Daily bump.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "diagnostic-core.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
76
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
82
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
85
86 struct predictor_info
87 {
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
92 };
93
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
97
98 /* Recompute hitrate in percent to our representation. */
99
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
101
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
105
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
108 };
109 #undef DEF_PREDICTOR
110
111 /* Return TRUE if frequency FREQ is considered to be hot. */
112
113 static inline bool
114 maybe_hot_frequency_p (int freq)
115 {
116 struct cgraph_node *node = cgraph_get_node (current_function_decl);
117 if (!profile_info || !flag_branch_probabilities)
118 {
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
123 }
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128 return false;
129 if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130 return false;
131 return true;
132 }
133
134 /* Return TRUE if frequency FREQ is considered to be hot. */
135
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
138 {
139 if (profile_status != PROFILE_READ)
140 return true;
141 /* Code executed at most once is not hot. */
142 if (profile_info->runs >= count)
143 return false;
144 return (count
145 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
146 }
147
148 /* Return true in case BB can be CPU intensive and should be optimized
149 for maximal performance. */
150
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
153 {
154 if (profile_status == PROFILE_READ)
155 return maybe_hot_count_p (bb->count);
156 return maybe_hot_frequency_p (bb->frequency);
157 }
158
159 /* Return true if the call can be hot. */
160
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
163 {
164 if (profile_info && flag_branch_probabilities
165 && (edge->count
166 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167 return false;
168 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169 || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173 return false;
174 if (optimize_size)
175 return false;
176 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177 return true;
178 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180 return false;
181 if (flag_guess_branch_prob
182 && edge->frequency <= (CGRAPH_FREQ_BASE
183 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184 return false;
185 return true;
186 }
187
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
190
191 bool
192 maybe_hot_edge_p (edge e)
193 {
194 if (profile_status == PROFILE_READ)
195 return maybe_hot_count_p (e->count);
196 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
197 }
198
199
200 /* Return true in case BB is probably never executed. */
201
202 bool
203 probably_never_executed_bb_p (const_basic_block bb)
204 {
205 if (profile_info && flag_branch_probabilities)
206 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
207 if ((!profile_info || !flag_branch_probabilities)
208 && (cgraph_get_node (current_function_decl)->frequency
209 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
210 return true;
211 return false;
212 }
213
214 /* Return true if NODE should be optimized for size. */
215
216 bool
217 cgraph_optimize_for_size_p (struct cgraph_node *node)
218 {
219 if (optimize_size)
220 return true;
221 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
222 return true;
223 else
224 return false;
225 }
226
227 /* Return true when current function should always be optimized for size. */
228
229 bool
230 optimize_function_for_size_p (struct function *fun)
231 {
232 if (optimize_size)
233 return true;
234 if (!fun || !fun->decl)
235 return false;
236 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
237 }
238
239 /* Return true when current function should always be optimized for speed. */
240
241 bool
242 optimize_function_for_speed_p (struct function *fun)
243 {
244 return !optimize_function_for_size_p (fun);
245 }
246
247 /* Return TRUE when BB should be optimized for size. */
248
249 bool
250 optimize_bb_for_size_p (const_basic_block bb)
251 {
252 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
253 }
254
255 /* Return TRUE when BB should be optimized for speed. */
256
257 bool
258 optimize_bb_for_speed_p (const_basic_block bb)
259 {
260 return !optimize_bb_for_size_p (bb);
261 }
262
263 /* Return TRUE when BB should be optimized for size. */
264
265 bool
266 optimize_edge_for_size_p (edge e)
267 {
268 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
269 }
270
271 /* Return TRUE when BB should be optimized for speed. */
272
273 bool
274 optimize_edge_for_speed_p (edge e)
275 {
276 return !optimize_edge_for_size_p (e);
277 }
278
279 /* Return TRUE when BB should be optimized for size. */
280
281 bool
282 optimize_insn_for_size_p (void)
283 {
284 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
285 }
286
287 /* Return TRUE when BB should be optimized for speed. */
288
289 bool
290 optimize_insn_for_speed_p (void)
291 {
292 return !optimize_insn_for_size_p ();
293 }
294
295 /* Return TRUE when LOOP should be optimized for size. */
296
297 bool
298 optimize_loop_for_size_p (struct loop *loop)
299 {
300 return optimize_bb_for_size_p (loop->header);
301 }
302
303 /* Return TRUE when LOOP should be optimized for speed. */
304
305 bool
306 optimize_loop_for_speed_p (struct loop *loop)
307 {
308 return optimize_bb_for_speed_p (loop->header);
309 }
310
311 /* Return TRUE when LOOP nest should be optimized for speed. */
312
313 bool
314 optimize_loop_nest_for_speed_p (struct loop *loop)
315 {
316 struct loop *l = loop;
317 if (optimize_loop_for_speed_p (loop))
318 return true;
319 l = loop->inner;
320 while (l && l != loop)
321 {
322 if (optimize_loop_for_speed_p (l))
323 return true;
324 if (l->inner)
325 l = l->inner;
326 else if (l->next)
327 l = l->next;
328 else
329 {
330 while (l != loop && !l->next)
331 l = loop_outer (l);
332 if (l != loop)
333 l = l->next;
334 }
335 }
336 return false;
337 }
338
339 /* Return TRUE when LOOP nest should be optimized for size. */
340
341 bool
342 optimize_loop_nest_for_size_p (struct loop *loop)
343 {
344 return !optimize_loop_nest_for_speed_p (loop);
345 }
346
347 /* Return true when edge E is likely to be well predictable by branch
348 predictor. */
349
350 bool
351 predictable_edge_p (edge e)
352 {
353 if (profile_status == PROFILE_ABSENT)
354 return false;
355 if ((e->probability
356 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
357 || (REG_BR_PROB_BASE - e->probability
358 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
359 return true;
360 return false;
361 }
362
363
364 /* Set RTL expansion for BB profile. */
365
366 void
367 rtl_profile_for_bb (basic_block bb)
368 {
369 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
370 }
371
372 /* Set RTL expansion for edge profile. */
373
374 void
375 rtl_profile_for_edge (edge e)
376 {
377 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
378 }
379
380 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
381 void
382 default_rtl_profile (void)
383 {
384 crtl->maybe_hot_insn_p = true;
385 }
386
387 /* Return true if the one of outgoing edges is already predicted by
388 PREDICTOR. */
389
390 bool
391 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
392 {
393 rtx note;
394 if (!INSN_P (BB_END (bb)))
395 return false;
396 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
397 if (REG_NOTE_KIND (note) == REG_BR_PRED
398 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
399 return true;
400 return false;
401 }
402
403 /* This map contains for a basic block the list of predictions for the
404 outgoing edges. */
405
406 static struct pointer_map_t *bb_predictions;
407
408 /* Structure representing predictions in tree level. */
409
410 struct edge_prediction {
411 struct edge_prediction *ep_next;
412 edge ep_edge;
413 enum br_predictor ep_predictor;
414 int ep_probability;
415 };
416
417 /* Return true if the one of outgoing edges is already predicted by
418 PREDICTOR. */
419
420 bool
421 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
422 {
423 struct edge_prediction *i;
424 void **preds = pointer_map_contains (bb_predictions, bb);
425
426 if (!preds)
427 return false;
428
429 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
430 if (i->ep_predictor == predictor)
431 return true;
432 return false;
433 }
434
435 /* Return true when the probability of edge is reliable.
436
437 The profile guessing code is good at predicting branch outcome (ie.
438 taken/not taken), that is predicted right slightly over 75% of time.
439 It is however notoriously poor on predicting the probability itself.
440 In general the profile appear a lot flatter (with probabilities closer
441 to 50%) than the reality so it is bad idea to use it to drive optimization
442 such as those disabling dynamic branch prediction for well predictable
443 branches.
