c-cppbuiltin.c, [...]: Fix comment typos.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62
63 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
64 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
65 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
66 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
67
68 /* Random guesstimation given names. */
69 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
70 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
71 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
72 #define PROB_ALWAYS (REG_BR_PROB_BASE)
73
74 static void combine_predictions_for_insn (rtx, basic_block);
75 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
76 static void estimate_loops_at_level (struct loop *, bitmap);
77 static void propagate_freq (struct loop *, bitmap);
78 static void estimate_bb_frequencies (struct loops *);
79 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
80 static bool last_basic_block_p (basic_block);
81 static void compute_function_frequency (void);
82 static void choose_function_section (void);
83 static bool can_predict_insn_p (rtx);
84
85 /* Information we hold about each branch predictor.
86 Filled using information from predict.def. */
87
88 struct predictor_info
89 {
90 const char *const name; /* Name used in the debugging dumps. */
91 const int hitrate; /* Expected hitrate used by
92 predict_insn_def call. */
93 const int flags;
94 };
95
96 /* Use given predictor without Dempster-Shaffer theory if it matches
97 using first_match heuristics. */
98 #define PRED_FLAG_FIRST_MATCH 1
99
100 /* Recompute hitrate in percent to our representation. */
101
102 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
103
104 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
105 static const struct predictor_info predictor_info[]= {
106 #include "predict.def"
107
108 /* Upper bound on predictors. */
109 {NULL, 0, 0}
110 };
111 #undef DEF_PREDICTOR
112
113 /* Return true in case BB can be CPU intensive and should be optimized
114 for maximal performance. */
115
116 bool
117 maybe_hot_bb_p (basic_block bb)
118 {
119 if (profile_info && flag_branch_probabilities
120 && (bb->count
121 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
122 return false;
123 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
124 return false;
125 return true;
126 }
127
128 /* Return true in case BB is cold and should be optimized for size. */
129
130 bool
131 probably_cold_bb_p (basic_block bb)
132 {
133 if (profile_info && flag_branch_probabilities
134 && (bb->count
135 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
136 return true;
137 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
138 return true;
139 return false;
140 }
141
142 /* Return true in case BB is probably never executed. */
143 bool
144 probably_never_executed_bb_p (basic_block bb)
145 {
146 if (profile_info && flag_branch_probabilities)
147 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
148 return false;
149 }
150
151 /* Return true if the one of outgoing edges is already predicted by
152 PREDICTOR. */
153
154 bool
155 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
156 {
157 rtx note;
158 if (!INSN_P (BB_END (bb)))
159 return false;
160 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
161 if (REG_NOTE_KIND (note) == REG_BR_PRED
162 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
163 return true;
164 return false;
165 }
166
167 /* Return true if the one of outgoing edges is already predicted by
168 PREDICTOR. */
169
170 bool
171 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
172 {
173 struct edge_prediction *i = bb_ann (bb)->predictions;
174 for (i = bb_ann (bb)->predictions; i; i = i->next)
175 if (i->predictor == predictor)
176 return true;
177 return false;
178 }
179
180 void
181 predict_insn (rtx insn, enum br_predictor predictor, int probability)
182 {
183 if (!any_condjump_p (insn))
184 abort ();
185 if (!flag_guess_branch_prob)
186 return;
187
188 REG_NOTES (insn)
189 = gen_rtx_EXPR_LIST (REG_BR_PRED,
190 gen_rtx_CONCAT (VOIDmode,
191 GEN_INT ((int) predictor),
192 GEN_INT ((int) probability)),
193 REG_NOTES (insn));
194 }
195
196 /* Predict insn by given predictor. */
197
198 void
199 predict_insn_def (rtx insn, enum br_predictor predictor,
200 enum prediction taken)
201 {
202 int probability = predictor_info[(int) predictor].hitrate;
203
204 if (taken != TAKEN)
205 probability = REG_BR_PROB_BASE - probability;
206
207 predict_insn (insn, predictor, probability);
208 }
209
210 /* Predict edge E with given probability if possible. */
211
212 void
213 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
214 {
215 rtx last_insn;
216 last_insn = BB_END (e->src);
217
218 /* We can store the branch prediction information only about
219 conditional jumps. */
220 if (!any_condjump_p (last_insn))
221 return;
222
223 /* We always store probability of branching. */
224 if (e->flags & EDGE_FALLTHRU)
225 probability = REG_BR_PROB_BASE - probability;
226
227 predict_insn (last_insn, predictor, probability);
228 }
229
230 /* Predict edge E with the given PROBABILITY. */
231 void
232 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
233 {
234 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
235
236 i->next = bb_ann (e->src)->predictions;
237 bb_ann (e->src)->predictions = i;
238 i->probability = probability;
239 i->predictor = predictor;
240 i->edge = e;
241 }
242
243 /* Return true when we can store prediction on insn INSN.
