cfgexpand.c (expand_one_var): Use specific wording in error message for non-local...
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "cfgloop.h"
53 #include "gimple-iterator.h"
54 #include "tree-cfg.h"
55 #include "tree-ssa-loop-niter.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-scalar-evolution.h"
58 #include "ipa-utils.h"
59 #include "gimple-pretty-print.h"
60 #include "selftest.h"
61 #include "cfgrtl.h"
62 #include "stringpool.h"
63 #include "attribs.h"
64
65 /* Enum with reasons why a predictor is ignored. */
66
67 enum predictor_reason
68 {
69 REASON_NONE,
70 REASON_IGNORED,
71 REASON_SINGLE_EDGE_DUPLICATE,
72 REASON_EDGE_PAIR_DUPLICATE
73 };
74
75 /* String messages for the aforementioned enum. */
76
77 static const char *reason_messages[] = {"", " (ignored)",
78 " (single edge duplicate)", " (edge pair duplicate)"};
79
80 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
81 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
82 static sreal real_almost_one, real_br_prob_base,
83 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
84
85 static void combine_predictions_for_insn (rtx_insn *, basic_block);
86 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
87 enum predictor_reason, edge);
88 static void predict_paths_leading_to (basic_block, enum br_predictor,
89 enum prediction,
90 struct loop *in_loop = NULL);
91 static void predict_paths_leading_to_edge (edge, enum br_predictor,
92 enum prediction,
93 struct loop *in_loop = NULL);
94 static bool can_predict_insn_p (const rtx_insn *);
95 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
96
97 /* Information we hold about each branch predictor.
98 Filled using information from predict.def. */
99
100 struct predictor_info
101 {
102 const char *const name; /* Name used in the debugging dumps. */
103 const int hitrate; /* Expected hitrate used by
104 predict_insn_def call. */
105 const int flags;
106 };
107
108 /* Use given predictor without Dempster-Shaffer theory if it matches
109 using first_match heuristics. */
110 #define PRED_FLAG_FIRST_MATCH 1
111
112 /* Recompute hitrate in percent to our representation. */
113
114 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
115
116 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
117 static const struct predictor_info predictor_info[]= {
118 #include "predict.def"
119
120 /* Upper bound on predictors. */
121 {NULL, 0, 0}
122 };
123 #undef DEF_PREDICTOR
124
125 static gcov_type min_count = -1;
126
127 /* Determine the threshold for hot BB counts. */
128
129 gcov_type
130 get_hot_bb_threshold ()
131 {
132 if (min_count == -1)
133 {
134 min_count
135 = profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION);
136 if (dump_file)
137 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
138 min_count);
139 }
140 return min_count;
141 }
142
143 /* Set the threshold for hot BB counts. */
144
145 void
146 set_hot_bb_threshold (gcov_type min)
147 {
148 min_count = min;
149 }
150
151 /* Return TRUE if frequency FREQ is considered to be hot. */
152
153 bool
154 maybe_hot_count_p (struct function *fun, profile_count count)
155 {
156 if (!count.initialized_p ())
157 return true;
158 if (count.ipa () == profile_count::zero ())
159 return false;
160 if (!count.ipa_p ())
161 {
162 struct cgraph_node *node = cgraph_node::get (fun->decl);
163 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
164 {
165 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
166 return false;
167 if (node->frequency == NODE_FREQUENCY_HOT)
168 return true;
169 }
170 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
171 return true;
172 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
173 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
174 return false;
175 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
176 return false;
177 if (count.apply_scale (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION), 1)
178 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
179 return false;
180 return true;
181 }
182 /* Code executed at most once is not hot. */
183 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
184 return false;
185 return (count.to_gcov_type () >= get_hot_bb_threshold ());
186 }
187
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
190
191 bool
192 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
193 {
194 gcc_checking_assert (fun);
195 return maybe_hot_count_p (fun, bb->count);
196 }
197
198 /* Return true in case BB can be CPU intensive and should be optimized
199 for maximal performance. */
200
201 bool
202 maybe_hot_edge_p (edge e)
203 {
204 return maybe_hot_count_p (cfun, e->count ());
205 }
206
207 /* Return true if profile COUNT and FREQUENCY, or function FUN static
208 node frequency reflects never being executed. */
209
210 static bool
211 probably_never_executed (struct function *fun,
212 profile_count count)
213 {
214 gcc_checking_assert (fun);
215 if (count.ipa () == profile_count::zero ())
216 return true;
217 /* Do not trust adjusted counts. This will make us to drop int cold section
218 code with low execution count as a result of inlining. These low counts
219 are not safe even with read profile and may lead us to dropping
220 code which actually gets executed into cold section of binary that is not
221 desirable. */
222 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
223 {
224 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
225 if (count.apply_scale (unlikely_count_fraction, 1) >= profile_info->runs)
226 return false;
227 return true;
228 }
229 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
230 && (cgraph_node::get (fun->decl)->frequency
231 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
232 return true;
233 return false;
234 }
235
236
237 /* Return true in case BB is probably never executed. */
238
239 bool
240 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
241 {
242 return probably_never_executed (fun, bb->count);
243 }
244
245
246 /* Return true if E is unlikely executed for obvious reasons. */
247
248 static bool
249 unlikely_executed_edge_p (edge e)
250 {
251 return (e->count () == profile_count::zero ()
252 || e->probability == profile_probability::never ())
253 || (e->flags & (EDGE_EH | EDGE_FAKE));
254 }
255
256 /* Return true in case edge E is probably never executed. */
257
258 bool
259 probably_never_executed_edge_p (struct function *fun, edge e)
260 {
261 if (unlikely_executed_edge_p (e))
262 return true;
263 return probably_never_executed (fun, e->count ());
264 }
265
266 /* Return true when current function should always be optimized for size. */
267
268 bool
269 optimize_function_for_size_p (struct function *fun)
270 {
271 if (!fun || !fun->decl)
272 return optimize_size;
273 cgraph_node *n = cgraph_node::get (fun->decl);
274 return n && n->optimize_for_size_p ();
275 }
276
277 /* Return true when current function should always be optimized for speed. */
278
279 bool
280 optimize_function_for_speed_p (struct function *fun)
281 {
282 return !optimize_function_for_size_p (fun);
283 }
284
285 /* Return the optimization type that should be used for the function FUN. */
286
287 optimization_type
288 function_optimization_type (struct function *fun)
289 {
290 return (optimize_function_for_speed_p (fun)
291 ? OPTIMIZE_FOR_SPEED
292 : OPTIMIZE_FOR_SIZE);
293 }
294
295 /* Return TRUE when BB should be optimized for size. */
296
297 bool
298 optimize_bb_for_size_p (const_basic_block bb)
299 {
300 return (optimize_function_for_size_p (cfun)
301 || (bb && !maybe_hot_bb_p (cfun, bb)));
302 }
303
304 /* Return TRUE when BB should be optimized for speed. */
305
306 bool
307 optimize_bb_for_speed_p (const_basic_block bb)
308 {
309 return !optimize_bb_for_size_p (bb);
310 }
311
312 /* Return the optimization type that should be used for block BB. */
313
314 optimization_type
315 bb_optimization_type (const_basic_block bb)
316 {
317 return (optimize_bb_for_speed_p (bb)
318 ? OPTIMIZE_FOR_SPEED
319 : OPTIMIZE_FOR_SIZE);
320 }
321
322 /* Return TRUE when BB should be optimized for size. */
323
324 bool
325 optimize_edge_for_size_p (edge e)
326 {
327 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
328 }
329
330 /* Return TRUE when BB should be optimized for speed. */
331
332 bool
333 optimize_edge_for_speed_p (edge e)
334 {
335 return !optimize_edge_for_size_p (e);
336 }
337
338 /* Return TRUE when BB should be optimized for size. */
339
340 bool
341 optimize_insn_for_size_p (void)
342 {
343 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
344 }
345
346 /* Return TRUE when BB should be optimized for speed. */
347
348 bool
349 optimize_insn_for_speed_p (void)
350 {
351 return !optimize_insn_for_size_p ();
352 }
353
354 /* Return TRUE when LOOP should be optimized for size. */
355
356 bool
357 optimize_loop_for_size_p (struct loop *loop)
358 {
359 return optimize_bb_for_size_p (loop->header);
360 }
361
362 /* Return TRUE when LOOP should be optimized for speed. */
363
364 bool
365 optimize_loop_for_speed_p (struct loop *loop)
366 {
367 return optimize_bb_for_speed_p (loop->header);
368 }
369
370 /* Return TRUE when LOOP nest should be optimized for speed. */
371
372 bool
373 optimize_loop_nest_for_speed_p (struct loop *loop)
374 {
375 struct loop *l = loop;
376 if (optimize_loop_for_speed_p (loop))
377 return true;
378 l = loop->inner;
379 while (l && l != loop)
380 {
381 if (optimize_loop_for_speed_p (l))
382 return true;
383 if (l->inner)
384 l = l->inner;
385 else if (l->next)
386 l = l->next;
387 else
388 {
389 while (l != loop && !l->next)
390 l = loop_outer (l);
391 if (l != loop)
392 l = l->next;
393 }
394 }
395 return false;
396 }
397
398 /* Return TRUE when LOOP nest should be optimized for size. */
399
400 bool
401 optimize_loop_nest_for_size_p (struct loop *loop)
402 {
403 return !optimize_loop_nest_for_speed_p (loop);
404 }
405
406 /* Return true when edge E is likely to be well predictable by branch
407 predictor. */
408
409 bool
410 predictable_edge_p (edge e)
411 {
412 if (!e->probability.initialized_p ())
413 return false;
414 if ((e->probability.to_reg_br_prob_base ()
415 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
416 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
417 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
418 return true;
419 return false;
420 }
421
422
423 /* Set RTL expansion for BB profile. */
424
425 void
426 rtl_profile_for_bb (basic_block bb)
427 {
428 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
429 }
430
431 /* Set RTL expansion for edge profile. */
432
433 void
434 rtl_profile_for_edge (edge e)
435 {
436 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
437 }
438
439 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
440 void
441 default_rtl_profile (void)
442 {
443 crtl->maybe_hot_insn_p = true;
444 }
445
446 /* Return true if the one of outgoing edges is already predicted by
447 PREDICTOR. */
448
449 bool
450 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
451 {
452 rtx note;
453 if (!INSN_P (BB_END (bb)))
454 return false;
455 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
456 if (REG_NOTE_KIND (note) == REG_BR_PRED
457 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
458 return true;
459 return false;
460 }
461
462 /* Structure representing predictions in tree level. */
463
464 struct edge_prediction {
465 struct edge_prediction *ep_next;
466 edge ep_edge;
467 enum br_predictor ep_predictor;
468 int ep_probability;
469 };
470
471 /* This map contains for a basic block the list of predictions for the
472 outgoing edges. */
473
474 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
475
476 /* Return true if the one of outgoing edges is already predicted by
477 PREDICTOR. */
478
479 bool
480 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
481 {
482 struct edge_prediction *i;
483 edge_prediction **preds = bb_predictions->get (bb);
484
485 if (!preds)
486 return false;
487
488 for (i = *preds; i; i = i->ep_next)
489 if (i->ep_predictor == predictor)
490 return true;
491 return false;
492 }
493
494 /* Return true if the one of outgoing edges is already predicted by
495 PREDICTOR for edge E predicted as TAKEN. */
496
497 bool
498 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
499 {
500 struct edge_prediction *i;
501 basic_block bb = e->src;
502 edge_prediction **preds = bb_predictions->get (bb);
503 if (!preds)
504 return false;
505
506 int probability = predictor_info[(int) predictor].hitrate;
507
508 if (taken != TAKEN)
509 probability = REG_BR_PROB_BASE - probability;
510
511 for (i = *preds; i; i = i->ep_next)
512 if (i->ep_predictor == predictor
513 && i->ep_edge == e
514 && i->ep_probability == probability)
515 return true;
516 return false;
517 }
518
519 /* Same predicate as above, working on edges. */
520 bool
521 edge_probability_reliable_p (const_edge e)
522 {
523 return e->probability.probably_reliable_p ();
524 }
525
526 /* Same predicate as edge_probability_reliable_p, working on notes. */
527 bool
528 br_prob_note_reliable_p (const_rtx note)
529 {
530 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
531 return profile_probability::from_reg_br_prob_note
532 (XINT (note, 0)).probably_reliable_p ();
533 }
534
535 static void
536 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
537 {
538 gcc_assert (any_condjump_p (insn));
539 if (!flag_guess_branch_prob)
540 return;
541
542 add_reg_note (insn, REG_BR_PRED,
543 gen_rtx_CONCAT (VOIDmode,
544 GEN_INT ((int) predictor),
545 GEN_INT ((int) probability)));
546 }
547
548 /* Predict insn by given predictor. */
549
550 void
551 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
552 enum prediction taken)
553 {
554 int probability = predictor_info[(int) predictor].hitrate;
555 gcc_assert (probability != PROB_UNINITIALIZED);
556
557 if (taken != TAKEN)
558 probability = REG_BR_PROB_BASE - probability;
559
560 predict_insn (insn, predictor, probability);
561 }
562
563 /* Predict edge E with given probability if possible. */
564
565 void
566 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
567 {
568 rtx_insn *last_insn;
569 last_insn = BB_END (e->src);
570
571 /* We can store the branch prediction information only about
572 conditional jumps. */
573 if (!any_condjump_p (last_insn))
574 return;
575
576 /* We always store probability of branching. */
577 if (e->flags & EDGE_FALLTHRU)
578 probability = REG_BR_PROB_BASE - probability;
579
580 predict_insn (last_insn, predictor, probability);
581 }
582
583 /* Predict edge E with the given PROBABILITY. */
584 void
585 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
586 {
587 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
588 && EDGE_COUNT (e->src->succs) > 1
589 && flag_guess_branch_prob
590 && optimize)
591 {
592 struct edge_prediction *i = XNEW (struct edge_prediction);
593 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
594
595 i->ep_next = preds;
596 preds = i;
597 i->ep_probability = probability;
598 i->ep_predictor = predictor;
599 i->ep_edge = e;
600 }
601 }
602
603 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
604 to the filter function. */
605
606 void
607 filter_predictions (edge_prediction **preds,
608 bool (*filter) (edge_prediction *, void *), void *data)
609 {
610 if (!bb_predictions)
611 return;
612
613 if (preds)
614 {
615 struct edge_prediction **prediction = preds;
616 struct edge_prediction *next;
617
618 while (*prediction)
619 {
620 if ((*filter) (*prediction, data))
621 prediction = &((*prediction)->ep_next);
622 else
623 {
624 next = (*prediction)->ep_next;
625 free (*prediction);
626 *prediction = next;
627 }
628 }
629 }
630 }
631
632 /* Filter function predicate that returns true for a edge predicate P
633 if its edge is equal to DATA. */
634
635 bool
636 equal_edge_p (edge_prediction *p, void *data)
637 {
638 return p->ep_edge == (edge)data;
639 }
640
641 /* Remove all predictions on given basic block that are attached
642 to edge E. */
643 void
644 remove_predictions_associated_with_edge (edge e)
645 {
646 if (!bb_predictions)
647 return;
648
649 edge_prediction **preds = bb_predictions->get (e->src);
650 filter_predictions (preds, equal_edge_p, e);
651 }
652
653 /* Clears the list of predictions stored for BB. */
654
655 static void
656 clear_bb_predictions (basic_block bb)
657 {
658 edge_prediction **preds = bb_predictions->get (bb);
659 struct edge_prediction *pred, *next;
660
661 if (!preds)
662 return;
663
664 for (pred = *preds; pred; pred = next)
665 {
666 next = pred->ep_next;
667 free (pred);
668 }
669 *preds = NULL;
670 }
671
672 /* Return true when we can store prediction on insn INSN.
