Makefile.in (tree-optimize.o): Add CFGLOOP_H dependence.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void estimate_loops_at_level (struct loop *, bitmap);
78 static void propagate_freq (struct loop *, bitmap);
79 static void estimate_bb_frequencies (struct loops *);
80 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
81 static bool last_basic_block_p (basic_block);
82 static void compute_function_frequency (void);
83 static void choose_function_section (void);
84 static bool can_predict_insn_p (rtx);
85
86 /* Information we hold about each branch predictor.
87 Filled using information from predict.def. */
88
89 struct predictor_info
90 {
91 const char *const name; /* Name used in the debugging dumps. */
92 const int hitrate; /* Expected hitrate used by
93 predict_insn_def call. */
94 const int flags;
95 };
96
97 /* Use given predictor without Dempster-Shaffer theory if it matches
98 using first_match heuristics. */
99 #define PRED_FLAG_FIRST_MATCH 1
100
101 /* Recompute hitrate in percent to our representation. */
102
103 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104
105 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
106 static const struct predictor_info predictor_info[]= {
107 #include "predict.def"
108
109 /* Upper bound on predictors. */
110 {NULL, 0, 0}
111 };
112 #undef DEF_PREDICTOR
113
114 /* Return true in case BB can be CPU intensive and should be optimized
115 for maximal performance. */
116
117 bool
118 maybe_hot_bb_p (basic_block bb)
119 {
120 if (profile_info && flag_branch_probabilities
121 && (bb->count
122 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
123 return false;
124 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
125 return false;
126 return true;
127 }
128
129 /* Return true in case BB is cold and should be optimized for size. */
130
131 bool
132 probably_cold_bb_p (basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return true;
138 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
139 return true;
140 return false;
141 }
142
143 /* Return true in case BB is probably never executed. */
144 bool
145 probably_never_executed_bb_p (basic_block bb)
146 {
147 if (profile_info && flag_branch_probabilities)
148 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
149 return false;
150 }
151
152 /* Return true if the one of outgoing edges is already predicted by
153 PREDICTOR. */
154
155 bool
156 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 {
158 rtx note;
159 if (!INSN_P (BB_END (bb)))
160 return false;
161 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
162 if (REG_NOTE_KIND (note) == REG_BR_PRED
163 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
164 return true;
165 return false;
166 }
167
168 /* Return true if the one of outgoing edges is already predicted by
169 PREDICTOR. */
170
171 bool
172 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 {
174 struct edge_prediction *i = bb_ann (bb)->predictions;
175 for (i = bb_ann (bb)->predictions; i; i = i->next)
176 if (i->predictor == predictor)
177 return true;
178 return false;
179 }
180
181 static void
182 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 {
184 if (!any_condjump_p (insn))
185 abort ();
186 if (!flag_guess_branch_prob)
187 return;
188
189 REG_NOTES (insn)
190 = gen_rtx_EXPR_LIST (REG_BR_PRED,
191 gen_rtx_CONCAT (VOIDmode,
192 GEN_INT ((int) predictor),
193 GEN_INT ((int) probability)),
194 REG_NOTES (insn));
195 }
196
197 /* Predict insn by given predictor. */
198
199 void
200 predict_insn_def (rtx insn, enum br_predictor predictor,
201 enum prediction taken)
202 {
203 int probability = predictor_info[(int) predictor].hitrate;
204
205 if (taken != TAKEN)
206 probability = REG_BR_PROB_BASE - probability;
207
208 predict_insn (insn, predictor, probability);
209 }
210
211 /* Predict edge E with given probability if possible. */
212
213 void
214 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
215 {
216 rtx last_insn;
217 last_insn = BB_END (e->src);
218
219 /* We can store the branch prediction information only about
220 conditional jumps. */
221 if (!any_condjump_p (last_insn))
222 return;
223
224 /* We always store probability of branching. */
225 if (e->flags & EDGE_FALLTHRU)
226 probability = REG_BR_PROB_BASE - probability;
227
228 predict_insn (last_insn, predictor, probability);
229 }
230
231 /* Predict edge E with the given PROBABILITY. */
232 void
233 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
234 {
235 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
236
237 i->next = bb_ann (e->src)->predictions;
238 bb_ann (e->src)->predictions = i;
239 i->probability = probability;
240 i->predictor = predictor;
241 i->edge = e;
242 }
243
244 /* Return true when we can store prediction on insn INSN.
245 At the moment we represent predictions only on conditional
246 jumps, not at computed jump or other complicated cases. */
247 static bool
248 can_predict_insn_p (rtx insn)
249 {
250 return (JUMP_P (insn)
251 && any_condjump_p (insn)
252 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
253 }
254
255 /* Predict edge E by given predictor if possible. */
256
257 void
258 predict_edge_def (edge e, enum br_predictor predictor,
259 enum prediction taken)
260 {
261 int probability = predictor_info[(int) predictor].hitrate;
262
263 if (taken != TAKEN)
264 probability = REG_BR_PROB_BASE - probability;
265
266 predict_edge (e, predictor, probability);
267 }
268
269 /* Invert all branch predictions or probability notes in the INSN. This needs
270 to be done each time we invert the condition used by the jump. */
271
272 void
273 invert_br_probabilities (rtx insn)
274 {
275 rtx note;
276
277 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
278 if (REG_NOTE_KIND (note) == REG_BR_PROB)
279 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
280 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
281 XEXP (XEXP (note, 0), 1)
282 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
283 }
284
285 /* Dump information about the branch prediction to the output file. */
286
287 static void
288 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
289 basic_block bb, int used)
290 {
291 edge e;
292 edge_iterator ei;
293
294 if (!file)
295 return;
296
297 FOR_EACH_EDGE (e, ei, bb->succs)
298 if (! (e->flags & EDGE_FALLTHRU))
299 break;
300
301 fprintf (file, " %s heuristics%s: %.1f%%",
302 predictor_info[predictor].name,
303 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
304
305 if (bb->count)
306 {
307 fprintf (file, " exec ");
308 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
309 if (e)
310 {
311 fprintf (file, " hit ");
312 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
313 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
314 }
315 }
316
317 fprintf (file, "\n");
318 }
319
320 /* We can not predict the probabilities of outgoing edges of bb. Set them
321 evenly and hope for the best. */
322 static void
323 set_even_probabilities (basic_block bb)
324 {
325 int nedges = 0;
326 edge e;
327 edge_iterator ei;
328
329 FOR_EACH_EDGE (e, ei, bb->succs)
330 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
331 nedges ++;
332 FOR_EACH_EDGE (e, ei, bb->succs)
333 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