244 At the moment we represent predictions only on conditional
245 jumps, not at computed jump or other complicated cases. */
246 static bool
247 can_predict_insn_p (rtx insn)
248 {
249 return (JUMP_P (insn)
250 && any_condjump_p (insn)
251 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
252 }
253
254 /* Predict edge E by given predictor if possible. */
255
256 void
257 predict_edge_def (edge e, enum br_predictor predictor,
258 enum prediction taken)
259 {
260 int probability = predictor_info[(int) predictor].hitrate;
261
262 if (taken != TAKEN)
263 probability = REG_BR_PROB_BASE - probability;
264
265 predict_edge (e, predictor, probability);
266 }
267
268 /* Invert all branch predictions or probability notes in the INSN. This needs
269 to be done each time we invert the condition used by the jump. */
270
271 void
272 invert_br_probabilities (rtx insn)
273 {
274 rtx note;
275
276 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
277 if (REG_NOTE_KIND (note) == REG_BR_PROB)
278 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
279 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
280 XEXP (XEXP (note, 0), 1)
281 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
282 }
283
284 /* Dump information about the branch prediction to the output file. */
285
286 static void
287 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
288 basic_block bb, int used)
289 {
290 edge e;
291 edge_iterator ei;
292
293 if (!file)
294 return;
295
296 FOR_EACH_EDGE (e, ei, bb->succs)
297 if (! (e->flags & EDGE_FALLTHRU))
298 break;
299
300 fprintf (file, " %s heuristics%s: %.1f%%",
301 predictor_info[predictor].name,
302 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
303
304 if (bb->count)
305 {
306 fprintf (file, " exec ");
307 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
308 if (e)
309 {
310 fprintf (file, " hit ");
311 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
312 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
313 }
314 }
315
316 fprintf (file, "\n");
317 }
318
319 /* We can not predict the probabilities of outgoing edges of bb. Set them
320 evenly and hope for the best. */
321 static void
322 set_even_probabilities (basic_block bb)
323 {
324 int nedges = 0;
325 edge e;
326 edge_iterator ei;
327
328 FOR_EACH_EDGE (e, ei, bb->succs)
329 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
330 nedges ++;
331 FOR_EACH_EDGE (e, ei, bb->succs)
332 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
333 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
334 else
335 e->probability = 0;
336 }
337
338 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
339 note if not already present. Remove now useless REG_BR_PRED notes. */
340
341 static void
342 combine_predictions_for_insn (rtx insn, basic_block bb)
343 {
344 rtx prob_note;
345 rtx *pnote;
346 rtx note;
347 int best_probability = PROB_EVEN;
348 int best_predictor = END_PREDICTORS;
349 int combined_probability = REG_BR_PROB_BASE / 2;
350 int d;
351 bool first_match = false;
352 bool found = false;
353
354 if (!can_predict_insn_p (insn))
355 {
356 set_even_probabilities (bb);
357 return;
358 }
359
360 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
361 pnote = &REG_NOTES (insn);
362 if (dump_file)
363 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
364 bb->index);
365
366 /* We implement "first match" heuristics and use probability guessed
367 by predictor with smallest index. */
368 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
369 if (REG_NOTE_KIND (note) == REG_BR_PRED)
370 {
371 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
372 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
373
374 found = true;
375 if (best_predictor > predictor)
376 best_probability = probability, best_predictor = predictor;
377
378 d = (combined_probability * probability
379 + (REG_BR_PROB_BASE - combined_probability)
380 * (REG_BR_PROB_BASE - probability));
381
382 /* Use FP math to avoid overflows of 32bit integers. */
383 if (d == 0)
384 /* If one probability is 0% and one 100%, avoid division by zero. */
385 combined_probability = REG_BR_PROB_BASE / 2;
386 else
387 combined_probability = (((double) combined_probability) * probability
388 * REG_BR_PROB_BASE / d + 0.5);
389 }
390
391 /* Decide which heuristic to use. In case we didn't match anything,
392 use no_prediction heuristic, in case we did match, use either
393 first match or Dempster-Shaffer theory depending on the flags. */
394
395 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
396 first_match = true;
397
398 if (!found)
399 dump_prediction (dump_file, PRED_NO_PREDICTION,
400 combined_probability, bb, true);
401 else
402 {
403 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
404 bb, !first_match);
405 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
406 bb, first_match);
407 }
408
409 if (first_match)
410 combined_probability = best_probability;
411 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
412
413 while (*pnote)
414 {
415 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
416 {
417 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
418 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
419
420 dump_prediction (dump_file, predictor, probability, bb,
421 !first_match || best_predictor == predictor);
422 *pnote = XEXP (*pnote, 1);
423 }
424 else
425 pnote = &XEXP (*pnote, 1);
426 }
427
428 if (!prob_note)
429 {
430 REG_NOTES (insn)
431 = gen_rtx_EXPR_LIST (REG_BR_PROB,
432 GEN_INT (combined_probability), REG_NOTES (insn));
433
434 /* Save the prediction into CFG in case we are seeing non-degenerated
435 conditional jump. */
436 if (EDGE_COUNT (bb->succs) > 1)
437 {
438 BRANCH_EDGE (bb)->probability = combined_probability;
439 FALLTHRU_EDGE (bb)->probability
440 = REG_BR_PROB_BASE - combined_probability;
441 }
442 }
443 else if (EDGE_COUNT (bb->succs) > 1)
444 {
445 int prob = INTVAL (XEXP (prob_note, 0));
446
447 BRANCH_EDGE (bb)->probability = prob;
448 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
449 }
450 else
451 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
452 }
453
454 /* Combine predictions into single probability and store them into CFG.
455 Remove now useless prediction entries. */
456
457 static void
458 combine_predictions_for_bb (FILE *file, basic_block bb)
459 {
460 int best_probability = PROB_EVEN;
461 int best_predictor = END_PREDICTORS;
462 int combined_probability = REG_BR_PROB_BASE / 2;
463 int d;
464 bool first_match = false;
465 bool found = false;
466 struct edge_prediction *pred;
467 int nedges = 0;
468 edge e, first = NULL, second = NULL;
469 edge_iterator ei;
470
471 FOR_EACH_EDGE (e, ei, bb->succs)
472 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
473 {
474 nedges ++;
475 if (first && !second)
476 second = e;
477 if (!first)
478 first = e;
479 }
480
481 /* When there is no successor or only one choice, prediction is easy.
482
483 We are lazy for now and predict only basic blocks with two outgoing
484 edges. It is possible to predict generic case too, but we have to
485 ignore first match heuristics and do more involved combining. Implement
486 this later. */
487 if (nedges != 2)
488 {
489 if (!bb->count)
490 set_even_probabilities (bb);
491 bb_ann (bb)->predictions = NULL;
492 if (file)
493 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
494 nedges, bb->index);
495 return;
496 }
497
498 if (file)
499 fprintf (file, "Predictions for bb %i\n", bb->index);
500
501 /* We implement "first match" heuristics and use probability guessed
502 by predictor with smallest index. */
503 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
504 {
505 int predictor = pred->predictor;
506 int probability = pred->probability;
507
508 if (pred->edge != first)
509 probability = REG_BR_PROB_BASE - probability;
510
511 found = true;
512 if (best_predictor > predictor)
513 best_probability = probability, best_predictor = predictor;
514
515 d = (combined_probability * probability
516 + (REG_BR_PROB_BASE - combined_probability)
517 * (REG_BR_PROB_BASE - probability));
518
519 /* Use FP math to avoid overflows of 32bit integers. */
520 if (d == 0)
521 /* If one probability is 0% and one 100%, avoid division by zero. */
522 combined_probability = REG_BR_PROB_BASE / 2;
523 else
524 combined_probability = (((double) combined_probability) * probability
525 * REG_BR_PROB_BASE / d + 0.5);
526 }
527
528 /* Decide which heuristic to use. In case we didn't match anything,
529 use no_prediction heuristic, in case we did match, use either
530 first match or Dempster-Shaffer theory depending on the flags. */
531
532 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
533 first_match = true;
534
535 if (!found)
536 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
537 else
538 {
539 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
540 !first_match);
541 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
542 first_match);
543 }
544
545 if (first_match)
546 combined_probability = best_probability;
547 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
548
549 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
550 {
551 int predictor = pred->predictor;
552 int probability = pred->probability;
553
554 if (pred->edge != EDGE_SUCC (bb, 0))
555 probability = REG_BR_PROB_BASE - probability;
556 dump_prediction (file, predictor, probability, bb,
557 !first_match || best_predictor == predictor);
558 }
559 bb_ann (bb)->predictions = NULL;
560
561 if (!bb->count)
562 {
563 first->probability = combined_probability;
564 second->probability = REG_BR_PROB_BASE - combined_probability;
565 }
566 }
567
568 /* Predict edge probabilities by exploiting loop structure.