673 At the moment we represent predictions only on conditional
674 jumps, not at computed jump or other complicated cases. */
675 static bool
676 can_predict_insn_p (const rtx_insn *insn)
677 {
678 return (JUMP_P (insn)
679 && any_condjump_p (insn)
680 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
681 }
682
683 /* Predict edge E by given predictor if possible. */
684
685 void
686 predict_edge_def (edge e, enum br_predictor predictor,
687 enum prediction taken)
688 {
689 int probability = predictor_info[(int) predictor].hitrate;
690
691 if (taken != TAKEN)
692 probability = REG_BR_PROB_BASE - probability;
693
694 predict_edge (e, predictor, probability);
695 }
696
697 /* Invert all branch predictions or probability notes in the INSN. This needs
698 to be done each time we invert the condition used by the jump. */
699
700 void
701 invert_br_probabilities (rtx insn)
702 {
703 rtx note;
704
705 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
706 if (REG_NOTE_KIND (note) == REG_BR_PROB)
707 XINT (note, 0) = profile_probability::from_reg_br_prob_note
708 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
709 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
710 XEXP (XEXP (note, 0), 1)
711 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
712 }
713
714 /* Dump information about the branch prediction to the output file. */
715
716 static void
717 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
718 basic_block bb, enum predictor_reason reason = REASON_NONE,
719 edge ep_edge = NULL)
720 {
721 edge e = ep_edge;
722 edge_iterator ei;
723
724 if (!file)
725 return;
726
727 if (e == NULL)
728 FOR_EACH_EDGE (e, ei, bb->succs)
729 if (! (e->flags & EDGE_FALLTHRU))
730 break;
731
732 char edge_info_str[128];
733 if (ep_edge)
734 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
735 ep_edge->dest->index);
736 else
737 edge_info_str[0] = '\0';
738
739 fprintf (file, " %s heuristics%s%s: %.2f%%",
740 predictor_info[predictor].name,
741 edge_info_str, reason_messages[reason],
742 probability * 100.0 / REG_BR_PROB_BASE);
743
744 if (bb->count.initialized_p ())
745 {
746 fprintf (file, " exec ");
747 bb->count.dump (file);
748 if (e)
749 {
750 fprintf (file, " hit ");
751 e->count ().dump (file);
752 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
753 / bb->count.to_gcov_type ());
754 }
755 }
756
757 fprintf (file, "\n");
758
759 /* Print output that be easily read by analyze_brprob.py script. We are
760 interested only in counts that are read from GCDA files. */
761 if (dump_file && (dump_flags & TDF_DETAILS)
762 && bb->count.precise_p ()
763 && reason == REASON_NONE)
764 {
765 gcc_assert (e->count ().precise_p ());
766 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
767 predictor_info[predictor].name,
768 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
769 probability * 100.0 / REG_BR_PROB_BASE);
770 }
771 }
772
773 /* Return true if STMT is known to be unlikely executed. */
774
775 static bool
776 unlikely_executed_stmt_p (gimple *stmt)
777 {
778 if (!is_gimple_call (stmt))
779 return false;
780 /* NORETURN attribute alone is not strong enough: exit() may be quite
781 likely executed once during program run. */
782 if (gimple_call_fntype (stmt)
783 && lookup_attribute ("cold",
784 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
785 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
786 return true;
787 tree decl = gimple_call_fndecl (stmt);
788 if (!decl)
789 return false;
790 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
791 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
792 return true;
793
794 cgraph_node *n = cgraph_node::get (decl);
795 if (!n)
796 return false;
797
798 availability avail;
799 n = n->ultimate_alias_target (&avail);
800 if (avail < AVAIL_AVAILABLE)
801 return false;
802 if (!n->analyzed
803 || n->decl == current_function_decl)
804 return false;
805 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
806 }
807
808 /* Return true if BB is unlikely executed. */
809
810 static bool
811 unlikely_executed_bb_p (basic_block bb)
812 {
813 if (bb->count == profile_count::zero ())
814 return true;
815 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
816 return false;
817 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
818 !gsi_end_p (gsi); gsi_next (&gsi))
819 {
820 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
821 return true;
822 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
823 return false;
824 }
825 return false;
826 }
827
828 /* We can not predict the probabilities of outgoing edges of bb. Set them
829 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
830 even probability for all edges not mentioned in the set. These edges
831 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
832 if we have exactly one likely edge, make the other edges predicted
833 as not probable. */
834
835 static void
836 set_even_probabilities (basic_block bb,
837 hash_set<edge> *unlikely_edges = NULL,
838 hash_set<edge_prediction *> *likely_edges = NULL)
839 {
840 unsigned nedges = 0, unlikely_count = 0;
841 edge e = NULL;
842 edge_iterator ei;
843 profile_probability all = profile_probability::always ();
844
845 FOR_EACH_EDGE (e, ei, bb->succs)
846 if (e->probability.initialized_p ())
847 all -= e->probability;
848 else if (!unlikely_executed_edge_p (e))
849 {
850 nedges++;
851 if (unlikely_edges != NULL && unlikely_edges->contains (e))
852 {
853 all -= profile_probability::very_unlikely ();
854 unlikely_count++;
855 }
856 }
857
858 /* Make the distribution even if all edges are unlikely. */
859 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
860 if (unlikely_count == nedges)
861 {
862 unlikely_edges = NULL;
863 unlikely_count = 0;
864 }
865
866 /* If we have one likely edge, then use its probability and distribute
867 remaining probabilities as even. */
868 if (likely_count == 1)
869 {
870 FOR_EACH_EDGE (e, ei, bb->succs)
871 if (e->probability.initialized_p ())
872 ;
873 else if (!unlikely_executed_edge_p (e))
874 {
875 edge_prediction *prediction = *likely_edges->begin ();
876 int p = prediction->ep_probability;
877 profile_probability prob
878 = profile_probability::from_reg_br_prob_base (p);
879 profile_probability remainder = prob.invert ();
880
881 if (prediction->ep_edge == e)
882 e->probability = prob;
883 else
884 e->probability = remainder.apply_scale (1, nedges - 1);
885 }
886 else
887 e->probability = profile_probability::never ();
888 }
889 else
890 {
891 /* Make all unlikely edges unlikely and the rest will have even
892 probability. */
893 unsigned scale = nedges - unlikely_count;
894 FOR_EACH_EDGE (e, ei, bb->succs)
895 if (e->probability.initialized_p ())
896 ;
897 else if (!unlikely_executed_edge_p (e))
898 {
899 if (unlikely_edges != NULL && unlikely_edges->contains (e))
900 e->probability = profile_probability::very_unlikely ();
901 else
902 e->probability = all.apply_scale (1, scale);
903 }
904 else
905 e->probability = profile_probability::never ();
906 }
907 }
908
909 /* Add REG_BR_PROB note to JUMP with PROB. */
910
911 void
912 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
913 {
914 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
915 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
916 }
917
918 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
919 note if not already present. Remove now useless REG_BR_PRED notes. */
920
921 static void
922 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
923 {
924 rtx prob_note;
925 rtx *pnote;
926 rtx note;
927 int best_probability = PROB_EVEN;
928 enum br_predictor best_predictor = END_PREDICTORS;
929 int combined_probability = REG_BR_PROB_BASE / 2;
930 int d;
931 bool first_match = false;
932 bool found = false;
933
934 if (!can_predict_insn_p (insn))
935 {
936 set_even_probabilities (bb);
937 return;
938 }
939
940 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
941 pnote = &REG_NOTES (insn);
942 if (dump_file)
943 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
944 bb->index);
945
946 /* We implement "first match" heuristics and use probability guessed
947 by predictor with smallest index. */
948 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
949 if (REG_NOTE_KIND (note) == REG_BR_PRED)
950 {
951 enum br_predictor predictor = ((enum br_predictor)
952 INTVAL (XEXP (XEXP (note, 0), 0)));
953 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
954
955 found = true;
956 if (best_predictor > predictor
957 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
958 best_probability = probability, best_predictor = predictor;
959
960 d = (combined_probability * probability
961 + (REG_BR_PROB_BASE - combined_probability)
962 * (REG_BR_PROB_BASE - probability));
963
964 /* Use FP math to avoid overflows of 32bit integers. */
965 if (d == 0)
966 /* If one probability is 0% and one 100%, avoid division by zero. */
967 combined_probability = REG_BR_PROB_BASE / 2;
968 else
969 combined_probability = (((double) combined_probability) * probability
970 * REG_BR_PROB_BASE / d + 0.5);
971 }
972
973 /* Decide which heuristic to use. In case we didn't match anything,
974 use no_prediction heuristic, in case we did match, use either
975 first match or Dempster-Shaffer theory depending on the flags. */
976
977 if (best_predictor != END_PREDICTORS)
978 first_match = true;
979
980 if (!found)
981 dump_prediction (dump_file, PRED_NO_PREDICTION,
982 combined_probability, bb);
983 else
984 {
985 if (!first_match)
986 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
987 bb, !first_match ? REASON_NONE : REASON_IGNORED);
988 else
989 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
990 bb, first_match ? REASON_NONE : REASON_IGNORED);
991 }
992
993 if (first_match)
994 combined_probability = best_probability;
995 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
996
997 while (*pnote)
998 {
999 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1000 {
1001 enum br_predictor predictor = ((enum br_predictor)
1002 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1003 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1004
1005 dump_prediction (dump_file, predictor, probability, bb,
1006 (!first_match || best_predictor == predictor)
1007 ? REASON_NONE : REASON_IGNORED);
1008 *pnote = XEXP (*pnote, 1);
1009 }
1010 else
1011 pnote = &XEXP (*pnote, 1);
1012 }
1013
1014 if (!prob_note)
1015 {
1016 profile_probability p
1017 = profile_probability::from_reg_br_prob_base (combined_probability);
1018 add_reg_br_prob_note (insn, p);
1019
1020 /* Save the prediction into CFG in case we are seeing non-degenerated
1021 conditional jump. */
1022 if (!single_succ_p (bb))
1023 {
1024 BRANCH_EDGE (bb)->probability = p;
1025 FALLTHRU_EDGE (bb)->probability
1026 = BRANCH_EDGE (bb)->probability.invert ();
1027 }
1028 }
1029 else if (!single_succ_p (bb))
1030 {
1031 profile_probability prob = profile_probability::from_reg_br_prob_note
1032 (XINT (prob_note, 0));
1033
1034 BRANCH_EDGE (bb)->probability = prob;
1035 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1036 }
1037 else
1038 single_succ_edge (bb)->probability = profile_probability::always ();
1039 }
1040
1041 /* Edge prediction hash traits. */
1042
1043 struct predictor_hash: pointer_hash <edge_prediction>
1044 {
1045
1046 static inline hashval_t hash (const edge_prediction *);
1047 static inline bool equal (const edge_prediction *, const edge_prediction *);
1048 };
1049
1050 /* Calculate hash value of an edge prediction P based on predictor and
1051 normalized probability. */
1052
1053 inline hashval_t
1054 predictor_hash::hash (const edge_prediction *p)
1055 {
1056 inchash::hash hstate;
1057 hstate.add_int (p->ep_predictor);
1058
1059 int prob = p->ep_probability;
1060 if (prob > REG_BR_PROB_BASE / 2)
1061 prob = REG_BR_PROB_BASE - prob;
1062
1063 hstate.add_int (prob);
1064
1065 return hstate.end ();
1066 }
1067
1068 /* Return true whether edge predictions P1 and P2 use the same predictor and
1069 have equal (or opposed probability). */
1070
1071 inline bool
1072 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1073 {
1074 return (p1->ep_predictor == p2->ep_predictor
1075 && (p1->ep_probability == p2->ep_probability
1076 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1077 }
1078
1079 struct predictor_hash_traits: predictor_hash,
1080 typed_noop_remove <edge_prediction *> {};
1081
1082 /* Return true if edge prediction P is not in DATA hash set. */
1083
1084 static bool
1085 not_removed_prediction_p (edge_prediction *p, void *data)
1086 {
1087 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1088 return !remove->contains (p);
1089 }
1090
1091 /* Prune predictions for a basic block BB. Currently we do following
1092 clean-up steps:
1093
1094 1) remove duplicate prediction that is guessed with the same probability
1095 (different than 1/2) to both edge
1096 2) remove duplicates for a prediction that belongs with the same probability
1097 to a single edge
1098
1099 */
1100
1101 static void
1102 prune_predictions_for_bb (basic_block bb)
1103 {
1104 edge_prediction **preds = bb_predictions->get (bb);
1105
1106 if (preds)
1107 {
1108 hash_table <predictor_hash_traits> s (13);
1109 hash_set <edge_prediction *> remove;
1110
1111 /* Step 1: identify predictors that should be removed. */
1112 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1113 {
1114 edge_prediction *existing = s.find (pred);
1115 if (existing)
1116 {
1117 if (pred->ep_edge == existing->ep_edge
1118 && pred->ep_probability == existing->ep_probability)
1119 {
1120 /* Remove a duplicate predictor. */
1121 dump_prediction (dump_file, pred->ep_predictor,
1122 pred->ep_probability, bb,
1123 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1124
1125 remove.add (pred);
1126 }
1127 else if (pred->ep_edge != existing->ep_edge
1128 && pred->ep_probability == existing->ep_probability
1129 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1130 {
1131 /* Remove both predictors as they predict the same
1132 for both edges. */
1133 dump_prediction (dump_file, existing->ep_predictor,
1134 pred->ep_probability, bb,
1135 REASON_EDGE_PAIR_DUPLICATE,
1136 existing->ep_edge);
1137 dump_prediction (dump_file, pred->ep_predictor,
1138 pred->ep_probability, bb,
1139 REASON_EDGE_PAIR_DUPLICATE,
1140 pred->ep_edge);
1141
1142 remove.add (existing);
1143 remove.add (pred);
1144 }
1145 }
1146
1147 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1148 *slot2 = pred;
1149 }
1150
1151 /* Step 2: Remove predictors. */
1152 filter_predictions (preds, not_removed_prediction_p, &remove);
1153 }
1154 }
1155
1156 /* Combine predictions into single probability and store them into CFG.
1157 Remove now useless prediction entries.
1158 If DRY_RUN is set, only produce dumps and do not modify profile. */
1159
1160 static void
1161 combine_predictions_for_bb (basic_block bb, bool dry_run)
1162 {
1163 int best_probability = PROB_EVEN;
1164 enum br_predictor best_predictor = END_PREDICTORS;
1165 int combined_probability = REG_BR_PROB_BASE / 2;
1166 int d;
1167 bool first_match = false;
1168 bool found = false;
1169 struct edge_prediction *pred;
1170 int nedges = 0;
1171 edge e, first = NULL, second = NULL;
1172 edge_iterator ei;
1173 int nzero = 0;
1174 int nunknown = 0;
1175
1176 FOR_EACH_EDGE (e, ei, bb->succs)
1177 {
1178 if (!unlikely_executed_edge_p (e))
1179 {
1180 nedges ++;
1181 if (first && !second)
1182 second = e;
1183 if (!first)
1184 first = e;
1185 }
1186 else if (!e->probability.initialized_p ())
1187 e->probability = profile_probability::never ();
1188 if (!e->probability.initialized_p ())
1189 nunknown++;
1190 else if (e->probability == profile_probability::never ())
1191 nzero++;
1192 }
1193
1194 /* When there is no successor or only one choice, prediction is easy.
1195
1196 When we have a basic block with more than 2 successors, the situation
1197 is more complicated as DS theory cannot be used literally.
1198 More precisely, let's assume we predicted edge e1 with probability p1,
1199 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1200 need to find probability of e.g. m1({b2}), which we don't know.
1201 The only approximation is to equally distribute 1-p1 to all edges
1202 different from b1.
1203
1204 According to numbers we've got from SPEC2006 benchark, there's only
1205 one interesting reliable predictor (noreturn call), which can be
1206 handled with a bit easier approach. */
1207 if (nedges != 2)
1208 {
1209 hash_set<edge> unlikely_edges (4);
1210 hash_set<edge_prediction *> likely_edges (4);
1211
1212 /* Identify all edges that have a probability close to very unlikely.
