cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "gimple.h"
55 #include "gimple-iterator.h"
56 #include "gimple-ssa.h"
57 #include "cgraph.h"
58 #include "tree-cfg.h"
59 #include "tree-phinodes.h"
60 #include "ssa-iterators.h"
61 #include "tree-ssa-loop-niter.h"
62 #include "tree-ssa-loop.h"
63 #include "ggc.h"
64 #include "tree-pass.h"
65 #include "tree-scalar-evolution.h"
66 #include "cfgloop.h"
67 #include "pointer-set.h"
68
69 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
70 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
71 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
72 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
73
74 /* Random guesstimation given names.
75 PROV_VERY_UNLIKELY should be small enough so basic block predicted
76 by it gets below HOT_BB_FREQUENCY_FRACTION. */
77 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
78 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
79 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
80 #define PROB_ALWAYS (REG_BR_PROB_BASE)
81
82 static void combine_predictions_for_insn (rtx, basic_block);
83 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
84 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
85 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
86 static bool can_predict_insn_p (const_rtx);
87
88 /* Information we hold about each branch predictor.
89 Filled using information from predict.def. */
90
91 struct predictor_info
92 {
93 const char *const name; /* Name used in the debugging dumps. */
94 const int hitrate; /* Expected hitrate used by
95 predict_insn_def call. */
96 const int flags;
97 };
98
99 /* Use given predictor without Dempster-Shaffer theory if it matches
100 using first_match heuristics. */
101 #define PRED_FLAG_FIRST_MATCH 1
102
103 /* Recompute hitrate in percent to our representation. */
104
105 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
106
107 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
108 static const struct predictor_info predictor_info[]= {
109 #include "predict.def"
110
111 /* Upper bound on predictors. */
112 {NULL, 0, 0}
113 };
114 #undef DEF_PREDICTOR
115
116 /* Return TRUE if frequency FREQ is considered to be hot. */
117
118 static inline bool
119 maybe_hot_frequency_p (struct function *fun, int freq)
120 {
121 struct cgraph_node *node = cgraph_get_node (fun->decl);
122 if (!profile_info || !flag_branch_probabilities)
123 {
124 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
125 return false;
126 if (node->frequency == NODE_FREQUENCY_HOT)
127 return true;
128 }
129 if (profile_status_for_function (fun) == PROFILE_ABSENT)
130 return true;
131 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
132 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
133 return false;
134 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
135 return false;
136 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
137 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
138 return false;
139 return true;
140 }
141
142 static gcov_type min_count = -1;
143
144 /* Determine the threshold for hot BB counts. */
145
146 gcov_type
147 get_hot_bb_threshold ()
148 {
149 gcov_working_set_t *ws;
150 if (min_count == -1)
151 {
152 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
153 gcc_assert (ws);
154 min_count = ws->min_counter;
155 }
156 return min_count;
157 }
158
159 /* Set the threshold for hot BB counts. */
160
161 void
162 set_hot_bb_threshold (gcov_type min)
163 {
164 min_count = min;
165 }
166
167 /* Return TRUE if frequency FREQ is considered to be hot. */
168
169 static inline bool
170 maybe_hot_count_p (struct function *fun, gcov_type count)
171 {
172 if (fun && profile_status_for_function (fun) != PROFILE_READ)
173 return true;
174 /* Code executed at most once is not hot. */
175 if (profile_info->runs >= count)
176 return false;
177 return (count >= get_hot_bb_threshold ());
178 }
179
180 /* Return true in case BB can be CPU intensive and should be optimized
181 for maximal performance. */
182
183 bool
184 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
185 {
186 gcc_checking_assert (fun);
187 if (profile_status_for_function (fun) == PROFILE_READ)
188 return maybe_hot_count_p (fun, bb->count);
189 return maybe_hot_frequency_p (fun, bb->frequency);
190 }
191
192 /* Return true if the call can be hot. */
193
194 bool
195 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
196 {
197 if (profile_info && flag_branch_probabilities
198 && !maybe_hot_count_p (NULL,
199 edge->count))
200 return false;
201 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
202 || (edge->callee
203 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
204 return false;
205 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
206 && (edge->callee
207 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
208 return false;
209 if (optimize_size)
210 return false;
211 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
212 return true;
213 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
214 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
215 return false;
216 if (flag_guess_branch_prob)
217 {
218 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
219 || edge->frequency <= (CGRAPH_FREQ_BASE
220 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
221 return false;
222 }
223 return true;
224 }
225
226 /* Return true in case BB can be CPU intensive and should be optimized
227 for maximal performance. */
228
229 bool
230 maybe_hot_edge_p (edge e)
231 {
232 if (profile_status == PROFILE_READ)
233 return maybe_hot_count_p (cfun, e->count);
234 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
235 }
236
237
238
239 /* Return true if profile COUNT and FREQUENCY, or function FUN static
240 node frequency reflects never being executed. */
241
242 static bool
243 probably_never_executed (struct function *fun,
244 gcov_type count, int frequency)
245 {
246 gcc_checking_assert (fun);
247 if (profile_status_for_function (fun) == PROFILE_READ)
248 {
249 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
250 if (count * unlikely_count_fraction >= profile_info->runs)
251 return false;
252 if (!frequency)
253 return true;
254 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
255 return false;
256 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
257 {
258 gcov_type computed_count;
259 /* Check for possibility of overflow, in which case entry bb count
260 is large enough to do the division first without losing much
261 precision. */
262 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
263 REG_BR_PROB_BASE)
264 {
265 gcov_type scaled_count
266 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
267 unlikely_count_fraction;
268 computed_count = RDIV (scaled_count,
269 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
270 }
271 else
272 {
273 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
274 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
275 computed_count *= frequency * unlikely_count_fraction;
276 }
277 if (computed_count >= profile_info->runs)
278 return false;
279 }
280 return true;
281 }
282 if ((!profile_info || !flag_branch_probabilities)
283 && (cgraph_get_node (fun->decl)->frequency
284 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
285 return true;
286 return false;
287 }
288
289
290 /* Return true in case BB is probably never executed. */
291
292 bool
293 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
294 {
295 return probably_never_executed (fun, bb->count, bb->frequency);
296 }
297
298
299 /* Return true in case edge E is probably never executed. */
300
301 bool
302 probably_never_executed_edge_p (struct function *fun, edge e)
303 {
304 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
305 }
306
307 /* Return true if NODE should be optimized for size. */
308
309 bool
310 cgraph_optimize_for_size_p (struct cgraph_node *node)
311 {
312 if (optimize_size)
313 return true;
314 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
315 return true;
316 else
317 return false;
318 }
319
320 /* Return true when current function should always be optimized for size. */
321
322 bool
323 optimize_function_for_size_p (struct function *fun)
324 {
325 if (optimize_size)
326 return true;
327 if (!fun || !fun->decl)
328 return false;
329 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
330 }
331
332 /* Return true when current function should always be optimized for speed. */
333
334 bool
335 optimize_function_for_speed_p (struct function *fun)
336 {
337 return !optimize_function_for_size_p (fun);
338 }
339
340 /* Return TRUE when BB should be optimized for size. */
341
342 bool
343 optimize_bb_for_size_p (const_basic_block bb)
344 {
345 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
346 }
347
348 /* Return TRUE when BB should be optimized for speed. */
349
350 bool
351 optimize_bb_for_speed_p (const_basic_block bb)
352 {
353 return !optimize_bb_for_size_p (bb);
354 }
355
356 /* Return TRUE when BB should be optimized for size. */
357
358 bool
359 optimize_edge_for_size_p (edge e)
360 {
361 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
362 }
363
364 /* Return TRUE when BB should be optimized for speed. */
365
366 bool
367 optimize_edge_for_speed_p (edge e)
368 {
369 return !optimize_edge_for_size_p (e);
370 }
371
372 /* Return TRUE when BB should be optimized for size. */
373
374 bool
375 optimize_insn_for_size_p (void)
376 {
377 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
378 }
379
380 /* Return TRUE when BB should be optimized for speed. */
381
382 bool
383 optimize_insn_for_speed_p (void)
384 {
385 return !optimize_insn_for_size_p ();
386 }
387
388 /* Return TRUE when LOOP should be optimized for size. */
389
390 bool
391 optimize_loop_for_size_p (struct loop *loop)
392 {
393 return optimize_bb_for_size_p (loop->header);
394 }
395
396 /* Return TRUE when LOOP should be optimized for speed. */
397
398 bool
399 optimize_loop_for_speed_p (struct loop *loop)
400 {
401 return optimize_bb_for_speed_p (loop->header);
402 }
403
404 /* Return TRUE when LOOP nest should be optimized for speed. */
405
406 bool
407 optimize_loop_nest_for_speed_p (struct loop *loop)
408 {
409 struct loop *l = loop;
410 if (optimize_loop_for_speed_p (loop))
411 return true;
412 l = loop->inner;
413 while (l && l != loop)
414 {
415 if (optimize_loop_for_speed_p (l))
416 return true;
417 if (l->inner)
418 l = l->inner;
419 else if (l->next)
420 l = l->next;
421 else
422 {
423 while (l != loop && !l->next)
424 l = loop_outer (l);
425 if (l != loop)
426 l = l->next;
427 }
428 }
429 return false;
430 }
431
432 /* Return TRUE when LOOP nest should be optimized for size. */
433
434 bool
435 optimize_loop_nest_for_size_p (struct loop *loop)
436 {
437 return !optimize_loop_nest_for_speed_p (loop);
438 }
439
440 /* Return true when edge E is likely to be well predictable by branch
441 predictor. */
442
443 bool
444 predictable_edge_p (edge e)
445 {
446 if (profile_status == PROFILE_ABSENT)
447 return false;
448 if ((e->probability
449 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
450 || (REG_BR_PROB_BASE - e->probability
451 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
452 return true;
453 return false;
454 }
455
456
457 /* Set RTL expansion for BB profile. */
458
459 void
460 rtl_profile_for_bb (basic_block bb)
461 {
462 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
463 }
464
465 /* Set RTL expansion for edge profile. */
466
467 void
468 rtl_profile_for_edge (edge e)
469 {
470 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
471 }
472
473 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
474 void
475 default_rtl_profile (void)
476 {
477 crtl->maybe_hot_insn_p = true;
478 }
479
480 /* Return true if the one of outgoing edges is already predicted by
481 PREDICTOR. */
482
483 bool
484 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
485 {
486 rtx note;
487 if (!INSN_P (BB_END (bb)))
488 return false;
489 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
490 if (REG_NOTE_KIND (note) == REG_BR_PRED
491 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
492 return true;
493 return false;
494 }
495
496 /* This map contains for a basic block the list of predictions for the
497 outgoing edges. */
498
499 static struct pointer_map_t *bb_predictions;
500
501 /* Structure representing predictions in tree level. */
502
503 struct edge_prediction {
504 struct edge_prediction *ep_next;
505 edge ep_edge;
506 enum br_predictor ep_predictor;
507 int ep_probability;
508 };
509
510 /* Return true if the one of outgoing edges is already predicted by
511 PREDICTOR. */
512
513 bool
514 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
515 {
516 struct edge_prediction *i;
517 void **preds = pointer_map_contains (bb_predictions, bb);
518
519 if (!preds)
520 return false;
521
522 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
523 if (i->ep_predictor == predictor)
524 return true;
525 return false;
526 }
527
528 /* Return true when the probability of edge is reliable.