444
445 There are two exceptions - edges leading to noreturn edges and edges
446 predicted by number of iterations heuristics are predicted well. This macro
447 should be able to distinguish those, but at the moment it simply check for
448 noreturn heuristic that is only one giving probability over 99% or bellow
449 1%. In future we might want to propagate reliability information across the
450 CFG if we find this information useful on multiple places. */
451 static bool
452 probability_reliable_p (int prob)
453 {
454 return (profile_status == PROFILE_READ
455 || (profile_status == PROFILE_GUESSED
456 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
457 }
458
459 /* Same predicate as above, working on edges. */
460 bool
461 edge_probability_reliable_p (const_edge e)
462 {
463 return probability_reliable_p (e->probability);
464 }
465
466 /* Same predicate as edge_probability_reliable_p, working on notes. */
467 bool
468 br_prob_note_reliable_p (const_rtx note)
469 {
470 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
471 return probability_reliable_p (INTVAL (XEXP (note, 0)));
472 }
473
474 static void
475 predict_insn (rtx insn, enum br_predictor predictor, int probability)
476 {
477 gcc_assert (any_condjump_p (insn));
478 if (!flag_guess_branch_prob)
479 return;
480
481 add_reg_note (insn, REG_BR_PRED,
482 gen_rtx_CONCAT (VOIDmode,
483 GEN_INT ((int) predictor),
484 GEN_INT ((int) probability)));
485 }
486
487 /* Predict insn by given predictor. */
488
489 void
490 predict_insn_def (rtx insn, enum br_predictor predictor,
491 enum prediction taken)
492 {
493 int probability = predictor_info[(int) predictor].hitrate;
494
495 if (taken != TAKEN)
496 probability = REG_BR_PROB_BASE - probability;
497
498 predict_insn (insn, predictor, probability);
499 }
500
501 /* Predict edge E with given probability if possible. */
502
503 void
504 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
505 {
506 rtx last_insn;
507 last_insn = BB_END (e->src);
508
509 /* We can store the branch prediction information only about
510 conditional jumps. */
511 if (!any_condjump_p (last_insn))
512 return;
513
514 /* We always store probability of branching. */
515 if (e->flags & EDGE_FALLTHRU)
516 probability = REG_BR_PROB_BASE - probability;
517
518 predict_insn (last_insn, predictor, probability);
519 }
520
521 /* Predict edge E with the given PROBABILITY. */
522 void
523 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
524 {
525 gcc_assert (profile_status != PROFILE_GUESSED);
526 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
527 && flag_guess_branch_prob && optimize)
528 {
529 struct edge_prediction *i = XNEW (struct edge_prediction);
530 void **preds = pointer_map_insert (bb_predictions, e->src);
531
532 i->ep_next = (struct edge_prediction *) *preds;
533 *preds = i;
534 i->ep_probability = probability;
535 i->ep_predictor = predictor;
536 i->ep_edge = e;
537 }
538 }
539
540 /* Remove all predictions on given basic block that are attached
541 to edge E. */
542 void
543 remove_predictions_associated_with_edge (edge e)
544 {
545 void **preds;
546
547 if (!bb_predictions)
548 return;
549
550 preds = pointer_map_contains (bb_predictions, e->src);
551
552 if (preds)
553 {
554 struct edge_prediction **prediction = (struct edge_prediction **) preds;
555 struct edge_prediction *next;
556
557 while (*prediction)
558 {
559 if ((*prediction)->ep_edge == e)
560 {
561 next = (*prediction)->ep_next;
562 free (*prediction);
563 *prediction = next;
564 }
565 else
566 prediction = &((*prediction)->ep_next);
567 }
568 }
569 }
570
571 /* Clears the list of predictions stored for BB. */
572
573 static void
574 clear_bb_predictions (basic_block bb)
575 {
576 void **preds = pointer_map_contains (bb_predictions, bb);
577 struct edge_prediction *pred, *next;
578
579 if (!preds)
580 return;
581
582 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
583 {
584 next = pred->ep_next;
585 free (pred);
586 }
587 *preds = NULL;
588 }
589
590 /* Return true when we can store prediction on insn INSN.
591 At the moment we represent predictions only on conditional
592 jumps, not at computed jump or other complicated cases. */
593 static bool
594 can_predict_insn_p (const_rtx insn)
595 {
596 return (JUMP_P (insn)
597 && any_condjump_p (insn)
598 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
599 }
600
601 /* Predict edge E by given predictor if possible. */
602
603 void
604 predict_edge_def (edge e, enum br_predictor predictor,
605 enum prediction taken)
606 {
607 int probability = predictor_info[(int) predictor].hitrate;
608
609 if (taken != TAKEN)
610 probability = REG_BR_PROB_BASE - probability;
611
612 predict_edge (e, predictor, probability);
613 }
614
615 /* Invert all branch predictions or probability notes in the INSN. This needs
616 to be done each time we invert the condition used by the jump. */
617
618 void
619 invert_br_probabilities (rtx insn)
620 {
621 rtx note;
622
623 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
624 if (REG_NOTE_KIND (note) == REG_BR_PROB)
625 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
626 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
627 XEXP (XEXP (note, 0), 1)
628 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
629 }
630
631 /* Dump information about the branch prediction to the output file. */
632
633 static void
634 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
635 basic_block bb, int used)
636 {
637 edge e;
638 edge_iterator ei;
639
640 if (!file)
641 return;
642
643 FOR_EACH_EDGE (e, ei, bb->succs)
644 if (! (e->flags & EDGE_FALLTHRU))
645 break;
646
647 fprintf (file, " %s heuristics%s: %.1f%%",
648 predictor_info[predictor].name,
649 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
650
651 if (bb->count)
652 {
653 fprintf (file, " exec ");
654 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
655 if (e)
656 {
657 fprintf (file, " hit ");
658 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
659 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
660 }
661 }
662
663 fprintf (file, "\n");
664 }
665
666 /* We can not predict the probabilities of outgoing edges of bb. Set them
667 evenly and hope for the best. */
668 static void
669 set_even_probabilities (basic_block bb)
670 {
671 int nedges = 0;
672 edge e;
673 edge_iterator ei;
674
675 FOR_EACH_EDGE (e, ei, bb->succs)
676 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
677 nedges ++;
678 FOR_EACH_EDGE (e, ei, bb->succs)
679 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
680 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
681 else
682 e->probability = 0;
683 }
684
685 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
686 note if not already present. Remove now useless REG_BR_PRED notes. */
687
688 static void
689 combine_predictions_for_insn (rtx insn, basic_block bb)
690 {
691 rtx prob_note;
692 rtx *pnote;
693 rtx note;
694 int best_probability = PROB_EVEN;
695 enum br_predictor best_predictor = END_PREDICTORS;
696 int combined_probability = REG_BR_PROB_BASE / 2;
697 int d;
698 bool first_match = false;
699 bool found = false;
700
701 if (!can_predict_insn_p (insn))
702 {
703 set_even_probabilities (bb);
704 return;
705 }
706
707 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
708 pnote = &REG_NOTES (insn);
709 if (dump_file)
710 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
711 bb->index);
712
713 /* We implement "first match" heuristics and use probability guessed
714 by predictor with smallest index. */
715 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
716 if (REG_NOTE_KIND (note) == REG_BR_PRED)
717 {
718 enum br_predictor predictor = ((enum br_predictor)
719 INTVAL (XEXP (XEXP (note, 0), 0)));
720 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
721
722 found = true;
723 if (best_predictor > predictor)
724 best_probability = probability, best_predictor = predictor;
725
726 d = (combined_probability * probability
727 + (REG_BR_PROB_BASE - combined_probability)
728 * (REG_BR_PROB_BASE - probability));
729
730 /* Use FP math to avoid overflows of 32bit integers. */
731 if (d == 0)
732 /* If one probability is 0% and one 100%, avoid division by zero. */
733 combined_probability = REG_BR_PROB_BASE / 2;
734 else
735 combined_probability = (((double) combined_probability) * probability
736 * REG_BR_PROB_BASE / d + 0.5);
737 }
738
739 /* Decide which heuristic to use. In case we didn't match anything,
740 use no_prediction heuristic, in case we did match, use either
741 first match or Dempster-Shaffer theory depending on the flags. */
742
743 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
744 first_match = true;
745
746 if (!found)
747 dump_prediction (dump_file, PRED_NO_PREDICTION,
748 combined_probability, bb, true);
749 else
750 {
751 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
752 bb, !first_match);
753 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
754 bb, first_match);
755 }
756
757 if (first_match)
758 combined_probability = best_probability;
759 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
760
761 while (*pnote)
762 {
763 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
764 {
765 enum br_predictor predictor = ((enum br_predictor)
766 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
767 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
768
769 dump_prediction (dump_file, predictor, probability, bb,
770 !first_match || best_predictor == predictor);
771 *pnote = XEXP (*pnote, 1);
772 }
773 else
774 pnote = &XEXP (*pnote, 1);
775 }
776
777 if (!prob_note)
778 {
779 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
780
781 /* Save the prediction into CFG in case we are seeing non-degenerated
782 conditional jump. */
783 if (!single_succ_p (bb))
784 {
785 BRANCH_EDGE (bb)->probability = combined_probability;
786 FALLTHRU_EDGE (bb)->probability
787 = REG_BR_PROB_BASE - combined_probability;
788 }
789 }
790 else if (!single_succ_p (bb))
791 {
792 int prob = INTVAL (XEXP (prob_note, 0));
793
794 BRANCH_EDGE (bb)->probability = prob;
795 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
796 }
797 else
798 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
799 }
800
801 /* Combine predictions into single probability and store them into CFG.