1213 Doing the approach for very unlikely doesn't worth for doing as
1214 there's no such probability in SPEC2006 benchmark. */
1215 edge_prediction **preds = bb_predictions->get (bb);
1216 if (preds)
1217 for (pred = *preds; pred; pred = pred->ep_next)
1218 {
1219 if (pred->ep_probability <= PROB_VERY_UNLIKELY)
1220 unlikely_edges.add (pred->ep_edge);
1221 if (pred->ep_probability >= PROB_VERY_LIKELY
1222 || pred->ep_predictor == PRED_BUILTIN_EXPECT)
1223 likely_edges.add (pred);
1224 }
1225
1226 if (!dry_run)
1227 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1228 clear_bb_predictions (bb);
1229 if (dump_file)
1230 {
1231 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1232 if (unlikely_edges.elements () == 0)
1233 fprintf (dump_file,
1234 "%i edges in bb %i predicted to even probabilities\n",
1235 nedges, bb->index);
1236 else
1237 {
1238 fprintf (dump_file,
1239 "%i edges in bb %i predicted with some unlikely edges\n",
1240 nedges, bb->index);
1241 FOR_EACH_EDGE (e, ei, bb->succs)
1242 if (!unlikely_executed_edge_p (e))
1243 dump_prediction (dump_file, PRED_COMBINED,
1244 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1245 }
1246 }
1247 return;
1248 }
1249
1250 if (dump_file)
1251 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1252
1253 prune_predictions_for_bb (bb);
1254
1255 edge_prediction **preds = bb_predictions->get (bb);
1256
1257 if (preds)
1258 {
1259 /* We implement "first match" heuristics and use probability guessed
1260 by predictor with smallest index. */
1261 for (pred = *preds; pred; pred = pred->ep_next)
1262 {
1263 enum br_predictor predictor = pred->ep_predictor;
1264 int probability = pred->ep_probability;
1265
1266 if (pred->ep_edge != first)
1267 probability = REG_BR_PROB_BASE - probability;
1268
1269 found = true;
1270 /* First match heuristics would be widly confused if we predicted
1271 both directions. */
1272 if (best_predictor > predictor
1273 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1274 {
1275 struct edge_prediction *pred2;
1276 int prob = probability;
1277
1278 for (pred2 = (struct edge_prediction *) *preds;
1279 pred2; pred2 = pred2->ep_next)
1280 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1281 {
1282 int probability2 = pred2->ep_probability;
1283
1284 if (pred2->ep_edge != first)
1285 probability2 = REG_BR_PROB_BASE - probability2;
1286
1287 if ((probability < REG_BR_PROB_BASE / 2) !=
1288 (probability2 < REG_BR_PROB_BASE / 2))
1289 break;
1290
1291 /* If the same predictor later gave better result, go for it! */
1292 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1293 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1294 prob = probability2;
1295 }
1296 if (!pred2)
1297 best_probability = prob, best_predictor = predictor;
1298 }
1299
1300 d = (combined_probability * probability
1301 + (REG_BR_PROB_BASE - combined_probability)
1302 * (REG_BR_PROB_BASE - probability));
1303
1304 /* Use FP math to avoid overflows of 32bit integers. */
1305 if (d == 0)
1306 /* If one probability is 0% and one 100%, avoid division by zero. */
1307 combined_probability = REG_BR_PROB_BASE / 2;
1308 else
1309 combined_probability = (((double) combined_probability)
1310 * probability
1311 * REG_BR_PROB_BASE / d + 0.5);
1312 }
1313 }
1314
1315 /* Decide which heuristic to use. In case we didn't match anything,
1316 use no_prediction heuristic, in case we did match, use either
1317 first match or Dempster-Shaffer theory depending on the flags. */
1318
1319 if (best_predictor != END_PREDICTORS)
1320 first_match = true;
1321
1322 if (!found)
1323 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1324 else
1325 {
1326 if (!first_match)
1327 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1328 !first_match ? REASON_NONE : REASON_IGNORED);
1329 else
1330 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1331 first_match ? REASON_NONE : REASON_IGNORED);
1332 }
1333
1334 if (first_match)
1335 combined_probability = best_probability;
1336 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1337
1338 if (preds)
1339 {
1340 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1341 {
1342 enum br_predictor predictor = pred->ep_predictor;
1343 int probability = pred->ep_probability;
1344
1345 dump_prediction (dump_file, predictor, probability, bb,
1346 (!first_match || best_predictor == predictor)
1347 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1348 }
1349 }
1350 clear_bb_predictions (bb);
1351
1352
1353 /* If we have only one successor which is unknown, we can compute missing
1354 probablity. */
1355 if (nunknown == 1)
1356 {
1357 profile_probability prob = profile_probability::always ();
1358 edge missing = NULL;
1359
1360 FOR_EACH_EDGE (e, ei, bb->succs)
1361 if (e->probability.initialized_p ())
1362 prob -= e->probability;
1363 else if (missing == NULL)
1364 missing = e;
1365 else
1366 gcc_unreachable ();
1367 missing->probability = prob;
1368 }
1369 /* If nothing is unknown, we have nothing to update. */
1370 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1371 ;
1372 else if (!dry_run)
1373 {
1374 first->probability
1375 = profile_probability::from_reg_br_prob_base (combined_probability);
1376 second->probability = first->probability.invert ();
1377 }
1378 }
1379
1380 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1381 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1382
1383 T1 and T2 should be one of the following cases:
1384 1. T1 is SSA_NAME, T2 is NULL
1385 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1386 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1387
1388 static tree
1389 strips_small_constant (tree t1, tree t2)
1390 {
1391 tree ret = NULL;
1392 int value = 0;
1393
1394 if (!t1)
1395 return NULL;
1396 else if (TREE_CODE (t1) == SSA_NAME)
1397 ret = t1;
1398 else if (tree_fits_shwi_p (t1))
1399 value = tree_to_shwi (t1);
1400 else
1401 return NULL;
1402
1403 if (!t2)
1404 return ret;
1405 else if (tree_fits_shwi_p (t2))
1406 value = tree_to_shwi (t2);
1407 else if (TREE_CODE (t2) == SSA_NAME)
1408 {
1409 if (ret)
1410 return NULL;
1411 else
1412 ret = t2;
1413 }
1414
1415 if (value <= 4 && value >= -4)
1416 return ret;
1417 else
1418 return NULL;
1419 }
1420
1421 /* Return the SSA_NAME in T or T's operands.
1422 Return NULL if SSA_NAME cannot be found. */
1423
1424 static tree
1425 get_base_value (tree t)
1426 {
1427 if (TREE_CODE (t) == SSA_NAME)
1428 return t;
1429
1430 if (!BINARY_CLASS_P (t))
1431 return NULL;
1432
1433 switch (TREE_OPERAND_LENGTH (t))
1434 {
1435 case 1:
1436 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1437 case 2:
1438 return strips_small_constant (TREE_OPERAND (t, 0),
1439 TREE_OPERAND (t, 1));
1440 default:
1441 return NULL;
1442 }
1443 }
1444
1445 /* Check the compare STMT in LOOP. If it compares an induction
1446 variable to a loop invariant, return true, and save
1447 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1448 Otherwise return false and set LOOP_INVAIANT to NULL. */
1449
1450 static bool
1451 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1452 tree *loop_invariant,
1453 enum tree_code *compare_code,
1454 tree *loop_step,
1455 tree *loop_iv_base)
1456 {
1457 tree op0, op1, bound, base;
1458 affine_iv iv0, iv1;
1459 enum tree_code code;
1460 tree step;
1461
1462 code = gimple_cond_code (stmt);
1463 *loop_invariant = NULL;
1464
1465 switch (code)
1466 {
1467 case GT_EXPR:
1468 case GE_EXPR:
1469 case NE_EXPR:
1470 case LT_EXPR:
1471 case LE_EXPR:
1472 case EQ_EXPR:
1473 break;
1474
1475 default:
1476 return false;
1477 }
1478
1479 op0 = gimple_cond_lhs (stmt);
1480 op1 = gimple_cond_rhs (stmt);
1481
1482 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1483 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1484 return false;
1485 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1486 return false;
1487 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1488 return false;
1489 if (TREE_CODE (iv0.step) != INTEGER_CST
1490 || TREE_CODE (iv1.step) != INTEGER_CST)
1491 return false;
1492 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1493 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1494 return false;
1495
1496 if (integer_zerop (iv0.step))
1497 {
1498 if (code != NE_EXPR && code != EQ_EXPR)
1499 code = invert_tree_comparison (code, false);
1500 bound = iv0.base;
1501 base = iv1.base;
1502 if (tree_fits_shwi_p (iv1.step))
1503 step = iv1.step;
1504 else
1505 return false;
1506 }
1507 else
1508 {
1509 bound = iv1.base;
1510 base = iv0.base;
1511 if (tree_fits_shwi_p (iv0.step))
1512 step = iv0.step;
1513 else
1514 return false;
1515 }
1516
1517 if (TREE_CODE (bound) != INTEGER_CST)
1518 bound = get_base_value (bound);
1519 if (!bound)
1520 return false;
1521 if (TREE_CODE (base) != INTEGER_CST)
1522 base = get_base_value (base);
1523 if (!base)
1524 return false;
1525
1526 *loop_invariant = bound;
1527 *compare_code = code;
1528 *loop_step = step;
1529 *loop_iv_base = base;
1530 return true;
1531 }
1532
1533 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1534
1535 static bool
1536 expr_coherent_p (tree t1, tree t2)
1537 {
1538 gimple *stmt;
1539 tree ssa_name_1 = NULL;
1540 tree ssa_name_2 = NULL;
1541
1542 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1543 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1544
1545 if (t1 == t2)
1546 return true;
1547
1548 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1549 return true;
1550 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1551 return false;
1552
1553 /* Check to see if t1 is expressed/defined with t2. */
1554 stmt = SSA_NAME_DEF_STMT (t1);
1555 gcc_assert (stmt != NULL);
1556 if (is_gimple_assign (stmt))
1557 {
1558 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1559 if (ssa_name_1 && ssa_name_1 == t2)
1560 return true;
1561 }
1562
1563 /* Check to see if t2 is expressed/defined with t1. */
1564 stmt = SSA_NAME_DEF_STMT (t2);
1565 gcc_assert (stmt != NULL);
1566 if (is_gimple_assign (stmt))
1567 {
1568 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1569 if (ssa_name_2 && ssa_name_2 == t1)
1570 return true;
1571 }
1572
1573 /* Compare if t1 and t2's def_stmts are identical. */
1574 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1575 return true;
1576 else
1577 return false;
1578 }
1579
1580 /* Return true if E is predicted by one of loop heuristics. */
1581
1582 static bool
1583 predicted_by_loop_heuristics_p (basic_block bb)
1584 {
1585 struct edge_prediction *i;
1586 edge_prediction **preds = bb_predictions->get (bb);
1587
1588 if (!preds)
1589 return false;
1590
1591 for (i = *preds; i; i = i->ep_next)
1592 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1593 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1594 || i->ep_predictor == PRED_LOOP_ITERATIONS
1595 || i->ep_predictor == PRED_LOOP_EXIT
1596 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1597 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1598 return true;
1599 return false;
1600 }
1601
1602 /* Predict branch probability of BB when BB contains a branch that compares
1603 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1604 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1605
1606 E.g.
1607 for (int i = 0; i < bound; i++) {
1608 if (i < bound - 2)
1609 computation_1();
1610 else
1611 computation_2();
1612 }
1613
1614 In this loop, we will predict the branch inside the loop to be taken. */
1615
1616 static void
1617 predict_iv_comparison (struct loop *loop, basic_block bb,
1618 tree loop_bound_var,
1619 tree loop_iv_base_var,
1620 enum tree_code loop_bound_code,
1621 int loop_bound_step)
1622 {
1623 gimple *stmt;
1624 tree compare_var, compare_base;
1625 enum tree_code compare_code;
1626 tree compare_step_var;
1627 edge then_edge;
1628 edge_iterator ei;
1629
1630 if (predicted_by_loop_heuristics_p (bb))
1631 return;
1632
1633 stmt = last_stmt (bb);
1634 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1635 return;
1636 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1637 loop, &compare_var,
1638 &compare_code,
1639 &compare_step_var,
1640 &compare_base))
1641 return;
1642
1643 /* Find the taken edge. */
1644 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1645 if (then_edge->flags & EDGE_TRUE_VALUE)
1646 break;
1647
1648 /* When comparing an IV to a loop invariant, NE is more likely to be
1649 taken while EQ is more likely to be not-taken. */
1650 if (compare_code == NE_EXPR)
1651 {
1652 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1653 return;
1654 }
1655 else if (compare_code == EQ_EXPR)
1656 {
1657 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1658 return;
1659 }
1660
1661 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1662 return;
1663
1664 /* If loop bound, base and compare bound are all constants, we can
1665 calculate the probability directly. */
1666 if (tree_fits_shwi_p (loop_bound_var)
1667 && tree_fits_shwi_p (compare_var)
1668 && tree_fits_shwi_p (compare_base))
1669 {
1670 int probability;
1671 wi::overflow_type overflow;
1672 bool overall_overflow = false;
1673 widest_int compare_count, tem;
1674
1675 /* (loop_bound - base) / compare_step */
1676 tem = wi::sub (wi::to_widest (loop_bound_var),
1677 wi::to_widest (compare_base), SIGNED, &overflow);
1678 overall_overflow |= overflow;
1679 widest_int loop_count = wi::div_trunc (tem,
1680 wi::to_widest (compare_step_var),
1681 SIGNED, &overflow);
1682 overall_overflow |= overflow;
1683
1684 if (!wi::neg_p (wi::to_widest (compare_step_var))
1685 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1686 {
1687 /* (loop_bound - compare_bound) / compare_step */
1688 tem = wi::sub (wi::to_widest (loop_bound_var),
1689 wi::to_widest (compare_var), SIGNED, &overflow);
1690 overall_overflow |= overflow;
1691 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1692 SIGNED, &overflow);
1693 overall_overflow |= overflow;
1694 }
1695 else
1696 {
1697 /* (compare_bound - base) / compare_step */
1698 tem = wi::sub (wi::to_widest (compare_var),
1699 wi::to_widest (compare_base), SIGNED, &overflow);
1700 overall_overflow |= overflow;
1701 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1702 SIGNED, &overflow);
1703 overall_overflow |= overflow;
1704 }
1705 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1706 ++compare_count;
1707 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1708 ++loop_count;
1709 if (wi::neg_p (compare_count))
1710 compare_count = 0;
1711 if (wi::neg_p (loop_count))
1712 loop_count = 0;
1713 if (loop_count == 0)
1714 probability = 0;
1715 else if (wi::cmps (compare_count, loop_count) == 1)
1716 probability = REG_BR_PROB_BASE;
1717 else
1718 {
1719 tem = compare_count * REG_BR_PROB_BASE;
1720 tem = wi::udiv_trunc (tem, loop_count);
1721 probability = tem.to_uhwi ();
1722 }
1723
1724 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1725 if (!overall_overflow)
1726 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1727
1728 return;
1729 }
1730
1731 if (expr_coherent_p (loop_bound_var, compare_var))
1732 {
1733 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1734 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1735 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1736 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1737 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1738 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1739 else if (loop_bound_code == NE_EXPR)
1740 {
1741 /* If the loop backedge condition is "(i != bound)", we do
1742 the comparison based on the step of IV:
1743 * step < 0 : backedge condition is like (i > bound)
1744 * step > 0 : backedge condition is like (i < bound) */
1745 gcc_assert (loop_bound_step != 0);
1746 if (loop_bound_step > 0
1747 && (compare_code == LT_EXPR
1748 || compare_code == LE_EXPR))
1749 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1750 else if (loop_bound_step < 0
1751 && (compare_code == GT_EXPR
1752 || compare_code == GE_EXPR))
1753 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1754 else
1755 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1756 }
1757 else
1758 /* The branch is predicted not-taken if loop_bound_code is
1759 opposite with compare_code. */
1760 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1761 }
1762 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1763 {
1764 /* For cases like:
1765 for (i = s; i < h; i++)
1766 if (i > s + 2) ....
1767 The branch should be predicted taken. */
1768 if (loop_bound_step > 0
1769 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1770 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1771 else if (loop_bound_step < 0
1772 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1773 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1774 else
1775 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1776 }
1777 }
1778
1779 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1780 exits are resulted from short-circuit conditions that will generate an
1781 if_tmp. E.g.:
1782
1783 if (foo() || global > 10)
1784 break;
1785
1786 This will be translated into:
1787
1788 BB3:
1789 loop header...