529
530 The profile guessing code is good at predicting branch outcome (ie.
531 taken/not taken), that is predicted right slightly over 75% of time.
532 It is however notoriously poor on predicting the probability itself.
533 In general the profile appear a lot flatter (with probabilities closer
534 to 50%) than the reality so it is bad idea to use it to drive optimization
535 such as those disabling dynamic branch prediction for well predictable
536 branches.
537
538 There are two exceptions - edges leading to noreturn edges and edges
539 predicted by number of iterations heuristics are predicted well. This macro
540 should be able to distinguish those, but at the moment it simply check for
541 noreturn heuristic that is only one giving probability over 99% or bellow
542 1%. In future we might want to propagate reliability information across the
543 CFG if we find this information useful on multiple places. */
544 static bool
545 probability_reliable_p (int prob)
546 {
547 return (profile_status == PROFILE_READ
548 || (profile_status == PROFILE_GUESSED
549 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
550 }
551
552 /* Same predicate as above, working on edges. */
553 bool
554 edge_probability_reliable_p (const_edge e)
555 {
556 return probability_reliable_p (e->probability);
557 }
558
559 /* Same predicate as edge_probability_reliable_p, working on notes. */
560 bool
561 br_prob_note_reliable_p (const_rtx note)
562 {
563 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
564 return probability_reliable_p (XINT (note, 0));
565 }
566
567 static void
568 predict_insn (rtx insn, enum br_predictor predictor, int probability)
569 {
570 gcc_assert (any_condjump_p (insn));
571 if (!flag_guess_branch_prob)
572 return;
573
574 add_reg_note (insn, REG_BR_PRED,
575 gen_rtx_CONCAT (VOIDmode,
576 GEN_INT ((int) predictor),
577 GEN_INT ((int) probability)));
578 }
579
580 /* Predict insn by given predictor. */
581
582 void
583 predict_insn_def (rtx insn, enum br_predictor predictor,
584 enum prediction taken)
585 {
586 int probability = predictor_info[(int) predictor].hitrate;
587
588 if (taken != TAKEN)
589 probability = REG_BR_PROB_BASE - probability;
590
591 predict_insn (insn, predictor, probability);
592 }
593
594 /* Predict edge E with given probability if possible. */
595
596 void
597 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
598 {
599 rtx last_insn;
600 last_insn = BB_END (e->src);
601
602 /* We can store the branch prediction information only about
603 conditional jumps. */
604 if (!any_condjump_p (last_insn))
605 return;
606
607 /* We always store probability of branching. */
608 if (e->flags & EDGE_FALLTHRU)
609 probability = REG_BR_PROB_BASE - probability;
610
611 predict_insn (last_insn, predictor, probability);
612 }
613
614 /* Predict edge E with the given PROBABILITY. */
615 void
616 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
617 {
618 gcc_assert (profile_status != PROFILE_GUESSED);
619 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
620 1)
621 && flag_guess_branch_prob && optimize)
622 {
623 struct edge_prediction *i = XNEW (struct edge_prediction);
624 void **preds = pointer_map_insert (bb_predictions, e->src);
625
626 i->ep_next = (struct edge_prediction *) *preds;
627 *preds = i;
628 i->ep_probability = probability;
629 i->ep_predictor = predictor;
630 i->ep_edge = e;
631 }
632 }
633
634 /* Remove all predictions on given basic block that are attached
635 to edge E. */
636 void
637 remove_predictions_associated_with_edge (edge e)
638 {
639 void **preds;
640
641 if (!bb_predictions)
642 return;
643
644 preds = pointer_map_contains (bb_predictions, e->src);
645
646 if (preds)
647 {
648 struct edge_prediction **prediction = (struct edge_prediction **) preds;
649 struct edge_prediction *next;
650
651 while (*prediction)
652 {
653 if ((*prediction)->ep_edge == e)
654 {
655 next = (*prediction)->ep_next;
656 free (*prediction);
657 *prediction = next;
658 }
659 else
660 prediction = &((*prediction)->ep_next);
661 }
662 }
663 }
664
665 /* Clears the list of predictions stored for BB. */
666
667 static void
668 clear_bb_predictions (basic_block bb)
669 {
670 void **preds = pointer_map_contains (bb_predictions, bb);
671 struct edge_prediction *pred, *next;
672
673 if (!preds)
674 return;
675
676 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
677 {
678 next = pred->ep_next;
679 free (pred);
680 }
681 *preds = NULL;
682 }
683
684 /* Return true when we can store prediction on insn INSN.
685 At the moment we represent predictions only on conditional
686 jumps, not at computed jump or other complicated cases. */
687 static bool
688 can_predict_insn_p (const_rtx insn)
689 {
690 return (JUMP_P (insn)
691 && any_condjump_p (insn)
692 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
693 }
694
695 /* Predict edge E by given predictor if possible. */
696
697 void
698 predict_edge_def (edge e, enum br_predictor predictor,
699 enum prediction taken)
700 {
701 int probability = predictor_info[(int) predictor].hitrate;
702
703 if (taken != TAKEN)
704 probability = REG_BR_PROB_BASE - probability;
705
706 predict_edge (e, predictor, probability);
707 }
708
709 /* Invert all branch predictions or probability notes in the INSN. This needs
710 to be done each time we invert the condition used by the jump. */
711
712 void
713 invert_br_probabilities (rtx insn)
714 {
715 rtx note;
716
717 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
718 if (REG_NOTE_KIND (note) == REG_BR_PROB)
719 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
720 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
721 XEXP (XEXP (note, 0), 1)
722 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
723 }
724
725 /* Dump information about the branch prediction to the output file. */
726
727 static void
728 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
729 basic_block bb, int used)
730 {
731 edge e;
732 edge_iterator ei;
733
734 if (!file)
735 return;
736
737 FOR_EACH_EDGE (e, ei, bb->succs)
738 if (! (e->flags & EDGE_FALLTHRU))
739 break;
740
741 fprintf (file, " %s heuristics%s: %.1f%%",
742 predictor_info[predictor].name,
743 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
744
745 if (bb->count)
746 {
747 fprintf (file, " exec ");
748 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
749 if (e)
750 {
751 fprintf (file, " hit ");
752 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
753 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
754 }
755 }
756
757 fprintf (file, "\n");
758 }
759
760 /* We can not predict the probabilities of outgoing edges of bb. Set them
761 evenly and hope for the best. */
762 static void
763 set_even_probabilities (basic_block bb)
764 {
765 int nedges = 0;
766 edge e;
767 edge_iterator ei;
768
769 FOR_EACH_EDGE (e, ei, bb->succs)
770 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
771 nedges ++;
772 FOR_EACH_EDGE (e, ei, bb->succs)
773 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
774 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
775 else
776 e->probability = 0;
777 }
778
779 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
780 note if not already present. Remove now useless REG_BR_PRED notes. */
781
782 static void
783 combine_predictions_for_insn (rtx insn, basic_block bb)
784 {
785 rtx prob_note;
786 rtx *pnote;
787 rtx note;
788 int best_probability = PROB_EVEN;
789 enum br_predictor best_predictor = END_PREDICTORS;
790 int combined_probability = REG_BR_PROB_BASE / 2;
791 int d;
792 bool first_match = false;
793 bool found = false;
794
795 if (!can_predict_insn_p (insn))
796 {
797 set_even_probabilities (bb);
798 return;
799 }
800
801 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
802 pnote = &REG_NOTES (insn);
803 if (dump_file)
804 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
805 bb->index);
806
807 /* We implement "first match" heuristics and use probability guessed
808 by predictor with smallest index. */
809 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
810 if (REG_NOTE_KIND (note) == REG_BR_PRED)
811 {
812 enum br_predictor predictor = ((enum br_predictor)
813 INTVAL (XEXP (XEXP (note, 0), 0)));
814 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
815
816 found = true;
817 if (best_predictor > predictor)
818 best_probability = probability, best_predictor = predictor;
819
820 d = (combined_probability * probability
821 + (REG_BR_PROB_BASE - combined_probability)
822 * (REG_BR_PROB_BASE - probability));
823
824 /* Use FP math to avoid overflows of 32bit integers. */
825 if (d == 0)
826 /* If one probability is 0% and one 100%, avoid division by zero. */
827 combined_probability = REG_BR_PROB_BASE / 2;
828 else
829 combined_probability = (((double) combined_probability) * probability
830 * REG_BR_PROB_BASE / d + 0.5);
831 }
832
833 /* Decide which heuristic to use. In case we didn't match anything,
834 use no_prediction heuristic, in case we did match, use either
835 first match or Dempster-Shaffer theory depending on the flags. */
836
837 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
838 first_match = true;
839
840 if (!found)
841 dump_prediction (dump_file, PRED_NO_PREDICTION,
842 combined_probability, bb, true);
843 else
844 {
845 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
846 bb, !first_match);
847 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
848 bb, first_match);
849 }
850
851 if (first_match)
852 combined_probability = best_probability;
853 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
854
855 while (*pnote)
856 {
857 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
858 {
859 enum br_predictor predictor = ((enum br_predictor)
860 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
861 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
862
863 dump_prediction (dump_file, predictor, probability, bb,
864 !first_match || best_predictor == predictor);
865 *pnote = XEXP (*pnote, 1);
866 }
867 else
868 pnote = &XEXP (*pnote, 1);
869 }
870
871 if (!prob_note)
872 {
873 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
874
875 /* Save the prediction into CFG in case we are seeing non-degenerated
876 conditional jump. */
877 if (!single_succ_p (bb))
878 {
879 BRANCH_EDGE (bb)->probability = combined_probability;
880 FALLTHRU_EDGE (bb)->probability
881 = REG_BR_PROB_BASE - combined_probability;
882 }
883 }
884 else if (!single_succ_p (bb))
885 {
886 int prob = XINT (prob_note, 0);
887
888 BRANCH_EDGE (bb)->probability = prob;
889 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
890 }
891 else
892 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
893 }
894
895 /* Combine predictions into single probability and store them into CFG.
896 Remove now useless prediction entries. */
897
898 static void
899 combine_predictions_for_bb (basic_block bb)
900 {
901 int best_probability = PROB_EVEN;
902 enum br_predictor best_predictor = END_PREDICTORS;
903 int combined_probability = REG_BR_PROB_BASE / 2;
904 int d;
905 bool first_match = false;
906 bool found = false;
907 struct edge_prediction *pred;
908 int nedges = 0;
909 edge e, first = NULL, second = NULL;
910 edge_iterator ei;
911 void **preds;
912
913 FOR_EACH_EDGE (e, ei, bb->succs)
914 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
915 {
916 nedges ++;
917 if (first && !second)
918 second = e;
919 if (!first)
920 first = e;
921 }
922
923 /* When there is no successor or only one choice, prediction is easy.