334 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
335 else
336 e->probability = 0;
337 }
338
339 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
340 note if not already present. Remove now useless REG_BR_PRED notes. */
341
342 static void
343 combine_predictions_for_insn (rtx insn, basic_block bb)
344 {
345 rtx prob_note;
346 rtx *pnote;
347 rtx note;
348 int best_probability = PROB_EVEN;
349 int best_predictor = END_PREDICTORS;
350 int combined_probability = REG_BR_PROB_BASE / 2;
351 int d;
352 bool first_match = false;
353 bool found = false;
354
355 if (!can_predict_insn_p (insn))
356 {
357 set_even_probabilities (bb);
358 return;
359 }
360
361 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
362 pnote = &REG_NOTES (insn);
363 if (dump_file)
364 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
365 bb->index);
366
367 /* We implement "first match" heuristics and use probability guessed
368 by predictor with smallest index. */
369 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
370 if (REG_NOTE_KIND (note) == REG_BR_PRED)
371 {
372 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
373 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
374
375 found = true;
376 if (best_predictor > predictor)
377 best_probability = probability, best_predictor = predictor;
378
379 d = (combined_probability * probability
380 + (REG_BR_PROB_BASE - combined_probability)
381 * (REG_BR_PROB_BASE - probability));
382
383 /* Use FP math to avoid overflows of 32bit integers. */
384 if (d == 0)
385 /* If one probability is 0% and one 100%, avoid division by zero. */
386 combined_probability = REG_BR_PROB_BASE / 2;
387 else
388 combined_probability = (((double) combined_probability) * probability
389 * REG_BR_PROB_BASE / d + 0.5);
390 }
391
392 /* Decide which heuristic to use. In case we didn't match anything,
393 use no_prediction heuristic, in case we did match, use either
394 first match or Dempster-Shaffer theory depending on the flags. */
395
396 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
397 first_match = true;
398
399 if (!found)
400 dump_prediction (dump_file, PRED_NO_PREDICTION,
401 combined_probability, bb, true);
402 else
403 {
404 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
405 bb, !first_match);
406 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
407 bb, first_match);
408 }
409
410 if (first_match)
411 combined_probability = best_probability;
412 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
413
414 while (*pnote)
415 {
416 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
417 {
418 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
419 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
420
421 dump_prediction (dump_file, predictor, probability, bb,
422 !first_match || best_predictor == predictor);
423 *pnote = XEXP (*pnote, 1);
424 }
425 else
426 pnote = &XEXP (*pnote, 1);
427 }
428
429 if (!prob_note)
430 {
431 REG_NOTES (insn)
432 = gen_rtx_EXPR_LIST (REG_BR_PROB,
433 GEN_INT (combined_probability), REG_NOTES (insn));
434
435 /* Save the prediction into CFG in case we are seeing non-degenerated
436 conditional jump. */
437 if (EDGE_COUNT (bb->succs) > 1)
438 {
439 BRANCH_EDGE (bb)->probability = combined_probability;
440 FALLTHRU_EDGE (bb)->probability
441 = REG_BR_PROB_BASE - combined_probability;
442 }
443 }
444 else if (EDGE_COUNT (bb->succs) > 1)
445 {
446 int prob = INTVAL (XEXP (prob_note, 0));
447
448 BRANCH_EDGE (bb)->probability = prob;
449 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
450 }
451 else
452 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
453 }
454
455 /* Combine predictions into single probability and store them into CFG.
456 Remove now useless prediction entries. */
457
458 static void
459 combine_predictions_for_bb (FILE *file, basic_block bb)
460 {
461 int best_probability = PROB_EVEN;
462 int best_predictor = END_PREDICTORS;
463 int combined_probability = REG_BR_PROB_BASE / 2;
464 int d;
465 bool first_match = false;
466 bool found = false;
467 struct edge_prediction *pred;
468 int nedges = 0;
469 edge e, first = NULL, second = NULL;
470 edge_iterator ei;
471
472 FOR_EACH_EDGE (e, ei, bb->succs)
473 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
474 {
475 nedges ++;
476 if (first && !second)
477 second = e;
478 if (!first)
479 first = e;
480 }
481
482 /* When there is no successor or only one choice, prediction is easy.
483
484 We are lazy for now and predict only basic blocks with two outgoing
485 edges. It is possible to predict generic case too, but we have to
486 ignore first match heuristics and do more involved combining. Implement
487 this later. */
488 if (nedges != 2)
489 {
490 if (!bb->count)
491 set_even_probabilities (bb);
492 bb_ann (bb)->predictions = NULL;
493 if (file)
494 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
495 nedges, bb->index);
496 return;
497 }
498
499 if (file)
500 fprintf (file, "Predictions for bb %i\n", bb->index);
501
502 /* We implement "first match" heuristics and use probability guessed
503 by predictor with smallest index. */
504 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
505 {
506 int predictor = pred->predictor;
507 int probability = pred->probability;
508
509 if (pred->edge != first)
510 probability = REG_BR_PROB_BASE - probability;
511
512 found = true;
513 if (best_predictor > predictor)
514 best_probability = probability, best_predictor = predictor;
515
516 d = (combined_probability * probability
517 + (REG_BR_PROB_BASE - combined_probability)
518 * (REG_BR_PROB_BASE - probability));
519
520 /* Use FP math to avoid overflows of 32bit integers. */
521 if (d == 0)
522 /* If one probability is 0% and one 100%, avoid division by zero. */
523 combined_probability = REG_BR_PROB_BASE / 2;
524 else
525 combined_probability = (((double) combined_probability) * probability
526 * REG_BR_PROB_BASE / d + 0.5);
527 }
528
529 /* Decide which heuristic to use. In case we didn't match anything,
530 use no_prediction heuristic, in case we did match, use either
531 first match or Dempster-Shaffer theory depending on the flags. */
532
533 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
534 first_match = true;
535
536 if (!found)
537 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
538 else
539 {
540 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
541 !first_match);
542 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
543 first_match);
544 }
545
546 if (first_match)
547 combined_probability = best_probability;
548 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
549
550 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
551 {
552 int predictor = pred->predictor;
553 int probability = pred->probability;
554
555 if (pred->edge != EDGE_SUCC (bb, 0))
556 probability = REG_BR_PROB_BASE - probability;
557 dump_prediction (file, predictor, probability, bb,
558 !first_match || best_predictor == predictor);
559 }
560 bb_ann (bb)->predictions = NULL;
561
562 if (!bb->count)
563 {
564 first->probability = combined_probability;
565 second->probability = REG_BR_PROB_BASE - combined_probability;
566 }
567 }
568
569 /* Predict edge probabilities by exploiting loop structure.