1790 BB4:
1791 if foo() goto BB6 else goto BB5
1792 BB5:
1793 if global > 10 goto BB6 else goto BB7
1794 BB6:
1795 goto BB7
1796 BB7:
1797 iftmp = (PHI 0(BB5), 1(BB6))
1798 if iftmp == 1 goto BB8 else goto BB3
1799 BB8:
1800 outside of the loop...
1801
1802 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1803 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1804 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1805 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1806
1807 static void
1808 predict_extra_loop_exits (edge exit_edge)
1809 {
1810 unsigned i;
1811 bool check_value_one;
1812 gimple *lhs_def_stmt;
1813 gphi *phi_stmt;
1814 tree cmp_rhs, cmp_lhs;
1815 gimple *last;
1816 gcond *cmp_stmt;
1817
1818 last = last_stmt (exit_edge->src);
1819 if (!last)
1820 return;
1821 cmp_stmt = dyn_cast <gcond *> (last);
1822 if (!cmp_stmt)
1823 return;
1824
1825 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1826 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1827 if (!TREE_CONSTANT (cmp_rhs)
1828 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1829 return;
1830 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1831 return;
1832
1833 /* If check_value_one is true, only the phi_args with value '1' will lead
1834 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1835 loop exit. */
1836 check_value_one = (((integer_onep (cmp_rhs))
1837 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1838 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1839
1840 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1841 if (!lhs_def_stmt)
1842 return;
1843
1844 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1845 if (!phi_stmt)
1846 return;
1847
1848 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1849 {
1850 edge e1;
1851 edge_iterator ei;
1852 tree val = gimple_phi_arg_def (phi_stmt, i);
1853 edge e = gimple_phi_arg_edge (phi_stmt, i);
1854
1855 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1856 continue;
1857 if ((check_value_one ^ integer_onep (val)) == 1)
1858 continue;
1859 if (EDGE_COUNT (e->src->succs) != 1)
1860 {
1861 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1862 continue;
1863 }
1864
1865 FOR_EACH_EDGE (e1, ei, e->src->preds)
1866 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1867 }
1868 }
1869
1870
1871 /* Predict edge probabilities by exploiting loop structure. */
1872
1873 static void
1874 predict_loops (void)
1875 {
1876 struct loop *loop;
1877 basic_block bb;
1878 hash_set <struct loop *> with_recursion(10);
1879
1880 FOR_EACH_BB_FN (bb, cfun)
1881 {
1882 gimple_stmt_iterator gsi;
1883 tree decl;
1884
1885 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1886 if (is_gimple_call (gsi_stmt (gsi))
1887 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1888 && recursive_call_p (current_function_decl, decl))
1889 {
1890 loop = bb->loop_father;
1891 while (loop && !with_recursion.add (loop))
1892 loop = loop_outer (loop);
1893 }
1894 }
1895
1896 /* Try to predict out blocks in a loop that are not part of a
1897 natural loop. */
1898 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1899 {
1900 basic_block bb, *bbs;
1901 unsigned j, n_exits = 0;
1902 vec<edge> exits;
1903 struct tree_niter_desc niter_desc;
1904 edge ex;
1905 struct nb_iter_bound *nb_iter;
1906 enum tree_code loop_bound_code = ERROR_MARK;
1907 tree loop_bound_step = NULL;
1908 tree loop_bound_var = NULL;
1909 tree loop_iv_base = NULL;
1910 gcond *stmt = NULL;
1911 bool recursion = with_recursion.contains (loop);
1912
1913 exits = get_loop_exit_edges (loop);
1914 FOR_EACH_VEC_ELT (exits, j, ex)
1915 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1916 n_exits ++;
1917 if (!n_exits)
1918 {
1919 exits.release ();
1920 continue;
1921 }
1922
1923 if (dump_file && (dump_flags & TDF_DETAILS))
1924 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1925 loop->num, recursion ? " (with recursion)":"", n_exits);
1926 if (dump_file && (dump_flags & TDF_DETAILS)
1927 && max_loop_iterations_int (loop) >= 0)
1928 {
1929 fprintf (dump_file,
1930 "Loop %d iterates at most %i times.\n", loop->num,
1931 (int)max_loop_iterations_int (loop));
1932 }
1933 if (dump_file && (dump_flags & TDF_DETAILS)
1934 && likely_max_loop_iterations_int (loop) >= 0)
1935 {
1936 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1937 loop->num, (int)likely_max_loop_iterations_int (loop));
1938 }
1939
1940 FOR_EACH_VEC_ELT (exits, j, ex)
1941 {
1942 tree niter = NULL;
1943 HOST_WIDE_INT nitercst;
1944 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1945 int probability;
1946 enum br_predictor predictor;
1947 widest_int nit;
1948
1949 if (unlikely_executed_edge_p (ex)
1950 || (ex->flags & EDGE_ABNORMAL_CALL))
1951 continue;
1952 /* Loop heuristics do not expect exit conditional to be inside
1953 inner loop. We predict from innermost to outermost loop. */
1954 if (predicted_by_loop_heuristics_p (ex->src))
1955 {
1956 if (dump_file && (dump_flags & TDF_DETAILS))
1957 fprintf (dump_file, "Skipping exit %i->%i because "
1958 "it is already predicted.\n",
1959 ex->src->index, ex->dest->index);
1960 continue;
1961 }
1962 predict_extra_loop_exits (ex);
1963
1964 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1965 niter = niter_desc.niter;
1966 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1967 niter = loop_niter_by_eval (loop, ex);
1968 if (dump_file && (dump_flags & TDF_DETAILS)
1969 && TREE_CODE (niter) == INTEGER_CST)
1970 {
1971 fprintf (dump_file, "Exit %i->%i %d iterates ",
1972 ex->src->index, ex->dest->index,
1973 loop->num);
1974 print_generic_expr (dump_file, niter, TDF_SLIM);
1975 fprintf (dump_file, " times.\n");
1976 }
1977
1978 if (TREE_CODE (niter) == INTEGER_CST)
1979 {
1980 if (tree_fits_uhwi_p (niter)
1981 && max
1982 && compare_tree_int (niter, max - 1) == -1)
1983 nitercst = tree_to_uhwi (niter) + 1;
1984 else
1985 nitercst = max;
1986 predictor = PRED_LOOP_ITERATIONS;
1987 }
1988 /* If we have just one exit and we can derive some information about
1989 the number of iterations of the loop from the statements inside
1990 the loop, use it to predict this exit. */
1991 else if (n_exits == 1
1992 && estimated_stmt_executions (loop, &nit))
1993 {
1994 if (wi::gtu_p (nit, max))
1995 nitercst = max;
1996 else
1997 nitercst = nit.to_shwi ();
1998 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1999 }
2000 /* If we have likely upper bound, trust it for very small iteration
2001 counts. Such loops would otherwise get mispredicted by standard
2002 LOOP_EXIT heuristics. */
2003 else if (n_exits == 1
2004 && likely_max_stmt_executions (loop, &nit)
2005 && wi::ltu_p (nit,
2006 RDIV (REG_BR_PROB_BASE,
2007 REG_BR_PROB_BASE
2008 - predictor_info
2009 [recursion
2010 ? PRED_LOOP_EXIT_WITH_RECURSION
2011 : PRED_LOOP_EXIT].hitrate)))
2012 {
2013 nitercst = nit.to_shwi ();
2014 predictor = PRED_LOOP_ITERATIONS_MAX;
2015 }
2016 else
2017 {
2018 if (dump_file && (dump_flags & TDF_DETAILS))
2019 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2020 ex->src->index, ex->dest->index);
2021 continue;
2022 }
2023
2024 if (dump_file && (dump_flags & TDF_DETAILS))
2025 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2026 (int)nitercst, predictor_info[predictor].name);
2027 /* If the prediction for number of iterations is zero, do not
2028 predict the exit edges. */
2029 if (nitercst == 0)
2030 continue;
2031
2032 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2033 predict_edge (ex, predictor, probability);
2034 }
2035 exits.release ();
2036
2037 /* Find information about loop bound variables. */
2038 for (nb_iter = loop->bounds; nb_iter;
2039 nb_iter = nb_iter->next)
2040 if (nb_iter->stmt
2041 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2042 {
2043 stmt = as_a <gcond *> (nb_iter->stmt);
2044 break;
2045 }
2046 if (!stmt && last_stmt (loop->header)
2047 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2048 stmt = as_a <gcond *> (last_stmt (loop->header));
2049 if (stmt)
2050 is_comparison_with_loop_invariant_p (stmt, loop,
2051 &loop_bound_var,
2052 &loop_bound_code,
2053 &loop_bound_step,
2054 &loop_iv_base);
2055
2056 bbs = get_loop_body (loop);
2057
2058 for (j = 0; j < loop->num_nodes; j++)
2059 {
2060 edge e;
2061 edge_iterator ei;
2062
2063 bb = bbs[j];
2064
2065 /* Bypass loop heuristics on continue statement. These
2066 statements construct loops via "non-loop" constructs
2067 in the source language and are better to be handled
2068 separately. */
2069 if (predicted_by_p (bb, PRED_CONTINUE))
2070 {
2071 if (dump_file && (dump_flags & TDF_DETAILS))
2072 fprintf (dump_file, "BB %i predicted by continue.\n",
2073 bb->index);
2074 continue;
2075 }
2076
2077 /* If we already used more reliable loop exit predictors, do not
2078 bother with PRED_LOOP_EXIT. */
2079 if (!predicted_by_loop_heuristics_p (bb))
2080 {
2081 /* For loop with many exits we don't want to predict all exits
2082 with the pretty large probability, because if all exits are
2083 considered in row, the loop would be predicted to iterate
2084 almost never. The code to divide probability by number of
2085 exits is very rough. It should compute the number of exits
2086 taken in each patch through function (not the overall number
2087 of exits that might be a lot higher for loops with wide switch
2088 statements in them) and compute n-th square root.
2089
2090 We limit the minimal probability by 2% to avoid
2091 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2092 as this was causing regression in perl benchmark containing such
2093 a wide loop. */
2094
2095 int probability = ((REG_BR_PROB_BASE
2096 - predictor_info
2097 [recursion
2098 ? PRED_LOOP_EXIT_WITH_RECURSION
2099 : PRED_LOOP_EXIT].hitrate)
2100 / n_exits);
2101 if (probability < HITRATE (2))
2102 probability = HITRATE (2);
2103 FOR_EACH_EDGE (e, ei, bb->succs)
2104 if (e->dest->index < NUM_FIXED_BLOCKS
2105 || !flow_bb_inside_loop_p (loop, e->dest))
2106 {
2107 if (dump_file && (dump_flags & TDF_DETAILS))
2108 fprintf (dump_file,
2109 "Predicting exit %i->%i with prob %i.\n",
2110 e->src->index, e->dest->index, probability);
2111 predict_edge (e,
2112 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2113 : PRED_LOOP_EXIT, probability);
2114 }
2115 }
2116 if (loop_bound_var)
2117 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2118 loop_bound_code,
2119 tree_to_shwi (loop_bound_step));
2120 }
2121
2122 /* In the following code
2123 for (loop1)
2124 if (cond)
2125 for (loop2)
2126 body;
2127 guess that cond is unlikely. */
2128 if (loop_outer (loop)->num)
2129 {
2130 basic_block bb = NULL;
2131 edge preheader_edge = loop_preheader_edge (loop);
2132
2133 if (single_pred_p (preheader_edge->src)
2134 && single_succ_p (preheader_edge->src))
2135 preheader_edge = single_pred_edge (preheader_edge->src);
2136
2137 gimple *stmt = last_stmt (preheader_edge->src);
2138 /* Pattern match fortran loop preheader:
2139 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2140 _17 = (logical(kind=4)) _16;
2141 if (_17 != 0)
2142 goto <bb 11>;
2143 else
2144 goto <bb 13>;
2145
2146 Loop guard branch prediction says nothing about duplicated loop
2147 headers produced by fortran frontend and in this case we want
2148 to predict paths leading to this preheader. */
2149
2150 if (stmt
2151 && gimple_code (stmt) == GIMPLE_COND
2152 && gimple_cond_code (stmt) == NE_EXPR
2153 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2154 && integer_zerop (gimple_cond_rhs (stmt)))
2155 {
2156 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2157 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2158 && gimple_expr_code (call_stmt) == NOP_EXPR
2159 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2160 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2161 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2162 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2163 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2164 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2165 == PRED_FORTRAN_LOOP_PREHEADER)
2166 bb = preheader_edge->src;
2167 }
2168 if (!bb)
2169 {
2170 if (!dominated_by_p (CDI_DOMINATORS,
2171 loop_outer (loop)->latch, loop->header))
2172 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2173 recursion
2174 ? PRED_LOOP_GUARD_WITH_RECURSION
2175 : PRED_LOOP_GUARD,
2176 NOT_TAKEN,
2177 loop_outer (loop));
2178 }
2179 else
2180 {
2181 if (!dominated_by_p (CDI_DOMINATORS,
2182 loop_outer (loop)->latch, bb))
2183 predict_paths_leading_to (bb,
2184 recursion
2185 ? PRED_LOOP_GUARD_WITH_RECURSION
2186 : PRED_LOOP_GUARD,
2187 NOT_TAKEN,
2188 loop_outer (loop));
2189 }
2190 }
2191
2192 /* Free basic blocks from get_loop_body. */
2193 free (bbs);
2194 }
2195 }
2196
2197 /* Attempt to predict probabilities of BB outgoing edges using local
2198 properties. */
2199 static void
2200 bb_estimate_probability_locally (basic_block bb)
2201 {
2202 rtx_insn *last_insn = BB_END (bb);
2203 rtx cond;
2204
2205 if (! can_predict_insn_p (last_insn))
2206 return;
2207 cond = get_condition (last_insn, NULL, false, false);
2208 if (! cond)
2209 return;
2210
2211 /* Try "pointer heuristic."
2212 A comparison ptr == 0 is predicted as false.
2213 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2214 if (COMPARISON_P (cond)
2215 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2216 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2217 {
2218 if (GET_CODE (cond) == EQ)
2219 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2220 else if (GET_CODE (cond) == NE)
2221 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2222 }
2223 else
2224
2225 /* Try "opcode heuristic."
