ipa-cp.c (ipcp_cloning_candidate_p): Use opt_for_fn.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "predict.h"
40 #include "vec.h"
41 #include "hashtab.h"
42 #include "hash-set.h"
43 #include "machmode.h"
44 #include "input.h"
45 #include "function.h"
46 #include "dominance.h"
47 #include "cfg.h"
48 #include "cfganal.h"
49 #include "basic-block.h"
50 #include "insn-config.h"
51 #include "regs.h"
52 #include "flags.h"
53 #include "profile.h"
54 #include "except.h"
55 #include "diagnostic-core.h"
56 #include "recog.h"
57 #include "expr.h"
58 #include "coverage.h"
59 #include "sreal.h"
60 #include "params.h"
61 #include "target.h"
62 #include "cfgloop.h"
63 #include "hash-map.h"
64 #include "tree-ssa-alias.h"
65 #include "internal-fn.h"
66 #include "gimple-expr.h"
67 #include "is-a.h"
68 #include "gimple.h"
69 #include "gimple-iterator.h"
70 #include "gimple-ssa.h"
71 #include "plugin-api.h"
72 #include "ipa-ref.h"
73 #include "cgraph.h"
74 #include "tree-cfg.h"
75 #include "tree-phinodes.h"
76 #include "ssa-iterators.h"
77 #include "tree-ssa-loop-niter.h"
78 #include "tree-ssa-loop.h"
79 #include "tree-pass.h"
80 #include "tree-scalar-evolution.h"
81 #include "cfgloop.h"
82
83 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
84 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
85 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
86 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
87
88 static void combine_predictions_for_insn (rtx_insn *, basic_block);
89 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
90 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
91 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
92 static bool can_predict_insn_p (const rtx_insn *);
93
94 /* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
96
97 struct predictor_info
98 {
99 const char *const name; /* Name used in the debugging dumps. */
100 const int hitrate; /* Expected hitrate used by
101 predict_insn_def call. */
102 const int flags;
103 };
104
105 /* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107 #define PRED_FLAG_FIRST_MATCH 1
108
109 /* Recompute hitrate in percent to our representation. */
110
111 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
112
113 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
114 static const struct predictor_info predictor_info[]= {
115 #include "predict.def"
116
117 /* Upper bound on predictors. */
118 {NULL, 0, 0}
119 };
120 #undef DEF_PREDICTOR
121
122 /* Return TRUE if frequency FREQ is considered to be hot. */
123
124 static inline bool
125 maybe_hot_frequency_p (struct function *fun, int freq)
126 {
127 struct cgraph_node *node = cgraph_node::get (fun->decl);
128 if (!profile_info
129 || !opt_for_fn (fun->decl, flag_branch_probabilities))
130 {
131 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
132 return false;
133 if (node->frequency == NODE_FREQUENCY_HOT)
134 return true;
135 }
136 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
137 return true;
138 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
139 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
140 return false;
141 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
142 return false;
143 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
144 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
145 return false;
146 return true;
147 }
148
149 static gcov_type min_count = -1;
150
151 /* Determine the threshold for hot BB counts. */
152
153 gcov_type
154 get_hot_bb_threshold ()
155 {
156 gcov_working_set_t *ws;
157 if (min_count == -1)
158 {
159 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
160 gcc_assert (ws);
161 min_count = ws->min_counter;
162 }
163 return min_count;
164 }
165
166 /* Set the threshold for hot BB counts. */
167
168 void
169 set_hot_bb_threshold (gcov_type min)
170 {
171 min_count = min;
172 }
173
174 /* Return TRUE if frequency FREQ is considered to be hot. */
175
176 bool
177 maybe_hot_count_p (struct function *fun, gcov_type count)
178 {
179 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
180 return true;
181 /* Code executed at most once is not hot. */
182 if (profile_info->runs >= count)
183 return false;
184 return (count >= get_hot_bb_threshold ());
185 }
186
187 /* Return true in case BB can be CPU intensive and should be optimized
188 for maximal performance. */
189
190 bool
191 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
192 {
193 gcc_checking_assert (fun);
194 if (profile_status_for_fn (fun) == PROFILE_READ)
195 return maybe_hot_count_p (fun, bb->count);
196 return maybe_hot_frequency_p (fun, bb->frequency);
197 }
198
199 /* Return true in case BB can be CPU intensive and should be optimized
200 for maximal performance. */
201
202 bool
203 maybe_hot_edge_p (edge e)
204 {
205 if (profile_status_for_fn (cfun) == PROFILE_READ)
206 return maybe_hot_count_p (cfun, e->count);
207 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
208 }
209
210 /* Return true if profile COUNT and FREQUENCY, or function FUN static
211 node frequency reflects never being executed. */
212
213 static bool
214 probably_never_executed (struct function *fun,
215 gcov_type count, int frequency)
216 {
217 gcc_checking_assert (fun);
218 if (profile_status_for_fn (fun) == PROFILE_READ)
219 {
220 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
221 if (count * unlikely_count_fraction >= profile_info->runs)
222 return false;
223 if (!frequency)
224 return true;
225 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
226 return false;
227 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
228 {
229 gcov_type computed_count;
230 /* Check for possibility of overflow, in which case entry bb count
231 is large enough to do the division first without losing much
232 precision. */
233 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
234 REG_BR_PROB_BASE)
235 {
236 gcov_type scaled_count
237 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
238 unlikely_count_fraction;
239 computed_count = RDIV (scaled_count,
240 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
241 }
242 else
243 {
244 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
245 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
246 computed_count *= frequency * unlikely_count_fraction;
247 }
248 if (computed_count >= profile_info->runs)
249 return false;
250 }
251 return true;
252 }
253 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
254 && (cgraph_node::get (fun->decl)->frequency
255 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
256 return true;
257 return false;
258 }
259
260
261 /* Return true in case BB is probably never executed. */
262
263 bool
264 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
265 {
266 return probably_never_executed (fun, bb->count, bb->frequency);
267 }
268
269
270 /* Return true in case edge E is probably never executed. */
271
272 bool
273 probably_never_executed_edge_p (struct function *fun, edge e)
274 {
275 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
276 }
277
278 /* Return true when current function should always be optimized for size. */
279
280 bool
281 optimize_function_for_size_p (struct function *fun)
282 {
283 if (!fun || !fun->decl)
284 return optimize_size;
285 cgraph_node *n = cgraph_node::get (fun->decl);
286 return n && n->optimize_for_size_p ();
287 }
288
289 /* Return true when current function should always be optimized for speed. */
290
291 bool
292 optimize_function_for_speed_p (struct function *fun)
293 {
294 return !optimize_function_for_size_p (fun);
295 }
296
297 /* Return TRUE when BB should be optimized for size. */
298
299 bool
300 optimize_bb_for_size_p (const_basic_block bb)
301 {
302 return (optimize_function_for_size_p (cfun)
303 || (bb && !maybe_hot_bb_p (cfun, bb)));
304 }
305
306 /* Return TRUE when BB should be optimized for speed. */
307
308 bool
309 optimize_bb_for_speed_p (const_basic_block bb)
310 {
311 return !optimize_bb_for_size_p (bb);
312 }
313
314 /* Return TRUE when BB should be optimized for size. */
315
316 bool
317 optimize_edge_for_size_p (edge e)
318 {
319 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
320 }
321
322 /* Return TRUE when BB should be optimized for speed. */
323
324 bool
325 optimize_edge_for_speed_p (edge e)
326 {
327 return !optimize_edge_for_size_p (e);
328 }
329
330 /* Return TRUE when BB should be optimized for size. */
331
332 bool
333 optimize_insn_for_size_p (void)
334 {
335 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
336 }
337
338 /* Return TRUE when BB should be optimized for speed. */
339
340 bool
341 optimize_insn_for_speed_p (void)
342 {
343 return !optimize_insn_for_size_p ();
344 }
345
346 /* Return TRUE when LOOP should be optimized for size. */
347
348 bool
349 optimize_loop_for_size_p (struct loop *loop)
350 {
351 return optimize_bb_for_size_p (loop->header);
352 }
353
354 /* Return TRUE when LOOP should be optimized for speed. */
355
356 bool
357 optimize_loop_for_speed_p (struct loop *loop)
358 {
359 return optimize_bb_for_speed_p (loop->header);
360 }
361
362 /* Return TRUE when LOOP nest should be optimized for speed. */
363
364 bool
365 optimize_loop_nest_for_speed_p (struct loop *loop)
366 {
367 struct loop *l = loop;
368 if (optimize_loop_for_speed_p (loop))
369 return true;
370 l = loop->inner;
371 while (l && l != loop)
372 {
373 if (optimize_loop_for_speed_p (l))
374 return true;
375 if (l->inner)
376 l = l->inner;
377 else if (l->next)
378 l = l->next;
379 else
380 {
381 while (l != loop && !l->next)
382 l = loop_outer (l);
383 if (l != loop)
384 l = l->next;
385 }
386 }
387 return false;
388 }
389
390 /* Return TRUE when LOOP nest should be optimized for size. */
391
392 bool
393 optimize_loop_nest_for_size_p (struct loop *loop)
394 {
395 return !optimize_loop_nest_for_speed_p (loop);
396 }
397
398 /* Return true when edge E is likely to be well predictable by branch
399 predictor. */
400
401 bool
402 predictable_edge_p (edge e)
403 {
404 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
405 return false;
406 if ((e->probability
407 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
408 || (REG_BR_PROB_BASE - e->probability
409 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
410 return true;
411 return false;
412 }
413
414
415 /* Set RTL expansion for BB profile. */
416
417 void
418 rtl_profile_for_bb (basic_block bb)
419 {
420 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
421 }
422
423 /* Set RTL expansion for edge profile. */
424
425 void
426 rtl_profile_for_edge (edge e)
427 {
428 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
429 }
430
431 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
432 void
433 default_rtl_profile (void)
434 {
435 crtl->maybe_hot_insn_p = true;
436 }
437
438 /* Return true if the one of outgoing edges is already predicted by
439 PREDICTOR. */
440
441 bool
442 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
443 {
444 rtx note;
445 if (!INSN_P (BB_END (bb)))
446 return false;
447 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
448 if (REG_NOTE_KIND (note) == REG_BR_PRED
449 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
450 return true;
451 return false;
452 }
453
454 /* Structure representing predictions in tree level. */
455
456 struct edge_prediction {
457 struct edge_prediction *ep_next;
458 edge ep_edge;
459 enum br_predictor ep_predictor;
460 int ep_probability;
461 };
462
463 /* This map contains for a basic block the list of predictions for the
464 outgoing edges. */
465
466 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
467
468 /* Return true if the one of outgoing edges is already predicted by
469 PREDICTOR. */
470
471 bool
472 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
473 {
474 struct edge_prediction *i;
475 edge_prediction **preds = bb_predictions->get (bb);
476
477 if (!preds)
478 return false;
479
480 for (i = *preds; i; i = i->ep_next)
481 if (i->ep_predictor == predictor)
482 return true;
483 return false;
484 }
485
486 /* Return true when the probability of edge is reliable.
487
488 The profile guessing code is good at predicting branch outcome (ie.
489 taken/not taken), that is predicted right slightly over 75% of time.