570 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
571 RTL otherwise use tree based approach. */
572 static void
573 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
574 {
575 unsigned i;
576
577 if (!rtlsimpleloops)
578 scev_initialize (loops_info);
579
580 /* Try to predict out blocks in a loop that are not part of a
581 natural loop. */
582 for (i = 1; i < loops_info->num; i++)
583 {
584 basic_block bb, *bbs;
585 unsigned j;
586 unsigned n_exits;
587 struct loop *loop = loops_info->parray[i];
588 struct niter_desc desc;
589 unsigned HOST_WIDE_INT niter;
590 edge *exits;
591
592 exits = get_loop_exit_edges (loop, &n_exits);
593
594 if (rtlsimpleloops)
595 {
596 iv_analysis_loop_init (loop);
597 find_simple_exit (loop, &desc);
598
599 if (desc.simple_p && desc.const_iter)
600 {
601 int prob;
602 niter = desc.niter + 1;
603 if (niter == 0) /* We might overflow here. */
604 niter = desc.niter;
605
606 prob = (REG_BR_PROB_BASE
607 - (REG_BR_PROB_BASE + niter /2) / niter);
608 /* Branch prediction algorithm gives 0 frequency for everything
609 after the end of loop for loop having 0 probability to finish. */
610 if (prob == REG_BR_PROB_BASE)
611 prob = REG_BR_PROB_BASE - 1;
612 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
613 prob);
614 }
615 }
616 else
617 {
618 struct tree_niter_desc niter_desc;
619
620 for (j = 0; j < n_exits; j++)
621 {
622 tree niter = NULL;
623
624 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
625 niter = niter_desc.niter;
626 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
627 niter = loop_niter_by_eval (loop, exits[j]);
628
629 if (TREE_CODE (niter) == INTEGER_CST)
630 {
631 int probability;
632 if (host_integerp (niter, 1)
633 && tree_int_cst_lt (niter,
634 build_int_cstu (NULL_TREE,
635 REG_BR_PROB_BASE - 1)))
636 {
637 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
638 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
639 }
640 else
641 probability = 1;
642
643 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
644 }
645 }
646
647 }
648 free (exits);
649
650 bbs = get_loop_body (loop);
651
652 for (j = 0; j < loop->num_nodes; j++)
653 {
654 int header_found = 0;
655 edge e;
656 edge_iterator ei;
657
658 bb = bbs[j];
659
660 /* Bypass loop heuristics on continue statement. These
661 statements construct loops via "non-loop" constructs
662 in the source language and are better to be handled
663 separately. */
664 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
665 || predicted_by_p (bb, PRED_CONTINUE))
666 continue;
667
668 /* Loop branch heuristics - predict an edge back to a
669 loop's head as taken. */
670 if (bb == loop->latch)
671 {
672 e = find_edge (loop->latch, loop->header);
673 if (e)
674 {
675 header_found = 1;
676 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
677 }
678 }
679
680 /* Loop exit heuristics - predict an edge exiting the loop if the
681 conditional has no loop header successors as not taken. */
682 if (!header_found)
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (e->dest->index < 0
685 || !flow_bb_inside_loop_p (loop, e->dest))
686 predict_edge
687 (e, PRED_LOOP_EXIT,
688 (REG_BR_PROB_BASE
689 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
690 / n_exits);
691 }
692
693 /* Free basic blocks from get_loop_body. */
694 free (bbs);
695 }
696
697 if (!rtlsimpleloops)
698 {
699 scev_finalize ();
700 current_loops = NULL;
701 }
702 }
703
704 /* Attempt to predict probabilities of BB outgoing edges using local
705 properties. */
706 static void
707 bb_estimate_probability_locally (basic_block bb)
708 {
709 rtx last_insn = BB_END (bb);
710 rtx cond;
711
712 if (! can_predict_insn_p (last_insn))
713 return;
714 cond = get_condition (last_insn, NULL, false, false);
715 if (! cond)
716 return;
717
718 /* Try "pointer heuristic."
719 A comparison ptr == 0 is predicted as false.
720 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
721 if (COMPARISON_P (cond)
722 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
723 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
724 {
725 if (GET_CODE (cond) == EQ)
726 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
727 else if (GET_CODE (cond) == NE)
728 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
729 }
730 else
731
732 /* Try "opcode heuristic."