2226 EQ tests are usually false and NE tests are usually true. Also,
2227 most quantities are positive, so we can make the appropriate guesses
2228 about signed comparisons against zero. */
2229 switch (GET_CODE (cond))
2230 {
2231 case CONST_INT:
2232 /* Unconditional branch. */
2233 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2234 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2235 break;
2236
2237 case EQ:
2238 case UNEQ:
2239 /* Floating point comparisons appears to behave in a very
2240 unpredictable way because of special role of = tests in
2241 FP code. */
2242 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2243 ;
2244 /* Comparisons with 0 are often used for booleans and there is
2245 nothing useful to predict about them. */
2246 else if (XEXP (cond, 1) == const0_rtx
2247 || XEXP (cond, 0) == const0_rtx)
2248 ;
2249 else
2250 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2251 break;
2252
2253 case NE:
2254 case LTGT:
2255 /* Floating point comparisons appears to behave in a very
2256 unpredictable way because of special role of = tests in
2257 FP code. */
2258 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2259 ;
2260 /* Comparisons with 0 are often used for booleans and there is
2261 nothing useful to predict about them. */
2262 else if (XEXP (cond, 1) == const0_rtx
2263 || XEXP (cond, 0) == const0_rtx)
2264 ;
2265 else
2266 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2267 break;
2268
2269 case ORDERED:
2270 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2271 break;
2272
2273 case UNORDERED:
2274 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2275 break;
2276
2277 case LE:
2278 case LT:
2279 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2280 || XEXP (cond, 1) == constm1_rtx)
2281 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2282 break;
2283
2284 case GE:
2285 case GT:
2286 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2287 || XEXP (cond, 1) == constm1_rtx)
2288 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2289 break;
2290
2291 default:
2292 break;
2293 }
2294 }
2295
2296 /* Set edge->probability for each successor edge of BB. */
2297 void
2298 guess_outgoing_edge_probabilities (basic_block bb)
2299 {
2300 bb_estimate_probability_locally (bb);
2301 combine_predictions_for_insn (BB_END (bb), bb);
2302 }
2303 \f
2304 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2305 HOST_WIDE_INT *probability);
2306
2307 /* Helper function for expr_expected_value. */
2308
2309 static tree
2310 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2311 tree op1, bitmap visited, enum br_predictor *predictor,
2312 HOST_WIDE_INT *probability)
2313 {
2314 gimple *def;
2315
2316 /* Reset returned probability value. */
2317 *probability = -1;
2318 *predictor = PRED_UNCONDITIONAL;
2319
2320 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2321 {
2322 if (TREE_CONSTANT (op0))
2323 return op0;
2324
2325 if (code == IMAGPART_EXPR)
2326 {
2327 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2328 {
2329 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2330 if (is_gimple_call (def)
2331 && gimple_call_internal_p (def)
2332 && (gimple_call_internal_fn (def)
2333 == IFN_ATOMIC_COMPARE_EXCHANGE))
2334 {
2335 /* Assume that any given atomic operation has low contention,
2336 and thus the compare-and-swap operation succeeds. */
2337 *predictor = PRED_COMPARE_AND_SWAP;
2338 return build_one_cst (TREE_TYPE (op0));
2339 }
2340 }
2341 }
2342
2343 if (code != SSA_NAME)
2344 return NULL_TREE;
2345
2346 def = SSA_NAME_DEF_STMT (op0);
2347
2348 /* If we were already here, break the infinite cycle. */
2349 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2350 return NULL;
2351
2352 if (gimple_code (def) == GIMPLE_PHI)
2353 {
2354 /* All the arguments of the PHI node must have the same constant
2355 length. */
2356 int i, n = gimple_phi_num_args (def);
2357 tree val = NULL, new_val;
2358
2359 for (i = 0; i < n; i++)
2360 {
2361 tree arg = PHI_ARG_DEF (def, i);
2362 enum br_predictor predictor2;
2363
2364 /* If this PHI has itself as an argument, we cannot
2365 determine the string length of this argument. However,
2366 if we can find an expected constant value for the other
2367 PHI args then we can still be sure that this is
2368 likely a constant. So be optimistic and just
2369 continue with the next argument. */
2370 if (arg == PHI_RESULT (def))
2371 continue;
2372
2373 HOST_WIDE_INT probability2;
2374 new_val = expr_expected_value (arg, visited, &predictor2,
2375 &probability2);
2376
2377 /* It is difficult to combine value predictors. Simply assume
2378 that later predictor is weaker and take its prediction. */
2379 if (*predictor < predictor2)
2380 {
2381 *predictor = predictor2;
2382 *probability = probability2;
2383 }
2384 if (!new_val)
2385 return NULL;
2386 if (!val)
2387 val = new_val;
2388 else if (!operand_equal_p (val, new_val, false))
2389 return NULL;
2390 }
2391 return val;
2392 }
2393 if (is_gimple_assign (def))
2394 {
2395 if (gimple_assign_lhs (def) != op0)
2396 return NULL;
2397
2398 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2399 gimple_assign_rhs1 (def),
2400 gimple_assign_rhs_code (def),
2401 gimple_assign_rhs2 (def),
2402 visited, predictor, probability);
2403 }
2404
2405 if (is_gimple_call (def))
2406 {
2407 tree decl = gimple_call_fndecl (def);
2408 if (!decl)
2409 {
2410 if (gimple_call_internal_p (def)
2411 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2412 {
2413 gcc_assert (gimple_call_num_args (def) == 3);
2414 tree val = gimple_call_arg (def, 0);
2415 if (TREE_CONSTANT (val))
2416 return val;
2417 tree val2 = gimple_call_arg (def, 2);
2418 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2419 && tree_fits_uhwi_p (val2)
2420 && tree_to_uhwi (val2) < END_PREDICTORS);
2421 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2422 if (*predictor == PRED_BUILTIN_EXPECT)
2423 *probability
2424 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2425 return gimple_call_arg (def, 1);
2426 }
2427 return NULL;
2428 }
2429
2430 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW (decl))
2431 {
2432 if (predictor)
2433 *predictor = PRED_MALLOC_NONNULL;
2434 return boolean_true_node;
2435 }
2436
2437 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2438 switch (DECL_FUNCTION_CODE (decl))
2439 {
2440 case BUILT_IN_EXPECT:
2441 {
2442 tree val;
2443 if (gimple_call_num_args (def) != 2)
2444 return NULL;
2445 val = gimple_call_arg (def, 0);
2446 if (TREE_CONSTANT (val))
2447 return val;
2448 *predictor = PRED_BUILTIN_EXPECT;
2449 *probability
2450 = HITRATE (PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY));
2451 return gimple_call_arg (def, 1);
2452 }
2453 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2454 {
2455 tree val;
2456 if (gimple_call_num_args (def) != 3)
2457 return NULL;
2458 val = gimple_call_arg (def, 0);
2459 if (TREE_CONSTANT (val))
2460 return val;
2461 /* Compute final probability as:
2462 probability * REG_BR_PROB_BASE. */
2463 tree prob = gimple_call_arg (def, 2);
2464 tree t = TREE_TYPE (prob);
2465 tree base = build_int_cst (integer_type_node,
2466 REG_BR_PROB_BASE);
2467 base = build_real_from_int_cst (t, base);
2468 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2469 MULT_EXPR, t, prob, base);
2470 HOST_WIDE_INT probi
2471 = real_to_integer (TREE_REAL_CST_PTR (r));
2472 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2473 {
2474 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2475 *probability = probi;
2476 }
2477 return gimple_call_arg (def, 1);
2478 }
2479
2480 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2481 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2482 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2483 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2484 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2485 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2486 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2487 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2488 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2489 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2490 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2491 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2492 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2493 /* Assume that any given atomic operation has low contention,
2494 and thus the compare-and-swap operation succeeds. */
2495 *predictor = PRED_COMPARE_AND_SWAP;
2496 return boolean_true_node;
2497 case BUILT_IN_REALLOC:
2498 if (predictor)
2499 *predictor = PRED_MALLOC_NONNULL;
2500 return boolean_true_node;
2501 default:
2502 break;
2503 }
2504 }
2505
2506 return NULL;
2507 }
2508
2509 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2510 {
2511 tree res;
2512 enum br_predictor predictor2;
2513 HOST_WIDE_INT probability2;
2514 op0 = expr_expected_value (op0, visited, predictor, probability);
2515 if (!op0)
2516 return NULL;
2517 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2518 if (!op1)
2519 return NULL;
2520 res = fold_build2 (code, type, op0, op1);
2521 if (TREE_CODE (res) == INTEGER_CST
2522 && TREE_CODE (op0) == INTEGER_CST
2523 && TREE_CODE (op1) == INTEGER_CST)
2524 {
2525 /* Combine binary predictions. */
2526 if (*probability != -1 || probability2 != -1)
2527 {
2528 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2529 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2530 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2531 }
2532
2533 if (*predictor < predictor2)
2534 *predictor = predictor2;
2535
2536 return res;
2537 }
2538 return NULL;
2539 }
2540 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2541 {
2542 tree res;
2543 op0 = expr_expected_value (op0, visited, predictor, probability);
2544 if (!op0)
2545 return NULL;
2546 res = fold_build1 (code, type, op0);
2547 if (TREE_CONSTANT (res))
2548 return res;
2549 return NULL;
2550 }
2551 return NULL;
2552 }
2553
2554 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2555 The function is used by builtin_expect branch predictor so the evidence
2556 must come from this construct and additional possible constant folding.
2557
2558 We may want to implement more involved value guess (such as value range
2559 propagation based prediction), but such tricks shall go to new
2560 implementation. */
2561
2562 static tree
2563 expr_expected_value (tree expr, bitmap visited,
2564 enum br_predictor *predictor,
2565 HOST_WIDE_INT *probability)
2566 {
2567 enum tree_code code;
2568 tree op0, op1;
2569
2570 if (TREE_CONSTANT (expr))
2571 {
2572 *predictor = PRED_UNCONDITIONAL;
2573 *probability = -1;
2574 return expr;
2575 }
2576
2577 extract_ops_from_tree (expr, &code, &op0, &op1);
2578 return expr_expected_value_1 (TREE_TYPE (expr),
2579 op0, code, op1, visited, predictor,
2580 probability);
2581 }
2582 \f
2583
2584 /* Return probability of a PREDICTOR. If the predictor has variable
2585 probability return passed PROBABILITY. */
2586
2587 static HOST_WIDE_INT
2588 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2589 {
2590 switch (predictor)
2591 {
2592 case PRED_BUILTIN_EXPECT:
2593 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2594 gcc_assert (probability != -1);
2595 return probability;
2596 default:
2597 gcc_assert (probability == -1);
2598 return predictor_info[(int) predictor].hitrate;
2599 }
2600 }
2601
2602 /* Predict using opcode of the last statement in basic block. */
2603 static void
2604 tree_predict_by_opcode (basic_block bb)
2605 {
2606 gimple *stmt = last_stmt (bb);
2607 edge then_edge;
2608 tree op0, op1;
2609 tree type;
2610 tree val;
2611 enum tree_code cmp;
2612 edge_iterator ei;
2613 enum br_predictor predictor;
2614 HOST_WIDE_INT probability;
2615
2616 if (!stmt)
2617 return;
2618
2619 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2620 {
2621 tree index = gimple_switch_index (sw);
2622 tree val = expr_expected_value (index, auto_bitmap (),
2623 &predictor, &probability);
2624 if (val && TREE_CODE (val) == INTEGER_CST)
2625 {
2626 edge e = find_taken_edge_switch_expr (sw, val);
2627 if (predictor == PRED_BUILTIN_EXPECT)
2628 {
2629 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2630 gcc_assert (percent >= 0 && percent <= 100);
2631 predict_edge (e, PRED_BUILTIN_EXPECT,
2632 HITRATE (percent));
2633 }
2634 else
2635 predict_edge_def (e, predictor, TAKEN);
2636 }
2637 }
2638
2639 if (gimple_code (stmt) != GIMPLE_COND)
2640 return;
2641 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2642 if (then_edge->flags & EDGE_TRUE_VALUE)
2643 break;
2644 op0 = gimple_cond_lhs (stmt);
2645 op1 = gimple_cond_rhs (stmt);
2646 cmp = gimple_cond_code (stmt);
2647 type = TREE_TYPE (op0);
2648 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2649 &predictor, &probability);
2650 if (val && TREE_CODE (val) == INTEGER_CST)
2651 {
2652 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2653 if (integer_zerop (val))
2654 prob = REG_BR_PROB_BASE - prob;
2655 predict_edge (then_edge, predictor, prob);
2656 }
2657 /* Try "pointer heuristic."
2658 A comparison ptr == 0 is predicted as false.
2659 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2660 if (POINTER_TYPE_P (type))
2661 {
2662 if (cmp == EQ_EXPR)
2663 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2664 else if (cmp == NE_EXPR)
2665 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2666 }
2667 else
2668
2669 /* Try "opcode heuristic."
2670 EQ tests are usually false and NE tests are usually true. Also,
2671 most quantities are positive, so we can make the appropriate guesses
2672 about signed comparisons against zero. */
2673 switch (cmp)
2674 {
2675 case EQ_EXPR:
2676 case UNEQ_EXPR:
2677 /* Floating point comparisons appears to behave in a very
2678 unpredictable way because of special role of = tests in
2679 FP code. */
2680 if (FLOAT_TYPE_P (type))
2681 ;
2682 /* Comparisons with 0 are often used for booleans and there is
2683 nothing useful to predict about them. */
2684 else if (integer_zerop (op0) || integer_zerop (op1))
2685 ;
2686 else
2687 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2688 break;
2689
2690 case NE_EXPR:
2691 case LTGT_EXPR:
2692 /* Floating point comparisons appears to behave in a very
2693 unpredictable way because of special role of = tests in
2694 FP code. */
2695 if (FLOAT_TYPE_P (type))
2696 ;
2697 /* Comparisons with 0 are often used for booleans and there is
2698 nothing useful to predict about them. */
2699 else if (integer_zerop (op0)
2700 || integer_zerop (op1))
2701 ;
2702 else
2703 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2704 break;
2705
2706 case ORDERED_EXPR:
2707 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2708 break;
2709
2710 case UNORDERED_EXPR:
2711 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2712 break;
2713
2714 case LE_EXPR:
2715 case LT_EXPR:
2716 if (integer_zerop (op1)
2717 || integer_onep (op1)
2718 || integer_all_onesp (op1)
2719 || real_zerop (op1)
2720 || real_onep (op1)
2721 || real_minus_onep (op1))
2722 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2723 break;
2724
2725 case GE_EXPR:
2726 case GT_EXPR:
2727 if (integer_zerop (op1)
2728 || integer_onep (op1)
2729 || integer_all_onesp (op1)
2730 || real_zerop (op1)
2731 || real_onep (op1)
2732 || real_minus_onep (op1))
2733 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2734 break;
2735
2736 default:
2737 break;
2738 }
2739 }
2740
2741 /* Returns TRUE if the STMT is exit(0) like statement. */
2742
2743 static bool
2744 is_exit_with_zero_arg (const gimple *stmt)
2745 {
2746 /* This is not exit, _exit or _Exit. */
2747 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2748 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2749 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2750 return false;
2751
2752 /* Argument is an interger zero. */
2753 return integer_zerop (gimple_call_arg (stmt, 0));
2754 }
2755
2756 /* Try to guess whether the value of return means error code. */
2757
2758 static enum br_predictor
2759 return_prediction (tree val, enum prediction *prediction)
2760 {
2761 /* VOID. */
2762 if (!val)
2763 return PRED_NO_PREDICTION;
2764 /* Different heuristics for pointers and scalars. */
2765 if (POINTER_TYPE_P (TREE_TYPE (val)))
2766 {
2767 /* NULL is usually not returned. */
2768 if (integer_zerop (val))
2769 {
2770 *prediction = NOT_TAKEN;
2771 return PRED_NULL_RETURN;
2772 }
2773 }
2774 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2775 {
2776 /* Negative return values are often used to indicate
2777 errors. */
2778 if (TREE_CODE (val) == INTEGER_CST
2779 && tree_int_cst_sgn (val) < 0)
2780 {
2781 *prediction = NOT_TAKEN;
2782 return PRED_NEGATIVE_RETURN;
2783 }
2784 /* Constant return values seems to be commonly taken.
2785 Zero/one often represent booleans so exclude them from the
2786 heuristics. */
2787 if (TREE_CONSTANT (val)
2788 && (!integer_zerop (val) && !integer_onep (val)))
2789 {
2790 *prediction = NOT_TAKEN;
2791 return PRED_CONST_RETURN;
2792 }
2793 }
2794 return PRED_NO_PREDICTION;
2795 }
2796
2797 /* Return zero if phi result could have values other than -1, 0 or 1,
2798 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2799 values are used or likely. */
2800
2801 static int
2802 zero_one_minusone (gphi *phi, int limit)
2803 {
2804 int phi_num_args = gimple_phi_num_args (phi);
2805 int ret = 0;
2806 for (int i = 0; i < phi_num_args; i++)
2807 {
2808 tree t = PHI_ARG_DEF (phi, i);
2809 if (TREE_CODE (t) != INTEGER_CST)
2810 continue;
2811 wide_int w = wi::to_wide (t);
2812 if (w == -1)
2813 ret |= 1;
2814 else if (w == 0)
2815 ret |= 2;
2816 else if (w == 1)
2817 ret |= 4;
2818 else
2819 return 0;
2820 }
2821 for (int i = 0; i < phi_num_args; i++)
2822 {
2823 tree t = PHI_ARG_DEF (phi, i);
2824 if (TREE_CODE (t) == INTEGER_CST)
2825 continue;
2826 if (TREE_CODE (t) != SSA_NAME)
2827 return 0;
2828 gimple *g = SSA_NAME_DEF_STMT (t);
2829 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2830 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2831 {
2832 ret |= r;
2833 continue;
2834 }
2835 if (!is_gimple_assign (g))
2836 return 0;
2837 if (gimple_assign_cast_p (g))
2838 {
2839 tree rhs1 = gimple_assign_rhs1 (g);
2840 if (TREE_CODE (rhs1) != SSA_NAME
2841 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2842 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2843 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2844 return 0;
2845 ret |= (2 | 4);
2846 continue;
2847 }
2848 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2849 return 0;
2850 ret |= (2 | 4);
2851 }
2852 return ret;
2853 }
2854
2855 /* Find the basic block with return expression and look up for possible
2856 return value trying to apply RETURN_PREDICTION heuristics. */
2857 static void
2858 apply_return_prediction (void)
2859 {
2860 greturn *return_stmt = NULL;
2861 tree return_val;
2862 edge e;
2863 gphi *phi;
2864 int phi_num_args, i;
2865 enum br_predictor pred;
2866 enum prediction direction;
2867 edge_iterator ei;
2868
2869 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2870 {
2871 gimple *last = last_stmt (e->src);
2872 if (last
2873 && gimple_code (last) == GIMPLE_RETURN)
2874 {
2875 return_stmt = as_a <greturn *> (last);
2876 break;
2877 }
2878 }
2879 if (!e)
2880 return;
2881 return_val = gimple_return_retval (return_stmt);
2882 if (!return_val)
2883 return;
2884 if (TREE_CODE (return_val) != SSA_NAME
2885 || !SSA_NAME_DEF_STMT (return_val)
2886 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2887 return;
2888 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2889 phi_num_args = gimple_phi_num_args (phi);
2890 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2891
2892 /* Avoid the case where the function returns -1, 0 and 1 values and
2893 nothing else. Those could be qsort etc. comparison functions
2894 where the negative return isn't less probable than positive.