569 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
570 RTL otherwise use tree based approach. */
571 static void
572 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
573 {
574 unsigned i;
575
576 if (!rtlsimpleloops)
577 scev_initialize (loops_info);
578
579 /* Try to predict out blocks in a loop that are not part of a
580 natural loop. */
581 for (i = 1; i < loops_info->num; i++)
582 {
583 basic_block bb, *bbs;
584 unsigned j;
585 int exits;
586 struct loop *loop = loops_info->parray[i];
587 struct niter_desc desc;
588 unsigned HOST_WIDE_INT niter;
589
590 flow_loop_scan (loop, LOOP_EXIT_EDGES);
591 exits = loop->num_exits;
592
593 if (rtlsimpleloops)
594 {
595 iv_analysis_loop_init (loop);
596 find_simple_exit (loop, &desc);
597
598 if (desc.simple_p && desc.const_iter)
599 {
600 int prob;
601 niter = desc.niter + 1;
602 if (niter == 0) /* We might overflow here. */
603 niter = desc.niter;
604
605 prob = (REG_BR_PROB_BASE
606 - (REG_BR_PROB_BASE + niter /2) / niter);
607 /* Branch prediction algorithm gives 0 frequency for everything
608 after the end of loop for loop having 0 probability to finish. */
609 if (prob == REG_BR_PROB_BASE)
610 prob = REG_BR_PROB_BASE - 1;
611 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
612 prob);
613 }
614 }
615 else
616 {
617 edge *exits;
618 unsigned j, n_exits;
619 struct tree_niter_desc niter_desc;
620
621 exits = get_loop_exit_edges (loop, &n_exits);
622 for (j = 0; j < n_exits; j++)
623 {
624 tree niter = NULL;
625
626 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
627 niter = niter_desc.niter;
628 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
629 niter = loop_niter_by_eval (loop, exits[j]);
630
631 if (TREE_CODE (niter) == INTEGER_CST)
632 {
633 int probability;
634 if (host_integerp (niter, 1)
635 && tree_int_cst_lt (niter,
636 build_int_cstu (NULL_TREE,
637 REG_BR_PROB_BASE - 1)))
638 {
639 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
640 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
641 }
642 else
643 probability = 1;
644
645 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
646 }
647 }
648
649 free (exits);
650 }
651
652 bbs = get_loop_body (loop);
653
654 for (j = 0; j < loop->num_nodes; j++)
655 {
656 int header_found = 0;
657 edge e;
658 edge_iterator ei;
659
660 bb = bbs[j];
661
662 /* Bypass loop heuristics on continue statement. These
663 statements construct loops via "non-loop" constructs
664 in the source language and are better to be handled
665 separately. */
666 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
667 || predicted_by_p (bb, PRED_CONTINUE))
668 continue;
669
670 /* Loop branch heuristics - predict an edge back to a
671 loop's head as taken. */
672 FOR_EACH_EDGE (e, ei, bb->succs)
673 if (e->dest == loop->header
674 && e->src == loop->latch)
675 {
676 header_found = 1;
677 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
678 }
679
680 /* Loop exit heuristics - predict an edge exiting the loop if the
681 conditional has no loop header successors as not taken. */
682 if (!header_found)
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (e->dest->index < 0
685 || !flow_bb_inside_loop_p (loop, e->dest))
686 predict_edge
687 (e, PRED_LOOP_EXIT,
688 (REG_BR_PROB_BASE
689 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
690 / exits);
691 }
692
693 /* Free basic blocks from get_loop_body. */
694 free (bbs);
695 }
696
697 if (!rtlsimpleloops)
698 scev_finalize ();
699 }
700
701 /* Attempt to predict probabilities of BB outgoing edges using local
702 properties. */
703 static void
704 bb_estimate_probability_locally (basic_block bb)
705 {
706 rtx last_insn = BB_END (bb);
707 rtx cond;
708
709 if (! can_predict_insn_p (last_insn))
710 return;
711 cond = get_condition (last_insn, NULL, false, false);
712 if (! cond)
713 return;
714
715 /* Try "pointer heuristic."
716 A comparison ptr == 0 is predicted as false.
717 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
718 if (COMPARISON_P (cond)
719 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
720 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
721 {
722 if (GET_CODE (cond) == EQ)
723 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
724 else if (GET_CODE (cond) == NE)
725 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
726 }
727 else
728
729 /* Try "opcode heuristic."
730 EQ tests are usually false and NE tests are usually true. Also,
731 most quantities are positive, so we can make the appropriate guesses
732 about signed comparisons against zero. */
733 switch (GET_CODE (cond))
734 {
735 case CONST_INT:
736 /* Unconditional branch. */
737 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
738 cond == const0_rtx ? NOT_TAKEN : TAKEN);
739 break;
740
741 case EQ:
742 case UNEQ:
743 /* Floating point comparisons appears to behave in a very
744 unpredictable way because of special role of = tests in
745 FP code. */
746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
747 ;
748 /* Comparisons with 0 are often used for booleans and there is
749 nothing useful to predict about them. */
750 else if (XEXP (cond, 1) == const0_rtx
751 || XEXP (cond, 0) == const0_rtx)
752 ;
753 else
754 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
755 break;
756
757 case NE:
758 case LTGT:
759 /* Floating point comparisons appears to behave in a very
760 unpredictable way because of special role of = tests in
761 FP code. */
762 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
763 ;
764 /* Comparisons with 0 are often used for booleans and there is
765 nothing useful to predict about them. */
766 else if (XEXP (cond, 1) == const0_rtx
767 || XEXP (cond, 0) == const0_rtx)
768 ;
769 else
770 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
771 break;
772
773 case ORDERED:
774 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
775 break;
776
777 case UNORDERED:
778 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
779 break;
780
781 case LE:
782 case LT:
783 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
784 || XEXP (cond, 1) == constm1_rtx)
785 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
786 break;
787
788 case GE:
789 case GT:
790 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
791 || XEXP (cond, 1) == constm1_rtx)
792 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
793 break;
794
795 default:
796 break;
797 }
798 }
799
800 /* Statically estimate the probability that a branch will be taken and produce
801 estimated profile. When profile feedback is present never executed portions
802 of function gets estimated. */
803
804 void
805 estimate_probability (struct loops *loops_info)
806 {
807 basic_block bb;
808
809 connect_infinite_loops_to_exit ();
810 calculate_dominance_info (CDI_DOMINATORS);
811 calculate_dominance_info (CDI_POST_DOMINATORS);
812
813 predict_loops (loops_info, true);
814
815 iv_analysis_done ();
816
817 /* Attempt to predict conditional jumps using a number of heuristics. */
818 FOR_EACH_BB (bb)
819 {