733 EQ tests are usually false and NE tests are usually true. Also,
734 most quantities are positive, so we can make the appropriate guesses
735 about signed comparisons against zero. */
736 switch (GET_CODE (cond))
737 {
738 case CONST_INT:
739 /* Unconditional branch. */
740 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
741 cond == const0_rtx ? NOT_TAKEN : TAKEN);
742 break;
743
744 case EQ:
745 case UNEQ:
746 /* Floating point comparisons appears to behave in a very
747 unpredictable way because of special role of = tests in
748 FP code. */
749 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
750 ;
751 /* Comparisons with 0 are often used for booleans and there is
752 nothing useful to predict about them. */
753 else if (XEXP (cond, 1) == const0_rtx
754 || XEXP (cond, 0) == const0_rtx)
755 ;
756 else
757 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
758 break;
759
760 case NE:
761 case LTGT:
762 /* Floating point comparisons appears to behave in a very
763 unpredictable way because of special role of = tests in
764 FP code. */
765 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
766 ;
767 /* Comparisons with 0 are often used for booleans and there is
768 nothing useful to predict about them. */
769 else if (XEXP (cond, 1) == const0_rtx
770 || XEXP (cond, 0) == const0_rtx)
771 ;
772 else
773 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
774 break;
775
776 case ORDERED:
777 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
778 break;
779
780 case UNORDERED:
781 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
782 break;
783
784 case LE:
785 case LT:
786 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
787 || XEXP (cond, 1) == constm1_rtx)
788 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
789 break;
790
791 case GE:
792 case GT:
793 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
794 || XEXP (cond, 1) == constm1_rtx)
795 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
796 break;
797
798 default:
799 break;
800 }
801 }
802
803 /* Statically estimate the probability that a branch will be taken and produce
804 estimated profile. When profile feedback is present never executed portions
805 of function gets estimated. */
806
807 void
808 estimate_probability (struct loops *loops_info)
809 {
810 basic_block bb;
811
812 connect_infinite_loops_to_exit ();
813 calculate_dominance_info (CDI_DOMINATORS);
814 calculate_dominance_info (CDI_POST_DOMINATORS);
815
816 predict_loops (loops_info, true);
817
818 iv_analysis_done ();
819
820 /* Attempt to predict conditional jumps using a number of heuristics. */
821 FOR_EACH_BB (bb)
822 {
823 rtx last_insn = BB_END (bb);
824 edge e;
825 edge_iterator ei;
826
827 if (! can_predict_insn_p (last_insn))
828 continue;
829
830 FOR_EACH_EDGE (e, ei, bb->succs)
831 {
832 /* Predict early returns to be probable, as we've already taken
833 care for error returns and other are often used for fast paths
834 trought function. */
835 if ((e->dest == EXIT_BLOCK_PTR
836 || (EDGE_COUNT (e->dest->succs) == 1
837 && EDGE_SUCC (e->dest, 0)->dest == EXIT_BLOCK_PTR))
838 && !predicted_by_p (bb, PRED_NULL_RETURN)
839 && !predicted_by_p (bb, PRED_CONST_RETURN)
840 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
841 && !last_basic_block_p (e->dest))
842 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
843
844 /* Look for block we are guarding (i.e. we dominate it,
845 but it doesn't postdominate us). */
846 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
847 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
848 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
849 {
850 rtx insn;
851
852 /* The call heuristic claims that a guarded function call
853 is improbable. This is because such calls are often used
854 to signal exceptional situations such as printing error
855 messages. */
856 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
857 insn = NEXT_INSN (insn))
858 if (CALL_P (insn)
859 /* Constant and pure calls are hardly used to signalize
860 something exceptional. */
861 && ! CONST_OR_PURE_CALL_P (insn))
862 {
863 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
864 break;
865 }
866 }
867 }
868 bb_estimate_probability_locally (bb);
869 }
870
871 /* Attach the combined probability to each conditional jump. */
872 FOR_EACH_BB (bb)
873 combine_predictions_for_insn (BB_END (bb), bb);
874
875 remove_fake_edges ();
876 estimate_bb_frequencies (loops_info);
877 free_dominance_info (CDI_POST_DOMINATORS);
878 if (profile_status == PROFILE_ABSENT)
879 profile_status = PROFILE_GUESSED;
880 }
881
882 /* Set edge->probability for each successor edge of BB. */
883 void
884 guess_outgoing_edge_probabilities (basic_block bb)
885 {
886 bb_estimate_probability_locally (bb);
887 combine_predictions_for_insn (BB_END (bb), bb);
888 }
889 \f
890 /* Return constant EXPR will likely have at execution time, NULL if unknown.
891 The function is used by builtin_expect branch predictor so the evidence
892 must come from this construct and additional possible constant folding.
893
894 We may want to implement more involved value guess (such as value range
895 propagation based prediction), but such tricks shall go to new
896 implementation. */
897
898 static tree
899 expr_expected_value (tree expr, bitmap visited)
900 {
901 if (TREE_CONSTANT (expr))
902 return expr;
903 else if (TREE_CODE (expr) == SSA_NAME)
904 {
905 tree def = SSA_NAME_DEF_STMT (expr);
906
907 /* If we were already here, break the infinite cycle. */
908 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
909 return NULL;
910 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
911
912 if (TREE_CODE (def) == PHI_NODE)
913 {
914 /* All the arguments of the PHI node must have the same constant
915 length. */
916 int i;
917 tree val = NULL, new_val;
918
919 for (i = 0; i < PHI_NUM_ARGS (def); i++)
920 {
921 tree arg = PHI_ARG_DEF (def, i);
922
923 /* If this PHI has itself as an argument, we cannot
924 determine the string length of this argument. However,
925 if we can find an expected constant value for the other
926 PHI args then we can still be sure that this is
927 likely a constant. So be optimistic and just
928 continue with the next argument. */
929 if (arg == PHI_RESULT (def))
930 continue;
931
932 new_val = expr_expected_value (arg, visited);
933 if (!new_val)
934 return NULL;
935 if (!val)
936 val = new_val;
937 else if (!operand_equal_p (val, new_val, false))
938 return NULL;
939 }
940 return val;
941 }
942 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
943 return NULL;
944 return expr_expected_value (TREE_OPERAND (def, 1), visited);
945 }
946 else if (TREE_CODE (expr) == CALL_EXPR)
947 {
948 tree decl = get_callee_fndecl (expr);
949 if (!decl)
950 return NULL;
951 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
952 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
953 {
954 tree arglist = TREE_OPERAND (expr, 1);
955 tree val;
956
957 if (arglist == NULL_TREE
958 || TREE_CHAIN (arglist) == NULL_TREE)
959 return NULL;
960 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
961 if (TREE_CONSTANT (val))
962 return val;
963 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
964 }
965 }
966 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
967 {
968 tree op0, op1, res;
969 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
970 if (!op0)
971 return NULL;
972 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
973 if (!op1)
974 return NULL;
975 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
976 if (TREE_CONSTANT (res))
977 return res;
978 return NULL;
979 }
980 if (UNARY_CLASS_P (expr))
981 {
982 tree op0, res;
983 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
984 if (!op0)
985 return NULL;
986 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
987 if (TREE_CONSTANT (res))
988 return res;
989 return NULL;
990 }
991 return NULL;
992 }
993 \f
994 /* Get rid of all builtin_expect calls we no longer need. */
995 static void
996 strip_builtin_expect (void)
997 {
998 basic_block bb;
999 FOR_EACH_BB (bb)
1000 {
1001 block_stmt_iterator bi;
1002 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1003 {
1004 tree stmt = bsi_stmt (bi);
1005 tree fndecl;
1006 tree arglist;
1007
1008 if (TREE_CODE (stmt) == MODIFY_EXPR
1009 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1010 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1011 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1012 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1013 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1014 && TREE_CHAIN (arglist))
1015 {
1016 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1017 modify_stmt (stmt);
1018 }
1019 }
1020 }
1021 }
1022 \f
1023 /* Predict using opcode of the last statement in basic block. */
1024 static void
1025 tree_predict_by_opcode (basic_block bb)
1026 {
1027 tree stmt = last_stmt (bb);
1028 edge then_edge;
1029 tree cond;
1030 tree op0;
1031 tree type;
1032 tree val;
1033 bitmap visited;
1034 edge_iterator ei;
1035
1036 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1037 return;
1038 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1039 if (then_edge->flags & EDGE_TRUE_VALUE)
1040 break;
1041 cond = TREE_OPERAND (stmt, 0);
1042 if (!COMPARISON_CLASS_P (cond))
1043 return;
1044 op0 = TREE_OPERAND (cond, 0);
1045 type = TREE_TYPE (op0);
1046 visited = BITMAP_ALLOC (NULL);
1047 val = expr_expected_value (cond, visited);
1048 BITMAP_FREE (visited);
1049 if (val)
1050 {
1051 if (integer_zerop (val))
1052 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1053 else
1054 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1055 return;
1056 }
1057 /* Try "pointer heuristic."