2895 For this require that the function returns at least -1 or 1
2896 or -1 and a boolean value or comparison result, so that functions
2897 returning just -1 and 0 are treated as if -1 represents error value. */
2898 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2899 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2900 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2901 if (int r = zero_one_minusone (phi, 3))
2902 if ((r & (1 | 4)) == (1 | 4))
2903 return;
2904
2905 /* Avoid the degenerate case where all return values form the function
2906 belongs to same category (ie they are all positive constants)
2907 so we can hardly say something about them. */
2908 for (i = 1; i < phi_num_args; i++)
2909 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2910 break;
2911 if (i != phi_num_args)
2912 for (i = 0; i < phi_num_args; i++)
2913 {
2914 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2915 if (pred != PRED_NO_PREDICTION)
2916 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2917 direction);
2918 }
2919 }
2920
2921 /* Look for basic block that contains unlikely to happen events
2922 (such as noreturn calls) and mark all paths leading to execution
2923 of this basic blocks as unlikely. */
2924
2925 static void
2926 tree_bb_level_predictions (void)
2927 {
2928 basic_block bb;
2929 bool has_return_edges = false;
2930 edge e;
2931 edge_iterator ei;
2932
2933 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2934 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
2935 {
2936 has_return_edges = true;
2937 break;
2938 }
2939
2940 apply_return_prediction ();
2941
2942 FOR_EACH_BB_FN (bb, cfun)
2943 {
2944 gimple_stmt_iterator gsi;
2945
2946 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2947 {
2948 gimple *stmt = gsi_stmt (gsi);
2949 tree decl;
2950
2951 if (is_gimple_call (stmt))
2952 {
2953 if (gimple_call_noreturn_p (stmt)
2954 && has_return_edges
2955 && !is_exit_with_zero_arg (stmt))
2956 predict_paths_leading_to (bb, PRED_NORETURN,
2957 NOT_TAKEN);
2958 decl = gimple_call_fndecl (stmt);
2959 if (decl
2960 && lookup_attribute ("cold",
2961 DECL_ATTRIBUTES (decl)))
2962 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2963 NOT_TAKEN);
2964 if (decl && recursive_call_p (current_function_decl, decl))
2965 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
2966 NOT_TAKEN);
2967 }
2968 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2969 {
2970 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2971 gimple_predict_outcome (stmt));
2972 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2973 hints to callers. */
2974 }
2975 }
2976 }
2977 }
2978
2979 /* Callback for hash_map::traverse, asserts that the pointer map is
2980 empty. */
2981
2982 bool
2983 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2984 void *)
2985 {
2986 gcc_assert (!value);
2987 return false;
2988 }
2989
2990 /* Predict branch probabilities and estimate profile for basic block BB.
2991 When LOCAL_ONLY is set do not use any global properties of CFG. */
2992
2993 static void
2994 tree_estimate_probability_bb (basic_block bb, bool local_only)
2995 {
2996 edge e;
2997 edge_iterator ei;
2998
2999 FOR_EACH_EDGE (e, ei, bb->succs)
3000 {
3001 /* Look for block we are guarding (ie we dominate it,
3002 but it doesn't postdominate us). */
3003 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3004 && !local_only
3005 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3006 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3007 {
3008 gimple_stmt_iterator bi;
3009
3010 /* The call heuristic claims that a guarded function call
3011 is improbable. This is because such calls are often used
3012 to signal exceptional situations such as printing error
3013 messages. */
3014 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3015 gsi_next (&bi))
3016 {
3017 gimple *stmt = gsi_stmt (bi);
3018 if (is_gimple_call (stmt)
3019 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3020 /* Constant and pure calls are hardly used to signalize
3021 something exceptional. */
3022 && gimple_has_side_effects (stmt))
3023 {
3024 if (gimple_call_fndecl (stmt))
3025 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3026 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3027 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3028 else
3029 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3030 break;
3031 }
3032 }
3033 }
3034 }
3035 tree_predict_by_opcode (bb);
3036 }
3037
3038 /* Predict branch probabilities and estimate profile of the tree CFG.
3039 This function can be called from the loop optimizers to recompute
3040 the profile information.
3041 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3042
3043 void
3044 tree_estimate_probability (bool dry_run)
3045 {
3046 basic_block bb;
3047
3048 add_noreturn_fake_exit_edges ();
3049 connect_infinite_loops_to_exit ();
3050 /* We use loop_niter_by_eval, which requires that the loops have
3051 preheaders. */
3052 create_preheaders (CP_SIMPLE_PREHEADERS);
3053 calculate_dominance_info (CDI_POST_DOMINATORS);
3054
3055 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3056 tree_bb_level_predictions ();
3057 record_loop_exits ();
3058
3059 if (number_of_loops (cfun) > 1)
3060 predict_loops ();
3061
3062 FOR_EACH_BB_FN (bb, cfun)
3063 tree_estimate_probability_bb (bb, false);
3064
3065 FOR_EACH_BB_FN (bb, cfun)
3066 combine_predictions_for_bb (bb, dry_run);
3067
3068 if (flag_checking)
3069 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3070
3071 delete bb_predictions;
3072 bb_predictions = NULL;
3073
3074 if (!dry_run)
3075 estimate_bb_frequencies (false);
3076 free_dominance_info (CDI_POST_DOMINATORS);
3077 remove_fake_exit_edges ();
3078 }
3079
3080 /* Set edge->probability for each successor edge of BB. */
3081 void
3082 tree_guess_outgoing_edge_probabilities (basic_block bb)
3083 {
3084 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3085 tree_estimate_probability_bb (bb, true);
3086 combine_predictions_for_bb (bb, false);
3087 if (flag_checking)
3088 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3089 delete bb_predictions;
3090 bb_predictions = NULL;
3091 }
3092 \f
3093 /* Predict edges to successors of CUR whose sources are not postdominated by
3094 BB by PRED and recurse to all postdominators. */
3095
3096 static void
3097 predict_paths_for_bb (basic_block cur, basic_block bb,
3098 enum br_predictor pred,
3099 enum prediction taken,
3100 bitmap visited, struct loop *in_loop = NULL)
3101 {
3102 edge e;
3103 edge_iterator ei;
3104 basic_block son;
3105
3106 /* If we exited the loop or CUR is unconditional in the loop, there is
3107 nothing to do. */
3108 if (in_loop
3109 && (!flow_bb_inside_loop_p (in_loop, cur)
3110 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3111 return;
3112
3113 /* We are looking for all edges forming edge cut induced by
3114 set of all blocks postdominated by BB. */
3115 FOR_EACH_EDGE (e, ei, cur->preds)
3116 if (e->src->index >= NUM_FIXED_BLOCKS
3117 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3118 {
3119 edge e2;
3120 edge_iterator ei2;
3121 bool found = false;
3122
3123 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3124 if (unlikely_executed_edge_p (e))
3125 continue;
3126 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3127
3128 /* See if there is an edge from e->src that is not abnormal
3129 and does not lead to BB and does not exit the loop. */
3130 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3131 if (e2 != e
3132 && !unlikely_executed_edge_p (e2)
3133 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3134 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3135 {
3136 found = true;
3137 break;
3138 }
3139
3140 /* If there is non-abnormal path leaving e->src, predict edge
3141 using predictor. Otherwise we need to look for paths
3142 leading to e->src.
3143
3144 The second may lead to infinite loop in the case we are predicitng
3145 regions that are only reachable by abnormal edges. We simply
3146 prevent visiting given BB twice. */
3147 if (found)
3148 {
3149 if (!edge_predicted_by_p (e, pred, taken))
3150 predict_edge_def (e, pred, taken);
3151 }
3152 else if (bitmap_set_bit (visited, e->src->index))
3153 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3154 }
3155 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3156 son;
3157 son = next_dom_son (CDI_POST_DOMINATORS, son))
3158 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3159 }
3160
3161 /* Sets branch probabilities according to PREDiction and
3162 FLAGS. */
3163
3164 static void
3165 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3166 enum prediction taken, struct loop *in_loop)
3167 {
3168 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3169 }
3170
3171 /* Like predict_paths_leading_to but take edge instead of basic block. */
3172
3173 static void
3174 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3175 enum prediction taken, struct loop *in_loop)
3176 {
3177 bool has_nonloop_edge = false;
3178 edge_iterator ei;
3179 edge e2;
3180
3181 basic_block bb = e->src;
3182 FOR_EACH_EDGE (e2, ei, bb->succs)
3183 if (e2->dest != e->src && e2->dest != e->dest
3184 && !unlikely_executed_edge_p (e)
3185 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3186 {
3187 has_nonloop_edge = true;
3188 break;
3189 }
3190 if (!has_nonloop_edge)
3191 {
3192 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3193 }
3194 else
3195 predict_edge_def (e, pred, taken);
3196 }
3197 \f
3198 /* This is used to carry information about basic blocks. It is
3199 attached to the AUX field of the standard CFG block. */
3200
3201 struct block_info
3202 {
3203 /* Estimated frequency of execution of basic_block. */
3204 sreal frequency;
3205
3206 /* To keep queue of basic blocks to process. */
3207 basic_block next;
3208
3209 /* Number of predecessors we need to visit first. */
3210 int npredecessors;
3211 };
3212
3213 /* Similar information for edges. */
3214 struct edge_prob_info
3215 {
3216 /* In case edge is a loopback edge, the probability edge will be reached
3217 in case header is. Estimated number of iterations of the loop can be
3218 then computed as 1 / (1 - back_edge_prob). */
3219 sreal back_edge_prob;
3220 /* True if the edge is a loopback edge in the natural loop. */
3221 unsigned int back_edge:1;
3222 };
3223
3224 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3225 #undef EDGE_INFO
3226 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3227
3228 /* Helper function for estimate_bb_frequencies.
3229 Propagate the frequencies in blocks marked in
3230 TOVISIT, starting in HEAD. */
3231
3232 static void
3233 propagate_freq (basic_block head, bitmap tovisit)
3234 {
3235 basic_block bb;
3236 basic_block last;
3237 unsigned i;
3238 edge e;
3239 basic_block nextbb;
3240 bitmap_iterator bi;
3241
3242 /* For each basic block we need to visit count number of his predecessors
3243 we need to visit first. */
3244 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3245 {
3246 edge_iterator ei;
3247 int count = 0;
3248
3249 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3250
3251 FOR_EACH_EDGE (e, ei, bb->preds)
3252 {
3253 bool visit = bitmap_bit_p (tovisit, e->src->index);
3254
3255 if (visit && !(e->flags & EDGE_DFS_BACK))
3256 count++;
3257 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3258 fprintf (dump_file,
3259 "Irreducible region hit, ignoring edge to %i->%i\n",
3260 e->src->index, bb->index);
3261 }
3262 BLOCK_INFO (bb)->npredecessors = count;
3263 /* When function never returns, we will never process exit block. */
3264 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3265 bb->count = profile_count::zero ();
3266 }
3267
3268 BLOCK_INFO (head)->frequency = 1;
3269 last = head;
3270 for (bb = head; bb; bb = nextbb)
3271 {
3272 edge_iterator ei;
3273 sreal cyclic_probability = 0;
3274 sreal frequency = 0;
3275
3276 nextbb = BLOCK_INFO (bb)->next;
3277 BLOCK_INFO (bb)->next = NULL;
3278
3279 /* Compute frequency of basic block. */
3280 if (bb != head)
3281 {
3282 if (flag_checking)
3283 FOR_EACH_EDGE (e, ei, bb->preds)
3284 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3285 || (e->flags & EDGE_DFS_BACK));
3286
3287 FOR_EACH_EDGE (e, ei, bb->preds)
3288 if (EDGE_INFO (e)->back_edge)
3289 {
3290 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3291 }
3292 else if (!(e->flags & EDGE_DFS_BACK))
3293 {
3294 /* frequency += (e->probability
3295 * BLOCK_INFO (e->src)->frequency /
3296 REG_BR_PROB_BASE); */
3297
3298 /* FIXME: Graphite is producing edges with no profile. Once
3299 this is fixed, drop this. */
3300 sreal tmp = e->probability.initialized_p () ?
3301 e->probability.to_reg_br_prob_base () : 0;
3302 tmp *= BLOCK_INFO (e->src)->frequency;
3303 tmp *= real_inv_br_prob_base;
3304 frequency += tmp;
3305 }
3306
3307 if (cyclic_probability == 0)
3308 {
3309 BLOCK_INFO (bb)->frequency = frequency;
3310 }
3311 else
3312 {
3313 if (cyclic_probability > real_almost_one)
3314 cyclic_probability = real_almost_one;
3315
3316 /* BLOCK_INFO (bb)->frequency = frequency
3317 / (1 - cyclic_probability) */
3318
3319 cyclic_probability = sreal (1) - cyclic_probability;
3320 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
3321 }
3322 }
3323
3324 bitmap_clear_bit (tovisit, bb->index);
3325
3326 e = find_edge (bb, head);
3327 if (e)
3328 {
3329 /* EDGE_INFO (e)->back_edge_prob
3330 = ((e->probability * BLOCK_INFO (bb)->frequency)
3331 / REG_BR_PROB_BASE); */
3332
3333 /* FIXME: Graphite is producing edges with no profile. Once
3334 this is fixed, drop this. */
3335 sreal tmp = e->probability.initialized_p () ?
3336 e->probability.to_reg_br_prob_base () : 0;
3337 tmp *= BLOCK_INFO (bb)->frequency;
3338 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
3339 }
3340
3341 /* Propagate to successor blocks. */
3342 FOR_EACH_EDGE (e, ei, bb->succs)
3343 if (!(e->flags & EDGE_DFS_BACK)
3344 && BLOCK_INFO (e->dest)->npredecessors)
3345 {
3346 BLOCK_INFO (e->dest)->npredecessors--;
3347 if (!BLOCK_INFO (e->dest)->npredecessors)
3348 {
3349 if (!nextbb)
3350 nextbb = e->dest;
3351 else
3352 BLOCK_INFO (last)->next = e->dest;
3353
3354 last = e->dest;
3355 }
3356 }
3357 }
3358 }
3359
3360 /* Estimate frequencies in loops at same nest level. */
3361
3362 static void
3363 estimate_loops_at_level (struct loop *first_loop)
3364 {
3365 struct loop *loop;
3366
3367 for (loop = first_loop; loop; loop = loop->next)
3368 {
3369 edge e;
3370 basic_block *bbs;
3371 unsigned i;
3372 auto_bitmap tovisit;
3373
3374 estimate_loops_at_level (loop->inner);
3375
3376 /* Find current loop back edge and mark it. */
3377 e = loop_latch_edge (loop);
3378 EDGE_INFO (e)->back_edge = 1;
3379
3380 bbs = get_loop_body (loop);
3381 for (i = 0; i < loop->num_nodes; i++)
3382 bitmap_set_bit (tovisit, bbs[i]->index);
3383 free (bbs);
3384 propagate_freq (loop->header, tovisit);
3385 }
3386 }
3387
3388 /* Propagates frequencies through structure of loops. */
3389
3390 static void
3391 estimate_loops (void)
3392 {
3393 auto_bitmap tovisit;
3394 basic_block bb;
3395
3396 /* Start by estimating the frequencies in the loops. */
3397 if (number_of_loops (cfun) > 1)
3398 estimate_loops_at_level (current_loops->tree_root->inner);
3399
3400 /* Now propagate the frequencies through all the blocks. */
3401 FOR_ALL_BB_FN (bb, cfun)
3402 {
3403 bitmap_set_bit (tovisit, bb->index);
3404 }
3405 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
3406 }
3407
3408 /* Drop the profile for NODE to guessed, and update its frequency based on
3409 whether it is expected to be hot given the CALL_COUNT. */
3410
3411 static void
3412 drop_profile (struct cgraph_node *node, profile_count call_count)
3413 {
3414 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3415 /* In the case where this was called by another function with a
3416 dropped profile, call_count will be 0. Since there are no
3417 non-zero call counts to this function, we don't know for sure
3418 whether it is hot, and therefore it will be marked normal below. */
3419 bool hot = maybe_hot_count_p (NULL, call_count);
3420
3421 if (dump_file)
3422 fprintf (dump_file,
3423 "Dropping 0 profile for %s. %s based on calls.\n",
3424 node->dump_name (),
3425 hot ? "Function is hot" : "Function is normal");
3426 /* We only expect to miss profiles for functions that are reached
3427 via non-zero call edges in cases where the function may have
3428 been linked from another module or library (COMDATs and extern
3429 templates). See the comments below for handle_missing_profiles.