802 Remove now useless prediction entries. */
803
804 static void
805 combine_predictions_for_bb (basic_block bb)
806 {
807 int best_probability = PROB_EVEN;
808 enum br_predictor best_predictor = END_PREDICTORS;
809 int combined_probability = REG_BR_PROB_BASE / 2;
810 int d;
811 bool first_match = false;
812 bool found = false;
813 struct edge_prediction *pred;
814 int nedges = 0;
815 edge e, first = NULL, second = NULL;
816 edge_iterator ei;
817 void **preds;
818
819 FOR_EACH_EDGE (e, ei, bb->succs)
820 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
821 {
822 nedges ++;
823 if (first && !second)
824 second = e;
825 if (!first)
826 first = e;
827 }
828
829 /* When there is no successor or only one choice, prediction is easy.
830
831 We are lazy for now and predict only basic blocks with two outgoing
832 edges. It is possible to predict generic case too, but we have to
833 ignore first match heuristics and do more involved combining. Implement
834 this later. */
835 if (nedges != 2)
836 {
837 if (!bb->count)
838 set_even_probabilities (bb);
839 clear_bb_predictions (bb);
840 if (dump_file)
841 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
842 nedges, bb->index);
843 return;
844 }
845
846 if (dump_file)
847 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
848
849 preds = pointer_map_contains (bb_predictions, bb);
850 if (preds)
851 {
852 /* We implement "first match" heuristics and use probability guessed
853 by predictor with smallest index. */
854 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
855 {
856 enum br_predictor predictor = pred->ep_predictor;
857 int probability = pred->ep_probability;
858
859 if (pred->ep_edge != first)
860 probability = REG_BR_PROB_BASE - probability;
861
862 found = true;
863 /* First match heuristics would be widly confused if we predicted
864 both directions. */
865 if (best_predictor > predictor)
866 {
867 struct edge_prediction *pred2;
868 int prob = probability;
869
870 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
871 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
872 {
873 int probability2 = pred->ep_probability;
874
875 if (pred2->ep_edge != first)
876 probability2 = REG_BR_PROB_BASE - probability2;
877
878 if ((probability < REG_BR_PROB_BASE / 2) !=
879 (probability2 < REG_BR_PROB_BASE / 2))
880 break;
881
882 /* If the same predictor later gave better result, go for it! */
883 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
884 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
885 prob = probability2;
886 }
887 if (!pred2)
888 best_probability = prob, best_predictor = predictor;
889 }
890
891 d = (combined_probability * probability
892 + (REG_BR_PROB_BASE - combined_probability)
893 * (REG_BR_PROB_BASE - probability));
894
895 /* Use FP math to avoid overflows of 32bit integers. */
896 if (d == 0)
897 /* If one probability is 0% and one 100%, avoid division by zero. */
898 combined_probability = REG_BR_PROB_BASE / 2;
899 else
900 combined_probability = (((double) combined_probability)
901 * probability
902 * REG_BR_PROB_BASE / d + 0.5);
903 }
904 }
905
906 /* Decide which heuristic to use. In case we didn't match anything,
907 use no_prediction heuristic, in case we did match, use either
908 first match or Dempster-Shaffer theory depending on the flags. */
909
910 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
911 first_match = true;
912
913 if (!found)
914 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
915 else
916 {
917 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
918 !first_match);
919 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
920 first_match);
921 }
922
923 if (first_match)
924 combined_probability = best_probability;
925 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
926
927 if (preds)
928 {
929 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
930 {
931 enum br_predictor predictor = pred->ep_predictor;
932 int probability = pred->ep_probability;
933
934 if (pred->ep_edge != EDGE_SUCC (bb, 0))
935 probability = REG_BR_PROB_BASE - probability;
936 dump_prediction (dump_file, predictor, probability, bb,
937 !first_match || best_predictor == predictor);
938 }
939 }
940 clear_bb_predictions (bb);
941
942 if (!bb->count)
943 {
944 first->probability = combined_probability;
945 second->probability = REG_BR_PROB_BASE - combined_probability;
946 }
947 }
948
949 /* Predict edge probabilities by exploiting loop structure. */
950
951 static void
952 predict_loops (void)
953 {
954 loop_iterator li;
955 struct loop *loop;
956
957 /* Try to predict out blocks in a loop that are not part of a
958 natural loop. */
959 FOR_EACH_LOOP (li, loop, 0)
960 {
961 basic_block bb, *bbs;
962 unsigned j, n_exits;
963 VEC (edge, heap) *exits;
964 struct tree_niter_desc niter_desc;
965 edge ex;
966
967 exits = get_loop_exit_edges (loop);
968 n_exits = VEC_length (edge, exits);
969
970 FOR_EACH_VEC_ELT (edge, exits, j, ex)
971 {
972 tree niter = NULL;
973 HOST_WIDE_INT nitercst;
974 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
975 int probability;
976 enum br_predictor predictor;
977
978 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
979 niter = niter_desc.niter;
980 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
981 niter = loop_niter_by_eval (loop, ex);
982
983 if (TREE_CODE (niter) == INTEGER_CST)
984 {
985 if (host_integerp (niter, 1)
986 && compare_tree_int (niter, max-1) == -1)
987 nitercst = tree_low_cst (niter, 1) + 1;
988 else
989 nitercst = max;
990 predictor = PRED_LOOP_ITERATIONS;
991 }
992 /* If we have just one exit and we can derive some information about
993 the number of iterations of the loop from the statements inside
994 the loop, use it to predict this exit. */
995 else if (n_exits == 1)
996 {
997 nitercst = max_stmt_executions_int (loop, false);
998 if (nitercst < 0)
999 continue;
1000 if (nitercst > max)
1001 nitercst = max;
1002
1003 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1004 }
1005 else
1006 continue;
1007
1008 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1009 predict_edge (ex, predictor, probability);
1010 }
1011 VEC_free (edge, heap, exits);
1012
1013 bbs = get_loop_body (loop);
1014
1015 for (j = 0; j < loop->num_nodes; j++)
1016 {
1017 int header_found = 0;
1018 edge e;
1019 edge_iterator ei;
1020
1021 bb = bbs[j];
1022
1023 /* Bypass loop heuristics on continue statement. These
1024 statements construct loops via "non-loop" constructs
1025 in the source language and are better to be handled
1026 separately. */
1027 if (predicted_by_p (bb, PRED_CONTINUE))
1028 continue;
1029
1030 /* Loop branch heuristics - predict an edge back to a
1031 loop's head as taken. */
1032 if (bb == loop->latch)
1033 {
1034 e = find_edge (loop->latch, loop->header);
1035 if (e)
1036 {
1037 header_found = 1;
1038 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1039 }
1040 }
1041
1042 /* Loop exit heuristics - predict an edge exiting the loop if the
1043 conditional has no loop header successors as not taken. */
1044 if (!header_found
1045 /* If we already used more reliable loop exit predictors, do not
1046 bother with PRED_LOOP_EXIT. */
1047 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1048 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1049 {
1050 /* For loop with many exits we don't want to predict all exits
1051 with the pretty large probability, because if all exits are
1052 considered in row, the loop would be predicted to iterate
1053 almost never. The code to divide probability by number of
1054 exits is very rough. It should compute the number of exits
1055 taken in each patch through function (not the overall number
1056 of exits that might be a lot higher for loops with wide switch
1057 statements in them) and compute n-th square root.
