fn) == PROFILE_READ)
3417 {
3418 drop_profile (node, profile_count::zero ());
3419 worklist.safe_push (callee);
3420 }
3421 }
3422 }
3423 }
3424
3425 /* Convert counts measured by profile driven feedback to frequencies.
3426 Return nonzero iff there was any nonzero execution count. */
3427
3428 bool
3429 update_max_bb_count (void)
3430 {
3431 profile_count true_count_max = profile_count::uninitialized ();
3432 basic_block bb;
3433
3434 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3435 true_count_max = true_count_max.max (bb->count);
3436
3437 cfun->cfg->count_max = true_count_max;
3438
3439 return true_count_max.ipa ().nonzero_p ();
3440 }
3441
3442 /* Return true if function is likely to be expensive, so there is no point to
3443 optimize performance of prologue, epilogue or do inlining at the expense
3444 of code size growth. THRESHOLD is the limit of number of instructions
3445 function can execute at average to be still considered not expensive. */
3446
3447 bool
3448 expensive_function_p (int threshold)
3449 {
3450 basic_block bb;
3451
3452 /* If profile was scaled in a way entry block has count 0, then the function
3453 is deifnitly taking a lot of time. */
3454 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3455 return true;
3456
3457 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3458 (cfun)->count.apply_scale (threshold, 1);
3459 profile_count sum = profile_count::zero ();
3460 FOR_EACH_BB_FN (bb, cfun)
3461 {
3462 rtx_insn *insn;
3463
3464 if (!bb->count.initialized_p ())
3465 {
3466 if (dump_file)
3467 fprintf (dump_file, "Function is considered expensive because"
3468 " count of bb %i is not initialized\n", bb->index);
3469 return true;
3470 }
3471
3472 FOR_BB_INSNS (bb, insn)
3473 if (active_insn_p (insn))
3474 {
3475 sum += bb->count;
3476 if (sum > limit)
3477 return true;
3478 }
3479 }
3480
3481 return false;
3482 }
3483
3484 /* All basic blocks that are reachable only from unlikely basic blocks are
3485 unlikely. */
3486
3487 void
3488 propagate_unlikely_bbs_forward (void)
3489 {
3490 auto_vec<basic_block, 64> worklist;
3491 basic_block bb;
3492 edge_iterator ei;
3493 edge e;
3494
3495 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3496 {
3497 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3498 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3499
3500 while (worklist.length () > 0)
3501 {
3502 bb = worklist.pop ();
3503 FOR_EACH_EDGE (e, ei, bb->succs)
3504 if (!(e->count () == profile_count::zero ())
3505 && !(e->dest->count == profile_count::zero ())
3506 && !e->dest->aux)
3507 {
3508 e->dest->aux = (void *)(size_t) 1;
3509 worklist.safe_push (e->dest);
3510 }
3511 }
3512 }
3513
3514 FOR_ALL_BB_FN (bb, cfun)
3515 {
3516 if (!bb->aux)
3517 {
3518 if (!(bb->count == profile_count::zero ())
3519 && (dump_file && (dump_flags & TDF_DETAILS)))
3520 fprintf (dump_file,
3521 "Basic block %i is marked unlikely by forward prop\n",
3522 bb->index);
3523 bb->count = profile_count::zero ();
3524 }
3525 else
3526 bb->aux = NULL;
3527 }
3528 }
3529
3530 /* Determine basic blocks/edges that are known to be unlikely executed and set
3531 their counters to zero.