3430 Also, only warn in cases where the missing counts exceed the
3431 number of training runs. In certain cases with an execv followed
3432 by a no-return call the profile for the no-return call is not
3433 dumped and there can be a mismatch. */
3434 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3435 && call_count > profile_info->runs)
3436 {
3437 if (flag_profile_correction)
3438 {
3439 if (dump_file)
3440 fprintf (dump_file,
3441 "Missing counts for called function %s\n",
3442 node->dump_name ());
3443 }
3444 else
3445 warning (0, "Missing counts for called function %s",
3446 node->dump_name ());
3447 }
3448
3449 basic_block bb;
3450 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3451 {
3452 bool clear_zeros
3453 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3454 FOR_ALL_BB_FN (bb, fn)
3455 if (clear_zeros || !(bb->count == profile_count::zero ()))
3456 bb->count = bb->count.guessed_local ();
3457 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3458 }
3459 else
3460 {
3461 FOR_ALL_BB_FN (bb, fn)
3462 bb->count = profile_count::uninitialized ();
3463 fn->cfg->count_max = profile_count::uninitialized ();
3464 }
3465
3466 struct cgraph_edge *e;
3467 for (e = node->callees; e; e = e->next_callee)
3468 e->count = gimple_bb (e->call_stmt)->count;
3469 for (e = node->indirect_calls; e; e = e->next_callee)
3470 e->count = gimple_bb (e->call_stmt)->count;
3471 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3472
3473 profile_status_for_fn (fn)
3474 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3475 node->frequency
3476 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3477 }
3478
3479 /* In the case of COMDAT routines, multiple object files will contain the same
3480 function and the linker will select one for the binary. In that case
3481 all the other copies from the profile instrument binary will be missing
3482 profile counts. Look for cases where this happened, due to non-zero
3483 call counts going to 0-count functions, and drop the profile to guessed
3484 so that we can use the estimated probabilities and avoid optimizing only
3485 for size.
3486
3487 The other case where the profile may be missing is when the routine
3488 is not going to be emitted to the object file, e.g. for "extern template"
3489 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3490 all other cases of non-zero calls to 0-count functions. */
3491
3492 void
3493 handle_missing_profiles (void)
3494 {
3495 struct cgraph_node *node;
3496 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
3497 auto_vec<struct cgraph_node *, 64> worklist;
3498
3499 /* See if 0 count function has non-0 count callers. In this case we
3500 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3501 FOR_EACH_DEFINED_FUNCTION (node)
3502 {
3503 struct cgraph_edge *e;
3504 profile_count call_count = profile_count::zero ();
3505 gcov_type max_tp_first_run = 0;
3506 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3507
3508 if (node->count.ipa ().nonzero_p ())
3509 continue;
3510 for (e = node->callers; e; e = e->next_caller)
3511 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3512 {
3513 call_count = call_count + e->count.ipa ();
3514
3515 if (e->caller->tp_first_run > max_tp_first_run)
3516 max_tp_first_run = e->caller->tp_first_run;
3517 }
3518
3519 /* If time profile is missing, let assign the maximum that comes from
3520 caller functions. */
3521 if (!node->tp_first_run && max_tp_first_run)
3522 node->tp_first_run = max_tp_first_run + 1;
3523
3524 if (call_count > 0
3525 && fn && fn->cfg
3526 && (call_count.apply_scale (unlikely_count_fraction, 1)
3527 >= profile_info->runs))
3528 {
3529 drop_profile (node, call_count);
3530 worklist.safe_push (node);
3531 }
3532 }
3533
3534 /* Propagate the profile dropping to other 0-count COMDATs that are
3535 potentially called by COMDATs we already dropped the profile on. */
3536 while (worklist.length () > 0)
3537 {
3538 struct cgraph_edge *e;
3539
3540 node = worklist.pop ();
3541 for (e = node->callees; e; e = e->next_caller)
3542 {
3543 struct cgraph_node *callee = e->callee;
3544 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3545
3546 if (!(e->count.ipa () == profile_count::zero ())
3547 && callee->count.ipa ().nonzero_p ())
3548 continue;
3549 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3550 && fn && fn->cfg
3551 && profile_status_for_fn (fn) == PROFILE_READ)
3552 {
3553 drop_profile (node, profile_count::zero ());
3554 worklist.safe_push (callee);
3555 }
3556 }
3557 }
3558 }
3559
3560 /* Convert counts measured by profile driven feedback to frequencies.
3561 Return nonzero iff there was any nonzero execution count. */
3562
3563 bool
3564 update_max_bb_count (void)
3565 {
3566 profile_count true_count_max = profile_count::uninitialized ();
3567 basic_block bb;
3568
3569 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3570 true_count_max = true_count_max.max (bb->count);
3571
3572 cfun->cfg->count_max = true_count_max;
3573
3574 return true_count_max.ipa ().nonzero_p ();
3575 }
3576
3577 /* Return true if function is likely to be expensive, so there is no point to
3578 optimize performance of prologue, epilogue or do inlining at the expense
3579 of code size growth. THRESHOLD is the limit of number of instructions
3580 function can execute at average to be still considered not expensive. */
3581
3582 bool
3583 expensive_function_p (int threshold)
3584 {
3585 basic_block bb;
3586
3587 /* If profile was scaled in a way entry block has count 0, then the function
3588 is deifnitly taking a lot of time. */
3589 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3590 return true;
3591
3592 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3593 (cfun)->count.apply_scale (threshold, 1);
3594 profile_count sum = profile_count::zero ();
3595 FOR_EACH_BB_FN (bb, cfun)
3596 {
3597 rtx_insn *insn;
3598
3599 if (!bb->count.initialized_p ())
3600 {
3601 if (dump_file)
3602 fprintf (dump_file, "Function is considered expensive because"
3603 " count of bb %i is not initialized\n", bb->index);
3604 return true;
3605 }
3606
3607 FOR_BB_INSNS (bb, insn)
3608 if (active_insn_p (insn))
3609 {
3610 sum += bb->count;
3611 if (sum > limit)
3612 return true;
3613 }
3614 }
3615
3616 return false;
3617 }
3618
3619 /* All basic blocks that are reachable only from unlikely basic blocks are
3620 unlikely. */
3621
3622 void
3623 propagate_unlikely_bbs_forward (void)
3624 {
3625 auto_vec<basic_block, 64> worklist;
3626 basic_block bb;
3627 edge_iterator ei;
3628 edge e;
3629
3630 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3631 {
3632 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3633 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3634
3635 while (worklist.length () > 0)
3636 {
3637 bb = worklist.pop ();
3638 FOR_EACH_EDGE (e, ei, bb->succs)
3639 if (!(e->count () == profile_count::zero ())
3640 && !(e->dest->count == profile_count::zero ())
3641 && !e->dest->aux)
3642 {
3643 e->dest->aux = (void *)(size_t) 1;
3644 worklist.safe_push (e->dest);
3645 }
3646 }
3647 }
3648
3649 FOR_ALL_BB_FN (bb, cfun)
3650 {
3651 if (!bb->aux)
3652 {
3653 if (!(bb->count == profile_count::zero ())
3654 && (dump_file && (dump_flags & TDF_DETAILS)))
3655 fprintf (dump_file,
3656 "Basic block %i is marked unlikely by forward prop\n",
3657 bb->index);
3658 bb->count = profile_count::zero ();
3659 }
3660 else
3661 bb->aux = NULL;
3662 }
3663 }
3664
3665 /* Determine basic blocks/edges that are known to be unlikely executed and set
3666 their counters to zero.
3667 This is done with first identifying obviously unlikely BBs/edges and then
3668 propagating in both directions. */
3669
3670 static void
3671 determine_unlikely_bbs ()
3672 {
3673 basic_block bb;
3674 auto_vec<basic_block, 64> worklist;
3675 edge_iterator ei;
3676 edge e;
3677
3678 FOR_EACH_BB_FN (bb, cfun)
3679 {
3680 if (!(bb->count == profile_count::zero ())
3681 && unlikely_executed_bb_p (bb))
3682 {
3683 if (dump_file && (dump_flags & TDF_DETAILS))
3684 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3685 bb->index);
3686 bb->count = profile_count::zero ();
3687 }
3688
3689 FOR_EACH_EDGE (e, ei, bb->succs)
3690 if (!(e->probability == profile_probability::never ())
3691 && unlikely_executed_edge_p (e))
3692 {
3693 if (dump_file && (dump_flags & TDF_DETAILS))
3694 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3695 bb->index, e->dest->index);
3696 e->probability = profile_probability::never ();
3697 }
3698
3699 gcc_checking_assert (!bb->aux);
3700 }
3701 propagate_unlikely_bbs_forward ();
3702
3703 auto_vec<int, 64> nsuccs;
3704 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun));
3705 FOR_ALL_BB_FN (bb, cfun)
3706 if (!(bb->count == profile_count::zero ())
3707 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3708 {
3709 nsuccs[bb->index] = 0;
3710 FOR_EACH_EDGE (e, ei, bb->succs)
3711 if (!(e->probability == profile_probability::never ())
3712 && !(e->dest->count == profile_count::zero ()))
3713 nsuccs[bb->index]++;
3714 if (!nsuccs[bb->index])
3715 worklist.safe_push (bb);
3716 }
3717 while (worklist.length () > 0)
3718 {
3719 bb = worklist.pop ();
3720 if (bb->count == profile_count::zero ())
3721 continue;
3722 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3723 {
3724 bool found = false;
3725 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3726 !gsi_end_p (gsi); gsi_next (&gsi))
3727 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3728 /* stmt_can_terminate_bb_p special cases noreturns because it
3729 assumes that fake edges are created. We want to know that
3730 noreturn alone does not imply BB to be unlikely. */
3731 || (is_gimple_call (gsi_stmt (gsi))
3732 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3733 {
3734 found = true;
3735 break;
3736 }
3737 if (found)
3738 continue;
3739 }
3740 if (dump_file && (dump_flags & TDF_DETAILS))
3741 fprintf (dump_file,
3742 "Basic block %i is marked unlikely by backward prop\n",
3743 bb->index);
3744 bb->count = profile_count::zero ();
3745 FOR_EACH_EDGE (e, ei, bb->preds)
3746 if (!(e->probability == profile_probability::never ()))
3747 {
3748 if (!(e->src->count == profile_count::zero ()))
3749 {
3750 gcc_checking_assert (nsuccs[e->src->index] > 0);
3751 nsuccs[e->src->index]--;
3752 if (!nsuccs[e->src->index])
3753 worklist.safe_push (e->src);
3754 }
3755 }
3756 }
3757 /* Finally all edges from non-0 regions to 0 are unlikely. */
3758 FOR_ALL_BB_FN (bb, cfun)
3759 if (!(bb->count == profile_count::zero ()))
3760 FOR_EACH_EDGE (e, ei, bb->succs)
3761 if (!(e->probability == profile_probability::never ())
3762 && e->dest->count == profile_count::zero ())
3763 {
3764 if (dump_file && (dump_flags & TDF_DETAILS))
3765 fprintf (dump_file, "Edge %i->%i is unlikely because "
3766 "it enters unlikely block\n",
3767 bb->index, e->dest->index);
3768 e->probability = profile_probability::never ();
3769 }
3770 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3771 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3772 }
3773
3774 /* Estimate and propagate basic block frequencies using the given branch
3775 probabilities. If FORCE is true, the frequencies are used to estimate
3776 the counts even when there are already non-zero profile counts. */
3777
3778 void
3779 estimate_bb_frequencies (bool force)
3780 {
3781 basic_block bb;
3782 sreal freq_max;
3783
3784 determine_unlikely_bbs ();
3785
3786 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3787 || !update_max_bb_count ())
3788 {
3789 static int real_values_initialized = 0;
3790
3791 if (!real_values_initialized)
3792 {
3793 real_values_initialized = 1;
3794 real_br_prob_base = REG_BR_PROB_BASE;
3795 /* Scaling frequencies up to maximal profile count may result in
3796 frequent overflows especially when inlining loops.