1058
1059 We limit the minimal probability by 2% to avoid
1060 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1061 as this was causing regression in perl benchmark containing such
1062 a wide loop. */
1063
1064 int probability = ((REG_BR_PROB_BASE
1065 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1066 / n_exits);
1067 if (probability < HITRATE (2))
1068 probability = HITRATE (2);
1069 FOR_EACH_EDGE (e, ei, bb->succs)
1070 if (e->dest->index < NUM_FIXED_BLOCKS
1071 || !flow_bb_inside_loop_p (loop, e->dest))
1072 predict_edge (e, PRED_LOOP_EXIT, probability);
1073 }
1074 }
1075
1076 /* Free basic blocks from get_loop_body. */
1077 free (bbs);
1078 }
1079 }
1080
1081 /* Attempt to predict probabilities of BB outgoing edges using local
1082 properties. */
1083 static void
1084 bb_estimate_probability_locally (basic_block bb)
1085 {
1086 rtx last_insn = BB_END (bb);
1087 rtx cond;
1088
1089 if (! can_predict_insn_p (last_insn))
1090 return;
1091 cond = get_condition (last_insn, NULL, false, false);
1092 if (! cond)
1093 return;
1094
1095 /* Try "pointer heuristic."
1096 A comparison ptr == 0 is predicted as false.
1097 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1098 if (COMPARISON_P (cond)
1099 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1100 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1101 {
1102 if (GET_CODE (cond) == EQ)
1103 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1104 else if (GET_CODE (cond) == NE)
1105 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1106 }
1107 else
1108
1109 /* Try "opcode heuristic."
1110 EQ tests are usually false and NE tests are usually true. Also,
1111 most quantities are positive, so we can make the appropriate guesses
1112 about signed comparisons against zero. */
1113 switch (GET_CODE (cond))
1114 {
1115 case CONST_INT:
1116 /* Unconditional branch. */
1117 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1118 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1119 break;
1120
1121 case EQ:
1122 case UNEQ:
1123 /* Floating point comparisons appears to behave in a very
1124 unpredictable way because of special role of = tests in
1125 FP code. */
1126 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1127 ;
1128 /* Comparisons with 0 are often used for booleans and there is
1129 nothing useful to predict about them. */
1130 else if (XEXP (cond, 1) == const0_rtx
1131 || XEXP (cond, 0) == const0_rtx)
1132 ;
1133 else
1134 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1135 break;
1136
1137 case NE:
1138 case LTGT:
1139 /* Floating point comparisons appears to behave in a very
1140 unpredictable way because of special role of = tests in
1141 FP code. */
1142 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1143 ;
1144 /* Comparisons with 0 are often used for booleans and there is
1145 nothing useful to predict about them. */
1146 else if (XEXP (cond, 1) == const0_rtx
1147 || XEXP (cond, 0) == const0_rtx)
1148 ;
1149 else
1150 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1151 break;
1152
1153 case ORDERED:
1154 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1155 break;
1156
1157 case UNORDERED:
1158 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1159 break;
1160
1161 case LE:
1162 case LT:
1163 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1164 || XEXP (cond, 1) == constm1_rtx)
1165 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1166 break;
1167
1168 case GE:
1169 case GT:
1170 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1171 || XEXP (cond, 1) == constm1_rtx)
1172 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1173 break;
1174
1175 default:
1176 break;
1177 }
1178 }
1179
1180 /* Set edge->probability for each successor edge of BB. */
1181 void
1182 guess_outgoing_edge_probabilities (basic_block bb)
1183 {
1184 bb_estimate_probability_locally (bb);
1185 combine_predictions_for_insn (BB_END (bb), bb);
1186 }
1187 \f
1188 static tree expr_expected_value (tree, bitmap);
1189
1190 /* Helper function for expr_expected_value. */
1191
1192 static tree
1193 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1194 tree op1, bitmap visited)
1195 {
1196 gimple def;
1197
1198 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1199 {
1200 if (TREE_CONSTANT (op0))
1201 return op0;
1202
1203 if (code != SSA_NAME)
1204 return NULL_TREE;
1205
1206 def = SSA_NAME_DEF_STMT (op0);
1207
1208 /* If we were already here, break the infinite cycle. */
1209 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1210 return NULL;
1211
1212 if (gimple_code (def) == GIMPLE_PHI)
1213 {
1214 /* All the arguments of the PHI node must have the same constant
1215 length. */
1216 int i, n = gimple_phi_num_args (def);
1217 tree val = NULL, new_val;
1218
1219 for (i = 0; i < n; i++)
1220 {
1221 tree arg = PHI_ARG_DEF (def, i);
1222
1223 /* If this PHI has itself as an argument, we cannot
1224 determine the string length of this argument. However,
1225 if we can find an expected constant value for the other
1226 PHI args then we can still be sure that this is
1227 likely a constant. So be optimistic and just
1228 continue with the next argument. */
1229 if (arg == PHI_RESULT (def))
1230 continue;
1231
1232 new_val = expr_expected_value (arg, visited);
1233 if (!new_val)
1234 return NULL;
1235 if (!val)
1236 val = new_val;
1237 else if (!operand_equal_p (val, new_val, false))
1238 return NULL;
1239 }
1240 return val;
1241 }
1242 if (is_gimple_assign (def))
1243 {
1244 if (gimple_assign_lhs (def) != op0)
1245 return NULL;
1246
1247 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1248 gimple_assign_rhs1 (def),
1249 gimple_assign_rhs_code (def),
1250 gimple_assign_rhs2 (def),
1251 visited);
1252 }
1253
1254 if (is_gimple_call (def))
1255 {
1256 tree decl = gimple_call_fndecl (def);
1257 if (!decl)
1258 return NULL;
1259 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1260 switch (DECL_FUNCTION_CODE (decl))
1261 {
1262 case BUILT_IN_EXPECT:
1263 {
1264 tree val;
1265 if (gimple_call_num_args (def) != 2)
1266 return NULL;
1267 val = gimple_call_arg (def, 0);
1268 if (TREE_CONSTANT (val))
1269 return val;
1270 return gimple_call_arg (def, 1);
1271 }
1272
1273 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1274 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1275 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1276 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1277 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1278 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1279 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1280 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1281 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1282 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1283 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1284 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1285 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1286 /* Assume that any given atomic operation has low contention,
1287 and thus the compare-and-swap operation succeeds. */
1288 return boolean_true_node;
1289 }
1290 }
1291
1292 return NULL;
1293 }
1294
1295 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1296 {
1297 tree res;
1298 op0 = expr_expected_value (op0, visited);
1299 if (!op0)
1300 return NULL;
1301 op1 = expr_expected_value (op1, visited);
1302 if (!op1)
1303 return NULL;
1304 res = fold_build2 (code, type, op0, op1);
1305 if (TREE_CONSTANT (res))
1306 return res;
1307 return NULL;
1308 }
1309 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1310 {
1311 tree res;
1312 op0 = expr_expected_value (op0, visited);
1313 if (!op0)
1314 return NULL;
1315 res = fold_build1 (code, type, op0);
1316 if (TREE_CONSTANT (res))
1317 return res;
1318 return NULL;
1319 }
1320 return NULL;
1321 }
1322
1323 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1324 The function is used by builtin_expect branch predictor so the evidence
1325 must come from this construct and additional possible constant folding.