490 It is however notoriously poor on predicting the probability itself.
491 In general the profile appear a lot flatter (with probabilities closer
492 to 50%) than the reality so it is bad idea to use it to drive optimization
493 such as those disabling dynamic branch prediction for well predictable
494 branches.
495
496 There are two exceptions - edges leading to noreturn edges and edges
497 predicted by number of iterations heuristics are predicted well. This macro
498 should be able to distinguish those, but at the moment it simply check for
499 noreturn heuristic that is only one giving probability over 99% or bellow
500 1%. In future we might want to propagate reliability information across the
501 CFG if we find this information useful on multiple places. */
502 static bool
503 probability_reliable_p (int prob)
504 {
505 return (profile_status_for_fn (cfun) == PROFILE_READ
506 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
507 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
508 }
509
510 /* Same predicate as above, working on edges. */
511 bool
512 edge_probability_reliable_p (const_edge e)
513 {
514 return probability_reliable_p (e->probability);
515 }
516
517 /* Same predicate as edge_probability_reliable_p, working on notes. */
518 bool
519 br_prob_note_reliable_p (const_rtx note)
520 {
521 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
522 return probability_reliable_p (XINT (note, 0));
523 }
524
525 static void
526 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
527 {
528 gcc_assert (any_condjump_p (insn));
529 if (!flag_guess_branch_prob)
530 return;
531
532 add_reg_note (insn, REG_BR_PRED,
533 gen_rtx_CONCAT (VOIDmode,
534 GEN_INT ((int) predictor),
535 GEN_INT ((int) probability)));
536 }
537
538 /* Predict insn by given predictor. */
539
540 void
541 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
542 enum prediction taken)
543 {
544 int probability = predictor_info[(int) predictor].hitrate;
545
546 if (taken != TAKEN)
547 probability = REG_BR_PROB_BASE - probability;
548
549 predict_insn (insn, predictor, probability);
550 }
551
552 /* Predict edge E with given probability if possible. */
553
554 void
555 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
556 {
557 rtx_insn *last_insn;
558 last_insn = BB_END (e->src);
559
560 /* We can store the branch prediction information only about
561 conditional jumps. */
562 if (!any_condjump_p (last_insn))
563 return;
564
565 /* We always store probability of branching. */
566 if (e->flags & EDGE_FALLTHRU)
567 probability = REG_BR_PROB_BASE - probability;
568
569 predict_insn (last_insn, predictor, probability);
570 }
571
572 /* Predict edge E with the given PROBABILITY. */
573 void
574 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
575 {
576 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
577 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
578 1)
579 && flag_guess_branch_prob && optimize)
580 {
581 struct edge_prediction *i = XNEW (struct edge_prediction);
582 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
583
584 i->ep_next = preds;
585 preds = i;
586 i->ep_probability = probability;
587 i->ep_predictor = predictor;
588 i->ep_edge = e;
589 }
590 }
591
592 /* Remove all predictions on given basic block that are attached
593 to edge E. */
594 void
595 remove_predictions_associated_with_edge (edge e)
596 {
597 if (!bb_predictions)
598 return;
599
600 edge_prediction **preds = bb_predictions->get (e->src);
601
602 if (preds)
603 {
604 struct edge_prediction **prediction = preds;
605 struct edge_prediction *next;
606
607 while (*prediction)
608 {
609 if ((*prediction)->ep_edge == e)
610 {
611 next = (*prediction)->ep_next;
612 free (*prediction);
613 *prediction = next;
614 }
615 else
616 prediction = &((*prediction)->ep_next);
617 }
618 }
619 }
620
621 /* Clears the list of predictions stored for BB. */
622
623 static void
624 clear_bb_predictions (basic_block bb)
625 {
626 edge_prediction **preds = bb_predictions->get (bb);
627 struct edge_prediction *pred, *next;
628
629 if (!preds)
630 return;
631
632 for (pred = *preds; pred; pred = next)
633 {
634 next = pred->ep_next;
635 free (pred);
636 }
637 *preds = NULL;
638 }
639
640 /* Return true when we can store prediction on insn INSN.
641 At the moment we represent predictions only on conditional
642 jumps, not at computed jump or other complicated cases. */
643 static bool
644 can_predict_insn_p (const rtx_insn *insn)
645 {
646 return (JUMP_P (insn)
647 && any_condjump_p (insn)
648 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
649 }
650
651 /* Predict edge E by given predictor if possible. */
652
653 void
654 predict_edge_def (edge e, enum br_predictor predictor,
655 enum prediction taken)
656 {
657 int probability = predictor_info[(int) predictor].hitrate;
658
659 if (taken != TAKEN)
660 probability = REG_BR_PROB_BASE - probability;
661
662 predict_edge (e, predictor, probability);
663 }
664
665 /* Invert all branch predictions or probability notes in the INSN. This needs
666 to be done each time we invert the condition used by the jump. */
667
668 void
669 invert_br_probabilities (rtx insn)
670 {
671 rtx note;
672
673 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
674 if (REG_NOTE_KIND (note) == REG_BR_PROB)
675 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
676 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
677 XEXP (XEXP (note, 0), 1)
678 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
679 }
680
681 /* Dump information about the branch prediction to the output file. */
682
683 static void
684 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
685 basic_block bb, int used)
686 {
687 edge e;
688 edge_iterator ei;
689
690 if (!file)
691 return;
692
693 FOR_EACH_EDGE (e, ei, bb->succs)
694 if (! (e->flags & EDGE_FALLTHRU))
695 break;
696
697 fprintf (file, " %s heuristics%s: %.1f%%",
698 predictor_info[predictor].name,
699 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
700
701 if (bb->count)
702 {
703 fprintf (file, " exec %"PRId64, bb->count);
704 if (e)
705 {
706 fprintf (file, " hit %"PRId64, e->count);
707 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
708 }
709 }
710
711 fprintf (file, "\n");
712 }
713
714 /* We can not predict the probabilities of outgoing edges of bb. Set them
715 evenly and hope for the best. */
716 static void
717 set_even_probabilities (basic_block bb)
718 {
719 int nedges = 0;
720 edge e;
721 edge_iterator ei;
722
723 FOR_EACH_EDGE (e, ei, bb->succs)
724 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
725 nedges ++;
726 FOR_EACH_EDGE (e, ei, bb->succs)
727 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
728 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
729 else
730 e->probability = 0;
731 }
732
733 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
734 note if not already present. Remove now useless REG_BR_PRED notes. */
735
736 static void
737 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
738 {
739 rtx prob_note;
740 rtx *pnote;
741 rtx note;
742 int best_probability = PROB_EVEN;
743 enum br_predictor best_predictor = END_PREDICTORS;
744 int combined_probability = REG_BR_PROB_BASE / 2;
745 int d;
746 bool first_match = false;
747 bool found = false;
748
749 if (!can_predict_insn_p (insn))
750 {
751 set_even_probabilities (bb);
752 return;
753 }
754
755 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
756 pnote = &REG_NOTES (insn);
757 if (dump_file)
758 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
759 bb->index);
760
761 /* We implement "first match" heuristics and use probability guessed
762 by predictor with smallest index. */
763 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
764 if (REG_NOTE_KIND (note) == REG_BR_PRED)
765 {
766 enum br_predictor predictor = ((enum br_predictor)
767 INTVAL (XEXP (XEXP (note, 0), 0)));
768 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
769
770 found = true;
771 if (best_predictor > predictor)
772 best_probability = probability, best_predictor = predictor;
773
774 d = (combined_probability * probability
775 + (REG_BR_PROB_BASE - combined_probability)
776 * (REG_BR_PROB_BASE - probability));
777
778 /* Use FP math to avoid overflows of 32bit integers. */
779 if (d == 0)
780 /* If one probability is 0% and one 100%, avoid division by zero. */
781 combined_probability = REG_BR_PROB_BASE / 2;
782 else
783 combined_probability = (((double) combined_probability) * probability
784 * REG_BR_PROB_BASE / d + 0.5);
785 }
786
787 /* Decide which heuristic to use. In case we didn't match anything,
788 use no_prediction heuristic, in case we did match, use either
789 first match or Dempster-Shaffer theory depending on the flags. */
790
791 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
792 first_match = true;
793
794 if (!found)
795 dump_prediction (dump_file, PRED_NO_PREDICTION,
796 combined_probability, bb, true);
797 else
798 {
799 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
800 bb, !first_match);
801 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
802 bb, first_match);
803 }
804
805 if (first_match)
806 combined_probability = best_probability;
807 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
808
809 while (*pnote)
810 {
811 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
812 {
813 enum br_predictor predictor = ((enum br_predictor)
814 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
815 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
816
817 dump_prediction (dump_file, predictor, probability, bb,
818 !first_match || best_predictor == predictor);
819 *pnote = XEXP (*pnote, 1);
820 }
821 else
822 pnote = &XEXP (*pnote, 1);
823 }
824
825 if (!prob_note)
826 {
827 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
828
829 /* Save the prediction into CFG in case we are seeing non-degenerated
830 conditional jump. */
831 if (!single_succ_p (bb))
832 {
833 BRANCH_EDGE (bb)->probability = combined_probability;
834 FALLTHRU_EDGE (bb)->probability
835 = REG_BR_PROB_BASE - combined_probability;
836 }
837 }
838 else if (!single_succ_p (bb))
839 {
840 int prob = XINT (prob_note, 0);
841
842 BRANCH_EDGE (bb)->probability = prob;
843 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
844 }
845 else
846 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
847 }
848
849 /* Combine predictions into single probability and store them into CFG.
850 Remove now useless prediction entries. */
851
852 static void
853 combine_predictions_for_bb (basic_block bb)
854 {
855 int best_probability = PROB_EVEN;
856 enum br_predictor best_predictor = END_PREDICTORS;
857 int combined_probability = REG_BR_PROB_BASE / 2;
858 int d;
859 bool first_match = false;
860 bool found = false;
861 struct edge_prediction *pred;
862 int nedges = 0;
863 edge e, first = NULL, second = NULL;
864 edge_iterator ei;
865
866 FOR_EACH_EDGE (e, ei, bb->succs)
867 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
868 {
869 nedges ++;
870 if (first && !second)
871 second = e;
872 if (!first)
873 first = e;
874 }
875
876 /* When there is no successor or only one choice, prediction is easy.