820 rtx last_insn = BB_END (bb);
821 edge e;
822 edge_iterator ei;
823
824 if (! can_predict_insn_p (last_insn))
825 continue;
826
827 FOR_EACH_EDGE (e, ei, bb->succs)
828 {
829 /* Predict early returns to be probable, as we've already taken
830 care for error returns and other are often used for fast paths
831 trought function. */
832 if ((e->dest == EXIT_BLOCK_PTR
833 || (EDGE_COUNT (e->dest->succs) == 1
834 && EDGE_SUCC (e->dest, 0)->dest == EXIT_BLOCK_PTR))
835 && !predicted_by_p (bb, PRED_NULL_RETURN)
836 && !predicted_by_p (bb, PRED_CONST_RETURN)
837 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
838 && !last_basic_block_p (e->dest))
839 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
840
841 /* Look for block we are guarding (i.e. we dominate it,
842 but it doesn't postdominate us). */
843 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
844 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
845 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
846 {
847 rtx insn;
848
849 /* The call heuristic claims that a guarded function call
850 is improbable. This is because such calls are often used
851 to signal exceptional situations such as printing error
852 messages. */
853 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
854 insn = NEXT_INSN (insn))
855 if (CALL_P (insn)
856 /* Constant and pure calls are hardly used to signalize
857 something exceptional. */
858 && ! CONST_OR_PURE_CALL_P (insn))
859 {
860 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
861 break;
862 }
863 }
864 }
865 bb_estimate_probability_locally (bb);
866 }
867
868 /* Attach the combined probability to each conditional jump. */
869 FOR_EACH_BB (bb)
870 combine_predictions_for_insn (BB_END (bb), bb);
871
872 remove_fake_edges ();
873 estimate_bb_frequencies (loops_info);
874 free_dominance_info (CDI_POST_DOMINATORS);
875 if (profile_status == PROFILE_ABSENT)
876 profile_status = PROFILE_GUESSED;
877 }
878
879 /* Set edge->probability for each successor edge of BB. */
880 void
881 guess_outgoing_edge_probabilities (basic_block bb)
882 {
883 bb_estimate_probability_locally (bb);
884 combine_predictions_for_insn (BB_END (bb), bb);
885 }
886 \f
887 /* Return constant EXPR will likely have at execution time, NULL if unknown.
888 The function is used by builtin_expect branch predictor so the evidence
889 must come from this construct and additional possible constant folding.
890
891 We may want to implement more involved value guess (such as value range
892 propagation based prediction), but such tricks shall go to new
893 implementation. */
894
895 static tree
896 expr_expected_value (tree expr, bitmap visited)
897 {
898 if (TREE_CONSTANT (expr))
899 return expr;
900 else if (TREE_CODE (expr) == SSA_NAME)
901 {
902 tree def = SSA_NAME_DEF_STMT (expr);
903
904 /* If we were already here, break the infinite cycle. */
905 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
906 return NULL;
907 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
908
909 if (TREE_CODE (def) == PHI_NODE)
910 {
911 /* All the arguments of the PHI node must have the same constant
912 length. */
913 int i;
914 tree val = NULL, new_val;
915
916 for (i = 0; i < PHI_NUM_ARGS (def); i++)
917 {
918 tree arg = PHI_ARG_DEF (def, i);
919
920 /* If this PHI has itself as an argument, we cannot
921 determine the string length of this argument. However,
922 if we can find an expected constant value for the other
923 PHI args then we can still be sure that this is
924 likely a constant. So be optimistic and just
925 continue with the next argument. */
926 if (arg == PHI_RESULT (def))
927 continue;
928
929 new_val = expr_expected_value (arg, visited);
930 if (!new_val)
931 return NULL;
932 if (!val)
933 val = new_val;
934 else if (!operand_equal_p (val, new_val, false))
935 return NULL;
936 }
937 return val;
938 }
939 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
940 return NULL;
941 return expr_expected_value (TREE_OPERAND (def, 1), visited);
942 }
943 else if (TREE_CODE (expr) == CALL_EXPR)
944 {
945 tree decl = get_callee_fndecl (expr);
946 if (!decl)
947 return NULL;
948 if (DECL_BUILT_IN (decl) && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
949 {
950 tree arglist = TREE_OPERAND (expr, 1);
951 tree val;
952
953 if (arglist == NULL_TREE
954 || TREE_CHAIN (arglist) == NULL_TREE)
955 return NULL;
956 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
957 if (TREE_CONSTANT (val))
958 return val;
959 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
960 }
961 }
962 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
963 {
964 tree op0, op1, res;
965 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
966 if (!op0)
967 return NULL;
968 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
969 if (!op1)
970 return NULL;
971 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
972 if (TREE_CONSTANT (res))
973 return res;
974 return NULL;
975 }
976 if (UNARY_CLASS_P (expr))
977 {
978 tree op0, res;
979 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
980 if (!op0)
981 return NULL;
982 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
983 if (TREE_CONSTANT (res))
984 return res;
985 return NULL;
986 }
987 return NULL;
988 }
989 \f
990 /* Get rid of all builtin_expect calls we no longer need. */
991 static void
992 strip_builtin_expect (void)
993 {
994 basic_block bb;
995 FOR_EACH_BB (bb)
996 {
997 block_stmt_iterator bi;
998 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
999 {
1000 tree stmt = bsi_stmt (bi);
1001 tree fndecl;
1002 tree arglist;
1003
1004 if (TREE_CODE (stmt) == MODIFY_EXPR
1005 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1006 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1007 && DECL_BUILT_IN (fndecl)
1008 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1009 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1010 && TREE_CHAIN (arglist))
1011 {
1012 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1013 modify_stmt (stmt);
1014 }
1015 }
1016 }
1017 }
1018 \f
1019 /* Predict using opcode of the last statement in basic block. */
1020 static void
1021 tree_predict_by_opcode (basic_block bb)
1022 {
1023 tree stmt = last_stmt (bb);
1024 edge then_edge;
1025 tree cond;
1026 tree op0;
1027 tree type;
1028 tree val;
1029 bitmap visited;
1030 edge_iterator ei;
1031
1032 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1033 return;
1034 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1035 if (then_edge->flags & EDGE_TRUE_VALUE)
1036 break;
1037 cond = TREE_OPERAND (stmt, 0);
1038 if (!COMPARISON_CLASS_P (cond))
1039 return;
1040 op0 = TREE_OPERAND (cond, 0);
1041 type = TREE_TYPE (op0);
1042 visited = BITMAP_XMALLOC ();
1043 val = expr_expected_value (cond, visited);
1044 BITMAP_XFREE (visited);
1045 if (val)
1046 {
1047 if (integer_zerop (val))
1048 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1049 else
1050 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1051 return;
1052 }
1053 /* Try "pointer heuristic."