1326
1327 We may want to implement more involved value guess (such as value range
1328 propagation based prediction), but such tricks shall go to new
1329 implementation. */
1330
1331 static tree
1332 expr_expected_value (tree expr, bitmap visited)
1333 {
1334 enum tree_code code;
1335 tree op0, op1;
1336
1337 if (TREE_CONSTANT (expr))
1338 return expr;
1339
1340 extract_ops_from_tree (expr, &code, &op0, &op1);
1341 return expr_expected_value_1 (TREE_TYPE (expr),
1342 op0, code, op1, visited);
1343 }
1344
1345 \f
1346 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1347 we no longer need. */
1348 static unsigned int
1349 strip_predict_hints (void)
1350 {
1351 basic_block bb;
1352 gimple ass_stmt;
1353 tree var;
1354
1355 FOR_EACH_BB (bb)
1356 {
1357 gimple_stmt_iterator bi;
1358 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1359 {
1360 gimple stmt = gsi_stmt (bi);
1361
1362 if (gimple_code (stmt) == GIMPLE_PREDICT)
1363 {
1364 gsi_remove (&bi, true);
1365 continue;
1366 }
1367 else if (gimple_code (stmt) == GIMPLE_CALL)
1368 {
1369 tree fndecl = gimple_call_fndecl (stmt);
1370
1371 if (fndecl
1372 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1373 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1374 && gimple_call_num_args (stmt) == 2)
1375 {
1376 var = gimple_call_lhs (stmt);
1377 if (var)
1378 {
1379 ass_stmt
1380 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1381 gsi_replace (&bi, ass_stmt, true);
1382 }
1383 else
1384 {
1385 gsi_remove (&bi, true);
1386 continue;
1387 }
1388 }
1389 }
1390 gsi_next (&bi);
1391 }
1392 }
1393 return 0;
1394 }
1395 \f
1396 /* Predict using opcode of the last statement in basic block. */
1397 static void
1398 tree_predict_by_opcode (basic_block bb)
1399 {
1400 gimple stmt = last_stmt (bb);
1401 edge then_edge;
1402 tree op0, op1;
1403 tree type;
1404 tree val;
1405 enum tree_code cmp;
1406 bitmap visited;
1407 edge_iterator ei;
1408
1409 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1410 return;
1411 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1412 if (then_edge->flags & EDGE_TRUE_VALUE)
1413 break;
1414 op0 = gimple_cond_lhs (stmt);
1415 op1 = gimple_cond_rhs (stmt);
1416 cmp = gimple_cond_code (stmt);
1417 type = TREE_TYPE (op0);
1418 visited = BITMAP_ALLOC (NULL);
1419 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1420 BITMAP_FREE (visited);
1421 if (val)
1422 {
1423 if (integer_zerop (val))
1424 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1425 else
1426 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1427 return;
1428 }
1429 /* Try "pointer heuristic."
1430 A comparison ptr == 0 is predicted as false.
1431 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1432 if (POINTER_TYPE_P (type))
1433 {
1434 if (cmp == EQ_EXPR)
1435 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1436 else if (cmp == NE_EXPR)
1437 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1438 }
1439 else
1440
1441 /* Try "opcode heuristic."
1442 EQ tests are usually false and NE tests are usually true. Also,
1443 most quantities are positive, so we can make the appropriate guesses
1444 about signed comparisons against zero. */
1445 switch (cmp)
1446 {
1447 case EQ_EXPR:
1448 case UNEQ_EXPR:
1449 /* Floating point comparisons appears to behave in a very
1450 unpredictable way because of special role of = tests in
1451 FP code. */
1452 if (FLOAT_TYPE_P (type))
1453 ;
1454 /* Comparisons with 0 are often used for booleans and there is
1455 nothing useful to predict about them. */
1456 else if (integer_zerop (op0) || integer_zerop (op1))
1457 ;
1458 else
1459 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1460 break;
1461
1462 case NE_EXPR:
1463 case LTGT_EXPR:
1464 /* Floating point comparisons appears to behave in a very
1465 unpredictable way because of special role of = tests in
1466 FP code. */
1467 if (FLOAT_TYPE_P (type))
1468 ;
1469 /* Comparisons with 0 are often used for booleans and there is
1470 nothing useful to predict about them. */
1471 else if (integer_zerop (op0)
1472 || integer_zerop (op1))
1473 ;
1474 else
1475 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1476 break;
1477
1478 case ORDERED_EXPR:
1479 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1480 break;
1481
1482 case UNORDERED_EXPR:
1483 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1484 break;
1485
1486 case LE_EXPR:
1487 case LT_EXPR:
1488 if (integer_zerop (op1)
1489 || integer_onep (op1)
1490 || integer_all_onesp (op1)
1491 || real_zerop (op1)
1492 || real_onep (op1)
1493 || real_minus_onep (op1))
1494 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1495 break;
1496
1497 case GE_EXPR:
1498 case GT_EXPR:
1499 if (integer_zerop (op1)
1500 || integer_onep (op1)
1501 || integer_all_onesp (op1)
1502 || real_zerop (op1)
1503 || real_onep (op1)
1504 || real_minus_onep (op1))
1505 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1506 break;
1507
1508 default:
1509 break;
1510 }
1511 }
1512
1513 /* Try to guess whether the value of return means error code. */
1514
1515 static enum br_predictor
1516 return_prediction (tree val, enum prediction *prediction)
1517 {
1518 /* VOID. */
1519 if (!val)
1520 return PRED_NO_PREDICTION;
1521 /* Different heuristics for pointers and scalars. */
1522 if (POINTER_TYPE_P (TREE_TYPE (val)))
1523 {
1524 /* NULL is usually not returned. */
1525 if (integer_zerop (val))
1526 {
1527 *prediction = NOT_TAKEN;
1528 return PRED_NULL_RETURN;
1529 }
1530 }
1531 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1532 {
1533 /* Negative return values are often used to indicate
1534 errors. */
1535 if (TREE_CODE (val) == INTEGER_CST
1536 && tree_int_cst_sgn (val) < 0)
1537 {
1538 *prediction = NOT_TAKEN;
1539 return PRED_NEGATIVE_RETURN;
1540 }
1541 /* Constant return values seems to be commonly taken.