877
878 We are lazy for now and predict only basic blocks with two outgoing
879 edges. It is possible to predict generic case too, but we have to
880 ignore first match heuristics and do more involved combining. Implement
881 this later. */
882 if (nedges != 2)
883 {
884 if (!bb->count)
885 set_even_probabilities (bb);
886 clear_bb_predictions (bb);
887 if (dump_file)
888 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
889 nedges, bb->index);
890 return;
891 }
892
893 if (dump_file)
894 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
895
896 edge_prediction **preds = bb_predictions->get (bb);
897 if (preds)
898 {
899 /* We implement "first match" heuristics and use probability guessed
900 by predictor with smallest index. */
901 for (pred = *preds; pred; pred = pred->ep_next)
902 {
903 enum br_predictor predictor = pred->ep_predictor;
904 int probability = pred->ep_probability;
905
906 if (pred->ep_edge != first)
907 probability = REG_BR_PROB_BASE - probability;
908
909 found = true;
910 /* First match heuristics would be widly confused if we predicted
911 both directions. */
912 if (best_predictor > predictor)
913 {
914 struct edge_prediction *pred2;
915 int prob = probability;
916
917 for (pred2 = (struct edge_prediction *) *preds;
918 pred2; pred2 = pred2->ep_next)
919 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
920 {
921 int probability2 = pred->ep_probability;
922
923 if (pred2->ep_edge != first)
924 probability2 = REG_BR_PROB_BASE - probability2;
925
926 if ((probability < REG_BR_PROB_BASE / 2) !=
927 (probability2 < REG_BR_PROB_BASE / 2))
928 break;
929
930 /* If the same predictor later gave better result, go for it! */
931 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
932 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
933 prob = probability2;
934 }
935 if (!pred2)
936 best_probability = prob, best_predictor = predictor;
937 }
938
939 d = (combined_probability * probability
940 + (REG_BR_PROB_BASE - combined_probability)
941 * (REG_BR_PROB_BASE - probability));
942
943 /* Use FP math to avoid overflows of 32bit integers. */
944 if (d == 0)
945 /* If one probability is 0% and one 100%, avoid division by zero. */
946 combined_probability = REG_BR_PROB_BASE / 2;
947 else
948 combined_probability = (((double) combined_probability)
949 * probability
950 * REG_BR_PROB_BASE / d + 0.5);
951 }
952 }
953
954 /* Decide which heuristic to use. In case we didn't match anything,
955 use no_prediction heuristic, in case we did match, use either
956 first match or Dempster-Shaffer theory depending on the flags. */
957
958 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
959 first_match = true;
960
961 if (!found)
962 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
963 else
964 {
965 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
966 !first_match);
967 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
968 first_match);
969 }
970
971 if (first_match)
972 combined_probability = best_probability;
973 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
974
975 if (preds)
976 {
977 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
978 {
979 enum br_predictor predictor = pred->ep_predictor;
980 int probability = pred->ep_probability;
981
982 if (pred->ep_edge != EDGE_SUCC (bb, 0))
983 probability = REG_BR_PROB_BASE - probability;
984 dump_prediction (dump_file, predictor, probability, bb,
985 !first_match || best_predictor == predictor);
986 }
987 }
988 clear_bb_predictions (bb);
989
990 if (!bb->count)
991 {
992 first->probability = combined_probability;
993 second->probability = REG_BR_PROB_BASE - combined_probability;
994 }
995 }
996
997 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
998 Return the SSA_NAME if the condition satisfies, NULL otherwise.
999
1000 T1 and T2 should be one of the following cases:
1001 1. T1 is SSA_NAME, T2 is NULL
1002 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1003 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1004
1005 static tree
1006 strips_small_constant (tree t1, tree t2)
1007 {
1008 tree ret = NULL;
1009 int value = 0;
1010
1011 if (!t1)
1012 return NULL;
1013 else if (TREE_CODE (t1) == SSA_NAME)
1014 ret = t1;
1015 else if (tree_fits_shwi_p (t1))
1016 value = tree_to_shwi (t1);
1017 else
1018 return NULL;
1019
1020 if (!t2)
1021 return ret;
1022 else if (tree_fits_shwi_p (t2))
1023 value = tree_to_shwi (t2);
1024 else if (TREE_CODE (t2) == SSA_NAME)
1025 {
1026 if (ret)
1027 return NULL;
1028 else
1029 ret = t2;
1030 }
1031
1032 if (value <= 4 && value >= -4)
1033 return ret;
1034 else
1035 return NULL;
1036 }
1037
1038 /* Return the SSA_NAME in T or T's operands.
1039 Return NULL if SSA_NAME cannot be found. */
1040
1041 static tree
1042 get_base_value (tree t)
1043 {
1044 if (TREE_CODE (t) == SSA_NAME)
1045 return t;
1046
1047 if (!BINARY_CLASS_P (t))
1048 return NULL;
1049
1050 switch (TREE_OPERAND_LENGTH (t))
1051 {
1052 case 1:
1053 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1054 case 2:
1055 return strips_small_constant (TREE_OPERAND (t, 0),
1056 TREE_OPERAND (t, 1));
1057 default:
1058 return NULL;
1059 }
1060 }
1061
1062 /* Check the compare STMT in LOOP. If it compares an induction
1063 variable to a loop invariant, return true, and save
1064 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1065 Otherwise return false and set LOOP_INVAIANT to NULL. */
1066
1067 static bool
1068 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1069 tree *loop_invariant,
1070 enum tree_code *compare_code,
1071 tree *loop_step,
1072 tree *loop_iv_base)
1073 {
1074 tree op0, op1, bound, base;
1075 affine_iv iv0, iv1;
1076 enum tree_code code;
1077 tree step;
1078
1079 code = gimple_cond_code (stmt);
1080 *loop_invariant = NULL;
1081
1082 switch (code)
1083 {
1084 case GT_EXPR:
1085 case GE_EXPR:
1086 case NE_EXPR:
1087 case LT_EXPR:
1088 case LE_EXPR:
1089 case EQ_EXPR:
1090 break;
1091
1092 default:
1093 return false;
1094 }
1095
1096 op0 = gimple_cond_lhs (stmt);
1097 op1 = gimple_cond_rhs (stmt);
1098
1099 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1100 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1101 return false;
1102 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1103 return false;
1104 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1105 return false;
1106 if (TREE_CODE (iv0.step) != INTEGER_CST
1107 || TREE_CODE (iv1.step) != INTEGER_CST)
1108 return false;
1109 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1110 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1111 return false;
1112
1113 if (integer_zerop (iv0.step))
1114 {
1115 if (code != NE_EXPR && code != EQ_EXPR)
1116 code = invert_tree_comparison (code, false);
1117 bound = iv0.base;
1118 base = iv1.base;
1119 if (tree_fits_shwi_p (iv1.step))
1120 step = iv1.step;
1121 else
1122 return false;
1123 }
1124 else
1125 {
1126 bound = iv1.base;
1127 base = iv0.base;
1128 if (tree_fits_shwi_p (iv0.step))
1129 step = iv0.step;
1130 else
1131 return false;
1132 }
1133
1134 if (TREE_CODE (bound) != INTEGER_CST)
1135 bound = get_base_value (bound);
1136 if (!bound)
1137 return false;
1138 if (TREE_CODE (base) != INTEGER_CST)
1139 base = get_base_value (base);
1140 if (!base)
1141 return false;
1142
1143 *loop_invariant = bound;
1144 *compare_code = code;
1145 *loop_step = step;
1146 *loop_iv_base = base;
1147 return true;
1148 }
1149
1150 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1151
1152 static bool
1153 expr_coherent_p (tree t1, tree t2)
1154 {
1155 gimple stmt;
1156 tree ssa_name_1 = NULL;
1157 tree ssa_name_2 = NULL;
1158
1159 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1160 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1161
1162 if (t1 == t2)
1163 return true;
1164
1165 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1166 return true;
1167 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1168 return false;
1169
1170 /* Check to see if t1 is expressed/defined with t2. */
1171 stmt = SSA_NAME_DEF_STMT (t1);
1172 gcc_assert (stmt != NULL);
1173 if (is_gimple_assign (stmt))
1174 {
1175 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1176 if (ssa_name_1 && ssa_name_1 == t2)
1177 return true;
1178 }
1179
1180 /* Check to see if t2 is expressed/defined with t1. */
1181 stmt = SSA_NAME_DEF_STMT (t2);
1182 gcc_assert (stmt != NULL);
1183 if (is_gimple_assign (stmt))
1184 {
1185 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1186 if (ssa_name_2 && ssa_name_2 == t1)
1187 return true;
1188 }
1189
1190 /* Compare if t1 and t2's def_stmts are identical. */
1191 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1192 return true;
1193 else
1194 return false;
1195 }
1196
1197 /* Predict branch probability of BB when BB contains a branch that compares
1198 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1199 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1200
1201 E.g.
1202 for (int i = 0; i < bound; i++) {
1203 if (i < bound - 2)
1204 computation_1();
1205 else
1206 computation_2();
1207 }
1208
1209 In this loop, we will predict the branch inside the loop to be taken. */
1210
1211 static void
1212 predict_iv_comparison (struct loop *loop, basic_block bb,
1213 tree loop_bound_var,
1214 tree loop_iv_base_var,
1215 enum tree_code loop_bound_code,
1216 int loop_bound_step)
1217 {
1218 gimple stmt;
1219 tree compare_var, compare_base;
1220 enum tree_code compare_code;
1221 tree compare_step_var;
1222 edge then_edge;
1223 edge_iterator ei;
1224
1225 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1226 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1227 || predicted_by_p (bb, PRED_LOOP_EXIT))
1228 return;
1229
1230 stmt = last_stmt (bb);
1231 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1232 return;
1233 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1234 &compare_code,
1235 &compare_step_var,
1236 &compare_base))
1237 return;
1238
1239 /* Find the taken edge. */
1240 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1241 if (then_edge->flags & EDGE_TRUE_VALUE)
1242 break;
1243
1244 /* When comparing an IV to a loop invariant, NE is more likely to be
1245 taken while EQ is more likely to be not-taken. */
1246 if (compare_code == NE_EXPR)
1247 {
1248 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1249 return;
1250 }
1251 else if (compare_code == EQ_EXPR)
1252 {
1253 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1254 return;
1255 }
1256
1257 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1258 return;
1259
1260 /* If loop bound, base and compare bound are all constants, we can
1261 calculate the probability directly. */
1262 if (tree_fits_shwi_p (loop_bound_var)
1263 && tree_fits_shwi_p (compare_var)
1264 && tree_fits_shwi_p (compare_base))
1265 {
1266 int probability;
1267 bool overflow, overall_overflow = false;
1268 widest_int compare_count, tem;
1269
1270 /* (loop_bound - base) / compare_step */
1271 tem = wi::sub (wi::to_widest (loop_bound_var),
1272 wi::to_widest (compare_base), SIGNED, &overflow);
1273 overall_overflow |= overflow;
1274 widest_int loop_count = wi::div_trunc (tem,
1275 wi::to_widest (compare_step_var),
1276 SIGNED, &overflow);
1277 overall_overflow |= overflow;
1278
1279 if (!wi::neg_p (wi::to_widest (compare_step_var))
1280 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1281 {
1282 /* (loop_bound - compare_bound) / compare_step */
1283 tem = wi::sub (wi::to_widest (loop_bound_var),
1284 wi::to_widest (compare_var), SIGNED, &overflow);
1285 overall_overflow |= overflow;
1286 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1287 SIGNED, &overflow);
1288 overall_overflow |= overflow;
1289 }
1290 else
1291 {
1292 /* (compare_bound - base) / compare_step */
1293 tem = wi::sub (wi::to_widest (compare_var),
1294 wi::to_widest (compare_base), SIGNED, &overflow);
1295 overall_overflow |= overflow;
1296 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1297 SIGNED, &overflow);
1298 overall_overflow |= overflow;
1299 }
1300 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1301 ++compare_count;
1302 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1303 ++loop_count;
1304 if (wi::neg_p (compare_count))
1305 compare_count = 0;
1306 if (wi::neg_p (loop_count))
1307 loop_count = 0;
1308 if (loop_count == 0)
1309 probability = 0;
1310 else if (wi::cmps (compare_count, loop_count) == 1)
1311 probability = REG_BR_PROB_BASE;
1312 else
1313 {
1314 tem = compare_count * REG_BR_PROB_BASE;
1315 tem = wi::udiv_trunc (tem, loop_count);
1316 probability = tem.to_uhwi ();
1317 }
1318
1319 if (!overall_overflow)
1320 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1321
1322 return;
1323 }
1324
1325 if (expr_coherent_p (loop_bound_var, compare_var))
1326 {
1327 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1328 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1329 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1330 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1331 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1332 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1333 else if (loop_bound_code == NE_EXPR)
1334 {
1335 /* If the loop backedge condition is "(i != bound)", we do
1336 the comparison based on the step of IV:
1337 * step < 0 : backedge condition is like (i > bound)
1338 * step > 0 : backedge condition is like (i < bound) */
1339 gcc_assert (loop_bound_step != 0);
1340 if (loop_bound_step > 0
1341 && (compare_code == LT_EXPR
1342 || compare_code == LE_EXPR))
1343 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1344 else if (loop_bound_step < 0
1345 && (compare_code == GT_EXPR
1346 || compare_code == GE_EXPR))
1347 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1348 else
1349 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1350 }
1351 else
1352 /* The branch is predicted not-taken if loop_bound_code is
1353 opposite with compare_code. */
1354 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1355 }
1356 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1357 {
1358 /* For cases like:
1359 for (i = s; i < h; i++)
1360 if (i > s + 2) ....