924
925 We are lazy for now and predict only basic blocks with two outgoing
926 edges. It is possible to predict generic case too, but we have to
927 ignore first match heuristics and do more involved combining. Implement
928 this later. */
929 if (nedges != 2)
930 {
931 if (!bb->count)
932 set_even_probabilities (bb);
933 clear_bb_predictions (bb);
934 if (dump_file)
935 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
936 nedges, bb->index);
937 return;
938 }
939
940 if (dump_file)
941 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
942
943 preds = pointer_map_contains (bb_predictions, bb);
944 if (preds)
945 {
946 /* We implement "first match" heuristics and use probability guessed
947 by predictor with smallest index. */
948 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
949 {
950 enum br_predictor predictor = pred->ep_predictor;
951 int probability = pred->ep_probability;
952
953 if (pred->ep_edge != first)
954 probability = REG_BR_PROB_BASE - probability;
955
956 found = true;
957 /* First match heuristics would be widly confused if we predicted
958 both directions. */
959 if (best_predictor > predictor)
960 {
961 struct edge_prediction *pred2;
962 int prob = probability;
963
964 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
965 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
966 {
967 int probability2 = pred->ep_probability;
968
969 if (pred2->ep_edge != first)
970 probability2 = REG_BR_PROB_BASE - probability2;
971
972 if ((probability < REG_BR_PROB_BASE / 2) !=
973 (probability2 < REG_BR_PROB_BASE / 2))
974 break;
975
976 /* If the same predictor later gave better result, go for it! */
977 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
978 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
979 prob = probability2;
980 }
981 if (!pred2)
982 best_probability = prob, best_predictor = predictor;
983 }
984
985 d = (combined_probability * probability
986 + (REG_BR_PROB_BASE - combined_probability)
987 * (REG_BR_PROB_BASE - probability));
988
989 /* Use FP math to avoid overflows of 32bit integers. */
990 if (d == 0)
991 /* If one probability is 0% and one 100%, avoid division by zero. */
992 combined_probability = REG_BR_PROB_BASE / 2;
993 else
994 combined_probability = (((double) combined_probability)
995 * probability
996 * REG_BR_PROB_BASE / d + 0.5);
997 }
998 }
999
1000 /* Decide which heuristic to use. In case we didn't match anything,
1001 use no_prediction heuristic, in case we did match, use either
1002 first match or Dempster-Shaffer theory depending on the flags. */
1003
1004 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1005 first_match = true;
1006
1007 if (!found)
1008 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1009 else
1010 {
1011 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1012 !first_match);
1013 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1014 first_match);
1015 }
1016
1017 if (first_match)
1018 combined_probability = best_probability;
1019 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1020
1021 if (preds)
1022 {
1023 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1024 {
1025 enum br_predictor predictor = pred->ep_predictor;
1026 int probability = pred->ep_probability;
1027
1028 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1029 probability = REG_BR_PROB_BASE - probability;
1030 dump_prediction (dump_file, predictor, probability, bb,
1031 !first_match || best_predictor == predictor);
1032 }
1033 }
1034 clear_bb_predictions (bb);
1035
1036 if (!bb->count)
1037 {
1038 first->probability = combined_probability;
1039 second->probability = REG_BR_PROB_BASE - combined_probability;
1040 }
1041 }
1042
1043 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1044 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1045
1046 T1 and T2 should be one of the following cases:
1047 1. T1 is SSA_NAME, T2 is NULL
1048 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1049 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1050
1051 static tree
1052 strips_small_constant (tree t1, tree t2)
1053 {
1054 tree ret = NULL;
1055 int value = 0;
1056
1057 if (!t1)
1058 return NULL;
1059 else if (TREE_CODE (t1) == SSA_NAME)
1060 ret = t1;
1061 else if (tree_fits_shwi_p (t1))
1062 value = tree_to_shwi (t1);
1063 else
1064 return NULL;
1065
1066 if (!t2)
1067 return ret;
1068 else if (tree_fits_shwi_p (t2))
1069 value = tree_to_shwi (t2);
1070 else if (TREE_CODE (t2) == SSA_NAME)
1071 {
1072 if (ret)
1073 return NULL;
1074 else
1075 ret = t2;
1076 }
1077
1078 if (value <= 4 && value >= -4)
1079 return ret;
1080 else
1081 return NULL;
1082 }
1083
1084 /* Return the SSA_NAME in T or T's operands.
1085 Return NULL if SSA_NAME cannot be found. */
1086
1087 static tree
1088 get_base_value (tree t)
1089 {
1090 if (TREE_CODE (t) == SSA_NAME)
1091 return t;
1092
1093 if (!BINARY_CLASS_P (t))
1094 return NULL;
1095
1096 switch (TREE_OPERAND_LENGTH (t))
1097 {
1098 case 1:
1099 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1100 case 2:
1101 return strips_small_constant (TREE_OPERAND (t, 0),
1102 TREE_OPERAND (t, 1));
1103 default:
1104 return NULL;
1105 }
1106 }
1107
1108 /* Check the compare STMT in LOOP. If it compares an induction
1109 variable to a loop invariant, return true, and save
1110 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1111 Otherwise return false and set LOOP_INVAIANT to NULL. */
1112
1113 static bool
1114 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1115 tree *loop_invariant,
1116 enum tree_code *compare_code,
1117 tree *loop_step,
1118 tree *loop_iv_base)
1119 {
1120 tree op0, op1, bound, base;
1121 affine_iv iv0, iv1;
1122 enum tree_code code;
1123 tree step;
1124
1125 code = gimple_cond_code (stmt);
1126 *loop_invariant = NULL;
1127
1128 switch (code)
1129 {
1130 case GT_EXPR:
1131 case GE_EXPR:
1132 case NE_EXPR:
1133 case LT_EXPR:
1134 case LE_EXPR:
1135 case EQ_EXPR:
1136 break;
1137
1138 default:
1139 return false;
1140 }
1141
1142 op0 = gimple_cond_lhs (stmt);
1143 op1 = gimple_cond_rhs (stmt);
1144
1145 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1146 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1147 return false;
1148 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1149 return false;
1150 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1151 return false;
1152 if (TREE_CODE (iv0.step) != INTEGER_CST
1153 || TREE_CODE (iv1.step) != INTEGER_CST)
1154 return false;
1155 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1156 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1157 return false;
1158
1159 if (integer_zerop (iv0.step))
1160 {
1161 if (code != NE_EXPR && code != EQ_EXPR)
1162 code = invert_tree_comparison (code, false);
1163 bound = iv0.base;
1164 base = iv1.base;
1165 if (tree_fits_shwi_p (iv1.step))
1166 step = iv1.step;
1167 else
1168 return false;
1169 }
1170 else
1171 {
1172 bound = iv1.base;
1173 base = iv0.base;
1174 if (tree_fits_shwi_p (iv0.step))
1175 step = iv0.step;
1176 else
1177 return false;
1178 }
1179
1180 if (TREE_CODE (bound) != INTEGER_CST)
1181 bound = get_base_value (bound);
1182 if (!bound)
1183 return false;
1184 if (TREE_CODE (base) != INTEGER_CST)
1185 base = get_base_value (base);
1186 if (!base)
1187 return false;
1188
1189 *loop_invariant = bound;
1190 *compare_code = code;
1191 *loop_step = step;
1192 *loop_iv_base = base;
1193 return true;
1194 }
1195
1196 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1197
1198 static bool
1199 expr_coherent_p (tree t1, tree t2)
1200 {
1201 gimple stmt;
1202 tree ssa_name_1 = NULL;
1203 tree ssa_name_2 = NULL;
1204
1205 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1206 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1207
1208 if (t1 == t2)
1209 return true;
1210
1211 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1212 return true;
1213 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1214 return false;
1215
1216 /* Check to see if t1 is expressed/defined with t2. */
1217 stmt = SSA_NAME_DEF_STMT (t1);
1218 gcc_assert (stmt != NULL);
1219 if (is_gimple_assign (stmt))
1220 {
1221 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1222 if (ssa_name_1 && ssa_name_1 == t2)
1223 return true;
1224 }
1225
1226 /* Check to see if t2 is expressed/defined with t1. */
1227 stmt = SSA_NAME_DEF_STMT (t2);
1228 gcc_assert (stmt != NULL);
1229 if (is_gimple_assign (stmt))
1230 {
1231 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1232 if (ssa_name_2 && ssa_name_2 == t1)
1233 return true;
1234 }
1235
1236 /* Compare if t1 and t2's def_stmts are identical. */
1237 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1238 return true;
1239 else
1240 return false;
1241 }
1242
1243 /* Predict branch probability of BB when BB contains a branch that compares
1244 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1245 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1246