1542 Zero/one often represent booleans so exclude them from the
1543 heuristics. */
1544 if (TREE_CONSTANT (val)
1545 && (!integer_zerop (val) && !integer_onep (val)))
1546 {
1547 *prediction = TAKEN;
1548 return PRED_CONST_RETURN;
1549 }
1550 }
1551 return PRED_NO_PREDICTION;
1552 }
1553
1554 /* Find the basic block with return expression and look up for possible
1555 return value trying to apply RETURN_PREDICTION heuristics. */
1556 static void
1557 apply_return_prediction (void)
1558 {
1559 gimple return_stmt = NULL;
1560 tree return_val;
1561 edge e;
1562 gimple phi;
1563 int phi_num_args, i;
1564 enum br_predictor pred;
1565 enum prediction direction;
1566 edge_iterator ei;
1567
1568 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1569 {
1570 return_stmt = last_stmt (e->src);
1571 if (return_stmt
1572 && gimple_code (return_stmt) == GIMPLE_RETURN)
1573 break;
1574 }
1575 if (!e)
1576 return;
1577 return_val = gimple_return_retval (return_stmt);
1578 if (!return_val)
1579 return;
1580 if (TREE_CODE (return_val) != SSA_NAME
1581 || !SSA_NAME_DEF_STMT (return_val)
1582 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1583 return;
1584 phi = SSA_NAME_DEF_STMT (return_val);
1585 phi_num_args = gimple_phi_num_args (phi);
1586 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1587
1588 /* Avoid the degenerate case where all return values form the function
1589 belongs to same category (ie they are all positive constants)
1590 so we can hardly say something about them. */
1591 for (i = 1; i < phi_num_args; i++)
1592 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1593 break;
1594 if (i != phi_num_args)
1595 for (i = 0; i < phi_num_args; i++)
1596 {
1597 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1598 if (pred != PRED_NO_PREDICTION)
1599 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
1600 direction);
1601 }
1602 }
1603
1604 /* Look for basic block that contains unlikely to happen events
1605 (such as noreturn calls) and mark all paths leading to execution
1606 of this basic blocks as unlikely. */
1607
1608 static void
1609 tree_bb_level_predictions (void)
1610 {
1611 basic_block bb;
1612 bool has_return_edges = false;
1613 edge e;
1614 edge_iterator ei;
1615
1616 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1617 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1618 {
1619 has_return_edges = true;
1620 break;
1621 }
1622
1623 apply_return_prediction ();
1624
1625 FOR_EACH_BB (bb)
1626 {
1627 gimple_stmt_iterator gsi;
1628
1629 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1630 {
1631 gimple stmt = gsi_stmt (gsi);
1632 tree decl;
1633
1634 if (is_gimple_call (stmt))
1635 {
1636 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1637 && has_return_edges)
1638 predict_paths_leading_to (bb, PRED_NORETURN,
1639 NOT_TAKEN);
1640 decl = gimple_call_fndecl (stmt);
1641 if (decl
1642 && lookup_attribute ("cold",
1643 DECL_ATTRIBUTES (decl)))
1644 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1645 NOT_TAKEN);
1646 }
1647 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1648 {
1649 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1650 gimple_predict_outcome (stmt));
1651 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1652 hints to callers. */
1653 }
1654 }
1655 }
1656 }
1657
1658 #ifdef ENABLE_CHECKING
1659
1660 /* Callback for pointer_map_traverse, asserts that the pointer map is
1661 empty. */
1662
1663 static bool
1664 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1665 void *data ATTRIBUTE_UNUSED)
1666 {
1667 gcc_assert (!*value);
1668 return false;
1669 }
1670 #endif
1671
1672 /* Predict branch probabilities and estimate profile for basic block BB. */
1673
1674 static void
1675 tree_estimate_probability_bb (basic_block bb)
1676 {
1677 edge e;
1678 edge_iterator ei;
1679 gimple last;
1680
1681 FOR_EACH_EDGE (e, ei, bb->succs)
1682 {
1683 /* Predict early returns to be probable, as we've already taken
1684 care for error returns and other cases are often used for
1685 fast paths through function.
1686
1687 Since we've already removed the return statements, we are
1688 looking for CFG like:
1689
1690 if (conditional)
1691 {
1692 ..
1693 goto return_block
1694 }
1695 some other blocks
1696 return_block:
1697 return_stmt. */
1698 if (e->dest != bb->next_bb
1699 && e->dest != EXIT_BLOCK_PTR
1700 && single_succ_p (e->dest)
1701 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1702 && (last = last_stmt (e->dest)) != NULL
1703 && gimple_code (last) == GIMPLE_RETURN)
1704 {
1705 edge e1;
1706 edge_iterator ei1;
1707
1708 if (single_succ_p (bb))
1709 {
1710 FOR_EACH_EDGE (e1, ei1, bb->preds)
1711 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1712 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1713 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1714 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1715 }
1716 else
1717 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1718 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1719 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1720 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1721 }
1722
1723 /* Look for block we are guarding (ie we dominate it,
1724 but it doesn't postdominate us). */
1725 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1726 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1727 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1728 {
1729 gimple_stmt_iterator bi;
1730
1731 /* The call heuristic claims that a guarded function call
1732 is improbable. This is because such calls are often used
1733 to signal exceptional situations such as printing error
1734 messages. */
1735 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1736 gsi_next (&bi))
1737 {
1738 gimple stmt = gsi_stmt (bi);
1739 if (is_gimple_call (stmt)
1740 /* Constant and pure calls are hardly used to signalize
1741 something exceptional. */
1742 && gimple_has_side_effects (stmt))
1743 {
1744 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1745 break;
1746 }
1747 }
1748 }
1749 }
1750 tree_predict_by_opcode (bb);
1751 }
1752
1753 /* Predict branch probabilities and estimate profile of the tree CFG.
1754 This function can be called from the loop optimizers to recompute
1755 the profile information. */
1756
1757 void
1758 tree_estimate_probability (void)
1759 {
1760 basic_block bb;
1761
1762 add_noreturn_fake_exit_edges ();
1763 connect_infinite_loops_to_exit ();
1764 /* We use loop_niter_by_eval, which requires that the loops have
1765 preheaders. */
1766 create_preheaders (CP_SIMPLE_PREHEADERS);
1767 calculate_dominance_info (CDI_POST_DOMINATORS);
1768
1769 bb_predictions = pointer_map_create ();
1770 tree_bb_level_predictions ();
1771 record_loop_exits ();
1772
1773 if (number_of_loops () > 1)
1774 predict_loops ();
1775
1776 FOR_EACH_BB (bb)
1777 tree_estimate_probability_bb (bb);
1778
1779 FOR_EACH_BB (bb)
1780 combine_predictions_for_bb (bb);
1781
1782 #ifdef ENABLE_CHECKING
1783 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1784 #endif
1785 pointer_map_destroy (bb_predictions);
1786 bb_predictions = NULL;
1787
1788 estimate_bb_frequencies ();
1789 free_dominance_info (CDI_POST_DOMINATORS);
1790 remove_fake_exit_edges ();
1791 }
1792
1793 /* Predict branch probabilities and estimate profile of the tree CFG.
1794 This is the driver function for PASS_PROFILE. */
1795
1796 static unsigned int
1797 tree_estimate_probability_driver (void)
1798 {
1799 unsigned nb_loops;
1800
1801 loop_optimizer_init (0);
1802 if (dump_file && (dump_flags & TDF_DETAILS))
1803 flow_loops_dump (dump_file, NULL, 0);
1804
1805 mark_irreducible_loops ();
1806
1807 nb_loops = number_of_loops ();
1808 if (nb_loops > 1)
1809 scev_initialize ();
1810
1811 tree_estimate_probability ();
1812
1813 if (nb_loops > 1)
1814 scev_finalize ();
1815
1816 loop_optimizer_finalize ();
1817 if (dump_file && (dump_flags & TDF_DETAILS))
1818 gimple_dump_cfg (dump_file, dump_flags);
1819 if (profile_status == PROFILE_ABSENT)
1820 profile_status = PROFILE_GUESSED;
1821 return 0;
1822 }
1823 \f
1824 /* Predict edges to successors of CUR whose sources are not postdominated by
1825 BB by PRED and recurse to all postdominators. */
1826
1827 static void
1828 predict_paths_for_bb (basic_block cur, basic_block bb,
1829 enum br_predictor pred,
1830 enum prediction taken,
1831 bitmap visited)
1832 {
1833 edge e;
1834 edge_iterator ei;
1835 basic_block son;
1836
1837 /* We are looking for all edges forming edge cut induced by
1838 set of all blocks postdominated by BB. */
1839 FOR_EACH_EDGE (e, ei, cur->preds)
1840 if (e->src->index >= NUM_FIXED_BLOCKS
1841 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1842 {
1843 edge e2;
1844 edge_iterator ei2;
1845 bool found = false;
1846
1847 /* Ignore fake edges and eh, we predict them as not taken anyway. */
1848 if (e->flags & (EDGE_EH | EDGE_FAKE))
1849 continue;
1850 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1851
1852 /* See if there is an edge from e->src that is not abnormal
1853 and does not lead to BB. */
1854 FOR_EACH_EDGE (e2, ei2, e->src->succs)
1855 if (e2 != e
1856 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
1857 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1858 {
1859 found = true;
1860 break;
1861 }
1862
1863 /* If there is non-abnormal path leaving e->src, predict edge
1864 using predictor. Otherwise we need to look for paths
1865 leading to e->src.