1361 The branch should be predicted taken. */
1362 if (loop_bound_step > 0
1363 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1364 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1365 else if (loop_bound_step < 0
1366 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1367 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1368 else
1369 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1370 }
1371 }
1372
1373 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1374 exits are resulted from short-circuit conditions that will generate an
1375 if_tmp. E.g.:
1376
1377 if (foo() || global > 10)
1378 break;
1379
1380 This will be translated into:
1381
1382 BB3:
1383 loop header...
1384 BB4:
1385 if foo() goto BB6 else goto BB5
1386 BB5:
1387 if global > 10 goto BB6 else goto BB7
1388 BB6:
1389 goto BB7
1390 BB7:
1391 iftmp = (PHI 0(BB5), 1(BB6))
1392 if iftmp == 1 goto BB8 else goto BB3
1393 BB8:
1394 outside of the loop...
1395
1396 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1397 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1398 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1399 exits to predict them using PRED_LOOP_EXIT. */
1400
1401 static void
1402 predict_extra_loop_exits (edge exit_edge)
1403 {
1404 unsigned i;
1405 bool check_value_one;
1406 gimple phi_stmt;
1407 tree cmp_rhs, cmp_lhs;
1408 gimple cmp_stmt = last_stmt (exit_edge->src);
1409
1410 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1411 return;
1412 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1413 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1414 if (!TREE_CONSTANT (cmp_rhs)
1415 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1416 return;
1417 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1418 return;
1419
1420 /* If check_value_one is true, only the phi_args with value '1' will lead
1421 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1422 loop exit. */
1423 check_value_one = (((integer_onep (cmp_rhs))
1424 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1425 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1426
1427 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1428 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1429 return;
1430
1431 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1432 {
1433 edge e1;
1434 edge_iterator ei;
1435 tree val = gimple_phi_arg_def (phi_stmt, i);
1436 edge e = gimple_phi_arg_edge (phi_stmt, i);
1437
1438 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1439 continue;
1440 if ((check_value_one ^ integer_onep (val)) == 1)
1441 continue;
1442 if (EDGE_COUNT (e->src->succs) != 1)
1443 {
1444 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1445 continue;
1446 }
1447
1448 FOR_EACH_EDGE (e1, ei, e->src->preds)
1449 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1450 }
1451 }
1452
1453 /* Predict edge probabilities by exploiting loop structure. */
1454
1455 static void
1456 predict_loops (void)
1457 {
1458 struct loop *loop;
1459
1460 /* Try to predict out blocks in a loop that are not part of a
1461 natural loop. */
1462 FOR_EACH_LOOP (loop, 0)
1463 {
1464 basic_block bb, *bbs;
1465 unsigned j, n_exits;
1466 vec<edge> exits;
1467 struct tree_niter_desc niter_desc;
1468 edge ex;
1469 struct nb_iter_bound *nb_iter;
1470 enum tree_code loop_bound_code = ERROR_MARK;
1471 tree loop_bound_step = NULL;
1472 tree loop_bound_var = NULL;
1473 tree loop_iv_base = NULL;
1474 gimple stmt = NULL;
1475
1476 exits = get_loop_exit_edges (loop);
1477 n_exits = exits.length ();
1478 if (!n_exits)
1479 {
1480 exits.release ();
1481 continue;
1482 }
1483
1484 FOR_EACH_VEC_ELT (exits, j, ex)
1485 {
1486 tree niter = NULL;
1487 HOST_WIDE_INT nitercst;
1488 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1489 int probability;
1490 enum br_predictor predictor;
1491
1492 predict_extra_loop_exits (ex);
1493
1494 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1495 niter = niter_desc.niter;
1496 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1497 niter = loop_niter_by_eval (loop, ex);
1498
1499 if (TREE_CODE (niter) == INTEGER_CST)
1500 {
1501 if (tree_fits_uhwi_p (niter)
1502 && max
1503 && compare_tree_int (niter, max - 1) == -1)
1504 nitercst = tree_to_uhwi (niter) + 1;
1505 else
1506 nitercst = max;
1507 predictor = PRED_LOOP_ITERATIONS;
1508 }
1509 /* If we have just one exit and we can derive some information about
1510 the number of iterations of the loop from the statements inside
1511 the loop, use it to predict this exit. */
1512 else if (n_exits == 1)
1513 {
1514 nitercst = estimated_stmt_executions_int (loop);
1515 if (nitercst < 0)
1516 continue;
1517 if (nitercst > max)
1518 nitercst = max;
1519
1520 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1521 }
1522 else
1523 continue;
1524
1525 /* If the prediction for number of iterations is zero, do not
1526 predict the exit edges. */
1527 if (nitercst == 0)
1528 continue;
1529
1530 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1531 predict_edge (ex, predictor, probability);
1532 }
1533 exits.release ();
1534
1535 /* Find information about loop bound variables. */
1536 for (nb_iter = loop->bounds; nb_iter;
1537 nb_iter = nb_iter->next)
1538 if (nb_iter->stmt
1539 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1540 {
1541 stmt = nb_iter->stmt;
1542 break;
1543 }
1544 if (!stmt && last_stmt (loop->header)
1545 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1546 stmt = last_stmt (loop->header);
1547 if (stmt)
1548 is_comparison_with_loop_invariant_p (stmt, loop,
1549 &loop_bound_var,
1550 &loop_bound_code,
1551 &loop_bound_step,
1552 &loop_iv_base);
1553
1554 bbs = get_loop_body (loop);
1555
1556 for (j = 0; j < loop->num_nodes; j++)
1557 {
1558 int header_found = 0;
1559 edge e;
1560 edge_iterator ei;
1561
1562 bb = bbs[j];
1563
1564 /* Bypass loop heuristics on continue statement. These
1565 statements construct loops via "non-loop" constructs
1566 in the source language and are better to be handled
1567 separately. */
1568 if (predicted_by_p (bb, PRED_CONTINUE))
1569 continue;
1570
1571 /* Loop branch heuristics - predict an edge back to a
1572 loop's head as taken. */
1573 if (bb == loop->latch)
1574 {
1575 e = find_edge (loop->latch, loop->header);
1576 if (e)
1577 {
1578 header_found = 1;
1579 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1580 }
1581 }
1582
1583 /* Loop exit heuristics - predict an edge exiting the loop if the
1584 conditional has no loop header successors as not taken. */
1585 if (!header_found
1586 /* If we already used more reliable loop exit predictors, do not
1587 bother with PRED_LOOP_EXIT. */
1588 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1589 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1590 {
1591 /* For loop with many exits we don't want to predict all exits
1592 with the pretty large probability, because if all exits are
1593 considered in row, the loop would be predicted to iterate
1594 almost never. The code to divide probability by number of
1595 exits is very rough. It should compute the number of exits
1596 taken in each patch through function (not the overall number
1597 of exits that might be a lot higher for loops with wide switch
1598 statements in them) and compute n-th square root.
1599
1600 We limit the minimal probability by 2% to avoid
1601 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1602 as this was causing regression in perl benchmark containing such
1603 a wide loop. */
1604
1605 int probability = ((REG_BR_PROB_BASE
1606 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1607 / n_exits);
1608 if (probability < HITRATE (2))
1609 probability = HITRATE (2);
1610 FOR_EACH_EDGE (e, ei, bb->succs)
1611 if (e->dest->index < NUM_FIXED_BLOCKS
1612 || !flow_bb_inside_loop_p (loop, e->dest))
1613 predict_edge (e, PRED_LOOP_EXIT, probability);
1614 }
1615 if (loop_bound_var)
1616 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1617 loop_bound_code,
1618 tree_to_shwi (loop_bound_step));
1619 }
1620
1621 /* Free basic blocks from get_loop_body. */
1622 free (bbs);
1623 }
1624 }
1625
1626 /* Attempt to predict probabilities of BB outgoing edges using local
1627 properties. */
1628 static void
1629 bb_estimate_probability_locally (basic_block bb)
1630 {
1631 rtx_insn *last_insn = BB_END (bb);
1632 rtx cond;
1633
1634 if (! can_predict_insn_p (last_insn))
1635 return;
1636 cond = get_condition (last_insn, NULL, false, false);
1637 if (! cond)
1638 return;
1639
1640 /* Try "pointer heuristic."
1641 A comparison ptr == 0 is predicted as false.
1642 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1643 if (COMPARISON_P (cond)
1644 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1645 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1646 {
1647 if (GET_CODE (cond) == EQ)
1648 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1649 else if (GET_CODE (cond) == NE)
1650 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1651 }
1652 else
1653
1654 /* Try "opcode heuristic."