3532 This is done with first identifying obviously unlikely BBs/edges and then
3533 propagating in both directions. */
3534
3535 static void
3536 determine_unlikely_bbs ()
3537 {
3538 basic_block bb;
3539 auto_vec<basic_block, 64> worklist;
3540 edge_iterator ei;
3541 edge e;
3542
3543 FOR_EACH_BB_FN (bb, cfun)
3544 {
3545 if (!(bb->count == profile_count::zero ())
3546 && unlikely_executed_bb_p (bb))
3547 {
3548 if (dump_file && (dump_flags & TDF_DETAILS))
3549 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3550 bb->index);
3551 bb->count = profile_count::zero ();
3552 }
3553
3554 FOR_EACH_EDGE (e, ei, bb->succs)
3555 if (!(e->probability == profile_probability::never ())
3556 && unlikely_executed_edge_p (e))
3557 {
3558 if (dump_file && (dump_flags & TDF_DETAILS))
3559 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3560 bb->index, e->dest->index);
3561 e->probability = profile_probability::never ();
3562 }
3563
3564 gcc_checking_assert (!bb->aux);
3565 }
3566 propagate_unlikely_bbs_forward ();
3567
3568 auto_vec<int, 64> nsuccs;
3569 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun));
3570 FOR_ALL_BB_FN (bb, cfun)
3571 if (!(bb->count == profile_count::zero ())
3572 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3573 {
3574 nsuccs[bb->index] = 0;
3575 FOR_EACH_EDGE (e, ei, bb->succs)
3576 if (!(e->probability == profile_probability::never ())
3577 && !(e->dest->count == profile_count::zero ()))
3578 nsuccs[bb->index]++;
3579 if (!nsuccs[bb->index])
3580 worklist.safe_push (bb);
3581 }
3582 while (worklist.length () > 0)
3583 {
3584 bb = worklist.pop ();
3585 if (bb->count == profile_count::zero ())
3586 continue;
3587 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3588 {
3589 bool found = false;
3590 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3591 !gsi_end_p (gsi); gsi_next (&gsi))
3592 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3593 /* stmt_can_terminate_bb_p special cases noreturns because it
3594 assumes that fake edges are created. We want to know that
3595 noreturn alone does not imply BB to be unlikely. */
3596 || (is_gimple_call (gsi_stmt (gsi))
3597 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3598 {
3599 found = true;
3600 break;
3601 }
3602 if (found)
3603 continue;
3604 }
3605 if (dump_file && (dump_flags & TDF_DETAILS))
3606 fprintf (dump_file,
3607 "Basic block %i is marked unlikely by backward prop\n",
3608 bb->index);
3609 bb->count = profile_count::zero ();
3610 FOR_EACH_EDGE (e, ei, bb->preds)
3611 if (!(e->probability == profile_probability::never ()))
3612 {
3613 if (!(e->src->count == profile_count::zero ()))
3614 {
3615 gcc_checking_assert (nsuccs[e->src->index] > 0);
3616 nsuccs[e->src->index]--;
3617 if (!nsuccs[e->src->index])
3618 worklist.safe_push (e->src);
3619 }
3620 }
3621 }
3622 /* Finally all edges from non-0 regions to 0 are unlikely. */
3623 FOR_ALL_BB_FN (bb, cfun)
3624 if (!(bb->count == profile_count::zero ()))
3625 FOR_EACH_EDGE (e, ei, bb->succs)
3626 if (!(e->probability == profile_probability::never ())
3627 && e->dest->count == profile_count::zero ())
3628 {
3629 if (dump_file && (dump_flags & TDF_DETAILS))
3630 fprintf (dump_file, "Edge %i->%i is unlikely because "
3631 "it enters unlikely block\n",
3632 bb->index, e->dest->index);
3633 e->probability = profile_probability::never ();
3634 }
3635 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3636 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3637 }
3638
3639 /* Estimate and propagate basic block frequencies using the given branch
3640 probabilities. If FORCE is true, the frequencies are used to estimate
3641 the counts even when there are already non-zero profile counts. */
3642
3643 void
3644 estimate_bb_frequencies (bool force)
3645 {
3646 basic_block bb;
3647 sreal freq_max;
3648
3649 determine_unlikely_bbs ();
3650
3651 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3652 || !update_max_bb_count ())
3653 {
3654 static int real_values_initialized = 0;
3655
3656 if (!real_values_initialized)
3657 {
3658 real_values_initialized = 1;
3659 real_br_prob_base = REG_BR_PROB_BASE;
3660 /* Scaling frequencies up to maximal profile count may result in
3661 frequent overflows especially when inlining loops.