1247 E.g.
1248 for (int i = 0; i < bound; i++) {
1249 if (i < bound - 2)
1250 computation_1();
1251 else
1252 computation_2();
1253 }
1254
1255 In this loop, we will predict the branch inside the loop to be taken. */
1256
1257 static void
1258 predict_iv_comparison (struct loop *loop, basic_block bb,
1259 tree loop_bound_var,
1260 tree loop_iv_base_var,
1261 enum tree_code loop_bound_code,
1262 int loop_bound_step)
1263 {
1264 gimple stmt;
1265 tree compare_var, compare_base;
1266 enum tree_code compare_code;
1267 tree compare_step_var;
1268 edge then_edge;
1269 edge_iterator ei;
1270
1271 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1272 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1273 || predicted_by_p (bb, PRED_LOOP_EXIT))
1274 return;
1275
1276 stmt = last_stmt (bb);
1277 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1278 return;
1279 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1280 &compare_code,
1281 &compare_step_var,
1282 &compare_base))
1283 return;
1284
1285 /* Find the taken edge. */
1286 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1287 if (then_edge->flags & EDGE_TRUE_VALUE)
1288 break;
1289
1290 /* When comparing an IV to a loop invariant, NE is more likely to be
1291 taken while EQ is more likely to be not-taken. */
1292 if (compare_code == NE_EXPR)
1293 {
1294 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1295 return;
1296 }
1297 else if (compare_code == EQ_EXPR)
1298 {
1299 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1300 return;
1301 }
1302
1303 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1304 return;
1305
1306 /* If loop bound, base and compare bound are all constants, we can
1307 calculate the probability directly. */
1308 if (tree_fits_shwi_p (loop_bound_var)
1309 && tree_fits_shwi_p (compare_var)
1310 && tree_fits_shwi_p (compare_base))
1311 {
1312 int probability;
1313 bool of, overflow = false;
1314 double_int mod, compare_count, tem, loop_count;
1315
1316 double_int loop_bound = tree_to_double_int (loop_bound_var);
1317 double_int compare_bound = tree_to_double_int (compare_var);
1318 double_int base = tree_to_double_int (compare_base);
1319 double_int compare_step = tree_to_double_int (compare_step_var);
1320
1321 /* (loop_bound - base) / compare_step */
1322 tem = loop_bound.sub_with_overflow (base, &of);
1323 overflow |= of;
1324 loop_count = tem.divmod_with_overflow (compare_step,
1325 0, TRUNC_DIV_EXPR,
1326 &mod, &of);
1327 overflow |= of;
1328
1329 if ((!compare_step.is_negative ())
1330 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1331 {
1332 /* (loop_bound - compare_bound) / compare_step */
1333 tem = loop_bound.sub_with_overflow (compare_bound, &of);
1334 overflow |= of;
1335 compare_count = tem.divmod_with_overflow (compare_step,
1336 0, TRUNC_DIV_EXPR,
1337 &mod, &of);
1338 overflow |= of;
1339 }
1340 else
1341 {
1342 /* (compare_bound - base) / compare_step */
1343 tem = compare_bound.sub_with_overflow (base, &of);
1344 overflow |= of;
1345 compare_count = tem.divmod_with_overflow (compare_step,
1346 0, TRUNC_DIV_EXPR,
1347 &mod, &of);
1348 overflow |= of;
1349 }
1350 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1351 ++compare_count;
1352 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1353 ++loop_count;
1354 if (compare_count.is_negative ())
1355 compare_count = double_int_zero;
1356 if (loop_count.is_negative ())
1357 loop_count = double_int_zero;
1358 if (loop_count.is_zero ())
1359 probability = 0;
1360 else if (compare_count.scmp (loop_count) == 1)
1361 probability = REG_BR_PROB_BASE;
1362 else
1363 {
1364 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1365 could overflow, shift both loop_count and compare_count right
1366 a bit so that it doesn't overflow. Note both counts are known not
1367 to be negative at this point. */
1368 int clz_bits = clz_hwi (loop_count.high);
1369 gcc_assert (REG_BR_PROB_BASE < 32768);
1370 if (clz_bits < 16)
1371 {
1372 loop_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1373 compare_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1374 }
1375 tem = compare_count.mul_with_sign (double_int::from_shwi
1376 (REG_BR_PROB_BASE), true, &of);
1377 gcc_assert (!of);
1378 tem = tem.divmod (loop_count, true, TRUNC_DIV_EXPR, &mod);
1379 probability = tem.to_uhwi ();
1380 }
1381
1382 if (!overflow)
1383 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1384
1385 return;
1386 }
1387
1388 if (expr_coherent_p (loop_bound_var, compare_var))
1389 {
1390 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1391 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1392 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1393 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1394 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1395 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1396 else if (loop_bound_code == NE_EXPR)
1397 {
1398 /* If the loop backedge condition is "(i != bound)", we do
1399 the comparison based on the step of IV:
1400 * step < 0 : backedge condition is like (i > bound)
1401 * step > 0 : backedge condition is like (i < bound) */
1402 gcc_assert (loop_bound_step != 0);
1403 if (loop_bound_step > 0
1404 && (compare_code == LT_EXPR
1405 || compare_code == LE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else if (loop_bound_step < 0
1408 && (compare_code == GT_EXPR
1409 || compare_code == GE_EXPR))
1410 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1411 else
1412 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1413 }
1414 else
1415 /* The branch is predicted not-taken if loop_bound_code is
1416 opposite with compare_code. */
1417 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1418 }
1419 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1420 {
1421 /* For cases like:
1422 for (i = s; i < h; i++)
1423 if (i > s + 2) ....
1424 The branch should be predicted taken. */
1425 if (loop_bound_step > 0
1426 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1427 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1428 else if (loop_bound_step < 0
1429 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1430 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1431 else
1432 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1433 }
1434 }
1435
1436 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1437 exits are resulted from short-circuit conditions that will generate an
1438 if_tmp. E.g.:
1439
1440 if (foo() || global > 10)
1441 break;
1442
1443 This will be translated into:
1444
1445 BB3:
1446 loop header...
1447 BB4:
1448 if foo() goto BB6 else goto BB5
1449 BB5:
1450 if global > 10 goto BB6 else goto BB7
1451 BB6:
1452 goto BB7
1453 BB7:
1454 iftmp = (PHI 0(BB5), 1(BB6))
1455 if iftmp == 1 goto BB8 else goto BB3
1456 BB8:
1457 outside of the loop...
1458
1459 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1460 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1461 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1462 exits to predict them using PRED_LOOP_EXIT. */
1463
1464 static void
1465 predict_extra_loop_exits (edge exit_edge)
1466 {
1467 unsigned i;
1468 bool check_value_one;
1469 gimple phi_stmt;
1470 tree cmp_rhs, cmp_lhs;
1471 gimple cmp_stmt = last_stmt (exit_edge->src);
1472
1473 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1474 return;
1475 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1476 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1477 if (!TREE_CONSTANT (cmp_rhs)
1478 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1479 return;
1480 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1481 return;
1482
1483 /* If check_value_one is true, only the phi_args with value '1' will lead
1484 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1485 loop exit. */
1486 check_value_one = (((integer_onep (cmp_rhs))
1487 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1488 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1489
1490 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1491 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1492 return;
1493
1494 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1495 {
1496 edge e1;
1497 edge_iterator ei;
1498 tree val = gimple_phi_arg_def (phi_stmt, i);
1499 edge e = gimple_phi_arg_edge (phi_stmt, i);
1500
1501 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1502 continue;
1503 if ((check_value_one ^ integer_onep (val)) == 1)
1504 continue;
1505 if (EDGE_COUNT (e->src->succs) != 1)
1506 {
1507 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1508 continue;
1509 }
1510
1511 FOR_EACH_EDGE (e1, ei, e->src->preds)
1512 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1513 }
1514 }
1515
1516 /* Predict edge probabilities by exploiting loop structure. */
1517
1518 static void
1519 predict_loops (void)
1520 {
1521 struct loop *loop;
1522
1523 /* Try to predict out blocks in a loop that are not part of a
1524 natural loop. */
1525 FOR_EACH_LOOP (loop, 0)
1526 {
1527 basic_block bb, *bbs;
1528 unsigned j, n_exits;
1529 vec<edge> exits;
1530 struct tree_niter_desc niter_desc;
1531 edge ex;
1532 struct nb_iter_bound *nb_iter;
1533 enum tree_code loop_bound_code = ERROR_MARK;
1534 tree loop_bound_step = NULL;
1535 tree loop_bound_var = NULL;
1536 tree loop_iv_base = NULL;
1537 gimple stmt = NULL;
1538
1539 exits = get_loop_exit_edges (loop);
1540 n_exits = exits.length ();
1541 if (!n_exits)
1542 {
1543 exits.release ();
1544 continue;
1545 }
1546
1547 FOR_EACH_VEC_ELT (exits, j, ex)
1548 {
1549 tree niter = NULL;
1550 HOST_WIDE_INT nitercst;
1551 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1552 int probability;
1553 enum br_predictor predictor;
1554
1555 predict_extra_loop_exits (ex);
1556
1557 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1558 niter = niter_desc.niter;
1559 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1560 niter = loop_niter_by_eval (loop, ex);
1561
1562 if (TREE_CODE (niter) == INTEGER_CST)
1563 {
1564 if (tree_fits_uhwi_p (niter)
1565 && max
1566 && compare_tree_int (niter, max - 1) == -1)
1567 nitercst = tree_to_uhwi (niter) + 1;
1568 else
1569 nitercst = max;
1570 predictor = PRED_LOOP_ITERATIONS;
1571 }
1572 /* If we have just one exit and we can derive some information about
1573 the number of iterations of the loop from the statements inside
1574 the loop, use it to predict this exit. */
1575 else if (n_exits == 1)
1576 {
1577 nitercst = estimated_stmt_executions_int (loop);
1578 if (nitercst < 0)
1579 continue;
1580 if (nitercst > max)
1581 nitercst = max;
1582
1583 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1584 }
1585 else
1586 continue;
1587
1588 /* If the prediction for number of iterations is zero, do not
1589 predict the exit edges. */
1590 if (nitercst == 0)
1591 continue;
1592
1593 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1594 predict_edge (ex, predictor, probability);
1595 }
1596 exits.release ();
1597
1598 /* Find information about loop bound variables. */
1599 for (nb_iter = loop->bounds; nb_iter;
1600 nb_iter = nb_iter->next)
1601 if (nb_iter->stmt
1602 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1603 {
1604 stmt = nb_iter->stmt;
1605 break;
1606 }
1607 if (!stmt && last_stmt (loop->header)
1608 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1609 stmt = last_stmt (loop->header);
1610 if (stmt)
1611 is_comparison_with_loop_invariant_p (stmt, loop,
1612 &loop_bound_var,
1613 &loop_bound_code,
1614 &loop_bound_step,
1615 &loop_iv_base);
1616
1617 bbs = get_loop_body (loop);
1618
1619 for (j = 0; j < loop->num_nodes; j++)
1620 {
1621 int header_found = 0;
1622 edge e;
1623 edge_iterator ei;
1624
1625 bb = bbs[j];
1626
1627 /* Bypass loop heuristics on continue statement. These
1628 statements construct loops via "non-loop" constructs
1629 in the source language and are better to be handled
1630 separately. */
1631 if (predicted_by_p (bb, PRED_CONTINUE))
1632 continue;
1633
1634 /* Loop branch heuristics - predict an edge back to a
1635 loop's head as taken. */
1636 if (bb == loop->latch)
1637 {
1638 e = find_edge (loop->latch, loop->header);
1639 if (e)
1640 {
1641 header_found = 1;
1642 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1643 }
1644 }
1645
1646 /* Loop exit heuristics - predict an edge exiting the loop if the
1647 conditional has no loop header successors as not taken. */
1648 if (!header_found
1649 /* If we already used more reliable loop exit predictors, do not
1650 bother with PRED_LOOP_EXIT. */
1651 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1652 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1653 {
1654 /* For loop with many exits we don't want to predict all exits
1655 with the pretty large probability, because if all exits are
1656 considered in row, the loop would be predicted to iterate
1657 almost never. The code to divide probability by number of
1658 exits is very rough. It should compute the number of exits
1659 taken in each patch through function (not the overall number
1660 of exits that might be a lot higher for loops with wide switch
1661 statements in them) and compute n-th square root.
1662
1663 We limit the minimal probability by 2% to avoid
1664 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1665 as this was causing regression in perl benchmark containing such
1666 a wide loop. */
1667
1668 int probability = ((REG_BR_PROB_BASE
1669 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1670 / n_exits);
1671 if (probability < HITRATE (2))
1672 probability = HITRATE (2);
1673 FOR_EACH_EDGE (e, ei, bb->succs)
1674 if (e->dest->index < NUM_FIXED_BLOCKS
1675 || !flow_bb_inside_loop_p (loop, e->dest))
1676 predict_edge (e, PRED_LOOP_EXIT, probability);
1677 }
1678 if (loop_bound_var)
1679 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1680 loop_bound_code,
1681 tree_to_shwi (loop_bound_step));
1682 }
1683
1684 /* Free basic blocks from get_loop_body. */
1685 free (bbs);
1686 }
1687 }
1688
1689 /* Attempt to predict probabilities of BB outgoing edges using local
1690 properties. */
1691 static void
1692 bb_estimate_probability_locally (basic_block bb)
1693 {
1694 rtx last_insn = BB_END (bb);
1695 rtx cond;
1696
1697 if (! can_predict_insn_p (last_insn))
1698 return;
1699 cond = get_condition (last_insn, NULL, false, false);
1700 if (! cond)
1701 return;
1702
1703 /* Try "pointer heuristic."