1866
1867 The second may lead to infinite loop in the case we are predicitng
1868 regions that are only reachable by abnormal edges. We simply
1869 prevent visiting given BB twice. */
1870 if (found)
1871 predict_edge_def (e, pred, taken);
1872 else if (bitmap_set_bit (visited, e->src->index))
1873 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
1874 }
1875 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1876 son;
1877 son = next_dom_son (CDI_POST_DOMINATORS, son))
1878 predict_paths_for_bb (son, bb, pred, taken, visited);
1879 }
1880
1881 /* Sets branch probabilities according to PREDiction and
1882 FLAGS. */
1883
1884 static void
1885 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1886 enum prediction taken)
1887 {
1888 bitmap visited = BITMAP_ALLOC (NULL);
1889 predict_paths_for_bb (bb, bb, pred, taken, visited);
1890 BITMAP_FREE (visited);
1891 }
1892
1893 /* Like predict_paths_leading_to but take edge instead of basic block. */
1894
1895 static void
1896 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
1897 enum prediction taken)
1898 {
1899 bool has_nonloop_edge = false;
1900 edge_iterator ei;
1901 edge e2;
1902
1903 basic_block bb = e->src;
1904 FOR_EACH_EDGE (e2, ei, bb->succs)
1905 if (e2->dest != e->src && e2->dest != e->dest
1906 && !(e->flags & (EDGE_EH | EDGE_FAKE))
1907 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
1908 {
1909 has_nonloop_edge = true;
1910 break;
1911 }
1912 if (!has_nonloop_edge)
1913 {
1914 bitmap visited = BITMAP_ALLOC (NULL);
1915 predict_paths_for_bb (bb, bb, pred, taken, visited);
1916 BITMAP_FREE (visited);
1917 }
1918 else
1919 predict_edge_def (e, pred, taken);
1920 }
1921 \f
1922 /* This is used to carry information about basic blocks. It is
1923 attached to the AUX field of the standard CFG block. */
1924
1925 typedef struct block_info_def
1926 {
1927 /* Estimated frequency of execution of basic_block. */
1928 sreal frequency;
1929
1930 /* To keep queue of basic blocks to process. */
1931 basic_block next;
1932
1933 /* Number of predecessors we need to visit first. */
1934 int npredecessors;
1935 } *block_info;
1936
1937 /* Similar information for edges. */
1938 typedef struct edge_info_def
1939 {
1940 /* In case edge is a loopback edge, the probability edge will be reached
1941 in case header is. Estimated number of iterations of the loop can be
1942 then computed as 1 / (1 - back_edge_prob). */
1943 sreal back_edge_prob;
1944 /* True if the edge is a loopback edge in the natural loop. */
1945 unsigned int back_edge:1;
1946 } *edge_info;
1947
1948 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1949 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1950
1951 /* Helper function for estimate_bb_frequencies.
1952 Propagate the frequencies in blocks marked in
1953 TOVISIT, starting in HEAD. */
1954
1955 static void
1956 propagate_freq (basic_block head, bitmap tovisit)
1957 {
1958 basic_block bb;
1959 basic_block last;
1960 unsigned i;
1961 edge e;
1962 basic_block nextbb;
1963 bitmap_iterator bi;
1964
1965 /* For each basic block we need to visit count number of his predecessors
1966 we need to visit first. */
1967 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1968 {
1969 edge_iterator ei;
1970 int count = 0;
1971
1972 bb = BASIC_BLOCK (i);
1973
1974 FOR_EACH_EDGE (e, ei, bb->preds)
1975 {
1976 bool visit = bitmap_bit_p (tovisit, e->src->index);
1977
1978 if (visit && !(e->flags & EDGE_DFS_BACK))
1979 count++;
1980 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1981 fprintf (dump_file,
1982 "Irreducible region hit, ignoring edge to %i->%i\n",
1983 e->src->index, bb->index);
1984 }
1985 BLOCK_INFO (bb)->npredecessors = count;
1986 /* When function never returns, we will never process exit block. */
1987 if (!count && bb == EXIT_BLOCK_PTR)
1988 bb->count = bb->frequency = 0;
1989 }
1990
1991 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1992 last = head;
1993 for (bb = head; bb; bb = nextbb)
1994 {
1995 edge_iterator ei;
1996 sreal cyclic_probability, frequency;
1997
1998 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1999 memcpy (&frequency, &real_zero, sizeof (real_zero));
2000
2001 nextbb = BLOCK_INFO (bb)->next;
2002 BLOCK_INFO (bb)->next = NULL;
2003
2004 /* Compute frequency of basic block. */
2005 if (bb != head)
2006 {
2007 #ifdef ENABLE_CHECKING
2008 FOR_EACH_EDGE (e, ei, bb->preds)
2009 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2010 || (e->flags & EDGE_DFS_BACK));
2011 #endif
2012
2013 FOR_EACH_EDGE (e, ei, bb->preds)
2014 if (EDGE_INFO (e)->back_edge)
2015 {
2016 sreal_add (&cyclic_probability, &cyclic_probability,
2017 &EDGE_INFO (e)->back_edge_prob);
2018 }
2019 else if (!(e->flags & EDGE_DFS_BACK))
2020 {
2021 sreal tmp;
2022
2023 /* frequency += (e->probability
2024 * BLOCK_INFO (e->src)->frequency /
2025 REG_BR_PROB_BASE); */
2026
2027 sreal_init (&tmp, e->probability, 0);
2028 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2029 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2030 sreal_add (&frequency, &frequency, &tmp);
2031 }
2032
2033 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2034 {
2035 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2036 sizeof (frequency));
2037 }
2038 else
2039 {
2040 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2041 {
2042 memcpy (&cyclic_probability, &real_almost_one,
2043 sizeof (real_almost_one));
2044 }
2045
2046 /* BLOCK_INFO (bb)->frequency = frequency
2047 / (1 - cyclic_probability) */
2048
2049 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2050 sreal_div (&BLOCK_INFO (bb)->frequency,
2051 &frequency, &cyclic_probability);
2052 }
2053 }
2054
2055 bitmap_clear_bit (tovisit, bb->index);
2056
2057 e = find_edge (bb, head);
2058 if (e)
2059 {
2060 sreal tmp;
2061
2062 /* EDGE_INFO (e)->back_edge_prob
2063 = ((e->probability * BLOCK_INFO (bb)->frequency)
2064 / REG_BR_PROB_BASE); */
2065
2066 sreal_init (&tmp, e->probability, 0);
2067 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2068 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2069 &tmp, &real_inv_br_prob_base);
2070 }
2071
2072 /* Propagate to successor blocks. */
2073 FOR_EACH_EDGE (e, ei, bb->succs)
2074 if (!(e->flags & EDGE_DFS_BACK)
2075 && BLOCK_INFO (e->dest)->npredecessors)
2076 {
2077 BLOCK_INFO (e->dest)->npredecessors--;
2078 if (!BLOCK_INFO (e->dest)->npredecessors)
2079 {
2080 if (!nextbb)
2081 nextbb = e->dest;
2082 else
2083 BLOCK_INFO (last)->next = e->dest;
2084
2085 last = e->dest;
2086 }
2087 }
2088 }
2089 }
2090
2091 /* Estimate probabilities of loopback edges in loops at same nest level. */
2092
2093 static void
2094 estimate_loops_at_level (struct loop *first_loop)
2095 {
2096 struct loop *loop;
2097
2098 for (loop = first_loop; loop; loop = loop->next)
2099 {
2100 edge e;
2101 basic_block *bbs;
2102 unsigned i;
2103 bitmap tovisit = BITMAP_ALLOC (NULL);
2104
2105 estimate_loops_at_level (loop->inner);
2106
2107 /* Find current loop back edge and mark it. */
2108 e = loop_latch_edge (loop);
2109 EDGE_INFO (e)->back_edge = 1;
2110
2111 bbs = get_loop_body (loop);
2112 for (i = 0; i < loop->num_nodes; i++)
2113 bitmap_set_bit (tovisit, bbs[i]->index);
2114 free (bbs);
2115 propagate_freq (loop->header, tovisit);
2116 BITMAP_FREE (tovisit);
2117 }
2118 }
2119
2120 /* Propagates frequencies through structure of loops. */
2121
2122 static void
2123 estimate_loops (void)
2124 {
2125 bitmap tovisit = BITMAP_ALLOC (NULL);
2126 basic_block bb;
2127
2128 /* Start by estimating the frequencies in the loops. */
2129 if (number_of_loops () > 1)
2130 estimate_loops_at_level (current_loops->tree_root->inner);
2131
2132 /* Now propagate the frequencies through all the blocks. */
2133 FOR_ALL_BB (bb)
2134 {
2135 bitmap_set_bit (tovisit, bb->index);
2136 }
2137 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2138 BITMAP_FREE (tovisit);
2139 }
2140
2141 /* Convert counts measured by profile driven feedback to frequencies.