1058 A comparison ptr == 0 is predicted as false.
1059 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1060 if (POINTER_TYPE_P (type))
1061 {
1062 if (TREE_CODE (cond) == EQ_EXPR)
1063 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1064 else if (TREE_CODE (cond) == NE_EXPR)
1065 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1066 }
1067 else
1068
1069 /* Try "opcode heuristic."
1070 EQ tests are usually false and NE tests are usually true. Also,
1071 most quantities are positive, so we can make the appropriate guesses
1072 about signed comparisons against zero. */
1073 switch (TREE_CODE (cond))
1074 {
1075 case EQ_EXPR:
1076 case UNEQ_EXPR:
1077 /* Floating point comparisons appears to behave in a very
1078 unpredictable way because of special role of = tests in
1079 FP code. */
1080 if (FLOAT_TYPE_P (type))
1081 ;
1082 /* Comparisons with 0 are often used for booleans and there is
1083 nothing useful to predict about them. */
1084 else if (integer_zerop (op0)
1085 || integer_zerop (TREE_OPERAND (cond, 1)))
1086 ;
1087 else
1088 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1089 break;
1090
1091 case NE_EXPR:
1092 case LTGT_EXPR:
1093 /* Floating point comparisons appears to behave in a very
1094 unpredictable way because of special role of = tests in
1095 FP code. */
1096 if (FLOAT_TYPE_P (type))
1097 ;
1098 /* Comparisons with 0 are often used for booleans and there is
1099 nothing useful to predict about them. */
1100 else if (integer_zerop (op0)
1101 || integer_zerop (TREE_OPERAND (cond, 1)))
1102 ;
1103 else
1104 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1105 break;
1106
1107 case ORDERED_EXPR:
1108 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1109 break;
1110
1111 case UNORDERED_EXPR:
1112 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1113 break;
1114
1115 case LE_EXPR:
1116 case LT_EXPR:
1117 if (integer_zerop (TREE_OPERAND (cond, 1))
1118 || integer_onep (TREE_OPERAND (cond, 1))
1119 || integer_all_onesp (TREE_OPERAND (cond, 1))
1120 || real_zerop (TREE_OPERAND (cond, 1))
1121 || real_onep (TREE_OPERAND (cond, 1))
1122 || real_minus_onep (TREE_OPERAND (cond, 1)))
1123 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1124 break;
1125
1126 case GE_EXPR:
1127 case GT_EXPR:
1128 if (integer_zerop (TREE_OPERAND (cond, 1))
1129 || integer_onep (TREE_OPERAND (cond, 1))
1130 || integer_all_onesp (TREE_OPERAND (cond, 1))
1131 || real_zerop (TREE_OPERAND (cond, 1))
1132 || real_onep (TREE_OPERAND (cond, 1))
1133 || real_minus_onep (TREE_OPERAND (cond, 1)))
1134 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1135 break;
1136
1137 default:
1138 break;
1139 }
1140 }
1141
1142 /* Try to guess whether the value of return means error code. */
1143 static enum br_predictor
1144 return_prediction (tree val, enum prediction *prediction)
1145 {
1146 /* VOID. */
1147 if (!val)
1148 return PRED_NO_PREDICTION;
1149 /* Different heuristics for pointers and scalars. */
1150 if (POINTER_TYPE_P (TREE_TYPE (val)))
1151 {
1152 /* NULL is usually not returned. */
1153 if (integer_zerop (val))
1154 {
1155 *prediction = NOT_TAKEN;
1156 return PRED_NULL_RETURN;
1157 }
1158 }
1159 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1160 {
1161 /* Negative return values are often used to indicate
1162 errors. */
1163 if (TREE_CODE (val) == INTEGER_CST
1164 && tree_int_cst_sgn (val) < 0)
1165 {
1166 *prediction = NOT_TAKEN;
1167 return PRED_NEGATIVE_RETURN;
1168 }
1169 /* Constant return values seems to be commonly taken.