1054 A comparison ptr == 0 is predicted as false.
1055 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1056 if (POINTER_TYPE_P (type))
1057 {
1058 if (TREE_CODE (cond) == EQ_EXPR)
1059 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1060 else if (TREE_CODE (cond) == NE_EXPR)
1061 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1062 }
1063 else
1064
1065 /* Try "opcode heuristic."
1066 EQ tests are usually false and NE tests are usually true. Also,
1067 most quantities are positive, so we can make the appropriate guesses
1068 about signed comparisons against zero. */
1069 switch (TREE_CODE (cond))
1070 {
1071 case EQ_EXPR:
1072 case UNEQ_EXPR:
1073 /* Floating point comparisons appears to behave in a very
1074 unpredictable way because of special role of = tests in
1075 FP code. */
1076 if (FLOAT_TYPE_P (type))
1077 ;
1078 /* Comparisons with 0 are often used for booleans and there is
1079 nothing useful to predict about them. */
1080 else if (integer_zerop (op0)
1081 || integer_zerop (TREE_OPERAND (cond, 1)))
1082 ;
1083 else
1084 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1085 break;
1086
1087 case NE_EXPR:
1088 case LTGT_EXPR:
1089 /* Floating point comparisons appears to behave in a very
1090 unpredictable way because of special role of = tests in
1091 FP code. */
1092 if (FLOAT_TYPE_P (type))
1093 ;
1094 /* Comparisons with 0 are often used for booleans and there is
1095 nothing useful to predict about them. */
1096 else if (integer_zerop (op0)
1097 || integer_zerop (TREE_OPERAND (cond, 1)))
1098 ;
1099 else
1100 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1101 break;
1102
1103 case ORDERED_EXPR:
1104 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1105 break;
1106
1107 case UNORDERED_EXPR:
1108 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1109 break;
1110
1111 case LE_EXPR:
1112 case LT_EXPR:
1113 if (integer_zerop (TREE_OPERAND (cond, 1))
1114 || integer_onep (TREE_OPERAND (cond, 1))
1115 || integer_all_onesp (TREE_OPERAND (cond, 1))
1116 || real_zerop (TREE_OPERAND (cond, 1))
1117 || real_onep (TREE_OPERAND (cond, 1))
1118 || real_minus_onep (TREE_OPERAND (cond, 1)))
1119 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1120 break;
1121
1122 case GE_EXPR:
1123 case GT_EXPR:
1124 if (integer_zerop (TREE_OPERAND (cond, 1))
1125 || integer_onep (TREE_OPERAND (cond, 1))
1126 || integer_all_onesp (TREE_OPERAND (cond, 1))
1127 || real_zerop (TREE_OPERAND (cond, 1))
1128 || real_onep (TREE_OPERAND (cond, 1))
1129 || real_minus_onep (TREE_OPERAND (cond, 1)))
1130 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1131 break;
1132
1133 default:
1134 break;
1135 }
1136 }
1137
1138 /* Try to guess whether the value of return means error code. */
1139 static enum br_predictor
1140 return_prediction (tree val, enum prediction *prediction)
1141 {
1142 /* VOID. */
1143 if (!val)
1144 return PRED_NO_PREDICTION;
1145 /* Different heuristics for pointers and scalars. */
1146 if (POINTER_TYPE_P (TREE_TYPE (val)))
1147 {
1148 /* NULL is usually not returned. */
1149 if (integer_zerop (val))
1150 {
1151 *prediction = NOT_TAKEN;
1152 return PRED_NULL_RETURN;
1153 }
1154 }
1155 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1156 {
1157 /* Negative return values are often used to indicate
1158 errors. */
1159 if (TREE_CODE (val) == INTEGER_CST
1160 && tree_int_cst_sgn (val) < 0)
1161 {
1162 *prediction = NOT_TAKEN;
1163 return PRED_NEGATIVE_RETURN;
1164 }
1165 /* Constant return values seems to be commonly taken.
1166 Zero/one often represent booleans so exclude them from the
1167 heuristics. */
1168 if (TREE_CONSTANT (val)
1169 && (!integer_zerop (val) && !integer_onep (val)))
1170 {
1171 *prediction = TAKEN;
1172 return PRED_NEGATIVE_RETURN;
1173 }
1174 }
1175 return PRED_NO_PREDICTION;
1176 }
1177
1178 /* Find the basic block with return expression and look up for possible
1179 return value trying to apply RETURN_PREDICTION heuristics. */
1180 static void
1181 apply_return_prediction (int *heads)
1182 {
1183 tree return_stmt;
1184 tree return_val;
1185 edge e;
1186 tree phi;
1187 int phi_num_args, i;
1188 enum br_predictor pred;
1189 enum prediction direction;
1190 edge_iterator ei;
1191
1192 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1193 {
1194 return_stmt = last_stmt (e->src);
1195 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1196 break;
1197 }
1198 if (!e)
1199 return;
1200 return_val = TREE_OPERAND (return_stmt, 0);
1201 if (!return_val)
1202 return;
1203 if (TREE_CODE (return_val) == MODIFY_EXPR)
1204 return_val = TREE_OPERAND (return_val, 1);
1205 if (TREE_CODE (return_val) != SSA_NAME
1206 || !SSA_NAME_DEF_STMT (return_val)
1207 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1208 return;
1209 phi = SSA_NAME_DEF_STMT (return_val);
1210 while (phi)
1211 {
1212 tree next = PHI_CHAIN (phi);
1213 if (PHI_RESULT (phi) == return_val)
1214 break;
1215 phi = next;
1216 }
1217 if (!phi)
1218 return;
1219 phi_num_args = PHI_NUM_ARGS (phi);
1220 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1221
1222 /* Avoid the degenerate case where all return values form the function
1223 belongs to same category (ie they are all positive constants)
1224 so we can hardly say something about them. */
1225 for (i = 1; i < phi_num_args; i++)
1226 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1227 break;
1228 if (i != phi_num_args)
1229 for (i = 0; i < phi_num_args; i++)
1230 {
1231 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1232 if (pred != PRED_NO_PREDICTION)
1233 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1234 direction);