1704 A comparison ptr == 0 is predicted as false.
1705 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1706 if (COMPARISON_P (cond)
1707 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1708 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1709 {
1710 if (GET_CODE (cond) == EQ)
1711 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1712 else if (GET_CODE (cond) == NE)
1713 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1714 }
1715 else
1716
1717 /* Try "opcode heuristic."
1718 EQ tests are usually false and NE tests are usually true. Also,
1719 most quantities are positive, so we can make the appropriate guesses
1720 about signed comparisons against zero. */
1721 switch (GET_CODE (cond))
1722 {
1723 case CONST_INT:
1724 /* Unconditional branch. */
1725 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1726 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1727 break;
1728
1729 case EQ:
1730 case UNEQ:
1731 /* Floating point comparisons appears to behave in a very
1732 unpredictable way because of special role of = tests in
1733 FP code. */
1734 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1735 ;
1736 /* Comparisons with 0 are often used for booleans and there is
1737 nothing useful to predict about them. */
1738 else if (XEXP (cond, 1) == const0_rtx
1739 || XEXP (cond, 0) == const0_rtx)
1740 ;
1741 else
1742 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1743 break;
1744
1745 case NE:
1746 case LTGT:
1747 /* Floating point comparisons appears to behave in a very
1748 unpredictable way because of special role of = tests in
1749 FP code. */
1750 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1751 ;
1752 /* Comparisons with 0 are often used for booleans and there is
1753 nothing useful to predict about them. */
1754 else if (XEXP (cond, 1) == const0_rtx
1755 || XEXP (cond, 0) == const0_rtx)
1756 ;
1757 else
1758 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1759 break;
1760
1761 case ORDERED:
1762 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1763 break;
1764
1765 case UNORDERED:
1766 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1767 break;
1768
1769 case LE:
1770 case LT:
1771 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1772 || XEXP (cond, 1) == constm1_rtx)
1773 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1774 break;
1775
1776 case GE:
1777 case GT:
1778 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1779 || XEXP (cond, 1) == constm1_rtx)
1780 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1781 break;
1782
1783 default:
1784 break;
1785 }
1786 }
1787
1788 /* Set edge->probability for each successor edge of BB. */
1789 void
1790 guess_outgoing_edge_probabilities (basic_block bb)
1791 {
1792 bb_estimate_probability_locally (bb);
1793 combine_predictions_for_insn (BB_END (bb), bb);
1794 }
1795 \f
1796 static tree expr_expected_value (tree, bitmap);
1797
1798 /* Helper function for expr_expected_value. */
1799
1800 static tree
1801 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1802 tree op1, bitmap visited)
1803 {
1804 gimple def;
1805
1806 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1807 {
1808 if (TREE_CONSTANT (op0))
1809 return op0;
1810
1811 if (code != SSA_NAME)
1812 return NULL_TREE;
1813
1814 def = SSA_NAME_DEF_STMT (op0);
1815
1816 /* If we were already here, break the infinite cycle. */
1817 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1818 return NULL;
1819
1820 if (gimple_code (def) == GIMPLE_PHI)
1821 {
1822 /* All the arguments of the PHI node must have the same constant
1823 length. */
1824 int i, n = gimple_phi_num_args (def);
1825 tree val = NULL, new_val;
1826
1827 for (i = 0; i < n; i++)
1828 {
1829 tree arg = PHI_ARG_DEF (def, i);
1830
1831 /* If this PHI has itself as an argument, we cannot
1832 determine the string length of this argument. However,
1833 if we can find an expected constant value for the other
1834 PHI args then we can still be sure that this is
1835 likely a constant. So be optimistic and just
1836 continue with the next argument. */
1837 if (arg == PHI_RESULT (def))
1838 continue;
1839
1840 new_val = expr_expected_value (arg, visited);
1841 if (!new_val)
1842 return NULL;
1843 if (!val)
1844 val = new_val;
1845 else if (!operand_equal_p (val, new_val, false))
1846 return NULL;
1847 }
1848 return val;
1849 }
1850 if (is_gimple_assign (def))
1851 {
1852 if (gimple_assign_lhs (def) != op0)
1853 return NULL;
1854
1855 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1856 gimple_assign_rhs1 (def),
1857 gimple_assign_rhs_code (def),
1858 gimple_assign_rhs2 (def),
1859 visited);
1860 }
1861
1862 if (is_gimple_call (def))
1863 {
1864 tree decl = gimple_call_fndecl (def);
1865 if (!decl)
1866 return NULL;
1867 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1868 switch (DECL_FUNCTION_CODE (decl))
1869 {
1870 case BUILT_IN_EXPECT:
1871 {
1872 tree val;
1873 if (gimple_call_num_args (def) != 2)
1874 return NULL;
1875 val = gimple_call_arg (def, 0);
1876 if (TREE_CONSTANT (val))
1877 return val;
1878 return gimple_call_arg (def, 1);
1879 }
1880
1881 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1882 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1883 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1884 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1885 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1886 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1887 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1888 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1889 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1890 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1891 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1892 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1893 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1894 /* Assume that any given atomic operation has low contention,
1895 and thus the compare-and-swap operation succeeds. */
1896 return boolean_true_node;
1897 }
1898 }
1899
1900 return NULL;
1901 }
1902
1903 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1904 {
1905 tree res;
1906 op0 = expr_expected_value (op0, visited);
1907 if (!op0)
1908 return NULL;
1909 op1 = expr_expected_value (op1, visited);
1910 if (!op1)
1911 return NULL;
1912 res = fold_build2 (code, type, op0, op1);
1913 if (TREE_CONSTANT (res))
1914 return res;
1915 return NULL;
1916 }
1917 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1918 {
1919 tree res;
1920 op0 = expr_expected_value (op0, visited);
1921 if (!op0)
1922 return NULL;
1923 res = fold_build1 (code, type, op0);
1924 if (TREE_CONSTANT (res))
1925 return res;
1926 return NULL;
1927 }
1928 return NULL;
1929 }
1930
1931 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1932 The function is used by builtin_expect branch predictor so the evidence
1933 must come from this construct and additional possible constant folding.
1934
1935 We may want to implement more involved value guess (such as value range
1936 propagation based prediction), but such tricks shall go to new
1937 implementation. */
1938
1939 static tree
1940 expr_expected_value (tree expr, bitmap visited)
1941 {
1942 enum tree_code code;
1943 tree op0, op1;
1944
1945 if (TREE_CONSTANT (expr))
1946 return expr;
1947
1948 extract_ops_from_tree (expr, &code, &op0, &op1);
1949 return expr_expected_value_1 (TREE_TYPE (expr),
1950 op0, code, op1, visited);
1951 }
1952
1953 \f
1954 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1955 we no longer need. */
1956 static unsigned int
1957 strip_predict_hints (void)
1958 {
1959 basic_block bb;
1960 gimple ass_stmt;
1961 tree var;
1962
1963 FOR_EACH_BB (bb)
1964 {
1965 gimple_stmt_iterator bi;
1966 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1967 {
1968 gimple stmt = gsi_stmt (bi);
1969
1970 if (gimple_code (stmt) == GIMPLE_PREDICT)
1971 {
1972 gsi_remove (&bi, true);
1973 continue;
1974 }
1975 else if (gimple_code (stmt) == GIMPLE_CALL)
1976 {
1977 tree fndecl = gimple_call_fndecl (stmt);
1978
1979 if (fndecl
1980 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1981 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1982 && gimple_call_num_args (stmt) == 2)
1983 {
1984 var = gimple_call_lhs (stmt);
1985 if (var)
1986 {
1987 ass_stmt
1988 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1989 gsi_replace (&bi, ass_stmt, true);
1990 }
1991 else
1992 {
1993 gsi_remove (&bi, true);
1994 continue;
1995 }
1996 }
1997 }
1998 gsi_next (&bi);
1999 }
2000 }
2001 return 0;
2002 }
2003 \f
2004 /* Predict using opcode of the last statement in basic block. */
2005 static void
2006 tree_predict_by_opcode (basic_block bb)
2007 {
2008 gimple stmt = last_stmt (bb);
2009 edge then_edge;
2010 tree op0, op1;
2011 tree type;
2012 tree val;
2013 enum tree_code cmp;
2014 bitmap visited;
2015 edge_iterator ei;
2016
2017 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2018 return;
2019 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2020 if (then_edge->flags & EDGE_TRUE_VALUE)
2021 break;
2022 op0 = gimple_cond_lhs (stmt);
2023 op1 = gimple_cond_rhs (stmt);
2024 cmp = gimple_cond_code (stmt);
2025 type = TREE_TYPE (op0);
2026 visited = BITMAP_ALLOC (NULL);
2027 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
2028 BITMAP_FREE (visited);
2029 if (val)
2030 {
2031 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2032
2033 gcc_assert (percent >= 0 && percent <= 100);
2034 if (integer_zerop (val))
2035 percent = 100 - percent;
2036 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2037 }
2038 /* Try "pointer heuristic."
2039 A comparison ptr == 0 is predicted as false.
2040 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2041 if (POINTER_TYPE_P (type))
2042 {
2043 if (cmp == EQ_EXPR)
2044 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2045 else if (cmp == NE_EXPR)
2046 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2047 }
2048 else
2049
2050 /* Try "opcode heuristic."
2051 EQ tests are usually false and NE tests are usually true. Also,
2052 most quantities are positive, so we can make the appropriate guesses
2053 about signed comparisons against zero. */
2054 switch (cmp)
2055 {
2056 case EQ_EXPR:
2057 case UNEQ_EXPR:
2058 /* Floating point comparisons appears to behave in a very
2059 unpredictable way because of special role of = tests in
2060 FP code. */
2061 if (FLOAT_TYPE_P (type))
2062 ;
2063 /* Comparisons with 0 are often used for booleans and there is
2064 nothing useful to predict about them. */
2065 else if (integer_zerop (op0) || integer_zerop (op1))
2066 ;
2067 else
2068 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2069 break;
2070
2071 case NE_EXPR:
2072 case LTGT_EXPR:
2073 /* Floating point comparisons appears to behave in a very
2074 unpredictable way because of special role of = tests in
2075 FP code. */
2076 if (FLOAT_TYPE_P (type))
2077 ;
2078 /* Comparisons with 0 are often used for booleans and there is
2079 nothing useful to predict about them. */
2080 else if (integer_zerop (op0)
2081 || integer_zerop (op1))
2082 ;
2083 else
2084 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2085 break;
2086
2087 case ORDERED_EXPR:
2088 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2089 break;
2090
2091 case UNORDERED_EXPR:
2092 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2093 break;
2094
2095 case LE_EXPR:
2096 case LT_EXPR:
2097 if (integer_zerop (op1)
2098 || integer_onep (op1)
2099 || integer_all_onesp (op1)
2100 || real_zerop (op1)
2101 || real_onep (op1)
2102 || real_minus_onep (op1))
2103 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2104 break;
2105
2106 case GE_EXPR:
2107 case GT_EXPR:
2108 if (integer_zerop (op1)
2109 || integer_onep (op1)
2110 || integer_all_onesp (op1)
2111 || real_zerop (op1)
2112 || real_onep (op1)
2113 || real_minus_onep (op1))
2114 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2115 break;
2116
2117 default:
2118 break;
2119 }
2120 }
2121
2122 /* Try to guess whether the value of return means error code. */
2123
2124 static enum br_predictor
2125 return_prediction (tree val, enum prediction *prediction)
2126 {
2127 /* VOID. */
2128 if (!val)
2129 return PRED_NO_PREDICTION;
2130 /* Different heuristics for pointers and scalars. */
2131 if (POINTER_TYPE_P (TREE_TYPE (val)))
2132 {
2133 /* NULL is usually not returned. */
2134 if (integer_zerop (val))
2135 {
2136 *prediction = NOT_TAKEN;
2137 return PRED_NULL_RETURN;
2138 }
2139 }
2140 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2141 {
2142 /* Negative return values are often used to indicate
2143 errors. */
2144 if (TREE_CODE (val) == INTEGER_CST
2145 && tree_int_cst_sgn (val) < 0)
2146 {
2147 *prediction = NOT_TAKEN;
2148 return PRED_NEGATIVE_RETURN;
2149 }
2150 /* Constant return values seems to be commonly taken.