1170 Zero/one often represent booleans so exclude them from the
1171 heuristics. */
1172 if (TREE_CONSTANT (val)
1173 && (!integer_zerop (val) && !integer_onep (val)))
1174 {
1175 *prediction = TAKEN;
1176 return PRED_NEGATIVE_RETURN;
1177 }
1178 }
1179 return PRED_NO_PREDICTION;
1180 }
1181
1182 /* Find the basic block with return expression and look up for possible
1183 return value trying to apply RETURN_PREDICTION heuristics. */
1184 static void
1185 apply_return_prediction (int *heads)
1186 {
1187 tree return_stmt;
1188 tree return_val;
1189 edge e;
1190 tree phi;
1191 int phi_num_args, i;
1192 enum br_predictor pred;
1193 enum prediction direction;
1194 edge_iterator ei;
1195
1196 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1197 {
1198 return_stmt = last_stmt (e->src);
1199 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1200 break;
1201 }
1202 if (!e)
1203 return;
1204 return_val = TREE_OPERAND (return_stmt, 0);
1205 if (!return_val)
1206 return;
1207 if (TREE_CODE (return_val) == MODIFY_EXPR)
1208 return_val = TREE_OPERAND (return_val, 1);
1209 if (TREE_CODE (return_val) != SSA_NAME
1210 || !SSA_NAME_DEF_STMT (return_val)
1211 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1212 return;
1213 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1214 if (PHI_RESULT (phi) == return_val)
1215 break;
1216 if (!phi)
1217 return;
1218 phi_num_args = PHI_NUM_ARGS (phi);
1219 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1220
1221 /* Avoid the degenerate case where all return values form the function
1222 belongs to same category (ie they are all positive constants)
1223 so we can hardly say something about them. */
1224 for (i = 1; i < phi_num_args; i++)
1225 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1226 break;
1227 if (i != phi_num_args)
1228 for (i = 0; i < phi_num_args; i++)
1229 {
1230 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1231 if (pred != PRED_NO_PREDICTION)
1232 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1233 direction);
1234 }
1235 }
1236
1237 /* Look for basic block that contains unlikely to happen events
1238 (such as noreturn calls) and mark all paths leading to execution
1239 of this basic blocks as unlikely. */
1240
1241 static void
1242 tree_bb_level_predictions (void)
1243 {
1244 basic_block bb;
1245 int *heads;
1246
1247 heads = xmalloc (sizeof (int) * last_basic_block);
1248 memset (heads, -1, sizeof (int) * last_basic_block);
1249 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1250
1251 apply_return_prediction (heads);
1252
1253 FOR_EACH_BB (bb)
1254 {
1255 block_stmt_iterator bsi = bsi_last (bb);
1256
1257 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1258 {
1259 tree stmt = bsi_stmt (bsi);
1260 switch (TREE_CODE (stmt))
1261 {
1262 case MODIFY_EXPR:
1263 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1264 {
1265 stmt = TREE_OPERAND (stmt, 1);
1266 goto call_expr;
1267 }
1268 break;
1269 case CALL_EXPR:
1270 call_expr:;
1271 if (call_expr_flags (stmt) & ECF_NORETURN)
1272 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1273 NOT_TAKEN);
1274 break;
1275 default:
1276 break;
1277 }
1278 }
1279 }
1280
1281 free (heads);
1282 }
1283
1284 /* Predict branch probabilities and estimate profile of the tree CFG. */
1285 static void
1286 tree_estimate_probability (void)
1287 {
1288 basic_block bb;
1289 struct loops loops_info;
1290
1291 flow_loops_find (&loops_info);
1292 if (dump_file && (dump_flags & TDF_DETAILS))
1293 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1294
1295 add_noreturn_fake_exit_edges ();
1296 connect_infinite_loops_to_exit ();
1297 calculate_dominance_info (CDI_DOMINATORS);
1298 calculate_dominance_info (CDI_POST_DOMINATORS);
1299
1300 tree_bb_level_predictions ();
1301
1302 mark_irreducible_loops (&loops_info);
1303 predict_loops (&loops_info, false);
1304
1305 FOR_EACH_BB (bb)
1306 {
1307 edge e;
1308 edge_iterator ei;
1309
1310 FOR_EACH_EDGE (e, ei, bb->succs)
1311 {
1312 /* Predict early returns to be probable, as we've already taken
1313 care for error returns and other cases are often used for
1314 fast paths trought function. */
1315 if (e->dest == EXIT_BLOCK_PTR
1316 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1317 && EDGE_COUNT (bb->preds) > 1)
1318 {
1319 edge e1;
1320 edge_iterator ei1;
1321
1322 FOR_EACH_EDGE (e1, ei1, bb->preds)
1323 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1324 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1325 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1326 && !last_basic_block_p (e1->src))
1327 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1328 }
1329
1330 /* Look for block we are guarding (ie we dominate it,
1331 but it doesn't postdominate us). */
1332 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1333 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1334 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1335 {
1336 block_stmt_iterator bi;
1337
1338 /* The call heuristic claims that a guarded function call
1339 is improbable. This is because such calls are often used
1340 to signal exceptional situations such as printing error
1341 messages. */
1342 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1343 bsi_next (&bi))
1344 {
1345 tree stmt = bsi_stmt (bi);
1346 if ((TREE_CODE (stmt) == CALL_EXPR
1347 || (TREE_CODE (stmt) == MODIFY_EXPR
1348 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1349 /* Constant and pure calls are hardly used to signalize
1350 something exceptional. */
1351 && TREE_SIDE_EFFECTS (stmt))
1352 {
1353 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1354 break;
1355 }
1356 }
1357 }
1358 }
1359 tree_predict_by_opcode (bb);
1360 }
1361 FOR_EACH_BB (bb)
1362 combine_predictions_for_bb (dump_file, bb);
1363
1364 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1365 strip_builtin_expect ();
1366 estimate_bb_frequencies (&loops_info);
1367 free_dominance_info (CDI_POST_DOMINATORS);
1368 remove_fake_exit_edges ();
1369 flow_loops_free (&loops_info);
1370 if (dump_file && (dump_flags & TDF_DETAILS))
1371 dump_tree_cfg (dump_file, dump_flags);
1372 if (profile_status == PROFILE_ABSENT)
1373 profile_status = PROFILE_GUESSED;
1374 }
1375 \f
1376 /* __builtin_expect dropped tokens into the insn stream describing expected
1377 values of registers. Generate branch probabilities based off these
1378 values. */
1379
1380 void
1381 expected_value_to_br_prob (void)
1382 {
1383 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1384
1385 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1386 {
1387 switch (GET_CODE (insn))
1388 {
1389 case NOTE:
1390 /* Look for expected value notes. */
1391 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1392 {
1393 ev = NOTE_EXPECTED_VALUE (insn);
1394 ev_reg = XEXP (ev, 0);
1395 delete_insn (insn);
1396 }
1397 continue;
1398
1399 case CODE_LABEL:
1400 /* Never propagate across labels. */
1401 ev = NULL_RTX;
1402 continue;
1403
1404 case JUMP_INSN:
1405 /* Look for simple conditional branches. If we haven't got an
1406 expected value yet, no point going further. */
1407 if (!JUMP_P (insn) || ev == NULL_RTX
1408 || ! any_condjump_p (insn))
1409 continue;
1410 break;
1411
1412 default:
1413 /* Look for insns that clobber the EV register. */
1414 if (ev && reg_set_p (ev_reg, insn))
1415 ev = NULL_RTX;
1416 continue;
1417 }
1418
1419 /* Collect the branch condition, hopefully relative to EV_REG. */
1420 /* ??? At present we'll miss things like
1421 (expected_value (eq r70 0))
1422 (set r71 -1)
1423 (set r80 (lt r70 r71))
1424 (set pc (if_then_else (ne r80 0) ...))