3662 Small scalling results in unnecesary precision loss. Stay in
3663 the half of the (exponential) range. */
3664 real_bb_freq_max = (uint64_t)1 << (profile_count::n_bits / 2);
3665 real_one_half = sreal (1, -1);
3666 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
3667 real_almost_one = sreal (1) - real_inv_br_prob_base;
3668 }
3669
3670 mark_dfs_back_edges ();
3671
3672 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3673 profile_probability::always ();
3674
3675 /* Set up block info for each basic block. */
3676 alloc_aux_for_blocks (sizeof (block_info));
3677 alloc_aux_for_edges (sizeof (edge_prob_info));
3678 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3679 {
3680 edge e;
3681 edge_iterator ei;
3682
3683 FOR_EACH_EDGE (e, ei, bb->succs)
3684 {
3685 /* FIXME: Graphite is producing edges with no profile. Once
3686 this is fixed, drop this. */
3687 if (e->probability.initialized_p ())
3688 EDGE_INFO (e)->back_edge_prob
3689 = e->probability.to_reg_br_prob_base ();
3690 else
3691 EDGE_INFO (e)->back_edge_prob = REG_BR_PROB_BASE / 2;
3692 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
3693 }
3694 }
3695
3696 /* First compute frequencies locally for each loop from innermost
3697 to outermost to examine frequencies for back edges. */
3698 estimate_loops ();
3699
3700 freq_max = 0;
3701 FOR_EACH_BB_FN (bb, cfun)
3702 if (freq_max < BLOCK_INFO (bb)->frequency)
3703 freq_max = BLOCK_INFO (bb)->frequency;
3704
3705 freq_max = real_bb_freq_max / freq_max;
3706 if (freq_max < 16)
3707 freq_max = 16;
3708 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3709 cfun->cfg->count_max = profile_count::uninitialized ();
3710 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3711 {
3712 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
3713 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3714
3715 /* If we have profile feedback in which this function was never
3716 executed, then preserve this info. */
3717 if (!(bb->count == profile_count::zero ()))
3718 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3719 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3720 }
3721
3722 free_aux_for_blocks ();
3723 free_aux_for_edges ();
3724 }
3725 compute_function_frequency ();
3726 }
3727
3728 /* Decide whether function is hot, cold or unlikely executed. */
3729 void
3730 compute_function_frequency (void)
3731 {
3732 basic_block bb;
3733 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3734
3735 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3736 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3737 node->only_called_at_startup = true;
3738 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3739 node->only_called_at_exit = true;
3740
3741 if (profile_status_for_fn (cfun) != PROFILE_READ)
3742 {
3743 int flags = flags_from_decl_or_type (current_function_decl);
3744 if ((ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ()
3745 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3746 || lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3747 != NULL)
3748 {
3749 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3750 warn_function_cold (current_function_decl);
3751 }
3752 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3753 != NULL)
3754 node->frequency = NODE_FREQUENCY_HOT;
3755 else if (flags & ECF_NORETURN)
3756 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3757 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3758 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3759 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3760 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3761 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3762 return;
3763 }
3764
3765 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3766 warn_function_cold (current_function_decl);
3767 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3768 return;
3769 FOR_EACH_BB_FN (bb, cfun)
3770 {
3771 if (maybe_hot_bb_p (cfun, bb))
3772 {
3773 node->frequency = NODE_FREQUENCY_HOT;
3774 return;
3775 }
3776 if (!probably_never_executed_bb_p (cfun, bb))
3777 node->frequency = NODE_FREQUENCY_NORMAL;
3778 }
3779 }
3780
3781 /* Build PREDICT_EXPR. */
3782 tree
3783 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3784 {
3785 tree t = build1 (PREDICT_EXPR, void_type_node,
3786 build_int_cst (integer_type_node, predictor));
3787 SET_PREDICT_EXPR_OUTCOME (t, taken);
3788 return t;
3789 }
3790
3791 const char *
3792 predictor_name (enum br_predictor predictor)
3793 {
3794 return predictor_info[predictor].name;
3795 }
3796
3797 /* Predict branch probabilities and estimate profile of the tree CFG. */
3798
3799 namespace {
3800
3801 const pass_data pass_data_profile =
3802 {
3803 GIMPLE_PASS, /* type */
3804 "profile_estimate", /* name */
3805 OPTGROUP_NONE, /* optinfo_flags */