1655 EQ tests are usually false and NE tests are usually true. Also,
1656 most quantities are positive, so we can make the appropriate guesses
1657 about signed comparisons against zero. */
1658 switch (GET_CODE (cond))
1659 {
1660 case CONST_INT:
1661 /* Unconditional branch. */
1662 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1663 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1664 break;
1665
1666 case EQ:
1667 case UNEQ:
1668 /* Floating point comparisons appears to behave in a very
1669 unpredictable way because of special role of = tests in
1670 FP code. */
1671 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1672 ;
1673 /* Comparisons with 0 are often used for booleans and there is
1674 nothing useful to predict about them. */
1675 else if (XEXP (cond, 1) == const0_rtx
1676 || XEXP (cond, 0) == const0_rtx)
1677 ;
1678 else
1679 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1680 break;
1681
1682 case NE:
1683 case LTGT:
1684 /* Floating point comparisons appears to behave in a very
1685 unpredictable way because of special role of = tests in
1686 FP code. */
1687 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1688 ;
1689 /* Comparisons with 0 are often used for booleans and there is
1690 nothing useful to predict about them. */
1691 else if (XEXP (cond, 1) == const0_rtx
1692 || XEXP (cond, 0) == const0_rtx)
1693 ;
1694 else
1695 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1696 break;
1697
1698 case ORDERED:
1699 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1700 break;
1701
1702 case UNORDERED:
1703 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1704 break;
1705
1706 case LE:
1707 case LT:
1708 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1709 || XEXP (cond, 1) == constm1_rtx)
1710 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1711 break;
1712
1713 case GE:
1714 case GT:
1715 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1716 || XEXP (cond, 1) == constm1_rtx)
1717 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1718 break;
1719
1720 default:
1721 break;
1722 }
1723 }
1724
1725 /* Set edge->probability for each successor edge of BB. */
1726 void
1727 guess_outgoing_edge_probabilities (basic_block bb)
1728 {
1729 bb_estimate_probability_locally (bb);
1730 combine_predictions_for_insn (BB_END (bb), bb);
1731 }
1732 \f
1733 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1734
1735 /* Helper function for expr_expected_value. */
1736
1737 static tree
1738 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1739 tree op1, bitmap visited, enum br_predictor *predictor)
1740 {
1741 gimple def;
1742
1743 if (predictor)
1744 *predictor = PRED_UNCONDITIONAL;
1745
1746 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1747 {
1748 if (TREE_CONSTANT (op0))
1749 return op0;
1750
1751 if (code != SSA_NAME)
1752 return NULL_TREE;
1753
1754 def = SSA_NAME_DEF_STMT (op0);
1755
1756 /* If we were already here, break the infinite cycle. */
1757 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1758 return NULL;
1759
1760 if (gimple_code (def) == GIMPLE_PHI)
1761 {
1762 /* All the arguments of the PHI node must have the same constant
1763 length. */
1764 int i, n = gimple_phi_num_args (def);
1765 tree val = NULL, new_val;
1766
1767 for (i = 0; i < n; i++)
1768 {
1769 tree arg = PHI_ARG_DEF (def, i);
1770 enum br_predictor predictor2;
1771
1772 /* If this PHI has itself as an argument, we cannot
1773 determine the string length of this argument. However,
1774 if we can find an expected constant value for the other
1775 PHI args then we can still be sure that this is
1776 likely a constant. So be optimistic and just
1777 continue with the next argument. */
1778 if (arg == PHI_RESULT (def))
1779 continue;
1780
1781 new_val = expr_expected_value (arg, visited, &predictor2);
1782
1783 /* It is difficult to combine value predictors. Simply assume
1784 that later predictor is weaker and take its prediction. */
1785 if (predictor && *predictor < predictor2)
1786 *predictor = predictor2;
1787 if (!new_val)
1788 return NULL;
1789 if (!val)
1790 val = new_val;
1791 else if (!operand_equal_p (val, new_val, false))
1792 return NULL;
1793 }
1794 return val;
1795 }
1796 if (is_gimple_assign (def))
1797 {
1798 if (gimple_assign_lhs (def) != op0)
1799 return NULL;
1800
1801 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1802 gimple_assign_rhs1 (def),
1803 gimple_assign_rhs_code (def),
1804 gimple_assign_rhs2 (def),
1805 visited, predictor);
1806 }
1807
1808 if (is_gimple_call (def))
1809 {
1810 tree decl = gimple_call_fndecl (def);
1811 if (!decl)
1812 {
1813 if (gimple_call_internal_p (def)
1814 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1815 {
1816 gcc_assert (gimple_call_num_args (def) == 3);
1817 tree val = gimple_call_arg (def, 0);
1818 if (TREE_CONSTANT (val))
1819 return val;
1820 if (predictor)
1821 {
1822 tree val2 = gimple_call_arg (def, 2);
1823 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1824 && tree_fits_uhwi_p (val2)
1825 && tree_to_uhwi (val2) < END_PREDICTORS);
1826 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1827 }
1828 return gimple_call_arg (def, 1);
1829 }
1830 return NULL;
1831 }
1832 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1833 switch (DECL_FUNCTION_CODE (decl))
1834 {
1835 case BUILT_IN_EXPECT:
1836 {
1837 tree val;
1838 if (gimple_call_num_args (def) != 2)
1839 return NULL;
1840 val = gimple_call_arg (def, 0);
1841 if (TREE_CONSTANT (val))
1842 return val;
1843 if (predictor)
1844 *predictor = PRED_BUILTIN_EXPECT;
1845 return gimple_call_arg (def, 1);
1846 }
1847
1848 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1849 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1850 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1851 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1852 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1854 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1855 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1856 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1857 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1860 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1861 /* Assume that any given atomic operation has low contention,
1862 and thus the compare-and-swap operation succeeds. */
1863 if (predictor)
1864 *predictor = PRED_COMPARE_AND_SWAP;
1865 return boolean_true_node;
1866 default:
1867 break;
1868 }
1869 }
1870
1871 return NULL;
1872 }
1873
1874 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1875 {
1876 tree res;
1877 enum br_predictor predictor2;
1878 op0 = expr_expected_value (op0, visited, predictor);
1879 if (!op0)
1880 return NULL;
1881 op1 = expr_expected_value (op1, visited, &predictor2);
1882 if (predictor && *predictor < predictor2)
1883 *predictor = predictor2;
1884 if (!op1)
1885 return NULL;
1886 res = fold_build2 (code, type, op0, op1);
1887 if (TREE_CONSTANT (res))
1888 return res;
1889 return NULL;
1890 }
1891 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1892 {
1893 tree res;
1894 op0 = expr_expected_value (op0, visited, predictor);
1895 if (!op0)
1896 return NULL;
1897 res = fold_build1 (code, type, op0);
1898 if (TREE_CONSTANT (res))
1899 return res;
1900 return NULL;
1901 }
1902 return NULL;
1903 }
1904
1905 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1906 The function is used by builtin_expect branch predictor so the evidence
1907 must come from this construct and additional possible constant folding.
1908
1909 We may want to implement more involved value guess (such as value range
1910 propagation based prediction), but such tricks shall go to new
1911 implementation. */
1912
1913 static tree
1914 expr_expected_value (tree expr, bitmap visited,
1915 enum br_predictor *predictor)
1916 {
1917 enum tree_code code;
1918 tree op0, op1;
1919
1920 if (TREE_CONSTANT (expr))
1921 {
1922 if (predictor)
1923 *predictor = PRED_UNCONDITIONAL;
1924 return expr;
1925 }
1926
1927 extract_ops_from_tree (expr, &code, &op0, &op1);
1928 return expr_expected_value_1 (TREE_TYPE (expr),
1929 op0, code, op1, visited, predictor);
1930 }
1931 \f
1932 /* Predict using opcode of the last statement in basic block. */
1933 static void
1934 tree_predict_by_opcode (basic_block bb)
1935 {
1936 gimple stmt = last_stmt (bb);
1937 edge then_edge;
1938 tree op0, op1;
1939 tree type;
1940 tree val;
1941 enum tree_code cmp;
1942 bitmap visited;
1943 edge_iterator ei;
1944 enum br_predictor predictor;
1945
1946 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1947 return;
1948 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1949 if (then_edge->flags & EDGE_TRUE_VALUE)
1950 break;
1951 op0 = gimple_cond_lhs (stmt);
1952 op1 = gimple_cond_rhs (stmt);
1953 cmp = gimple_cond_code (stmt);
1954 type = TREE_TYPE (op0);
1955 visited = BITMAP_ALLOC (NULL);
1956 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1957 &predictor);
1958 BITMAP_FREE (visited);
1959 if (val && TREE_CODE (val) == INTEGER_CST)
1960 {
1961 if (predictor == PRED_BUILTIN_EXPECT)
1962 {
1963 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
1964
1965 gcc_assert (percent >= 0 && percent <= 100);
1966 if (integer_zerop (val))
1967 percent = 100 - percent;
1968 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
1969 }
1970 else
1971 predict_edge (then_edge, predictor,
1972 integer_zerop (val) ? NOT_TAKEN : TAKEN);
1973 }
1974 /* Try "pointer heuristic."
1975 A comparison ptr == 0 is predicted as false.
1976 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1977 if (POINTER_TYPE_P (type))
1978 {
1979 if (cmp == EQ_EXPR)
1980 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1981 else if (cmp == NE_EXPR)
1982 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1983 }
1984 else
1985
1986 /* Try "opcode heuristic."
1987 EQ tests are usually false and NE tests are usually true. Also,
1988 most quantities are positive, so we can make the appropriate guesses
1989 about signed comparisons against zero. */
1990 switch (cmp)
1991 {
1992 case EQ_EXPR:
1993 case UNEQ_EXPR:
1994 /* Floating point comparisons appears to behave in a very
1995 unpredictable way because of special role of = tests in
1996 FP code. */
1997 if (FLOAT_TYPE_P (type))
1998 ;
1999 /* Comparisons with 0 are often used for booleans and there is
2000 nothing useful to predict about them. */
2001 else if (integer_zerop (op0) || integer_zerop (op1))
2002 ;
2003 else
2004 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2005 break;
2006
2007 case NE_EXPR:
2008 case LTGT_EXPR:
2009 /* Floating point comparisons appears to behave in a very
2010 unpredictable way because of special role of = tests in
2011 FP code. */
2012 if (FLOAT_TYPE_P (type))
2013 ;
2014 /* Comparisons with 0 are often used for booleans and there is
2015 nothing useful to predict about them. */
2016 else if (integer_zerop (op0)
2017 || integer_zerop (op1))
2018 ;
2019 else
2020 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2021 break;
2022
2023 case ORDERED_EXPR:
2024 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2025 break;
2026
2027 case UNORDERED_EXPR:
2028 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2029 break;
2030
2031 case LE_EXPR:
2032 case LT_EXPR:
2033 if (integer_zerop (op1)
2034 || integer_onep (op1)
2035 || integer_all_onesp (op1)
2036 || real_zerop (op1)
2037 || real_onep (op1)
2038 || real_minus_onep (op1))
2039 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2040 break;
2041
2042 case GE_EXPR:
2043 case GT_EXPR:
2044 if (integer_zerop (op1)
2045 || integer_onep (op1)
2046 || integer_all_onesp (op1)
2047 || real_zerop (op1)
2048 || real_onep (op1)
2049 || real_minus_onep (op1))
2050 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2051 break;
2052
2053 default:
2054 break;
2055 }
2056 }
2057
2058 /* Try to guess whether the value of return means error code. */
2059
2060 static enum br_predictor
2061 return_prediction (tree val, enum prediction *prediction)
2062 {
2063 /* VOID. */
2064 if (!val)
2065 return PRED_NO_PREDICTION;
2066 /* Different heuristics for pointers and scalars. */
2067 if (POINTER_TYPE_P (TREE_TYPE (val)))
2068 {
2069 /* NULL is usually not returned. */
2070 if (integer_zerop (val))
2071 {
2072 *prediction = NOT_TAKEN;
2073 return PRED_NULL_RETURN;
2074 }
2075 }
2076 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2077 {
2078 /* Negative return values are often used to indicate
2079 errors. */
2080 if (TREE_CODE (val) == INTEGER_CST
2081 && tree_int_cst_sgn (val) < 0)
2082 {
2083 *prediction = NOT_TAKEN;
2084 return PRED_NEGATIVE_RETURN;
2085 }
2086 /* Constant return values seems to be commonly taken.