1425 as canonicalize_condition will render this to us as
1426 (lt r70, r71)
1427 Could use cselib to try and reduce this further. */
1428 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1429 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1430 false, false);
1431 if (! cond || XEXP (cond, 0) != ev_reg
1432 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1433 continue;
1434
1435 /* Substitute and simplify. Given that the expression we're
1436 building involves two constants, we should wind up with either
1437 true or false. */
1438 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1439 XEXP (ev, 1), XEXP (cond, 1));
1440 cond = simplify_rtx (cond);
1441
1442 /* Turn the condition into a scaled branch probability. */
1443 if (cond != const_true_rtx && cond != const0_rtx)
1444 abort ();
1445 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1446 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1447 }
1448 }
1449 \f
1450 /* Check whether this is the last basic block of function. Commonly
1451 there is one extra common cleanup block. */
1452 static bool
1453 last_basic_block_p (basic_block bb)
1454 {
1455 if (bb == EXIT_BLOCK_PTR)
1456 return false;
1457
1458 return (bb->next_bb == EXIT_BLOCK_PTR
1459 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1460 && EDGE_COUNT (bb->succs) == 1
1461 && EDGE_SUCC (bb, 0)->dest->next_bb == EXIT_BLOCK_PTR));
1462 }
1463
1464 /* Sets branch probabilities according to PREDiction and
1465 FLAGS. HEADS[bb->index] should be index of basic block in that we
1466 need to alter branch predictions (i.e. the first of our dominators
1467 such that we do not post-dominate it) (but we fill this information
1468 on demand, so -1 may be there in case this was not needed yet). */
1469
1470 static void
1471 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1472 enum prediction taken)
1473 {
1474 edge e;
1475 edge_iterator ei;
1476 int y;
1477
1478 if (heads[bb->index] < 0)
1479 {
1480 /* This is first time we need this field in heads array; so
1481 find first dominator that we do not post-dominate (we are
1482 using already known members of heads array). */
1483 basic_block ai = bb;
1484 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1485 int head;
1486
1487 while (heads[next_ai->index] < 0)
1488 {
1489 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1490 break;
1491 heads[next_ai->index] = ai->index;
1492 ai = next_ai;
1493 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1494 }
1495 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1496 head = next_ai->index;
1497 else
1498 head = heads[next_ai->index];
1499 while (next_ai != bb)
1500 {
1501 next_ai = ai;
1502 if (heads[ai->index] == ENTRY_BLOCK)
1503 ai = ENTRY_BLOCK_PTR;
1504 else
1505 ai = BASIC_BLOCK (heads[ai->index]);
1506 heads[next_ai->index] = head;
1507 }
1508 }
1509 y = heads[bb->index];
1510
1511 /* Now find the edge that leads to our branch and aply the prediction. */
1512
1513 if (y == last_basic_block)
1514 return;
1515 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1516 if (e->dest->index >= 0
1517 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1518 predict_edge_def (e, pred, taken);
1519 }
1520 \f
1521 /* This is used to carry information about basic blocks. It is
1522 attached to the AUX field of the standard CFG block. */
1523
1524 typedef struct block_info_def
1525 {
1526 /* Estimated frequency of execution of basic_block. */
1527 sreal frequency;
1528
1529 /* To keep queue of basic blocks to process. */
1530 basic_block next;
1531
1532 /* Number of predecessors we need to visit first. */
1533 int npredecessors;
1534 } *block_info;
1535
1536 /* Similar information for edges. */
1537 typedef struct edge_info_def
1538 {
1539 /* In case edge is an loopback edge, the probability edge will be reached
1540 in case header is. Estimated number of iterations of the loop can be
1541 then computed as 1 / (1 - back_edge_prob). */
1542 sreal back_edge_prob;
1543 /* True if the edge is an loopback edge in the natural loop. */
1544 unsigned int back_edge:1;
1545 } *edge_info;
1546
1547 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1548 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1549
1550 /* Helper function for estimate_bb_frequencies.
1551 Propagate the frequencies for LOOP. */
1552
1553 static void
1554 propagate_freq (struct loop *loop, bitmap tovisit)
1555 {
1556 basic_block head = loop->header;
1557 basic_block bb;
1558 basic_block last;
1559 unsigned i;
1560 edge e;
1561 basic_block nextbb;
1562 bitmap_iterator bi;
1563
1564 /* For each basic block we need to visit count number of his predecessors
1565 we need to visit first. */
1566 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1567 {
1568 edge_iterator ei;
1569 int count = 0;
1570
1571 /* The outermost "loop" includes the exit block, which we can not
1572 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1573 directly. Do the same for the entry block. */
1574 if (i == (unsigned)ENTRY_BLOCK)
1575 bb = ENTRY_BLOCK_PTR;
1576 else if (i == (unsigned)EXIT_BLOCK)
1577 bb = EXIT_BLOCK_PTR;
1578 else
1579 bb = BASIC_BLOCK (i);
1580
1581 FOR_EACH_EDGE (e, ei, bb->preds)
1582 {
1583 bool visit = bitmap_bit_p (tovisit, e->src->index);
1584
1585 if (visit && !(e->flags & EDGE_DFS_BACK))
1586 count++;
1587 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1588 fprintf (dump_file,
1589 "Irreducible region hit, ignoring edge to %i->%i\n",
1590 e->src->index, bb->index);
1591 }
1592 BLOCK_INFO (bb)->npredecessors = count;
1593 }
1594
1595 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1596 last = head;
1597 for (bb = head; bb; bb = nextbb)
1598 {
1599 edge_iterator ei;
1600 sreal cyclic_probability, frequency;
1601
1602 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1603 memcpy (&frequency, &real_zero, sizeof (real_zero));
1604
1605 nextbb = BLOCK_INFO (bb)->next;
1606 BLOCK_INFO (bb)->next = NULL;
1607
1608 /* Compute frequency of basic block. */
1609 if (bb != head)
1610 {
1611 #ifdef ENABLE_CHECKING
1612 FOR_EACH_EDGE (e, ei, bb->preds)
1613 if (bitmap_bit_p (tovisit, e->src->index)
1614 && !(e->flags & EDGE_DFS_BACK))
1615 abort ();
1616 #endif
1617