3806 TV_BRANCH_PROB, /* tv_id */
3807 PROP_cfg, /* properties_required */
3808 0, /* properties_provided */
3809 0, /* properties_destroyed */
3810 0, /* todo_flags_start */
3811 0, /* todo_flags_finish */
3812 };
3813
3814 class pass_profile : public gimple_opt_pass
3815 {
3816 public:
3817 pass_profile (gcc::context *ctxt)
3818 : gimple_opt_pass (pass_data_profile, ctxt)
3819 {}
3820
3821 /* opt_pass methods: */
3822 virtual bool gate (function *) { return flag_guess_branch_prob; }
3823 virtual unsigned int execute (function *);
3824
3825 }; // class pass_profile
3826
3827 unsigned int
3828 pass_profile::execute (function *fun)
3829 {
3830 unsigned nb_loops;
3831
3832 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3833 return 0;
3834
3835 loop_optimizer_init (LOOPS_NORMAL);
3836 if (dump_file && (dump_flags & TDF_DETAILS))
3837 flow_loops_dump (dump_file, NULL, 0);
3838
3839 mark_irreducible_loops ();
3840
3841 nb_loops = number_of_loops (fun);
3842 if (nb_loops > 1)
3843 scev_initialize ();
3844
3845 tree_estimate_probability (false);
3846
3847 if (nb_loops > 1)
3848 scev_finalize ();
3849
3850 loop_optimizer_finalize ();
3851 if (dump_file && (dump_flags & TDF_DETAILS))
3852 gimple_dump_cfg (dump_file, dump_flags);
3853 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3854 profile_status_for_fn (fun) = PROFILE_GUESSED;
3855 if (dump_file && (dump_flags & TDF_DETAILS))
3856 {
3857 struct loop *loop;
3858 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
3859 if (loop->header->count.initialized_p ())
3860 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
3861 loop->num,
3862 (int)expected_loop_iterations_unbounded (loop));
3863 }
3864 return 0;
3865 }
3866
3867 } // anon namespace
3868
3869 gimple_opt_pass *
3870 make_pass_profile (gcc::context *ctxt)
3871 {
3872 return new pass_profile (ctxt);
3873 }
3874
3875 namespace {
3876
3877 const pass_data pass_data_strip_predict_hints =
3878 {
3879 GIMPLE_PASS, /* type */
3880 "*strip_predict_hints", /* name */
3881 OPTGROUP_NONE, /* optinfo_flags */
3882 TV_BRANCH_PROB, /* tv_id */
3883 PROP_cfg, /* properties_required */
3884 0, /* properties_provided */
3885 0, /* properties_destroyed */
3886 0, /* todo_flags_start */
3887 0, /* todo_flags_finish */
3888 };
3889
3890 class pass_strip_predict_hints : public gimple_opt_pass
3891 {
3892 public:
3893 pass_strip_predict_hints (gcc::context *ctxt)
3894 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3895 {}
3896
3897 /* opt_pass methods: */
3898 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3899 virtual unsigned int execute (function *);
3900
3901 }; // class pass_strip_predict_hints
3902
3903 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3904 we no longer need. */
3905 unsigned int
3906 pass_strip_predict_hints::execute (function *fun)
3907 {
3908 basic_block bb;
3909 gimple *ass_stmt;
3910 tree var;
3911 bool changed = false;
3912
3913 FOR_EACH_BB_FN (bb, fun)
3914 {
3915 gimple_stmt_iterator bi;
3916 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3917 {
3918 gimple *stmt = gsi_stmt (bi);
3919
3920 if (gimple_code (stmt) == GIMPLE_PREDICT)
3921 {
3922 gsi_remove (&bi, true);
3923 changed = true;
3924 continue;
3925 }
3926 else if (is_gimple_call (stmt))
3927 {
3928 tree fndecl = gimple_call_fndecl (stmt);
3929
3930 if ((fndecl
3931 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3932 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3933 && gimple_call_num_args (stmt) == 2)
3934 || (gimple_call_internal_p (stmt)
3935 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3936 {
3937 var = gimple_call_lhs (stmt);
3938 changed = true;
3939 if (var)
3940 {
3941 ass_stmt
3942 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3943 gsi_replace (&bi, ass_stmt, true);
3944 }
3945 else
3946 {
3947 gsi_remove (&bi, true);
3948 continue;
3949 }
3950 }
3951 }
3952 gsi_next (&bi);
3953 }
3954 }
3955 return changed ? TODO_cleanup_cfg : 0;
3956 }
3957
3958 } // anon namespace
3959
3960 gimple_opt_pass *
3961 make_pass_strip_predict_hints (gcc::context *ctxt)
3962 {
3963 return new pass_strip_predict_hints (ctxt);
3964 }
3965
3966 /* Rebuild function frequencies. Passes are in general expected to
3967 maintain profile by hand, however in some cases this is not possible:
3968 for example when inlining several functions with loops freuqencies might run
3969 out of scale and thus needs to be recomputed. */
3970
3971 void
3972 rebuild_frequencies (void)
3973 {
3974 timevar_push (TV_REBUILD_FREQUENCIES);
3975
3976 /* When the max bb count in the function is small, there is a higher
3977 chance that there were truncation errors in the integer scaling
3978 of counts by inlining and other optimizations. This could lead
3979 to incorrect classification of code as being cold when it isn't.