2087 Zero/one often represent booleans so exclude them from the
2088 heuristics. */
2089 if (TREE_CONSTANT (val)
2090 && (!integer_zerop (val) && !integer_onep (val)))
2091 {
2092 *prediction = TAKEN;
2093 return PRED_CONST_RETURN;
2094 }
2095 }
2096 return PRED_NO_PREDICTION;
2097 }
2098
2099 /* Find the basic block with return expression and look up for possible
2100 return value trying to apply RETURN_PREDICTION heuristics. */
2101 static void
2102 apply_return_prediction (void)
2103 {
2104 gimple return_stmt = NULL;
2105 tree return_val;
2106 edge e;
2107 gimple phi;
2108 int phi_num_args, i;
2109 enum br_predictor pred;
2110 enum prediction direction;
2111 edge_iterator ei;
2112
2113 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2114 {
2115 return_stmt = last_stmt (e->src);
2116 if (return_stmt
2117 && gimple_code (return_stmt) == GIMPLE_RETURN)
2118 break;
2119 }
2120 if (!e)
2121 return;
2122 return_val = gimple_return_retval (return_stmt);
2123 if (!return_val)
2124 return;
2125 if (TREE_CODE (return_val) != SSA_NAME
2126 || !SSA_NAME_DEF_STMT (return_val)
2127 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2128 return;
2129 phi = SSA_NAME_DEF_STMT (return_val);
2130 phi_num_args = gimple_phi_num_args (phi);
2131 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2132
2133 /* Avoid the degenerate case where all return values form the function
2134 belongs to same category (ie they are all positive constants)
2135 so we can hardly say something about them. */
2136 for (i = 1; i < phi_num_args; i++)
2137 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2138 break;
2139 if (i != phi_num_args)
2140 for (i = 0; i < phi_num_args; i++)
2141 {
2142 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2143 if (pred != PRED_NO_PREDICTION)
2144 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2145 direction);
2146 }
2147 }
2148
2149 /* Look for basic block that contains unlikely to happen events
2150 (such as noreturn calls) and mark all paths leading to execution
2151 of this basic blocks as unlikely. */
2152
2153 static void
2154 tree_bb_level_predictions (void)
2155 {
2156 basic_block bb;
2157 bool has_return_edges = false;
2158 edge e;
2159 edge_iterator ei;
2160
2161 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2162 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2163 {
2164 has_return_edges = true;
2165 break;
2166 }
2167
2168 apply_return_prediction ();
2169
2170 FOR_EACH_BB_FN (bb, cfun)
2171 {
2172 gimple_stmt_iterator gsi;
2173
2174 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2175 {
2176 gimple stmt = gsi_stmt (gsi);
2177 tree decl;
2178
2179 if (is_gimple_call (stmt))
2180 {
2181 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2182 && has_return_edges)
2183 predict_paths_leading_to (bb, PRED_NORETURN,
2184 NOT_TAKEN);
2185 decl = gimple_call_fndecl (stmt);
2186 if (decl
2187 && lookup_attribute ("cold",
2188 DECL_ATTRIBUTES (decl)))
2189 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2190 NOT_TAKEN);
2191 }
2192 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2193 {
2194 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2195 gimple_predict_outcome (stmt));
2196 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2197 hints to callers. */
2198 }
2199 }
2200 }
2201 }
2202
2203 #ifdef ENABLE_CHECKING
2204
2205 /* Callback for hash_map::traverse, asserts that the pointer map is
2206 empty. */
2207
2208 bool
2209 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2210 void *)
2211 {
2212 gcc_assert (!value);
2213 return false;
2214 }
2215 #endif
2216
2217 /* Predict branch probabilities and estimate profile for basic block BB. */
2218
2219 static void
2220 tree_estimate_probability_bb (basic_block bb)
2221 {
2222 edge e;
2223 edge_iterator ei;
2224 gimple last;
2225
2226 FOR_EACH_EDGE (e, ei, bb->succs)
2227 {
2228 /* Predict edges to user labels with attributes. */
2229 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2230 {
2231 gimple_stmt_iterator gi;
2232 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2233 {
2234 gimple stmt = gsi_stmt (gi);
2235 tree decl;
2236
2237 if (gimple_code (stmt) != GIMPLE_LABEL)
2238 break;
2239 decl = gimple_label_label (stmt);
2240 if (DECL_ARTIFICIAL (decl))
2241 continue;
2242
2243 /* Finally, we have a user-defined label. */
2244 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2245 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2246 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2247 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2248 }
2249 }
2250
2251 /* Predict early returns to be probable, as we've already taken
2252 care for error returns and other cases are often used for
2253 fast paths through function.
2254
2255 Since we've already removed the return statements, we are
2256 looking for CFG like:
2257
2258 if (conditional)
2259 {
2260 ..
2261 goto return_block
2262 }
2263 some other blocks
2264 return_block:
2265 return_stmt. */
2266 if (e->dest != bb->next_bb
2267 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2268 && single_succ_p (e->dest)
2269 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2270 && (last = last_stmt (e->dest)) != NULL
2271 && gimple_code (last) == GIMPLE_RETURN)
2272 {
2273 edge e1;
2274 edge_iterator ei1;
2275
2276 if (single_succ_p (bb))
2277 {
2278 FOR_EACH_EDGE (e1, ei1, bb->preds)
2279 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2280 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2281 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2282 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2283 }
2284 else
2285 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2286 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2287 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2288 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2289 }
2290
2291 /* Look for block we are guarding (ie we dominate it,
2292 but it doesn't postdominate us). */
2293 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2294 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2295 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2296 {
2297 gimple_stmt_iterator bi;
2298
2299 /* The call heuristic claims that a guarded function call
2300 is improbable. This is because such calls are often used
2301 to signal exceptional situations such as printing error
2302 messages. */
2303 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2304 gsi_next (&bi))
2305 {
2306 gimple stmt = gsi_stmt (bi);
2307 if (is_gimple_call (stmt)
2308 /* Constant and pure calls are hardly used to signalize
2309 something exceptional. */
2310 && gimple_has_side_effects (stmt))
2311 {
2312 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2313 break;
2314 }
2315 }
2316 }
2317 }
2318 tree_predict_by_opcode (bb);
2319 }
2320
2321 /* Predict branch probabilities and estimate profile of the tree CFG.
2322 This function can be called from the loop optimizers to recompute
2323 the profile information. */
2324
2325 void
2326 tree_estimate_probability (void)
2327 {
2328 basic_block bb;
2329
2330 add_noreturn_fake_exit_edges ();
2331 connect_infinite_loops_to_exit ();
2332 /* We use loop_niter_by_eval, which requires that the loops have
2333 preheaders. */
2334 create_preheaders (CP_SIMPLE_PREHEADERS);
2335 calculate_dominance_info (CDI_POST_DOMINATORS);
2336
2337 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2338 tree_bb_level_predictions ();
2339 record_loop_exits ();
2340
2341 if (number_of_loops (cfun) > 1)
2342 predict_loops ();
2343
2344 FOR_EACH_BB_FN (bb, cfun)
2345 tree_estimate_probability_bb (bb);
2346
2347 FOR_EACH_BB_FN (bb, cfun)
2348 combine_predictions_for_bb (bb);
2349
2350 #ifdef ENABLE_CHECKING
2351 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2352 #endif
2353 delete bb_predictions;
2354 bb_predictions = NULL;
2355
2356 estimate_bb_frequencies (false);
2357 free_dominance_info (CDI_POST_DOMINATORS);
2358 remove_fake_exit_edges ();
2359 }
2360 \f
2361 /* Predict edges to successors of CUR whose sources are not postdominated by
2362 BB by PRED and recurse to all postdominators. */
2363
2364 static void
2365 predict_paths_for_bb (basic_block cur, basic_block bb,
2366 enum br_predictor pred,
2367 enum prediction taken,
2368 bitmap visited)
2369 {
2370 edge e;
2371 edge_iterator ei;
2372 basic_block son;
2373
2374 /* We are looking for all edges forming edge cut induced by
2375 set of all blocks postdominated by BB. */
2376 FOR_EACH_EDGE (e, ei, cur->preds)
2377 if (e->src->index >= NUM_FIXED_BLOCKS
2378 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2379 {
2380 edge e2;
2381 edge_iterator ei2;
2382 bool found = false;
2383
2384 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2385 if (e->flags & (EDGE_EH | EDGE_FAKE))
2386 continue;
2387 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2388
2389 /* See if there is an edge from e->src that is not abnormal
2390 and does not lead to BB. */
2391 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2392 if (e2 != e
2393 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2394 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2395 {
2396 found = true;
2397 break;
2398 }
2399
2400 /* If there is non-abnormal path leaving e->src, predict edge
2401 using predictor. Otherwise we need to look for paths
2402 leading to e->src.
2403
2404 The second may lead to infinite loop in the case we are predicitng
2405 regions that are only reachable by abnormal edges. We simply
2406 prevent visiting given BB twice. */
2407 if (found)
2408 predict_edge_def (e, pred, taken);
2409 else if (bitmap_set_bit (visited, e->src->index))
2410 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2411 }
2412 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2413 son;
2414 son = next_dom_son (CDI_POST_DOMINATORS, son))
2415 predict_paths_for_bb (son, bb, pred, taken, visited);
2416 }
2417
2418 /* Sets branch probabilities according to PREDiction and
2419 FLAGS. */
2420
2421 static void
2422 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2423 enum prediction taken)
2424 {
2425 bitmap visited = BITMAP_ALLOC (NULL);
2426 predict_paths_for_bb (bb, bb, pred, taken, visited);
2427 BITMAP_FREE (visited);
2428 }
2429
2430 /* Like predict_paths_leading_to but take edge instead of basic block. */
2431
2432 static void
2433 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2434 enum prediction taken)
2435 {
2436 bool has_nonloop_edge = false;
2437 edge_iterator ei;
2438 edge e2;
2439
2440 basic_block bb = e->src;
2441 FOR_EACH_EDGE (e2, ei, bb->succs)
2442 if (e2->dest != e->src && e2->dest != e->dest
2443 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2444 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2445 {
2446 has_nonloop_edge = true;
2447 break;
2448 }
2449 if (!has_nonloop_edge)
2450 {
2451 bitmap visited = BITMAP_ALLOC (NULL);
2452 predict_paths_for_bb (bb, bb, pred, taken, visited);
2453 BITMAP_FREE (visited);
2454 }
2455 else
2456 predict_edge_def (e, pred, taken);
2457 }
2458 \f
2459 /* This is used to carry information about basic blocks. It is
2460 attached to the AUX field of the standard CFG block. */
2461
2462 struct block_info
2463 {
2464 /* Estimated frequency of execution of basic_block. */
2465 sreal frequency;
2466
2467 /* To keep queue of basic blocks to process. */
2468 basic_block next;
2469
2470 /* Number of predecessors we need to visit first. */
2471 int npredecessors;
2472 };
2473
2474 /* Similar information for edges. */
2475 struct edge_prob_info
2476 {
2477 /* In case edge is a loopback edge, the probability edge will be reached
2478 in case header is. Estimated number of iterations of the loop can be
2479 then computed as 1 / (1 - back_edge_prob). */
2480 sreal back_edge_prob;
2481 /* True if the edge is a loopback edge in the natural loop. */
2482 unsigned int back_edge:1;
2483 };
2484
2485 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2486 #undef EDGE_INFO
2487 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2488
2489 /* Helper function for estimate_bb_frequencies.