2142 Return nonzero iff there was any nonzero execution count. */
2143
2144 int
2145 counts_to_freqs (void)
2146 {
2147 gcov_type count_max, true_count_max = 0;
2148 basic_block bb;
2149
2150 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2151 true_count_max = MAX (bb->count, true_count_max);
2152
2153 count_max = MAX (true_count_max, 1);
2154 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2155 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2156
2157 return true_count_max;
2158 }
2159
2160 /* Return true if function is likely to be expensive, so there is no point to
2161 optimize performance of prologue, epilogue or do inlining at the expense
2162 of code size growth. THRESHOLD is the limit of number of instructions
2163 function can execute at average to be still considered not expensive. */
2164
2165 bool
2166 expensive_function_p (int threshold)
2167 {
2168 unsigned int sum = 0;
2169 basic_block bb;
2170 unsigned int limit;
2171
2172 /* We can not compute accurately for large thresholds due to scaled
2173 frequencies. */
2174 gcc_assert (threshold <= BB_FREQ_MAX);
2175
2176 /* Frequencies are out of range. This either means that function contains
2177 internal loop executing more than BB_FREQ_MAX times or profile feedback
2178 is available and function has not been executed at all. */
2179 if (ENTRY_BLOCK_PTR->frequency == 0)
2180 return true;
2181
2182 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2183 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2184 FOR_EACH_BB (bb)
2185 {
2186 rtx insn;
2187
2188 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2189 insn = NEXT_INSN (insn))
2190 if (active_insn_p (insn))
2191 {
2192 sum += bb->frequency;
2193 if (sum > limit)
2194 return true;
2195 }
2196 }
2197
2198 return false;
2199 }
2200
2201 /* Estimate basic blocks frequency by given branch probabilities. */
2202
2203 void
2204 estimate_bb_frequencies (void)
2205 {
2206 basic_block bb;
2207 sreal freq_max;
2208
2209 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2210 {
2211 static int real_values_initialized = 0;
2212
2213 if (!real_values_initialized)
2214 {
2215 real_values_initialized = 1;
2216 sreal_init (&real_zero, 0, 0);
2217 sreal_init (&real_one, 1, 0);
2218 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2219 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2220 sreal_init (&real_one_half, 1, -1);
2221 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2222 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2223 }
2224
2225 mark_dfs_back_edges ();
2226
2227 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2228
2229 /* Set up block info for each basic block. */
2230 alloc_aux_for_blocks (sizeof (struct block_info_def));
2231 alloc_aux_for_edges (sizeof (struct edge_info_def));
2232 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2233 {
2234 edge e;
2235 edge_iterator ei;
2236
2237 FOR_EACH_EDGE (e, ei, bb->succs)
2238 {
2239 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2240 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2241 &EDGE_INFO (e)->back_edge_prob,
2242 &real_inv_br_prob_base);
2243 }
2244 }
2245
2246 /* First compute probabilities locally for each loop from innermost
2247 to outermost to examine probabilities for back edges. */
2248 estimate_loops ();
2249
2250 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2251 FOR_EACH_BB (bb)
2252 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2253 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2254
2255 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2256 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2257 {
2258 sreal tmp;
2259
2260 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2261 sreal_add (&tmp, &tmp, &real_one_half);
2262 bb->frequency = sreal_to_int (&tmp);
2263 }
2264
2265 free_aux_for_blocks ();
2266 free_aux_for_edges ();
2267 }
2268 compute_function_frequency ();
2269 }
2270
2271 /* Decide whether function is hot, cold or unlikely executed. */
2272 void
2273 compute_function_frequency (void)
2274 {
2275 basic_block bb;
2276 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2277 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2278 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2279 node->only_called_at_startup = true;
2280 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2281 node->only_called_at_exit = true;
2282
2283 if (!profile_info || !flag_branch_probabilities)
2284 {
2285 int flags = flags_from_decl_or_type (current_function_decl);
2286 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2287 != NULL)
2288 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2289 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2290 != NULL)
2291 node->frequency = NODE_FREQUENCY_HOT;
2292 else if (flags & ECF_NORETURN)
2293 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2294 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2295 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2296 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2297 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2298 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2299 return;
2300 }
2301 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2302 FOR_EACH_BB (bb)
2303 {
2304 if (maybe_hot_bb_p (bb))
2305 {
2306 node->frequency = NODE_FREQUENCY_HOT;
2307 return;
2308 }
2309 if (!probably_never_executed_bb_p (bb))
2310 node->frequency = NODE_FREQUENCY_NORMAL;
2311 }
2312 }
2313
2314 static bool
2315 gate_estimate_probability (void)
2316 {
2317 return flag_guess_branch_prob;
2318 }
2319
2320 /* Build PREDICT_EXPR. */
2321 tree
2322 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2323 {
2324 tree t = build1 (PREDICT_EXPR, void_type_node,
2325 build_int_cst (integer_type_node, predictor));
2326 SET_PREDICT_EXPR_OUTCOME (t, taken);
2327 return t;
2328 }
2329
2330 const char *
2331 predictor_name (enum br_predictor predictor)
2332 {
2333 return predictor_info[predictor].name;
2334 }
2335
2336 struct gimple_opt_pass pass_profile =
2337 {
2338 {
2339 GIMPLE_PASS,
2340 "profile_estimate", /* name */
2341 gate_estimate_probability, /* gate */
2342 tree_estimate_probability_driver, /* execute */
2343 NULL, /* sub */
2344 NULL, /* next */
2345 0, /* static_pass_number */
2346 TV_BRANCH_PROB, /* tv_id */
2347 PROP_cfg, /* properties_required */
2348 0, /* properties_provided */
2349 0, /* properties_destroyed */
2350 0, /* todo_flags_start */
2351 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2352 }
2353 };
2354
2355 struct gimple_opt_pass pass_strip_predict_hints =
2356 {
2357 {
2358 GIMPLE_PASS,
2359 "*strip_predict_hints", /* name */
2360 NULL, /* gate */
2361 strip_predict_hints, /* execute */
2362 NULL, /* sub */
2363 NULL, /* next */
2364 0, /* static_pass_number */
2365 TV_BRANCH_PROB, /* tv_id */
2366 PROP_cfg, /* properties_required */
2367 0, /* properties_provided */
2368 0, /* properties_destroyed */
2369 0, /* todo_flags_start */
2370 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2371 }
2372 };
2373
2374 /* Rebuild function frequencies. Passes are in general expected to
2375 maintain profile by hand, however in some cases this is not possible:
2376 for example when inlining several functions with loops freuqencies might run
2377 out of scale and thus needs to be recomputed. */
2378
2379 void
2380 rebuild_frequencies (void)
2381 {
2382 timevar_push (TV_REBUILD_FREQUENCIES);
2383 if (profile_status == PROFILE_GUESSED)
2384 {
2385 loop_optimizer_init (0);
2386 add_noreturn_fake_exit_edges ();
2387 mark_irreducible_loops ();
2388 connect_infinite_loops_to_exit ();
2389 estimate_bb_frequencies ();
2390 remove_fake_exit_edges ();
2391 loop_optimizer_finalize ();
2392 }
2393 else if (profile_status == PROFILE_READ)
2394 counts_to_freqs ();
2395 else
2396 gcc_unreachable ();
2397 timevar_pop (TV_REBUILD_FREQUENCIES);
2398 }