3980 In that case, force the estimation of bb counts/frequencies from the
3981 branch probabilities, rather than computing frequencies from counts,
3982 which may also lead to frequencies incorrectly reduced to 0. There
3983 is less precision in the probabilities, so we only do this for small
3984 max counts. */
3985 cfun->cfg->count_max = profile_count::uninitialized ();
3986 basic_block bb;
3987 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3988 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3989
3990 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3991 {
3992 loop_optimizer_init (0);
3993 add_noreturn_fake_exit_edges ();
3994 mark_irreducible_loops ();
3995 connect_infinite_loops_to_exit ();
3996 estimate_bb_frequencies (true);
3997 remove_fake_exit_edges ();
3998 loop_optimizer_finalize ();
3999 }
4000 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4001 update_max_bb_count ();
4002 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4003 && !flag_guess_branch_prob)
4004 ;
4005 else
4006 gcc_unreachable ();
4007 timevar_pop (TV_REBUILD_FREQUENCIES);
4008 }
4009
4010 /* Perform a dry run of the branch prediction pass and report comparsion of
4011 the predicted and real profile into the dump file. */
4012
4013 void
4014 report_predictor_hitrates (void)
4015 {
4016 unsigned nb_loops;
4017
4018 loop_optimizer_init (LOOPS_NORMAL);
4019 if (dump_file && (dump_flags & TDF_DETAILS))
4020 flow_loops_dump (dump_file, NULL, 0);
4021
4022 mark_irreducible_loops ();
4023
4024 nb_loops = number_of_loops (cfun);
4025 if (nb_loops > 1)
4026 scev_initialize ();
4027
4028 tree_estimate_probability (true);
4029
4030 if (nb_loops > 1)
4031 scev_finalize ();
4032
4033 loop_optimizer_finalize ();
4034 }
4035
4036 /* Force edge E to be cold.
4037 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4038 keep low probability to represent possible error in a guess. This is used
4039 i.e. in case we predict loop to likely iterate given number of times but
4040 we are not 100% sure.
4041
4042 This function locally updates profile without attempt to keep global
4043 consistency which can not be reached in full generality without full profile
4044 rebuild from probabilities alone. Doing so is not necessarily a good idea
4045 because frequencies and counts may be more realistic then probabilities.
4046
4047 In some cases (such as for elimination of early exits during full loop
4048 unrolling) the caller can ensure that profile will get consistent
4049 afterwards. */
4050
4051 void
4052 force_edge_cold (edge e, bool impossible)
4053 {
4054 profile_count count_sum = profile_count::zero ();
4055 profile_probability prob_sum = profile_probability::never ();
4056 edge_iterator ei;
4057 edge e2;
4058 bool uninitialized_exit = false;
4059
4060 /* When branch probability guesses are not known, then do nothing. */
4061 if (!impossible && !e->count ().initialized_p ())
4062 return;
4063
4064 profile_probability goal = (impossible ? profile_probability::never ()
4065 : profile_probability::very_unlikely ());
4066
4067 /* If edge is already improbably or cold, just return. */
4068 if (e->probability <= goal
4069 && (!impossible || e->count () == profile_count::zero ()))
4070 return;
4071 FOR_EACH_EDGE (e2, ei, e->src->succs)
4072 if (e2 != e)
4073 {
4074 if (e->flags & EDGE_FAKE)
4075 continue;
4076 if (e2->count ().initialized_p ())
4077 count_sum += e2->count ();
4078 if (e2->probability.initialized_p ())
4079 prob_sum += e2->probability;
4080 else
4081 uninitialized_exit = true;
4082 }
4083
4084 /* If we are not guessing profiles but have some other edges out,
4085 just assume the control flow goes elsewhere. */
4086 if (uninitialized_exit)
4087 e->probability = goal;
4088 /* If there are other edges out of e->src, redistribute probabilitity
4089 there. */
4090 else if (prob_sum > profile_probability::never ())
4091 {
4092 if (!(e->probability < goal))
4093 e->probability = goal;
4094
4095 profile_probability prob_comp = prob_sum / e->probability.invert ();
4096
4097 if (dump_file && (dump_flags & TDF_DETAILS))