2490 Propagate the frequencies in blocks marked in
2491 TOVISIT, starting in HEAD. */
2492
2493 static void
2494 propagate_freq (basic_block head, bitmap tovisit)
2495 {
2496 basic_block bb;
2497 basic_block last;
2498 unsigned i;
2499 edge e;
2500 basic_block nextbb;
2501 bitmap_iterator bi;
2502
2503 /* For each basic block we need to visit count number of his predecessors
2504 we need to visit first. */
2505 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2506 {
2507 edge_iterator ei;
2508 int count = 0;
2509
2510 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2511
2512 FOR_EACH_EDGE (e, ei, bb->preds)
2513 {
2514 bool visit = bitmap_bit_p (tovisit, e->src->index);
2515
2516 if (visit && !(e->flags & EDGE_DFS_BACK))
2517 count++;
2518 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2519 fprintf (dump_file,
2520 "Irreducible region hit, ignoring edge to %i->%i\n",
2521 e->src->index, bb->index);
2522 }
2523 BLOCK_INFO (bb)->npredecessors = count;
2524 /* When function never returns, we will never process exit block. */
2525 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2526 bb->count = bb->frequency = 0;
2527 }
2528
2529 BLOCK_INFO (head)->frequency = real_one;
2530 last = head;
2531 for (bb = head; bb; bb = nextbb)
2532 {
2533 edge_iterator ei;
2534 sreal cyclic_probability = real_zero;
2535 sreal frequency = real_zero;
2536
2537 nextbb = BLOCK_INFO (bb)->next;
2538 BLOCK_INFO (bb)->next = NULL;
2539
2540 /* Compute frequency of basic block. */
2541 if (bb != head)
2542 {
2543 #ifdef ENABLE_CHECKING
2544 FOR_EACH_EDGE (e, ei, bb->preds)
2545 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2546 || (e->flags & EDGE_DFS_BACK));
2547 #endif
2548
2549 FOR_EACH_EDGE (e, ei, bb->preds)
2550 if (EDGE_INFO (e)->back_edge)
2551 {
2552 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2553 }
2554 else if (!(e->flags & EDGE_DFS_BACK))
2555 {
2556 /* frequency += (e->probability
2557 * BLOCK_INFO (e->src)->frequency /
2558 REG_BR_PROB_BASE); */
2559
2560 sreal tmp (e->probability, 0);
2561 tmp *= BLOCK_INFO (e->src)->frequency;
2562 tmp *= real_inv_br_prob_base;
2563 frequency += tmp;
2564 }
2565
2566 if (cyclic_probability == real_zero)
2567 {
2568 BLOCK_INFO (bb)->frequency = frequency;
2569 }
2570 else
2571 {
2572 if (cyclic_probability > real_almost_one)
2573 cyclic_probability = real_almost_one;
2574
2575 /* BLOCK_INFO (bb)->frequency = frequency
2576 / (1 - cyclic_probability) */
2577
2578 cyclic_probability = real_one - cyclic_probability;
2579 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2580 }
2581 }
2582
2583 bitmap_clear_bit (tovisit, bb->index);
2584
2585 e = find_edge (bb, head);
2586 if (e)
2587 {
2588 /* EDGE_INFO (e)->back_edge_prob
2589 = ((e->probability * BLOCK_INFO (bb)->frequency)
2590 / REG_BR_PROB_BASE); */
2591
2592 sreal tmp (e->probability, 0);
2593 tmp *= BLOCK_INFO (bb)->frequency;
2594 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2595 }
2596
2597 /* Propagate to successor blocks. */
2598 FOR_EACH_EDGE (e, ei, bb->succs)
2599 if (!(e->flags & EDGE_DFS_BACK)
2600 && BLOCK_INFO (e->dest)->npredecessors)
2601 {
2602 BLOCK_INFO (e->dest)->npredecessors--;
2603 if (!BLOCK_INFO (e->dest)->npredecessors)
2604 {
2605 if (!nextbb)
2606 nextbb = e->dest;
2607 else
2608 BLOCK_INFO (last)->next = e->dest;
2609
2610 last = e->dest;
2611 }
2612 }
2613 }
2614 }
2615
2616 /* Estimate frequencies in loops at same nest level. */
2617
2618 static void
2619 estimate_loops_at_level (struct loop *first_loop)
2620 {
2621 struct loop *loop;
2622
2623 for (loop = first_loop; loop; loop = loop->next)
2624 {
2625 edge e;
2626 basic_block *bbs;
2627 unsigned i;
2628 bitmap tovisit = BITMAP_ALLOC (NULL);
2629
2630 estimate_loops_at_level (loop->inner);
2631
2632 /* Find current loop back edge and mark it. */
2633 e = loop_latch_edge (loop);
2634 EDGE_INFO (e)->back_edge = 1;
2635
2636 bbs = get_loop_body (loop);
2637 for (i = 0; i < loop->num_nodes; i++)
2638 bitmap_set_bit (tovisit, bbs[i]->index);
2639 free (bbs);
2640 propagate_freq (loop->header, tovisit);
2641 BITMAP_FREE (tovisit);
2642 }
2643 }
2644
2645 /* Propagates frequencies through structure of loops. */
2646
2647 static void
2648 estimate_loops (void)
2649 {
2650 bitmap tovisit = BITMAP_ALLOC (NULL);
2651 basic_block bb;
2652
2653 /* Start by estimating the frequencies in the loops. */
2654 if (number_of_loops (cfun) > 1)
2655 estimate_loops_at_level (current_loops->tree_root->inner);
2656
2657 /* Now propagate the frequencies through all the blocks. */
2658 FOR_ALL_BB_FN (bb, cfun)
2659 {
2660 bitmap_set_bit (tovisit, bb->index);
2661 }
2662 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2663 BITMAP_FREE (tovisit);
2664 }
2665
2666 /* Drop the profile for NODE to guessed, and update its frequency based on
2667 whether it is expected to be hot given the CALL_COUNT. */
2668
2669 static void
2670 drop_profile (struct cgraph_node *node, gcov_type call_count)
2671 {
2672 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2673 /* In the case where this was called by another function with a
2674 dropped profile, call_count will be 0. Since there are no
2675 non-zero call counts to this function, we don't know for sure
2676 whether it is hot, and therefore it will be marked normal below. */
2677 bool hot = maybe_hot_count_p (NULL, call_count);
2678
2679 if (dump_file)
2680 fprintf (dump_file,
2681 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2682 node->name (), node->order,
2683 hot ? "Function is hot" : "Function is normal");
2684 /* We only expect to miss profiles for functions that are reached
2685 via non-zero call edges in cases where the function may have
2686 been linked from another module or library (COMDATs and extern
2687 templates). See the comments below for handle_missing_profiles.
2688 Also, only warn in cases where the missing counts exceed the
2689 number of training runs. In certain cases with an execv followed
2690 by a no-return call the profile for the no-return call is not
2691 dumped and there can be a mismatch. */
2692 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2693 && call_count > profile_info->runs)
2694 {
2695 if (flag_profile_correction)
2696 {
2697 if (dump_file)
2698 fprintf (dump_file,
2699 "Missing counts for called function %s/%i\n",
2700 node->name (), node->order);
2701 }
2702 else
2703 warning (0, "Missing counts for called function %s/%i",
2704 node->name (), node->order);
2705 }
2706
2707 profile_status_for_fn (fn)
2708 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2709 node->frequency
2710 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2711 }
2712
2713 /* In the case of COMDAT routines, multiple object files will contain the same
2714 function and the linker will select one for the binary. In that case
2715 all the other copies from the profile instrument binary will be missing
2716 profile counts. Look for cases where this happened, due to non-zero
2717 call counts going to 0-count functions, and drop the profile to guessed
2718 so that we can use the estimated probabilities and avoid optimizing only
2719 for size.
2720
2721 The other case where the profile may be missing is when the routine
2722 is not going to be emitted to the object file, e.g. for "extern template"
2723 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2724 all other cases of non-zero calls to 0-count functions. */
2725
2726 void
2727 handle_missing_profiles (void)
2728 {
2729 struct cgraph_node *node;
2730 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2731 vec<struct cgraph_node *> worklist;
2732 worklist.create (64);
2733
2734 /* See if 0 count function has non-0 count callers. In this case we
2735 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2736 FOR_EACH_DEFINED_FUNCTION (node)
2737 {
2738 struct cgraph_edge *e;
2739 gcov_type call_count = 0;
2740 gcov_type max_tp_first_run = 0;
2741 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2742
2743 if (node->count)
2744 continue;
2745 for (e = node->callers; e; e = e->next_caller)
2746 {
2747 call_count += e->count;
2748
2749 if (e->caller->tp_first_run > max_tp_first_run)
2750 max_tp_first_run = e->caller->tp_first_run;
2751 }
2752
2753 /* If time profile is missing, let assign the maximum that comes from
2754 caller functions. */
2755 if (!node->tp_first_run && max_tp_first_run)
2756 node->tp_first_run = max_tp_first_run + 1;
2757
2758 if (call_count
2759 && fn && fn->cfg
2760 && (call_count * unlikely_count_fraction >= profile_info->runs))
2761 {
2762 drop_profile (node, call_count);
2763 worklist.safe_push (node);
2764 }
2765 }
2766
2767 /* Propagate the profile dropping to other 0-count COMDATs that are
2768 potentially called by COMDATs we already dropped the profile on. */
2769 while (worklist.length () > 0)
2770 {
2771 struct cgraph_edge *e;
2772
2773 node = worklist.pop ();
2774 for (e = node->callees; e; e = e->next_caller)
2775 {
2776 struct cgraph_node *callee = e->callee;
2777 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2778
2779 if (callee->count > 0)
2780 continue;
2781 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2782 && profile_status_for_fn (fn) == PROFILE_READ)
2783 {
2784 drop_profile (node, 0);
2785 worklist.safe_push (callee);
2786 }
2787 }
2788 }
2789 worklist.release ();
2790 }
2791
2792 /* Convert counts measured by profile driven feedback to frequencies.