3797 Small scalling results in unnecesary precision loss. Stay in
3798 the half of the (exponential) range. */
3799 real_bb_freq_max = (uint64_t)1 << (profile_count::n_bits / 2);
3800 real_one_half = sreal (1, -1);
3801 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
3802 real_almost_one = sreal (1) - real_inv_br_prob_base;
3803 }
3804
3805 mark_dfs_back_edges ();
3806
3807 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3808 profile_probability::always ();
3809
3810 /* Set up block info for each basic block. */
3811 alloc_aux_for_blocks (sizeof (block_info));
3812 alloc_aux_for_edges (sizeof (edge_prob_info));
3813 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3814 {
3815 edge e;
3816 edge_iterator ei;
3817
3818 FOR_EACH_EDGE (e, ei, bb->succs)
3819 {
3820 /* FIXME: Graphite is producing edges with no profile. Once
3821 this is fixed, drop this. */
3822 if (e->probability.initialized_p ())
3823 EDGE_INFO (e)->back_edge_prob
3824 = e->probability.to_reg_br_prob_base ();
3825 else
3826 EDGE_INFO (e)->back_edge_prob = REG_BR_PROB_BASE / 2;
3827 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
3828 }
3829 }
3830
3831 /* First compute frequencies locally for each loop from innermost
3832 to outermost to examine frequencies for back edges. */
3833 estimate_loops ();
3834
3835 freq_max = 0;
3836 FOR_EACH_BB_FN (bb, cfun)
3837 if (freq_max < BLOCK_INFO (bb)->frequency)
3838 freq_max = BLOCK_INFO (bb)->frequency;
3839
3840 freq_max = real_bb_freq_max / freq_max;
3841 if (freq_max < 16)
3842 freq_max = 16;
3843 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3844 cfun->cfg->count_max = profile_count::uninitialized ();
3845 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3846 {
3847 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
3848 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3849
3850 /* If we have profile feedback in which this function was never
3851 executed, then preserve this info. */
3852 if (!(bb->count == profile_count::zero ()))
3853 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3854 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3855 }
3856
3857 free_aux_for_blocks ();
3858 free_aux_for_edges ();
3859 }
3860 compute_function_frequency ();
3861 }
3862
3863 /* Decide whether function is hot, cold or unlikely executed. */
3864 void
3865 compute_function_frequency (void)
3866 {
3867 basic_block bb;
3868 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3869
3870 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3871 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3872 node->only_called_at_startup = true;
3873 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3874 node->only_called_at_exit = true;
3875
3876 if (profile_status_for_fn (cfun) != PROFILE_READ)
3877 {
3878 int flags = flags_from_decl_or_type (current_function_decl);
3879 if ((ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ()
3880 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3881 || lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3882 != NULL)
3883 {
3884 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3885 warn_function_cold (current_function_decl);
3886 }
3887 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3888 != NULL)
3889 node->frequency = NODE_FREQUENCY_HOT;
3890 else if (flags & ECF_NORETURN)
3891 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3892 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3893 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3894 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3895 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3896 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3897 return;
3898 }
3899
3900 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3901 warn_function_cold (current_function_decl);
3902 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
3903 return;
3904 FOR_EACH_BB_FN (bb, cfun)
3905 {
3906 if (maybe_hot_bb_p (cfun, bb))
3907 {
3908 node->frequency = NODE_FREQUENCY_HOT;
3909 return;
3910 }
3911 if (!probably_never_executed_bb_p (cfun, bb))
3912 node->frequency = NODE_FREQUENCY_NORMAL;
3913 }
3914 }
3915
3916 /* Build PREDICT_EXPR. */
3917 tree
3918 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3919 {
3920 tree t = build1 (PREDICT_EXPR, void_type_node,
3921 build_int_cst (integer_type_node, predictor));
3922 SET_PREDICT_EXPR_OUTCOME (t, taken);
3923 return t;
3924 }
3925
3926 const char *
3927 predictor_name (enum br_predictor predictor)
3928 {
3929 return predictor_info[predictor].name;
3930 }
3931
3932 /* Predict branch probabilities and estimate profile of the tree CFG. */
3933
3934 namespace {
3935
3936 const pass_data pass_data_profile =
3937 {
3938 GIMPLE_PASS, /* type */
3939 "profile_estimate", /* name */
3940 OPTGROUP_NONE, /* optinfo_flags */
3941 TV_BRANCH_PROB, /* tv_id */
3942 PROP_cfg, /* properties_required */
3943 0, /* properties_provided */
3944 0, /* properties_destroyed */
3945 0, /* todo_flags_start */
3946 0, /* todo_flags_finish */
3947 };
3948
3949 class pass_profile : public gimple_opt_pass
3950 {
3951 public:
3952 pass_profile (gcc::context *ctxt)
3953 : gimple_opt_pass (pass_data_profile, ctxt)
3954 {}
3955
3956 /* opt_pass methods: */
3957 virtual bool gate (function *) { return flag_guess_branch_prob; }
3958 virtual unsigned int execute (function *);
3959
3960 }; // class pass_profile
3961
3962 unsigned int
3963 pass_profile::execute (function *fun)
3964 {
3965 unsigned nb_loops;
3966
3967 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3968 return 0;
3969
3970 loop_optimizer_init (LOOPS_NORMAL);
3971 if (dump_file && (dump_flags & TDF_DETAILS))
3972 flow_loops_dump (dump_file, NULL, 0);
3973
3974 mark_irreducible_loops ();
3975
3976 nb_loops = number_of_loops (fun);
3977 if (nb_loops > 1)
3978 scev_initialize ();
3979
3980 tree_estimate_probability (false);
3981
3982 if (nb_loops > 1)
3983 scev_finalize ();
3984
3985 loop_optimizer_finalize ();
3986 if (dump_file && (dump_flags & TDF_DETAILS))
3987 gimple_dump_cfg (dump_file, dump_flags);
3988 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3989 profile_status_for_fn (fun) = PROFILE_GUESSED;
3990 if (dump_file && (dump_flags & TDF_DETAILS))
3991 {
3992 struct loop *loop;
3993 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
3994 if (loop->header->count.initialized_p ())
3995 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
3996 loop->num,
3997 (int)expected_loop_iterations_unbounded (loop));
3998 }
3999 return 0;
4000 }
4001
4002 } // anon namespace
4003
4004 gimple_opt_pass *
4005 make_pass_profile (gcc::context *ctxt)
4006 {
4007 return new pass_profile (ctxt);
4008 }
4009
4010 /* Return true when PRED predictor should be removed after early
4011 tree passes. Most of the predictors are beneficial to survive
4012 as early inlining can also distribute then into caller's bodies. */
4013
4014 static bool
4015 strip_predictor_early (enum br_predictor pred)
4016 {
4017 switch (pred)
4018 {
4019 case PRED_TREE_EARLY_RETURN:
4020 return true;
4021 default:
4022 return false;
4023 }
4024 }
4025
4026 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4027 we no longer need. EARLY is set to true when called from early
4028 optimizations. */
4029
4030 unsigned int
4031 strip_predict_hints (function *fun, bool early)
4032 {
4033 basic_block bb;
4034 gimple *ass_stmt;
4035 tree var;
4036 bool changed = false;
4037
4038 FOR_EACH_BB_FN (bb, fun)
4039 {
4040 gimple_stmt_iterator bi;
4041 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4042 {
4043 gimple *stmt = gsi_stmt (bi);
4044
4045 if (gimple_code (stmt) == GIMPLE_PREDICT)
4046 {
4047 if (!early
4048 || strip_predictor_early (gimple_predict_predictor (stmt)))
4049 {
4050 gsi_remove (&bi, true);
4051 changed = true;
4052 continue;
4053 }
4054 }
4055 else if (is_gimple_call (stmt))
4056 {
4057 tree fndecl = gimple_call_fndecl (stmt);
4058
4059 if (!early
4060 && ((fndecl != NULL_TREE
4061 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4062 && gimple_call_num_args (stmt) == 2)
4063 || (fndecl != NULL_TREE
4064 && fndecl_built_in_p (fndecl,
4065 BUILT_IN_EXPECT_WITH_PROBABILITY)
4066 && gimple_call_num_args (stmt) == 3)
4067 || (gimple_call_internal_p (stmt)
4068 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4069 {
4070 var = gimple_call_lhs (stmt);
4071 changed = true;
4072 if (var)
4073 {
4074 ass_stmt
4075 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4076 gsi_replace (&bi, ass_stmt, true);
4077 }
4078 else
4079 {
4080 gsi_remove (&bi, true);
4081 continue;
4082 }
4083 }
4084 }
4085 gsi_next (&bi);
4086 }
4087 }
4088 return changed ? TODO_cleanup_cfg : 0;
4089 }
4090
4091 namespace {
4092
4093 const pass_data pass_data_strip_predict_hints =
4094 {
4095 GIMPLE_PASS, /* type */
4096 "*strip_predict_hints", /* name */
4097 OPTGROUP_NONE, /* optinfo_flags */
4098 TV_BRANCH_PROB, /* tv_id */
4099 PROP_cfg, /* properties_required */
4100 0, /* properties_provided */
4101 0, /* properties_destroyed */
4102 0, /* todo_flags_start */
4103 0, /* todo_flags_finish */
4104 };
4105
4106 class pass_strip_predict_hints : public gimple_opt_pass
4107 {
4108 public:
4109 pass_strip_predict_hints (gcc::context *ctxt)
4110 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4111 {}
4112
4113 /* opt_pass methods: */
4114 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
4115 void set_pass_param (unsigned int n, bool param)
4116 {
4117 gcc_assert (n == 0);
4118 early_p = param;
4119 }
4120
4121 virtual unsigned int execute (function *);
4122
4123 private:
4124 bool early_p;
4125
4126 }; // class pass_strip_predict_hints
4127
4128 unsigned int
4129 pass_strip_predict_hints::execute (function *fun)
4130 {
4131 return strip_predict_hints (fun, early_p);
4132 }
4133
4134 } // anon namespace
4135
4136 gimple_opt_pass *
4137 make_pass_strip_predict_hints (gcc::context *ctxt)
4138 {
4139 return new pass_strip_predict_hints (ctxt);
4140 }
4141
4142 /* Rebuild function frequencies. Passes are in general expected to
4143 maintain profile by hand, however in some cases this is not possible:
4144 for example when inlining several functions with loops freuqencies might run
4145 out of scale and thus needs to be recomputed. */
4146
4147 void
4148 rebuild_frequencies (void)
4149 {
4150 timevar_push (TV_REBUILD_FREQUENCIES);
4151
4152 /* When the max bb count in the function is small, there is a higher
4153 chance that there were truncation errors in the integer scaling
4154 of counts by inlining and other optimizations. This could lead
4155 to incorrect classification of code as being cold when it isn't.
4156 In that case, force the estimation of bb counts/frequencies from the
4157 branch probabilities, rather than computing frequencies from counts,
4158 which may also lead to frequencies incorrectly reduced to 0. There
4159 is less precision in the probabilities, so we only do this for small
4160 max counts. */
4161 cfun->cfg->count_max = profile_count::uninitialized ();
4162 basic_block bb;
4163 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4164 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4165
4166 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4167 {
4168 loop_optimizer_init (0);
4169 add_noreturn_fake_exit_edges ();
4170 mark_irreducible_loops ();
4171 connect_infinite_loops_to_exit ();
4172 estimate_bb_frequencies (true);
4173 remove_fake_exit_edges ();
4174 loop_optimizer_finalize ();
4175 }
4176 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4177 update_max_bb_count ();
4178 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4179 && !flag_guess_branch_prob)
4180 ;
4181 else
4182 gcc_unreachable ();
4183 timevar_pop (TV_REBUILD_FREQUENCIES);
4184 }
4185
4186 /* Perform a dry run of the branch prediction pass and report comparsion of
4187 the predicted and real profile into the dump file. */
4188
4189 void
4190 report_predictor_hitrates (void)
4191 {
4192 unsigned nb_loops;
4193
4194 loop_optimizer_init (LOOPS_NORMAL);
4195 if (dump_file && (dump_flags & TDF_DETAILS))
4196 flow_loops_dump (dump_file, NULL, 0);
4197
4198 mark_irreducible_loops ();
4199
4200 nb_loops = number_of_loops (cfun);
4201 if (nb_loops > 1)
4202 scev_initialize ();
4203
4204 tree_estimate_probability (true);
4205
4206 if (nb_loops > 1)
4207 scev_finalize ();
4208
4209 loop_optimizer_finalize ();
4210 }
4211
4212 /* Force edge E to be cold.
4213 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4214 keep low probability to represent possible error in a guess. This is used
4215 i.e. in case we predict loop to likely iterate given number of times but
4216 we are not 100% sure.
4217
4218 This function locally updates profile without attempt to keep global
4219 consistency which can not be reached in full generality without full profile
4220 rebuild from probabilities alone. Doing so is not necessarily a good idea
4221 because frequencies and counts may be more realistic then probabilities.
4222
4223 In some cases (such as for elimination of early exits during full loop
4224 unrolling) the caller can ensure that profile will get consistent
4225 afterwards. */
4226
4227 void
4228 force_edge_cold (edge e, bool impossible)
4229 {
4230 profile_count count_sum = profile_count::zero ();
4231 profile_probability prob_sum = profile_probability::never ();
4232 edge_iterator ei;
4233 edge e2;
4234 bool uninitialized_exit = false;
4235
4236 /* When branch probability guesses are not known, then do nothing. */
4237 if (!impossible && !e->count ().initialized_p ())
4238 return;
4239
4240 profile_probability goal = (impossible ? profile_probability::never ()
4241 : profile_probability::very_unlikely ());
4242
4243 /* If edge is already improbably or cold, just return. */
4244 if (e->probability <= goal
4245 && (!impossible || e->count () == profile_count::zero ()))
4246 return;
4247 FOR_EACH_EDGE (e2, ei, e->src->succs)
4248 if (e2 != e)
4249 {
4250 if (e->flags & EDGE_FAKE)
4251 continue;
4252 if (e2->count ().initialized_p ())
4253 count_sum += e2->count ();
4254 if (e2->probability.initialized_p ())
4255 prob_sum += e2->probability;
4256 else
4257 uninitialized_exit = true;
4258 }
4259
4260 /* If we are not guessing profiles but have some other edges out,
4261 just assume the control flow goes elsewhere. */
4262 if (uninitialized_exit)
4263 e->probability = goal;
4264 /* If there are other edges out of e->src, redistribute probabilitity
4265 there. */
4266 else if (prob_sum > profile_probability::never ())
4267 {
4268 if (!(e->probability < goal))
4269 e->probability = goal;
4270
4271 profile_probability prob_comp = prob_sum / e->probability.invert ();
4272
4273 if (dump_file && (dump_flags & TDF_DETAILS))
4274 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4275 "probability to other edges.\n",
4276 e->src->index, e->dest->index,
4277 impossible ? "impossible" : "cold");
4278 FOR_EACH_EDGE (e2, ei, e->src->succs)
4279 if (e2 != e)
4280 {
4281 e2->probability /= prob_comp;
4282 }
4283 if (current_ir_type () != IR_GIMPLE
4284 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4285 update_br_prob_note (e->src);
4286 }
4287 /* If all edges out of e->src are unlikely, the basic block itself
4288 is unlikely. */
4289 else
4290 {
4291 if (prob_sum == profile_probability::never ())
4292 e->probability = profile_probability::always ();
4293 else
4294 {
4295 if (impossible)
4296 e->probability = profile_probability::never ();
4297 /* If BB has some edges out that are not impossible, we can not
4298 assume that BB itself is. */
4299 impossible = false;
4300 }
4301 if (current_ir_type () != IR_GIMPLE
4302 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4303 update_br_prob_note (e->src);
4304 if (e->src->count == profile_count::zero ())
4305 return;
4306 if (count_sum == profile_count::zero () && impossible)
4307 {
4308 bool found = false;
4309 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4310 ;
4311 else if (current_ir_type () == IR_GIMPLE)
4312 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4313 !gsi_end_p (gsi); gsi_next (&gsi))
4314 {
4315 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4316 {
4317 found = true;
4318 break;
4319 }
4320 }
4321 /* FIXME: Implement RTL path. */
4322 else
4323 found = true;
4324 if (!found)
4325 {
4326 if (dump_file && (dump_flags & TDF_DETAILS))
4327 fprintf (dump_file,
4328 "Making bb %i impossible and dropping count to 0.\n",
4329 e->src->index);
4330 e->src->count = profile_count::zero ();
4331 FOR_EACH_EDGE (e2, ei, e->src->preds)
4332 force_edge_cold (e2, impossible);
4333 return;
4334 }
4335 }
4336
4337 /* If we did not adjusting, the source basic block has no likely edeges
4338 leaving other direction. In that case force that bb cold, too.
4339 This in general is difficult task to do, but handle special case when
4340 BB has only one predecestor. This is common case when we are updating
4341 after loop transforms. */
4342 if (!(prob_sum > profile_probability::never ())
4343 && count_sum == profile_count::zero ()
4344 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4345 > (impossible ? 0 : 1))
4346 {
4347 int old_frequency = e->src->count.to_frequency (cfun);
4348 if (dump_file && (dump_flags & TDF_DETAILS))
4349 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4350 impossible ? "impossible" : "cold");
4351 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4352 impossible ? 0 : 1);
4353 if (impossible)
4354 e->src->count = profile_count::zero ();
4355 else
4356 e->src->count = e->count ().apply_scale (new_frequency,
4357 old_frequency);
4358 force_edge_cold (single_pred_edge (e->src), impossible);
4359 }
4360 else if (dump_file && (dump_flags & TDF_DETAILS)
4361 && maybe_hot_bb_p (cfun, e->src))
4362 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4363 impossible ? "impossible" : "cold");
4364 }
4365 }
4366
4367 #if CHECKING_P
4368
4369 namespace selftest {
4370
4371 /* Test that value range of predictor values defined in predict.def is
4372 within range (50, 100]. */
4373
4374 struct branch_predictor
4375 {
4376 const char *name;
4377 int probability;
4378 };
4379
4380 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4381
4382 static void
4383 test_prediction_value_range ()
4384 {
4385 branch_predictor predictors[] = {
4386 #include "predict.def"
4387 { NULL, PROB_UNINITIALIZED }
4388 };
4389
4390 for (unsigned i = 0; predictors[i].name != NULL; i++)
4391 {
4392 if (predictors[i].probability == PROB_UNINITIALIZED)
4393 continue;
4394
4395 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4396 ASSERT_TRUE (p >= 50 && p <= 100);
4397 }
4398 }
4399
4400 #undef DEF_PREDICTOR
4401
4402 /* Run all of the selfests within this file. */
4403
4404 void
4405 predict_c_tests ()
4406 {
4407 test_prediction_value_range ();
4408 }
4409
4410 } // namespace selftest
4411 #endif /* CHECKING_P. */