2151 Zero/one often represent booleans so exclude them from the
2152 heuristics. */
2153 if (TREE_CONSTANT (val)
2154 && (!integer_zerop (val) && !integer_onep (val)))
2155 {
2156 *prediction = TAKEN;
2157 return PRED_CONST_RETURN;
2158 }
2159 }
2160 return PRED_NO_PREDICTION;
2161 }
2162
2163 /* Find the basic block with return expression and look up for possible
2164 return value trying to apply RETURN_PREDICTION heuristics. */
2165 static void
2166 apply_return_prediction (void)
2167 {
2168 gimple return_stmt = NULL;
2169 tree return_val;
2170 edge e;
2171 gimple phi;
2172 int phi_num_args, i;
2173 enum br_predictor pred;
2174 enum prediction direction;
2175 edge_iterator ei;
2176
2177 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2178 {
2179 return_stmt = last_stmt (e->src);
2180 if (return_stmt
2181 && gimple_code (return_stmt) == GIMPLE_RETURN)
2182 break;
2183 }
2184 if (!e)
2185 return;
2186 return_val = gimple_return_retval (return_stmt);
2187 if (!return_val)
2188 return;
2189 if (TREE_CODE (return_val) != SSA_NAME
2190 || !SSA_NAME_DEF_STMT (return_val)
2191 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2192 return;
2193 phi = SSA_NAME_DEF_STMT (return_val);
2194 phi_num_args = gimple_phi_num_args (phi);
2195 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2196
2197 /* Avoid the degenerate case where all return values form the function
2198 belongs to same category (ie they are all positive constants)
2199 so we can hardly say something about them. */
2200 for (i = 1; i < phi_num_args; i++)
2201 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2202 break;
2203 if (i != phi_num_args)
2204 for (i = 0; i < phi_num_args; i++)
2205 {
2206 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2207 if (pred != PRED_NO_PREDICTION)
2208 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2209 direction);
2210 }
2211 }
2212
2213 /* Look for basic block that contains unlikely to happen events
2214 (such as noreturn calls) and mark all paths leading to execution
2215 of this basic blocks as unlikely. */
2216
2217 static void
2218 tree_bb_level_predictions (void)
2219 {
2220 basic_block bb;
2221 bool has_return_edges = false;
2222 edge e;
2223 edge_iterator ei;
2224
2225 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2226 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2227 {
2228 has_return_edges = true;
2229 break;
2230 }
2231
2232 apply_return_prediction ();
2233
2234 FOR_EACH_BB (bb)
2235 {
2236 gimple_stmt_iterator gsi;
2237
2238 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2239 {
2240 gimple stmt = gsi_stmt (gsi);
2241 tree decl;
2242
2243 if (is_gimple_call (stmt))
2244 {
2245 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2246 && has_return_edges)
2247 predict_paths_leading_to (bb, PRED_NORETURN,
2248 NOT_TAKEN);
2249 decl = gimple_call_fndecl (stmt);
2250 if (decl
2251 && lookup_attribute ("cold",
2252 DECL_ATTRIBUTES (decl)))
2253 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2254 NOT_TAKEN);
2255 }
2256 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2257 {
2258 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2259 gimple_predict_outcome (stmt));
2260 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2261 hints to callers. */
2262 }
2263 }
2264 }
2265 }
2266
2267 #ifdef ENABLE_CHECKING
2268
2269 /* Callback for pointer_map_traverse, asserts that the pointer map is
2270 empty. */
2271
2272 static bool
2273 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2274 void *data ATTRIBUTE_UNUSED)
2275 {
2276 gcc_assert (!*value);
2277 return false;
2278 }
2279 #endif
2280
2281 /* Predict branch probabilities and estimate profile for basic block BB. */
2282
2283 static void
2284 tree_estimate_probability_bb (basic_block bb)
2285 {
2286 edge e;
2287 edge_iterator ei;
2288 gimple last;
2289
2290 FOR_EACH_EDGE (e, ei, bb->succs)
2291 {
2292 /* Predict edges to user labels with attributes. */
2293 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2294 {
2295 gimple_stmt_iterator gi;
2296 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2297 {
2298 gimple stmt = gsi_stmt (gi);
2299 tree decl;
2300
2301 if (gimple_code (stmt) != GIMPLE_LABEL)
2302 break;
2303 decl = gimple_label_label (stmt);
2304 if (DECL_ARTIFICIAL (decl))
2305 continue;
2306
2307 /* Finally, we have a user-defined label. */
2308 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2309 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2310 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2311 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2312 }
2313 }
2314
2315 /* Predict early returns to be probable, as we've already taken
2316 care for error returns and other cases are often used for
2317 fast paths through function.
2318
2319 Since we've already removed the return statements, we are
2320 looking for CFG like:
2321
2322 if (conditional)
2323 {
2324 ..
2325 goto return_block
2326 }
2327 some other blocks
2328 return_block:
2329 return_stmt. */
2330 if (e->dest != bb->next_bb
2331 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2332 && single_succ_p (e->dest)
2333 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2334 && (last = last_stmt (e->dest)) != NULL
2335 && gimple_code (last) == GIMPLE_RETURN)
2336 {
2337 edge e1;
2338 edge_iterator ei1;
2339
2340 if (single_succ_p (bb))
2341 {
2342 FOR_EACH_EDGE (e1, ei1, bb->preds)
2343 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2344 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2345 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2346 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2347 }
2348 else
2349 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2350 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2351 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2352 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2353 }
2354
2355 /* Look for block we are guarding (ie we dominate it,
2356 but it doesn't postdominate us). */
2357 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2358 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2359 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2360 {
2361 gimple_stmt_iterator bi;
2362
2363 /* The call heuristic claims that a guarded function call
2364 is improbable. This is because such calls are often used
2365 to signal exceptional situations such as printing error
2366 messages. */
2367 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2368 gsi_next (&bi))
2369 {
2370 gimple stmt = gsi_stmt (bi);
2371 if (is_gimple_call (stmt)
2372 /* Constant and pure calls are hardly used to signalize
2373 something exceptional. */
2374 && gimple_has_side_effects (stmt))
2375 {
2376 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2377 break;
2378 }
2379 }
2380 }
2381 }
2382 tree_predict_by_opcode (bb);
2383 }
2384
2385 /* Predict branch probabilities and estimate profile of the tree CFG.
2386 This function can be called from the loop optimizers to recompute
2387 the profile information. */
2388
2389 void
2390 tree_estimate_probability (void)
2391 {
2392 basic_block bb;
2393
2394 add_noreturn_fake_exit_edges ();
2395 connect_infinite_loops_to_exit ();
2396 /* We use loop_niter_by_eval, which requires that the loops have
2397 preheaders. */
2398 create_preheaders (CP_SIMPLE_PREHEADERS);
2399 calculate_dominance_info (CDI_POST_DOMINATORS);
2400
2401 bb_predictions = pointer_map_create ();
2402 tree_bb_level_predictions ();
2403 record_loop_exits ();
2404
2405 if (number_of_loops (cfun) > 1)
2406 predict_loops ();
2407
2408 FOR_EACH_BB (bb)
2409 tree_estimate_probability_bb (bb);
2410
2411 FOR_EACH_BB (bb)
2412 combine_predictions_for_bb (bb);
2413
2414 #ifdef ENABLE_CHECKING
2415 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2416 #endif
2417 pointer_map_destroy (bb_predictions);
2418 bb_predictions = NULL;
2419
2420 estimate_bb_frequencies (false);
2421 free_dominance_info (CDI_POST_DOMINATORS);
2422 remove_fake_exit_edges ();
2423 }
2424
2425 /* Predict branch probabilities and estimate profile of the tree CFG.
2426 This is the driver function for PASS_PROFILE. */
2427
2428 static unsigned int
2429 tree_estimate_probability_driver (void)
2430 {
2431 unsigned nb_loops;
2432
2433 loop_optimizer_init (LOOPS_NORMAL);
2434 if (dump_file && (dump_flags & TDF_DETAILS))
2435 flow_loops_dump (dump_file, NULL, 0);
2436
2437 mark_irreducible_loops ();
2438
2439 nb_loops = number_of_loops (cfun);
2440 if (nb_loops > 1)
2441 scev_initialize ();
2442
2443 tree_estimate_probability ();
2444
2445 if (nb_loops > 1)
2446 scev_finalize ();
2447
2448 loop_optimizer_finalize ();
2449 if (dump_file && (dump_flags & TDF_DETAILS))
2450 gimple_dump_cfg (dump_file, dump_flags);
2451 if (profile_status == PROFILE_ABSENT)
2452 profile_status = PROFILE_GUESSED;
2453 return 0;
2454 }
2455 \f
2456 /* Predict edges to successors of CUR whose sources are not postdominated by
2457 BB by PRED and recurse to all postdominators. */
2458
2459 static void
2460 predict_paths_for_bb (basic_block cur, basic_block bb,
2461 enum br_predictor pred,
2462 enum prediction taken,
2463 bitmap visited)
2464 {
2465 edge e;
2466 edge_iterator ei;
2467 basic_block son;
2468
2469 /* We are looking for all edges forming edge cut induced by
2470 set of all blocks postdominated by BB. */
2471 FOR_EACH_EDGE (e, ei, cur->preds)
2472 if (e->src->index >= NUM_FIXED_BLOCKS
2473 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2474 {
2475 edge e2;
2476 edge_iterator ei2;
2477 bool found = false;
2478
2479 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2480 if (e->flags & (EDGE_EH | EDGE_FAKE))
2481 continue;
2482 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2483
2484 /* See if there is an edge from e->src that is not abnormal
2485 and does not lead to BB. */
2486 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2487 if (e2 != e
2488 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2489 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2490 {
2491 found = true;
2492 break;
2493 }
2494
2495 /* If there is non-abnormal path leaving e->src, predict edge
2496 using predictor. Otherwise we need to look for paths
2497 leading to e->src.