2793 Return nonzero iff there was any nonzero execution count. */
2794
2795 int
2796 counts_to_freqs (void)
2797 {
2798 gcov_type count_max, true_count_max = 0;
2799 basic_block bb;
2800
2801 /* Don't overwrite the estimated frequencies when the profile for
2802 the function is missing. We may drop this function PROFILE_GUESSED
2803 later in drop_profile (). */
2804 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2805 return 0;
2806
2807 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2808 true_count_max = MAX (bb->count, true_count_max);
2809
2810 count_max = MAX (true_count_max, 1);
2811 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2812 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2813
2814 return true_count_max;
2815 }
2816
2817 /* Return true if function is likely to be expensive, so there is no point to
2818 optimize performance of prologue, epilogue or do inlining at the expense
2819 of code size growth. THRESHOLD is the limit of number of instructions
2820 function can execute at average to be still considered not expensive. */
2821
2822 bool
2823 expensive_function_p (int threshold)
2824 {
2825 unsigned int sum = 0;
2826 basic_block bb;
2827 unsigned int limit;
2828
2829 /* We can not compute accurately for large thresholds due to scaled
2830 frequencies. */
2831 gcc_assert (threshold <= BB_FREQ_MAX);
2832
2833 /* Frequencies are out of range. This either means that function contains
2834 internal loop executing more than BB_FREQ_MAX times or profile feedback
2835 is available and function has not been executed at all. */
2836 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2837 return true;
2838
2839 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2840 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2841 FOR_EACH_BB_FN (bb, cfun)
2842 {
2843 rtx_insn *insn;
2844
2845 FOR_BB_INSNS (bb, insn)
2846 if (active_insn_p (insn))
2847 {
2848 sum += bb->frequency;
2849 if (sum > limit)
2850 return true;
2851 }
2852 }
2853
2854 return false;
2855 }
2856
2857 /* Estimate and propagate basic block frequencies using the given branch
2858 probabilities. If FORCE is true, the frequencies are used to estimate
2859 the counts even when there are already non-zero profile counts. */
2860
2861 void
2862 estimate_bb_frequencies (bool force)
2863 {
2864 basic_block bb;
2865 sreal freq_max;
2866
2867 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2868 {
2869 static int real_values_initialized = 0;
2870
2871 if (!real_values_initialized)
2872 {
2873 real_values_initialized = 1;
2874 real_zero = sreal (0, 0);
2875 real_one = sreal (1, 0);
2876 real_br_prob_base = sreal (REG_BR_PROB_BASE, 0);
2877 real_bb_freq_max = sreal (BB_FREQ_MAX, 0);
2878 real_one_half = sreal (1, -1);
2879 real_inv_br_prob_base = real_one / real_br_prob_base;
2880 real_almost_one = real_one - real_inv_br_prob_base;
2881 }
2882
2883 mark_dfs_back_edges ();
2884
2885 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2886 REG_BR_PROB_BASE;
2887
2888 /* Set up block info for each basic block. */
2889 alloc_aux_for_blocks (sizeof (block_info));
2890 alloc_aux_for_edges (sizeof (edge_prob_info));
2891 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2892 {
2893 edge e;
2894 edge_iterator ei;
2895
2896 FOR_EACH_EDGE (e, ei, bb->succs)
2897 {
2898 EDGE_INFO (e)->back_edge_prob = sreal (e->probability, 0);
2899 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2900 }
2901 }
2902
2903 /* First compute frequencies locally for each loop from innermost
2904 to outermost to examine frequencies for back edges. */
2905 estimate_loops ();
2906
2907 freq_max = real_zero;
2908 FOR_EACH_BB_FN (bb, cfun)
2909 if (freq_max < BLOCK_INFO (bb)->frequency)
2910 freq_max = BLOCK_INFO (bb)->frequency;
2911
2912 freq_max = real_bb_freq_max / freq_max;
2913 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2914 {
2915 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2916 bb->frequency = tmp.to_int ();
2917 }
2918
2919 free_aux_for_blocks ();
2920 free_aux_for_edges ();
2921 }
2922 compute_function_frequency ();
2923 }
2924
2925 /* Decide whether function is hot, cold or unlikely executed. */
2926 void
2927 compute_function_frequency (void)
2928 {
2929 basic_block bb;
2930 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2931
2932 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2933 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2934 node->only_called_at_startup = true;
2935 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2936 node->only_called_at_exit = true;
2937
2938 if (profile_status_for_fn (cfun) != PROFILE_READ)
2939 {
2940 int flags = flags_from_decl_or_type (current_function_decl);
2941 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2942 != NULL)
2943 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2944 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2945 != NULL)
2946 node->frequency = NODE_FREQUENCY_HOT;
2947 else if (flags & ECF_NORETURN)
2948 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2949 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2950 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2951 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2952 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2953 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2954 return;
2955 }
2956
2957 /* Only first time try to drop function into unlikely executed.
2958 After inlining the roundoff errors may confuse us.
2959 Ipa-profile pass will drop functions only called from unlikely
2960 functions to unlikely and that is most of what we care about. */
2961 if (!cfun->after_inlining)
2962 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2963 FOR_EACH_BB_FN (bb, cfun)
2964 {
2965 if (maybe_hot_bb_p (cfun, bb))
2966 {
2967 node->frequency = NODE_FREQUENCY_HOT;
2968 return;
2969 }
2970 if (!probably_never_executed_bb_p (cfun, bb))
2971 node->frequency = NODE_FREQUENCY_NORMAL;
2972 }
2973 }
2974
2975 /* Build PREDICT_EXPR. */
2976 tree
2977 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2978 {
2979 tree t = build1 (PREDICT_EXPR, void_type_node,
2980 build_int_cst (integer_type_node, predictor));
2981 SET_PREDICT_EXPR_OUTCOME (t, taken);
2982 return t;
2983 }
2984
2985 const char *
2986 predictor_name (enum br_predictor predictor)
2987 {
2988 return predictor_info[predictor].name;
2989 }
2990
2991 /* Predict branch probabilities and estimate profile of the tree CFG. */
2992
2993 namespace {
2994
2995 const pass_data pass_data_profile =
2996 {
2997 GIMPLE_PASS, /* type */
2998 "profile_estimate", /* name */
2999 OPTGROUP_NONE, /* optinfo_flags */
3000 TV_BRANCH_PROB, /* tv_id */
3001 PROP_cfg, /* properties_required */
3002 0, /* properties_provided */
3003 0, /* properties_destroyed */
3004 0, /* todo_flags_start */
3005 0, /* todo_flags_finish */
3006 };
3007
3008 class pass_profile : public gimple_opt_pass
3009 {
3010 public:
3011 pass_profile (gcc::context *ctxt)
3012 : gimple_opt_pass (pass_data_profile, ctxt)
3013 {}
3014
3015 /* opt_pass methods: */
3016 virtual bool gate (function *) { return flag_guess_branch_prob; }
3017 virtual unsigned int execute (function *);
3018
3019 }; // class pass_profile
3020
3021 unsigned int
3022 pass_profile::execute (function *fun)
3023 {
3024 unsigned nb_loops;
3025
3026 loop_optimizer_init (LOOPS_NORMAL);
3027 if (dump_file && (dump_flags & TDF_DETAILS))
3028 flow_loops_dump (dump_file, NULL, 0);
3029
3030 mark_irreducible_loops ();
3031
3032 nb_loops = number_of_loops (fun);
3033 if (nb_loops > 1)
3034 scev_initialize ();
3035
3036 tree_estimate_probability ();
3037
3038 if (nb_loops > 1)
3039 scev_finalize ();
3040
3041 loop_optimizer_finalize ();
3042 if (dump_file && (dump_flags & TDF_DETAILS))
3043 gimple_dump_cfg (dump_file, dump_flags);
3044 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3045 profile_status_for_fn (fun) = PROFILE_GUESSED;
3046 return 0;
3047 }
3048
3049 } // anon namespace
3050
3051 gimple_opt_pass *
3052 make_pass_profile (gcc::context *ctxt)
3053 {
3054 return new pass_profile (ctxt);
3055 }
3056
3057 namespace {
3058
3059 const pass_data pass_data_strip_predict_hints =
3060 {
3061 GIMPLE_PASS, /* type */
3062 "*strip_predict_hints", /* name */
3063 OPTGROUP_NONE, /* optinfo_flags */
3064 TV_BRANCH_PROB, /* tv_id */
3065 PROP_cfg, /* properties_required */
3066 0, /* properties_provided */
3067 0, /* properties_destroyed */
3068 0, /* todo_flags_start */
3069 0, /* todo_flags_finish */
3070 };
3071
3072 class pass_strip_predict_hints : public gimple_opt_pass
3073 {
3074 public:
3075 pass_strip_predict_hints (gcc::context *ctxt)
3076 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3077 {}
3078
3079 /* opt_pass methods: */
3080 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3081 virtual unsigned int execute (function *);
3082
3083 }; // class pass_strip_predict_hints
3084
3085 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3086 we no longer need. */
3087 unsigned int
3088 pass_strip_predict_hints::execute (function *fun)
3089 {
3090 basic_block bb;
3091 gimple ass_stmt;
3092 tree var;
3093
3094 FOR_EACH_BB_FN (bb, fun)
3095 {
3096 gimple_stmt_iterator bi;
3097 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3098 {
3099 gimple stmt = gsi_stmt (bi);
3100
3101 if (gimple_code (stmt) == GIMPLE_PREDICT)
3102 {
3103 gsi_remove (&bi, true);
3104 continue;
3105 }
3106 else if (is_gimple_call (stmt))
3107 {
3108 tree fndecl = gimple_call_fndecl (stmt);
3109
3110 if ((fndecl
3111 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3112 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3113 && gimple_call_num_args (stmt) == 2)
3114 || (gimple_call_internal_p (stmt)
3115 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3116 {
3117 var = gimple_call_lhs (stmt);
3118 if (var)
3119 {
3120 ass_stmt
3121 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3122 gsi_replace (&bi, ass_stmt, true);
3123 }
3124 else
3125 {
3126 gsi_remove (&bi, true);
3127 continue;
3128 }
3129 }
3130 }
3131 gsi_next (&bi);
3132 }
3133 }
3134 return 0;
3135 }
3136
3137 } // anon namespace
3138
3139 gimple_opt_pass *
3140 make_pass_strip_predict_hints (gcc::context *ctxt)
3141 {
3142 return new pass_strip_predict_hints (ctxt);
3143 }
3144
3145 /* Rebuild function frequencies. Passes are in general expected to
3146 maintain profile by hand, however in some cases this is not possible:
3147 for example when inlining several functions with loops freuqencies might run
3148 out of scale and thus needs to be recomputed. */
3149
3150 void
3151 rebuild_frequencies (void)
3152 {
3153 timevar_push (TV_REBUILD_FREQUENCIES);
3154
3155 /* When the max bb count in the function is small, there is a higher
3156 chance that there were truncation errors in the integer scaling
3157 of counts by inlining and other optimizations. This could lead
3158 to incorrect classification of code as being cold when it isn't.
3159 In that case, force the estimation of bb counts/frequencies from the
3160 branch probabilities, rather than computing frequencies from counts,
3161 which may also lead to frequencies incorrectly reduced to 0. There
3162 is less precision in the probabilities, so we only do this for small
3163 max counts. */
3164 gcov_type count_max = 0;
3165 basic_block bb;
3166 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3167 count_max = MAX (bb->count, count_max);
3168
3169 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3170 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3171 && count_max < REG_BR_PROB_BASE/10))
3172 {
3173 loop_optimizer_init (0);
3174 add_noreturn_fake_exit_edges ();
3175 mark_irreducible_loops ();
3176 connect_infinite_loops_to_exit ();
3177 estimate_bb_frequencies (true);
3178 remove_fake_exit_edges ();
3179 loop_optimizer_finalize ();
3180 }
3181 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3182 counts_to_freqs ();
3183 else
3184 gcc_unreachable ();
3185 timevar_pop (TV_REBUILD_FREQUENCIES);
3186 }