1235 }
1236 }
1237
1238 /* Look for basic block that contains unlikely to happen events
1239 (such as noreturn calls) and mark all paths leading to execution
1240 of this basic blocks as unlikely. */
1241
1242 static void
1243 tree_bb_level_predictions (void)
1244 {
1245 basic_block bb;
1246 int *heads;
1247
1248 heads = xmalloc (sizeof (int) * last_basic_block);
1249 memset (heads, -1, sizeof (int) * last_basic_block);
1250 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1251
1252 apply_return_prediction (heads);
1253
1254 FOR_EACH_BB (bb)
1255 {
1256 block_stmt_iterator bsi = bsi_last (bb);
1257
1258 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1259 {
1260 tree stmt = bsi_stmt (bsi);
1261 switch (TREE_CODE (stmt))
1262 {
1263 case MODIFY_EXPR:
1264 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1265 {
1266 stmt = TREE_OPERAND (stmt, 1);
1267 goto call_expr;
1268 }
1269 break;
1270 case CALL_EXPR:
1271 call_expr:;
1272 if (call_expr_flags (stmt) & ECF_NORETURN)
1273 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1274 NOT_TAKEN);
1275 break;
1276 default:
1277 break;
1278 }
1279 }
1280 }
1281
1282 free (heads);
1283 }
1284
1285 /* Predict branch probabilities and estimate profile of the tree CFG. */
1286 static void
1287 tree_estimate_probability (void)
1288 {
1289 basic_block bb;
1290 struct loops loops_info;
1291
1292 flow_loops_find (&loops_info, LOOP_TREE);
1293 if (dump_file && (dump_flags & TDF_DETAILS))
1294 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1295
1296 add_noreturn_fake_exit_edges ();
1297 connect_infinite_loops_to_exit ();
1298 calculate_dominance_info (CDI_DOMINATORS);
1299 calculate_dominance_info (CDI_POST_DOMINATORS);
1300
1301 tree_bb_level_predictions ();
1302
1303 mark_irreducible_loops (&loops_info);
1304 predict_loops (&loops_info, false);
1305
1306 FOR_EACH_BB (bb)
1307 {
1308 edge e;
1309 edge_iterator ei;
1310
1311 FOR_EACH_EDGE (e, ei, bb->succs)
1312 {
1313 /* Predict early returns to be probable, as we've already taken
1314 care for error returns and other cases are often used for
1315 fast paths trought function. */
1316 if (e->dest == EXIT_BLOCK_PTR
1317 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1318 && EDGE_COUNT (bb->preds) > 1)
1319 {
1320 edge e1;
1321 edge_iterator ei1;
1322
1323 FOR_EACH_EDGE (e1, ei1, bb->preds)
1324 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1325 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1326 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1327 && !last_basic_block_p (e1->src))
1328 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1329 }
1330
1331 /* Look for block we are guarding (ie we dominate it,
1332 but it doesn't postdominate us). */
1333 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1334 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1335 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1336 {
1337 block_stmt_iterator bi;
1338
1339 /* The call heuristic claims that a guarded function call
1340 is improbable. This is because such calls are often used
1341 to signal exceptional situations such as printing error
1342 messages. */
1343 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1344 bsi_next (&bi))
1345 {
1346 tree stmt = bsi_stmt (bi);
1347 if ((TREE_CODE (stmt) == CALL_EXPR
1348 || (TREE_CODE (stmt) == MODIFY_EXPR
1349 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1350 /* Constant and pure calls are hardly used to signalize
1351 something exceptional. */
1352 && TREE_SIDE_EFFECTS (stmt))
1353 {
1354 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1355 break;
1356 }
1357 }
1358 }
1359 }
1360 tree_predict_by_opcode (bb);
1361 }
1362 FOR_EACH_BB (bb)
1363 combine_predictions_for_bb (dump_file, bb);
1364
1365 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1366 strip_builtin_expect ();
1367 estimate_bb_frequencies (&loops_info);
1368 free_dominance_info (CDI_POST_DOMINATORS);
1369 remove_fake_exit_edges ();
1370 flow_loops_free (&loops_info);
1371 if (dump_file && (dump_flags & TDF_DETAILS))
1372 dump_tree_cfg (dump_file, dump_flags);
1373 if (profile_status == PROFILE_ABSENT)
1374 profile_status = PROFILE_GUESSED;
1375 }
1376 \f
1377 /* __builtin_expect dropped tokens into the insn stream describing expected
1378 values of registers. Generate branch probabilities based off these
1379 values. */
1380
1381 void
1382 expected_value_to_br_prob (void)
1383 {
1384 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1385
1386 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1387 {
1388 switch (GET_CODE (insn))
1389 {
1390 case NOTE:
1391 /* Look for expected value notes. */
1392 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1393 {
1394 ev = NOTE_EXPECTED_VALUE (insn);
1395 ev_reg = XEXP (ev, 0);
1396 delete_insn (insn);
1397 }
1398 continue;
1399
1400 case CODE_LABEL:
1401 /* Never propagate across labels. */
1402 ev = NULL_RTX;
1403 continue;
1404
1405 case JUMP_INSN:
1406 /* Look for simple conditional branches. If we haven't got an
1407 expected value yet, no point going further. */
1408 if (!JUMP_P (insn) || ev == NULL_RTX
1409 || ! any_condjump_p (insn))
1410 continue;
1411 break;
1412
1413 default:
1414 /* Look for insns that clobber the EV register. */
1415 if (ev && reg_set_p (ev_reg, insn))
1416 ev = NULL_RTX;
1417 continue;
1418 }
1419
1420 /* Collect the branch condition, hopefully relative to EV_REG. */
1421 /* ??? At present we'll miss things like
1422 (expected_value (eq r70 0))
1423 (set r71 -1)
1424 (set r80 (lt r70 r71))
1425 (set pc (if_then_else (ne r80 0) ...))