2498
2499 The second may lead to infinite loop in the case we are predicitng
2500 regions that are only reachable by abnormal edges. We simply
2501 prevent visiting given BB twice. */
2502 if (found)
2503 predict_edge_def (e, pred, taken);
2504 else if (bitmap_set_bit (visited, e->src->index))
2505 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2506 }
2507 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2508 son;
2509 son = next_dom_son (CDI_POST_DOMINATORS, son))
2510 predict_paths_for_bb (son, bb, pred, taken, visited);
2511 }
2512
2513 /* Sets branch probabilities according to PREDiction and
2514 FLAGS. */
2515
2516 static void
2517 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2518 enum prediction taken)
2519 {
2520 bitmap visited = BITMAP_ALLOC (NULL);
2521 predict_paths_for_bb (bb, bb, pred, taken, visited);
2522 BITMAP_FREE (visited);
2523 }
2524
2525 /* Like predict_paths_leading_to but take edge instead of basic block. */
2526
2527 static void
2528 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2529 enum prediction taken)
2530 {
2531 bool has_nonloop_edge = false;
2532 edge_iterator ei;
2533 edge e2;
2534
2535 basic_block bb = e->src;
2536 FOR_EACH_EDGE (e2, ei, bb->succs)
2537 if (e2->dest != e->src && e2->dest != e->dest
2538 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2539 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2540 {
2541 has_nonloop_edge = true;
2542 break;
2543 }
2544 if (!has_nonloop_edge)
2545 {
2546 bitmap visited = BITMAP_ALLOC (NULL);
2547 predict_paths_for_bb (bb, bb, pred, taken, visited);
2548 BITMAP_FREE (visited);
2549 }
2550 else
2551 predict_edge_def (e, pred, taken);
2552 }
2553 \f
2554 /* This is used to carry information about basic blocks. It is
2555 attached to the AUX field of the standard CFG block. */
2556
2557 typedef struct block_info_def
2558 {
2559 /* Estimated frequency of execution of basic_block. */
2560 sreal frequency;
2561
2562 /* To keep queue of basic blocks to process. */
2563 basic_block next;
2564
2565 /* Number of predecessors we need to visit first. */
2566 int npredecessors;
2567 } *block_info;
2568
2569 /* Similar information for edges. */
2570 typedef struct edge_info_def
2571 {
2572 /* In case edge is a loopback edge, the probability edge will be reached
2573 in case header is. Estimated number of iterations of the loop can be
2574 then computed as 1 / (1 - back_edge_prob). */
2575 sreal back_edge_prob;
2576 /* True if the edge is a loopback edge in the natural loop. */
2577 unsigned int back_edge:1;
2578 } *edge_info;
2579
2580 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2581 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2582
2583 /* Helper function for estimate_bb_frequencies.
2584 Propagate the frequencies in blocks marked in
2585 TOVISIT, starting in HEAD. */
2586
2587 static void
2588 propagate_freq (basic_block head, bitmap tovisit)
2589 {
2590 basic_block bb;
2591 basic_block last;
2592 unsigned i;
2593 edge e;
2594 basic_block nextbb;
2595 bitmap_iterator bi;
2596
2597 /* For each basic block we need to visit count number of his predecessors
2598 we need to visit first. */
2599 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2600 {
2601 edge_iterator ei;
2602 int count = 0;
2603
2604 bb = BASIC_BLOCK (i);
2605
2606 FOR_EACH_EDGE (e, ei, bb->preds)
2607 {
2608 bool visit = bitmap_bit_p (tovisit, e->src->index);
2609
2610 if (visit && !(e->flags & EDGE_DFS_BACK))
2611 count++;
2612 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2613 fprintf (dump_file,
2614 "Irreducible region hit, ignoring edge to %i->%i\n",
2615 e->src->index, bb->index);
2616 }
2617 BLOCK_INFO (bb)->npredecessors = count;
2618 /* When function never returns, we will never process exit block. */
2619 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2620 bb->count = bb->frequency = 0;
2621 }
2622
2623 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2624 last = head;
2625 for (bb = head; bb; bb = nextbb)
2626 {
2627 edge_iterator ei;
2628 sreal cyclic_probability, frequency;
2629
2630 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2631 memcpy (&frequency, &real_zero, sizeof (real_zero));
2632
2633 nextbb = BLOCK_INFO (bb)->next;
2634 BLOCK_INFO (bb)->next = NULL;
2635
2636 /* Compute frequency of basic block. */
2637 if (bb != head)
2638 {
2639 #ifdef ENABLE_CHECKING
2640 FOR_EACH_EDGE (e, ei, bb->preds)
2641 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2642 || (e->flags & EDGE_DFS_BACK));
2643 #endif
2644
2645 FOR_EACH_EDGE (e, ei, bb->preds)
2646 if (EDGE_INFO (e)->back_edge)
2647 {
2648 sreal_add (&cyclic_probability, &cyclic_probability,
2649 &EDGE_INFO (e)->back_edge_prob);
2650 }
2651 else if (!(e->flags & EDGE_DFS_BACK))
2652 {
2653 sreal tmp;
2654
2655 /* frequency += (e->probability
2656 * BLOCK_INFO (e->src)->frequency /
2657 REG_BR_PROB_BASE); */
2658
2659 sreal_init (&tmp, e->probability, 0);
2660 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2661 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2662 sreal_add (&frequency, &frequency, &tmp);
2663 }
2664
2665 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2666 {
2667 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2668 sizeof (frequency));
2669 }
2670 else
2671 {
2672 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2673 {
2674 memcpy (&cyclic_probability, &real_almost_one,
2675 sizeof (real_almost_one));
2676 }
2677
2678 /* BLOCK_INFO (bb)->frequency = frequency
2679 / (1 - cyclic_probability) */
2680
2681 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2682 sreal_div (&BLOCK_INFO (bb)->frequency,
2683 &frequency, &cyclic_probability);
2684 }
2685 }
2686
2687 bitmap_clear_bit (tovisit, bb->index);
2688
2689 e = find_edge (bb, head);
2690 if (e)
2691 {
2692 sreal tmp;
2693
2694 /* EDGE_INFO (e)->back_edge_prob
2695 = ((e->probability * BLOCK_INFO (bb)->frequency)
2696 / REG_BR_PROB_BASE); */
2697
2698 sreal_init (&tmp, e->probability, 0);
2699 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2700 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2701 &tmp, &real_inv_br_prob_base);
2702 }
2703
2704 /* Propagate to successor blocks. */
2705 FOR_EACH_EDGE (e, ei, bb->succs)
2706 if (!(e->flags & EDGE_DFS_BACK)
2707 && BLOCK_INFO (e->dest)->npredecessors)
2708 {
2709 BLOCK_INFO (e->dest)->npredecessors--;
2710 if (!BLOCK_INFO (e->dest)->npredecessors)
2711 {
2712 if (!nextbb)
2713 nextbb = e->dest;
2714 else
2715 BLOCK_INFO (last)->next = e->dest;
2716
2717 last = e->dest;
2718 }
2719 }
2720 }
2721 }
2722
2723 /* Estimate frequencies in loops at same nest level. */
2724
2725 static void
2726 estimate_loops_at_level (struct loop *first_loop)
2727 {
2728 struct loop *loop;
2729
2730 for (loop = first_loop; loop; loop = loop->next)
2731 {
2732 edge e;
2733 basic_block *bbs;
2734 unsigned i;
2735 bitmap tovisit = BITMAP_ALLOC (NULL);
2736
2737 estimate_loops_at_level (loop->inner);
2738
2739 /* Find current loop back edge and mark it. */
2740 e = loop_latch_edge (loop);
2741 EDGE_INFO (e)->back_edge = 1;
2742
2743 bbs = get_loop_body (loop);
2744 for (i = 0; i < loop->num_nodes; i++)
2745 bitmap_set_bit (tovisit, bbs[i]->index);
2746 free (bbs);
2747 propagate_freq (loop->header, tovisit);
2748 BITMAP_FREE (tovisit);
2749 }
2750 }
2751
2752 /* Propagates frequencies through structure of loops. */
2753
2754 static void
2755 estimate_loops (void)
2756 {
2757 bitmap tovisit = BITMAP_ALLOC (NULL);
2758 basic_block bb;
2759
2760 /* Start by estimating the frequencies in the loops. */
2761 if (number_of_loops (cfun) > 1)
2762 estimate_loops_at_level (current_loops->tree_root->inner);
2763
2764 /* Now propagate the frequencies through all the blocks. */
2765 FOR_ALL_BB (bb)
2766 {
2767 bitmap_set_bit (tovisit, bb->index);
2768 }
2769 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2770 BITMAP_FREE (tovisit);
2771 }
2772
2773 /* Drop the profile for NODE to guessed, and update its frequency based on
2774 whether it is expected to be hot given the CALL_COUNT. */
2775
2776 static void
2777 drop_profile (struct cgraph_node *node, gcov_type call_count)
2778 {
2779 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2780 /* In the case where this was called by another function with a
2781 dropped profile, call_count will be 0. Since there are no
2782 non-zero call counts to this function, we don't know for sure
2783 whether it is hot, and therefore it will be marked normal below. */
2784 bool hot = maybe_hot_count_p (NULL, call_count);
2785
2786 if (dump_file)
2787 fprintf (dump_file,
2788 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2789 node->name (), node->order,
2790 hot ? "Function is hot" : "Function is normal");
2791 /* We only expect to miss profiles for functions that are reached
2792 via non-zero call edges in cases where the function may have
2793 been linked from another module or library (COMDATs and extern
2794 templates). See the comments below for handle_missing_profiles.
2795 Also, only warn in cases where the missing counts exceed the
2796 number of training runs. In certain cases with an execv followed
2797 by a no-return call the profile for the no-return call is not
2798 dumped and there can be a mismatch. */
2799 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2800 && call_count > profile_info->runs)
2801 {
2802 if (flag_profile_correction)
2803 {
2804 if (dump_file)
2805 fprintf (dump_file,
2806 "Missing counts for called function %s/%i\n",
2807 node->name (), node->order);
2808 }
2809 else
2810 warning (0, "Missing counts for called function %s/%i",
2811 node->name (), node->order);
2812 }
2813
2814 profile_status_for_function (fn)
2815 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2816 node->frequency
2817 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2818 }
2819
2820 /* In the case of COMDAT routines, multiple object files will contain the same
2821 function and the linker will select one for the binary. In that case
2822 all the other copies from the profile instrument binary will be missing
2823 profile counts. Look for cases where this happened, due to non-zero
2824 call counts going to 0-count functions, and drop the profile to guessed
2825 so that we can use the estimated probabilities and avoid optimizing only
2826 for size.