4098 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4099 "probability to other edges.\n",
4100 e->src->index, e->dest->index,
4101 impossible ? "impossible" : "cold");
4102 FOR_EACH_EDGE (e2, ei, e->src->succs)
4103 if (e2 != e)
4104 {
4105 e2->probability /= prob_comp;
4106 }
4107 if (current_ir_type () != IR_GIMPLE
4108 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4109 update_br_prob_note (e->src);
4110 }
4111 /* If all edges out of e->src are unlikely, the basic block itself
4112 is unlikely. */
4113 else
4114 {
4115 if (prob_sum == profile_probability::never ())
4116 e->probability = profile_probability::always ();
4117 else
4118 {
4119 if (impossible)
4120 e->probability = profile_probability::never ();
4121 /* If BB has some edges out that are not impossible, we can not
4122 assume that BB itself is. */
4123 impossible = false;
4124 }
4125 if (current_ir_type () != IR_GIMPLE
4126 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4127 update_br_prob_note (e->src);
4128 if (e->src->count == profile_count::zero ())
4129 return;
4130 if (count_sum == profile_count::zero () && impossible)
4131 {
4132 bool found = false;
4133 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4134 ;
4135 else if (current_ir_type () == IR_GIMPLE)
4136 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4137 !gsi_end_p (gsi); gsi_next (&gsi))
4138 {
4139 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4140 {
4141 found = true;
4142 break;
4143 }
4144 }
4145 /* FIXME: Implement RTL path. */
4146 else
4147 found = true;
4148 if (!found)
4149 {
4150 if (dump_file && (dump_flags & TDF_DETAILS))
4151 fprintf (dump_file,
4152 "Making bb %i impossible and dropping count to 0.\n",
4153 e->src->index);
4154 e->src->count = profile_count::zero ();
4155 FOR_EACH_EDGE (e2, ei, e->src->preds)
4156 force_edge_cold (e2, impossible);
4157 return;
4158 }
4159 }
4160
4161 /* If we did not adjusting, the source basic block has no likely edeges
4162 leaving other direction. In that case force that bb cold, too.
4163 This in general is difficult task to do, but handle special case when
4164 BB has only one predecestor. This is common case when we are updating
4165 after loop transforms. */
4166 if (!(prob_sum > profile_probability::never ())
4167 && count_sum == profile_count::zero ()
4168 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4169 > (impossible ? 0 : 1))
4170 {
4171 int old_frequency = e->src->count.to_frequency (cfun);
4172 if (dump_file && (dump_flags & TDF_DETAILS))
4173 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4174 impossible ? "impossible" : "cold");
4175 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4176 impossible ? 0 : 1);
4177 if (impossible)
4178 e->src->count = profile_count::zero ();
4179 else
4180 e->src->count = e->count ().apply_scale (new_frequency,
4181 old_frequency);
4182 force_edge_cold (single_pred_edge (e->src), impossible);
4183 }
4184 else if (dump_file && (dump_flags & TDF_DETAILS)
4185 && maybe_hot_bb_p (cfun, e->src))
4186 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4187 impossible ? "impossible" : "cold");
4188 }
4189 }
4190
4191 #if CHECKING_P
4192
4193 namespace selftest {
4194
4195 /* Test that value range of predictor values defined in predict.def is
4196 within range (50, 100]. */
4197
4198 struct branch_predictor
4199 {
4200 const char *name;
4201 int probability;
4202 };
4203
4204 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4205
4206 static void
4207 test_prediction_value_range ()
4208 {
4209 branch_predictor predictors[] = {
4210 #include "predict.def"
4211 { NULL, PROB_UNINITIALIZED }
4212 };
4213
4214 for (unsigned i = 0; predictors[i].name != NULL; i++)
4215 {
4216 if (predictors[i].probability == PROB_UNINITIALIZED)
4217 continue;
4218
4219 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4220 ASSERT_TRUE (p >= 50 && p <= 100);
4221 }
4222 }
4223
4224 #undef DEF_PREDICTOR
4225
4226 /* Run all of the selfests within this file. */
4227
4228 void
4229 predict_c_tests ()
4230 {
4231 test_prediction_value_range ();
4232 }
4233
4234 } // namespace selftest
4235 #endif /* CHECKING_P. */