1426 as canonicalize_condition will render this to us as
1427 (lt r70, r71)
1428 Could use cselib to try and reduce this further. */
1429 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1430 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1431 false, false);
1432 if (! cond || XEXP (cond, 0) != ev_reg
1433 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1434 continue;
1435
1436 /* Substitute and simplify. Given that the expression we're
1437 building involves two constants, we should wind up with either
1438 true or false. */
1439 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1440 XEXP (ev, 1), XEXP (cond, 1));
1441 cond = simplify_rtx (cond);
1442
1443 /* Turn the condition into a scaled branch probability. */
1444 if (cond != const_true_rtx && cond != const0_rtx)
1445 abort ();
1446 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1447 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1448 }
1449 }
1450 \f
1451 /* Check whether this is the last basic block of function. Commonly
1452 there is one extra common cleanup block. */
1453 static bool
1454 last_basic_block_p (basic_block bb)
1455 {
1456 if (bb == EXIT_BLOCK_PTR)
1457 return false;
1458
1459 return (bb->next_bb == EXIT_BLOCK_PTR
1460 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1461 && EDGE_COUNT (bb->succs) == 1
1462 && EDGE_SUCC (bb, 0)->dest->next_bb == EXIT_BLOCK_PTR));
1463 }
1464
1465 /* Sets branch probabilities according to PREDiction and
1466 FLAGS. HEADS[bb->index] should be index of basic block in that we
1467 need to alter branch predictions (i.e. the first of our dominators
1468 such that we do not post-dominate it) (but we fill this information
1469 on demand, so -1 may be there in case this was not needed yet). */
1470
1471 static void
1472 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1473 enum prediction taken)
1474 {
1475 edge e;
1476 edge_iterator ei;
1477 int y;
1478
1479 if (heads[bb->index] < 0)
1480 {
1481 /* This is first time we need this field in heads array; so
1482 find first dominator that we do not post-dominate (we are
1483 using already known members of heads array). */
1484 basic_block ai = bb;
1485 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1486 int head;
1487
1488 while (heads[next_ai->index] < 0)
1489 {
1490 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1491 break;
1492 heads[next_ai->index] = ai->index;
1493 ai = next_ai;
1494 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1495 }
1496 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1497 head = next_ai->index;
1498 else
1499 head = heads[next_ai->index];
1500 while (next_ai != bb)
1501 {
1502 next_ai = ai;
1503 if (heads[ai->index] == ENTRY_BLOCK)
1504 ai = ENTRY_BLOCK_PTR;
1505 else
1506 ai = BASIC_BLOCK (heads[ai->index]);
1507 heads[next_ai->index] = head;
1508 }
1509 }
1510 y = heads[bb->index];
1511
1512 /* Now find the edge that leads to our branch and aply the prediction. */
1513
1514 if (y == last_basic_block)
1515 return;
1516 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1517 if (e->dest->index >= 0
1518 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1519 predict_edge_def (e, pred, taken);
1520 }
1521 \f
1522 /* This is used to carry information about basic blocks. It is
1523 attached to the AUX field of the standard CFG block. */
1524
1525 typedef struct block_info_def
1526 {
1527 /* Estimated frequency of execution of basic_block. */
1528 sreal frequency;
1529
1530 /* To keep queue of basic blocks to process. */
1531 basic_block next;
1532
1533 /* Number of predecessors we need to visit first. */
1534 int npredecessors;
1535 } *block_info;
1536
1537 /* Similar information for edges. */
1538 typedef struct edge_info_def
1539 {
1540 /* In case edge is an loopback edge, the probability edge will be reached
1541 in case header is. Estimated number of iterations of the loop can be
1542 then computed as 1 / (1 - back_edge_prob). */
1543 sreal back_edge_prob;
1544 /* True if the edge is an loopback edge in the natural loop. */
1545 unsigned int back_edge:1;
1546 } *edge_info;
1547
1548 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1549 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1550
1551 /* Helper function for estimate_bb_frequencies.
1552 Propagate the frequencies for LOOP. */
1553
1554 static void
1555 propagate_freq (struct loop *loop, bitmap tovisit)
1556 {
1557 basic_block head = loop->header;
1558 basic_block bb;
1559 basic_block last;
1560 unsigned i;
1561 edge e;
1562 basic_block nextbb;
1563 bitmap_iterator bi;
1564
1565 /* For each basic block we need to visit count number of his predecessors
1566 we need to visit first. */
1567 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1568 {
1569 edge_iterator ei;
1570 int count = 0;
1571
1572 /* The outermost "loop" includes the exit block, which we can not
1573 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1574 directly. Do the same for the entry block. */
1575 if (i == (unsigned)ENTRY_BLOCK)
1576 bb = ENTRY_BLOCK_PTR;
1577 else if (i == (unsigned)EXIT_BLOCK)
1578 bb = EXIT_BLOCK_PTR;
1579 else
1580 bb = BASIC_BLOCK (i);
1581
1582 FOR_EACH_EDGE (e, ei, bb->preds)
1583 {
1584 bool visit = bitmap_bit_p (tovisit, e->src->index);
1585
1586 if (visit && !(e->flags & EDGE_DFS_BACK))
1587 count++;
1588 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1589 fprintf (dump_file,
1590 "Irreducible region hit, ignoring edge to %i->%i\n",
1591 e->src->index, bb->index);
1592 }
1593 BLOCK_INFO (bb)->npredecessors = count;
1594 }
1595
1596 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1597 last = head;
1598 for (bb = head; bb; bb = nextbb)
1599 {
1600 edge_iterator ei;
1601 sreal cyclic_probability, frequency;
1602
1603 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1604 memcpy (&frequency, &real_zero, sizeof (real_zero));
1605
1606 nextbb = BLOCK_INFO (bb)->next;
1607 BLOCK_INFO (bb)->next = NULL;
1608
1609 /* Compute frequency of basic block. */
1610 if (bb != head)
1611 {
1612 #ifdef ENABLE_CHECKING
1613 FOR_EACH_EDGE (e, ei, bb->preds)
1614 if (bitmap_bit_p (tovisit, e->src->index)
1615 && !(e->flags & EDGE_DFS_BACK))
1616 abort ();
1617 #endif
1618
1619 FOR_EACH_EDGE (e, ei, bb->preds)
1620 if (EDGE_INFO (e)->back_edge)
1621 {
1622 sreal_add (&cyclic_probability, &cyclic_probability,
1623 &EDGE_INFO (e)->back_edge_prob);
1624 }
1625 else if (!(e->flags & EDGE_DFS_BACK))
1626 {
1627 sreal tmp;
1628
1629 /* frequency += (e->probability
1630 * BLOCK_INFO (e->src)->frequency /
1631 REG_BR_PROB_BASE); */
1632
1633 sreal_init (&tmp, e->probability, 0);
1634 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1635 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1636 sreal_add (&frequency, &frequency, &tmp);
1637 }
1638
1639 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1640 {
1641 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1642 sizeof (frequency));
1643 }
1644 else
1645 {
1646 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1647 {
1648 memcpy (&cyclic_probability, &real_almost_one,
1649 sizeof (real_almost_one));
1650 }
1651
1652 /* BLOCK_INFO (bb)->frequency = frequency
1653 / (1 - cyclic_probability) */
1654
1655 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1656 sreal_div (&BLOCK_INFO (bb)->frequency,
1657 &frequency, &cyclic_probability);
1658 }
1659 }
1660
1661 bitmap_clear_bit (tovisit, bb->index);
1662
1663 /* Compute back edge frequencies. */
1664 FOR_EACH_EDGE (e, ei, bb->succs)
1665 if (e->dest == head)
1666 {
1667 sreal tmp;
1668
1669 /* EDGE_INFO (e)->back_edge_prob
1670 = ((e->probability * BLOCK_INFO (bb)->frequency)
1671 / REG_BR_PROB_BASE); */
1672
1673 sreal_init (&tmp, e->probability, 0);
1674 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1675 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1676 &tmp, &real_inv_br_prob_base);
1677 }
1678
1679 /* Propagate to successor blocks. */
1680 FOR_EACH_EDGE (e, ei, bb->succs)
1681 if (!(e->flags & EDGE_DFS_BACK)
1682 && BLOCK_INFO (e->dest)->npredecessors)
1683 {
1684 BLOCK_INFO (e->dest)->npredecessors--;
1685 if (!BLOCK_INFO (e->dest)->npredecessors)
1686 {
1687 if (!nextbb)
1688 nextbb = e->dest;
1689 else
1690 BLOCK_INFO (last)->next = e->dest;
1691
1692 last = e->dest;
1693 }
1694 }
1695 }
1696 }
1697
1698 /* Estimate probabilities of loopback edges in loops at same nest level. */
1699
1700 static void
1701 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1702 {
1703 struct loop *loop;
1704
1705 for (loop = first_loop; loop; loop = loop->next)
1706 {
1707 edge e;
1708 basic_block *bbs;
1709 unsigned i;
1710
1711 estimate_loops_at_level (loop->inner, tovisit);
1712
1713 /* Do not do this for dummy function loop. */
1714 if (EDGE_COUNT (loop->latch->succs) > 0)
1715 {
1716 /* Find current loop back edge and mark it. */
1717 e = loop_latch_edge (loop);
1718 EDGE_INFO (e)->back_edge = 1;
1719 }
1720
1721 bbs = get_loop_body (loop);
1722 for (i = 0; i < loop->num_nodes; i++)
1723 bitmap_set_bit (tovisit, bbs[i]->index);
1724 free (bbs);
1725 propagate_freq (loop, tovisit);
1726 }
1727 }
1728
1729 /* Convert counts measured by profile driven feedback to frequencies.