2827
2828 The other case where the profile may be missing is when the routine
2829 is not going to be emitted to the object file, e.g. for "extern template"
2830 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2831 all other cases of non-zero calls to 0-count functions. */
2832
2833 void
2834 handle_missing_profiles (void)
2835 {
2836 struct cgraph_node *node;
2837 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2838 vec<struct cgraph_node *> worklist;
2839 worklist.create (64);
2840
2841 /* See if 0 count function has non-0 count callers. In this case we
2842 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2843 FOR_EACH_DEFINED_FUNCTION (node)
2844 {
2845 struct cgraph_edge *e;
2846 gcov_type call_count = 0;
2847 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2848
2849 if (node->count)
2850 continue;
2851 for (e = node->callers; e; e = e->next_caller)
2852 call_count += e->count;
2853 if (call_count
2854 && fn && fn->cfg
2855 && (call_count * unlikely_count_fraction >= profile_info->runs))
2856 {
2857 drop_profile (node, call_count);
2858 worklist.safe_push (node);
2859 }
2860 }
2861
2862 /* Propagate the profile dropping to other 0-count COMDATs that are
2863 potentially called by COMDATs we already dropped the profile on. */
2864 while (worklist.length () > 0)
2865 {
2866 struct cgraph_edge *e;
2867
2868 node = worklist.pop ();
2869 for (e = node->callees; e; e = e->next_caller)
2870 {
2871 struct cgraph_node *callee = e->callee;
2872 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2873
2874 if (callee->count > 0)
2875 continue;
2876 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2877 && profile_status_for_function (fn) == PROFILE_READ)
2878 {
2879 drop_profile (node, 0);
2880 worklist.safe_push (callee);
2881 }
2882 }
2883 }
2884 worklist.release ();
2885 }
2886
2887 /* Convert counts measured by profile driven feedback to frequencies.
2888 Return nonzero iff there was any nonzero execution count. */
2889
2890 int
2891 counts_to_freqs (void)
2892 {
2893 gcov_type count_max, true_count_max = 0;
2894 basic_block bb;
2895
2896 /* Don't overwrite the estimated frequencies when the profile for
2897 the function is missing. We may drop this function PROFILE_GUESSED
2898 later in drop_profile (). */
2899 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2900 return 0;
2901
2902 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2903 true_count_max = MAX (bb->count, true_count_max);
2904
2905 count_max = MAX (true_count_max, 1);
2906 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2907 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2908
2909 return true_count_max;
2910 }
2911
2912 /* Return true if function is likely to be expensive, so there is no point to
2913 optimize performance of prologue, epilogue or do inlining at the expense
2914 of code size growth. THRESHOLD is the limit of number of instructions
2915 function can execute at average to be still considered not expensive. */
2916
2917 bool
2918 expensive_function_p (int threshold)
2919 {
2920 unsigned int sum = 0;
2921 basic_block bb;
2922 unsigned int limit;
2923
2924 /* We can not compute accurately for large thresholds due to scaled
2925 frequencies. */
2926 gcc_assert (threshold <= BB_FREQ_MAX);
2927
2928 /* Frequencies are out of range. This either means that function contains
2929 internal loop executing more than BB_FREQ_MAX times or profile feedback
2930 is available and function has not been executed at all. */
2931 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2932 return true;
2933
2934 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2935 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2936 FOR_EACH_BB (bb)
2937 {
2938 rtx insn;
2939
2940 FOR_BB_INSNS (bb, insn)
2941 if (active_insn_p (insn))
2942 {
2943 sum += bb->frequency;
2944 if (sum > limit)
2945 return true;
2946 }
2947 }
2948
2949 return false;
2950 }
2951
2952 /* Estimate and propagate basic block frequencies using the given branch
2953 probabilities. If FORCE is true, the frequencies are used to estimate
2954 the counts even when there are already non-zero profile counts. */
2955
2956 void
2957 estimate_bb_frequencies (bool force)
2958 {
2959 basic_block bb;
2960 sreal freq_max;
2961
2962 if (force || profile_status != PROFILE_READ || !counts_to_freqs ())
2963 {
2964 static int real_values_initialized = 0;
2965
2966 if (!real_values_initialized)
2967 {
2968 real_values_initialized = 1;
2969 sreal_init (&real_zero, 0, 0);
2970 sreal_init (&real_one, 1, 0);
2971 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2972 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2973 sreal_init (&real_one_half, 1, -1);
2974 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2975 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2976 }
2977
2978 mark_dfs_back_edges ();
2979
2980 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2981 REG_BR_PROB_BASE;
2982
2983 /* Set up block info for each basic block. */
2984 alloc_aux_for_blocks (sizeof (struct block_info_def));
2985 alloc_aux_for_edges (sizeof (struct edge_info_def));
2986 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2987 {
2988 edge e;
2989 edge_iterator ei;
2990
2991 FOR_EACH_EDGE (e, ei, bb->succs)
2992 {
2993 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2994 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2995 &EDGE_INFO (e)->back_edge_prob,
2996 &real_inv_br_prob_base);
2997 }
2998 }
2999
3000 /* First compute frequencies locally for each loop from innermost
3001 to outermost to examine frequencies for back edges. */
3002 estimate_loops ();
3003
3004 memcpy (&freq_max, &real_zero, sizeof (real_zero));
3005 FOR_EACH_BB (bb)
3006 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
3007 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
3008
3009 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
3010 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3011 {
3012 sreal tmp;
3013
3014 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
3015 sreal_add (&tmp, &tmp, &real_one_half);
3016 bb->frequency = sreal_to_int (&tmp);
3017 }
3018
3019 free_aux_for_blocks ();
3020 free_aux_for_edges ();
3021 }
3022 compute_function_frequency ();
3023 }
3024
3025 /* Decide whether function is hot, cold or unlikely executed. */
3026 void
3027 compute_function_frequency (void)
3028 {
3029 basic_block bb;
3030 struct cgraph_node *node = cgraph_get_node (current_function_decl);
3031
3032 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3033 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3034 node->only_called_at_startup = true;
3035 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3036 node->only_called_at_exit = true;
3037
3038 if (profile_status != PROFILE_READ)
3039 {
3040 int flags = flags_from_decl_or_type (current_function_decl);
3041 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3042 != NULL)
3043 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3044 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3045 != NULL)
3046 node->frequency = NODE_FREQUENCY_HOT;
3047 else if (flags & ECF_NORETURN)
3048 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3049 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3050 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3051 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3052 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3053 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3054 return;
3055 }
3056
3057 /* Only first time try to drop function into unlikely executed.
3058 After inlining the roundoff errors may confuse us.
3059 Ipa-profile pass will drop functions only called from unlikely
3060 functions to unlikely and that is most of what we care about. */
3061 if (!cfun->after_inlining)
3062 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3063 FOR_EACH_BB (bb)
3064 {
3065 if (maybe_hot_bb_p (cfun, bb))
3066 {
3067 node->frequency = NODE_FREQUENCY_HOT;
3068 return;
3069 }
3070 if (!probably_never_executed_bb_p (cfun, bb))
3071 node->frequency = NODE_FREQUENCY_NORMAL;
3072 }
3073 }
3074
3075 static bool
3076 gate_estimate_probability (void)
3077 {
3078 return flag_guess_branch_prob;
3079 }
3080
3081 /* Build PREDICT_EXPR. */
3082 tree
3083 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3084 {
3085 tree t = build1 (PREDICT_EXPR, void_type_node,
3086 build_int_cst (integer_type_node, predictor));
3087 SET_PREDICT_EXPR_OUTCOME (t, taken);
3088 return t;
3089 }
3090
3091 const char *
3092 predictor_name (enum br_predictor predictor)
3093 {
3094 return predictor_info[predictor].name;
3095 }
3096
3097 namespace {
3098
3099 const pass_data pass_data_profile =
3100 {
3101 GIMPLE_PASS, /* type */
3102 "profile_estimate", /* name */
3103 OPTGROUP_NONE, /* optinfo_flags */
3104 true, /* has_gate */
3105 true, /* has_execute */
3106 TV_BRANCH_PROB, /* tv_id */
3107 PROP_cfg, /* properties_required */
3108 0, /* properties_provided */
3109 0, /* properties_destroyed */
3110 0, /* todo_flags_start */
3111 TODO_verify_ssa, /* todo_flags_finish */
3112 };
3113
3114 class pass_profile : public gimple_opt_pass
3115 {
3116 public:
3117 pass_profile (gcc::context *ctxt)
3118 : gimple_opt_pass (pass_data_profile, ctxt)
3119 {}
3120
3121 /* opt_pass methods: */
3122 bool gate () { return gate_estimate_probability (); }
3123 unsigned int execute () { return tree_estimate_probability_driver (); }
3124
3125 }; // class pass_profile
3126
3127 } // anon namespace
3128
3129 gimple_opt_pass *
3130 make_pass_profile (gcc::context *ctxt)
3131 {
3132 return new pass_profile (ctxt);
3133 }
3134
3135 namespace {
3136
3137 const pass_data pass_data_strip_predict_hints =
3138 {
3139 GIMPLE_PASS, /* type */
3140 "*strip_predict_hints", /* name */
3141 OPTGROUP_NONE, /* optinfo_flags */
3142 false, /* has_gate */
3143 true, /* has_execute */
3144 TV_BRANCH_PROB, /* tv_id */
3145 PROP_cfg, /* properties_required */
3146 0, /* properties_provided */
3147 0, /* properties_destroyed */
3148 0, /* todo_flags_start */
3149 TODO_verify_ssa, /* todo_flags_finish */
3150 };
3151
3152 class pass_strip_predict_hints : public gimple_opt_pass
3153 {
3154 public:
3155 pass_strip_predict_hints (gcc::context *ctxt)
3156 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3157 {}
3158
3159 /* opt_pass methods: */
3160 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3161 unsigned int execute () { return strip_predict_hints (); }
3162
3163 }; // class pass_strip_predict_hints
3164
3165 } // anon namespace
3166
3167 gimple_opt_pass *
3168 make_pass_strip_predict_hints (gcc::context *ctxt)
3169 {
3170 return new pass_strip_predict_hints (ctxt);
3171 }
3172
3173 /* Rebuild function frequencies. Passes are in general expected to
3174 maintain profile by hand, however in some cases this is not possible:
3175 for example when inlining several functions with loops freuqencies might run
3176 out of scale and thus needs to be recomputed. */
3177
3178 void
3179 rebuild_frequencies (void)
3180 {
3181 timevar_push (TV_REBUILD_FREQUENCIES);
3182
3183 /* When the max bb count in the function is small, there is a higher
3184 chance that there were truncation errors in the integer scaling
3185 of counts by inlining and other optimizations. This could lead
3186 to incorrect classification of code as being cold when it isn't.
3187 In that case, force the estimation of bb counts/frequencies from the
3188 branch probabilities, rather than computing frequencies from counts,
3189 which may also lead to frequencies incorrectly reduced to 0. There
3190 is less precision in the probabilities, so we only do this for small
3191 max counts. */
3192 gcov_type count_max = 0;
3193 basic_block bb;
3194 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3195 count_max = MAX (bb->count, count_max);
3196
3197 if (profile_status == PROFILE_GUESSED
3198 || (profile_status == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3199 {
3200 loop_optimizer_init (0);
3201 add_noreturn_fake_exit_edges ();
3202 mark_irreducible_loops ();
3203 connect_infinite_loops_to_exit ();
3204 estimate_bb_frequencies (true);
3205 remove_fake_exit_edges ();
3206 loop_optimizer_finalize ();
3207 }
3208 else if (profile_status == PROFILE_READ)
3209 counts_to_freqs ();
3210 else
3211 gcc_unreachable ();
3212 timevar_pop (TV_REBUILD_FREQUENCIES);
3213 }