1730 Return nonzero iff there was any nonzero execution count. */
1731
1732 int
1733 counts_to_freqs (void)
1734 {
1735 gcov_type count_max, true_count_max = 0;
1736 basic_block bb;
1737
1738 FOR_EACH_BB (bb)
1739 true_count_max = MAX (bb->count, true_count_max);
1740
1741 count_max = MAX (true_count_max, 1);
1742 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1743 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1744 return true_count_max;
1745 }
1746
1747 /* Return true if function is likely to be expensive, so there is no point to
1748 optimize performance of prologue, epilogue or do inlining at the expense
1749 of code size growth. THRESHOLD is the limit of number of instructions
1750 function can execute at average to be still considered not expensive. */
1751
1752 bool
1753 expensive_function_p (int threshold)
1754 {
1755 unsigned int sum = 0;
1756 basic_block bb;
1757 unsigned int limit;
1758
1759 /* We can not compute accurately for large thresholds due to scaled
1760 frequencies. */
1761 if (threshold > BB_FREQ_MAX)
1762 abort ();
1763
1764 /* Frequencies are out of range. This either means that function contains
1765 internal loop executing more than BB_FREQ_MAX times or profile feedback
1766 is available and function has not been executed at all. */
1767 if (ENTRY_BLOCK_PTR->frequency == 0)
1768 return true;
1769
1770 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1771 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1772 FOR_EACH_BB (bb)
1773 {
1774 rtx insn;
1775
1776 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1777 insn = NEXT_INSN (insn))
1778 if (active_insn_p (insn))
1779 {
1780 sum += bb->frequency;
1781 if (sum > limit)
1782 return true;
1783 }
1784 }
1785
1786 return false;
1787 }
1788
1789 /* Estimate basic blocks frequency by given branch probabilities. */
1790
1791 static void
1792 estimate_bb_frequencies (struct loops *loops)
1793 {
1794 basic_block bb;
1795 sreal freq_max;
1796
1797 if (!flag_branch_probabilities || !counts_to_freqs ())
1798 {
1799 static int real_values_initialized = 0;
1800 bitmap tovisit;
1801
1802 if (!real_values_initialized)
1803 {
1804 real_values_initialized = 1;
1805 sreal_init (&real_zero, 0, 0);
1806 sreal_init (&real_one, 1, 0);
1807 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1808 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1809 sreal_init (&real_one_half, 1, -1);
1810 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1811 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1812 }
1813
1814 mark_dfs_back_edges ();
1815
1816 EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->probability = REG_BR_PROB_BASE;
1817
1818 /* Set up block info for each basic block. */
1819 tovisit = BITMAP_XMALLOC ();
1820 alloc_aux_for_blocks (sizeof (struct block_info_def));
1821 alloc_aux_for_edges (sizeof (struct edge_info_def));
1822 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1823 {
1824 edge e;
1825 edge_iterator ei;
1826
1827 FOR_EACH_EDGE (e, ei, bb->succs)
1828 {
1829 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1830 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1831 &EDGE_INFO (e)->back_edge_prob,
1832 &real_inv_br_prob_base);
1833 }
1834 }
1835
1836 /* First compute probabilities locally for each loop from innermost
1837 to outermost to examine probabilities for back edges. */
1838 estimate_loops_at_level (loops->tree_root, tovisit);
1839
1840 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1841 FOR_EACH_BB (bb)
1842 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1843 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1844
1845 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1846 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1847 {
1848 sreal tmp;
1849
1850 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1851 sreal_add (&tmp, &tmp, &real_one_half);
1852 bb->frequency = sreal_to_int (&tmp);
1853 }
1854
1855 free_aux_for_blocks ();
1856 free_aux_for_edges ();
1857 BITMAP_XFREE (tovisit);
1858 }
1859 compute_function_frequency ();
1860 if (flag_reorder_functions)
1861 choose_function_section ();
1862 }
1863
1864 /* Decide whether function is hot, cold or unlikely executed. */
1865 static void
1866 compute_function_frequency (void)
1867 {
1868 basic_block bb;
1869
1870 if (!profile_info || !flag_branch_probabilities)
1871 return;
1872 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1873 FOR_EACH_BB (bb)
1874 {
1875 if (maybe_hot_bb_p (bb))
1876 {
1877 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1878 return;
1879 }
1880 if (!probably_never_executed_bb_p (bb))
1881 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1882 }
1883 }
1884
1885 /* Choose appropriate section for the function. */
1886 static void
1887 choose_function_section (void)
1888 {
1889 if (DECL_SECTION_NAME (current_function_decl)
1890 || !targetm.have_named_sections
1891 /* Theoretically we can split the gnu.linkonce text section too,
1892 but this requires more work as the frequency needs to match
1893 for all generated objects so we need to merge the frequency
1894 of all instances. For now just never set frequency for these. */
1895 || DECL_ONE_ONLY (current_function_decl))
1896 return;
1897
1898 /* If we are doing the partitioning optimization, let the optimization
1899 choose the correct section into which to put things. */
1900
1901 if (flag_reorder_blocks_and_partition)
1902 return;
1903
1904 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1905 DECL_SECTION_NAME (current_function_decl) =
1906 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1907 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1908 DECL_SECTION_NAME (current_function_decl) =
1909 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1910 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1911 }
1912
1913
1914 struct tree_opt_pass pass_profile =
1915 {
1916 "profile", /* name */
1917 NULL, /* gate */
1918 tree_estimate_probability, /* execute */
1919 NULL, /* sub */
1920 NULL, /* next */
1921 0, /* static_pass_number */
1922 TV_BRANCH_PROB, /* tv_id */
1923 PROP_cfg, /* properties_required */
1924 0, /* properties_provided */
1925 0, /* properties_destroyed */
1926 0, /* todo_flags_start */
1927 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1928 0 /* letter */
1929 };