1618 FOR_EACH_EDGE (e, ei, bb->preds)
1619 if (EDGE_INFO (e)->back_edge)
1620 {
1621 sreal_add (&cyclic_probability, &cyclic_probability,
1622 &EDGE_INFO (e)->back_edge_prob);
1623 }
1624 else if (!(e->flags & EDGE_DFS_BACK))
1625 {
1626 sreal tmp;
1627
1628 /* frequency += (e->probability
1629 * BLOCK_INFO (e->src)->frequency /
1630 REG_BR_PROB_BASE); */
1631
1632 sreal_init (&tmp, e->probability, 0);
1633 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1634 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1635 sreal_add (&frequency, &frequency, &tmp);
1636 }
1637
1638 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1639 {
1640 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1641 sizeof (frequency));
1642 }
1643 else
1644 {
1645 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1646 {
1647 memcpy (&cyclic_probability, &real_almost_one,
1648 sizeof (real_almost_one));
1649 }
1650
1651 /* BLOCK_INFO (bb)->frequency = frequency
1652 / (1 - cyclic_probability) */
1653
1654 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1655 sreal_div (&BLOCK_INFO (bb)->frequency,
1656 &frequency, &cyclic_probability);
1657 }
1658 }
1659
1660 bitmap_clear_bit (tovisit, bb->index);
1661
1662 e = find_edge (bb, head);
1663 if (e)
1664 {
1665 sreal tmp;
1666
1667 /* EDGE_INFO (e)->back_edge_prob
1668 = ((e->probability * BLOCK_INFO (bb)->frequency)
1669 / REG_BR_PROB_BASE); */
1670
1671 sreal_init (&tmp, e->probability, 0);
1672 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1673 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1674 &tmp, &real_inv_br_prob_base);
1675 }
1676
1677 /* Propagate to successor blocks. */
1678 FOR_EACH_EDGE (e, ei, bb->succs)
1679 if (!(e->flags & EDGE_DFS_BACK)
1680 && BLOCK_INFO (e->dest)->npredecessors)
1681 {
1682 BLOCK_INFO (e->dest)->npredecessors--;
1683 if (!BLOCK_INFO (e->dest)->npredecessors)
1684 {
1685 if (!nextbb)
1686 nextbb = e->dest;
1687 else
1688 BLOCK_INFO (last)->next = e->dest;
1689
1690 last = e->dest;
1691 }
1692 }
1693 }
1694 }
1695
1696 /* Estimate probabilities of loopback edges in loops at same nest level. */
1697
1698 static void
1699 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1700 {
1701 struct loop *loop;
1702
1703 for (loop = first_loop; loop; loop = loop->next)
1704 {
1705 edge e;
1706 basic_block *bbs;
1707 unsigned i;
1708
1709 estimate_loops_at_level (loop->inner, tovisit);
1710
1711 /* Do not do this for dummy function loop. */
1712 if (EDGE_COUNT (loop->latch->succs) > 0)
1713 {
1714 /* Find current loop back edge and mark it. */
1715 e = loop_latch_edge (loop);
1716 EDGE_INFO (e)->back_edge = 1;
1717 }
1718
1719 bbs = get_loop_body (loop);
1720 for (i = 0; i < loop->num_nodes; i++)
1721 bitmap_set_bit (tovisit, bbs[i]->index);
1722 free (bbs);
1723 propagate_freq (loop, tovisit);
1724 }
1725 }
1726
1727 /* Convert counts measured by profile driven feedback to frequencies.
1728 Return nonzero iff there was any nonzero execution count. */
1729
1730 int
1731 counts_to_freqs (void)
1732 {
1733 gcov_type count_max, true_count_max = 0;
1734 basic_block bb;
1735
1736 FOR_EACH_BB (bb)
1737 true_count_max = MAX (bb->count, true_count_max);
1738
1739 count_max = MAX (true_count_max, 1);
1740 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1741 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1742 return true_count_max;
1743 }
1744
1745 /* Return true if function is likely to be expensive, so there is no point to
1746 optimize performance of prologue, epilogue or do inlining at the expense
1747 of code size growth. THRESHOLD is the limit of number of instructions
1748 function can execute at average to be still considered not expensive. */
1749
1750 bool
1751 expensive_function_p (int threshold)
1752 {
1753 unsigned int sum = 0;
1754 basic_block bb;
1755 unsigned int limit;
1756
1757 /* We can not compute accurately for large thresholds due to scaled
1758 frequencies. */
1759 if (threshold > BB_FREQ_MAX)
1760 abort ();
1761
1762 /* Frequencies are out of range. This either means that function contains
1763 internal loop executing more than BB_FREQ_MAX times or profile feedback
1764 is available and function has not been executed at all. */
1765 if (ENTRY_BLOCK_PTR->frequency == 0)
1766 return true;
1767
1768 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1769 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1770 FOR_EACH_BB (bb)
1771 {
1772 rtx insn;
1773
1774 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1775 insn = NEXT_INSN (insn))
1776 if (active_insn_p (insn))
1777 {
1778 sum += bb->frequency;
1779 if (sum > limit)
1780 return true;
1781 }
1782 }
1783
1784 return false;
1785 }
1786
1787 /* Estimate basic blocks frequency by given branch probabilities. */
1788
1789 static void
1790 estimate_bb_frequencies (struct loops *loops)
1791 {
1792 basic_block bb;
1793 sreal freq_max;
1794
1795 if (!flag_branch_probabilities || !counts_to_freqs ())
1796 {
1797 static int real_values_initialized = 0;
1798 bitmap tovisit;
1799
1800 if (!real_values_initialized)
1801 {
1802 real_values_initialized = 1;
1803 sreal_init (&real_zero, 0, 0);
1804 sreal_init (&real_one, 1, 0);
1805 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1806 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1807 sreal_init (&real_one_half, 1, -1);
1808 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1809 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1810 }
1811
1812 mark_dfs_back_edges ();
1813
1814 EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->probability = REG_BR_PROB_BASE;
1815
1816 /* Set up block info for each basic block. */
1817 tovisit = BITMAP_ALLOC (NULL);
1818 alloc_aux_for_blocks (sizeof (struct block_info_def));
1819 alloc_aux_for_edges (sizeof (struct edge_info_def));
1820 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1821 {
1822 edge e;
1823 edge_iterator ei;
1824
1825 FOR_EACH_EDGE (e, ei, bb->succs)
1826 {
1827 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1828 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1829 &EDGE_INFO (e)->back_edge_prob,
1830 &real_inv_br_prob_base);
1831 }
1832 }
1833
1834 /* First compute probabilities locally for each loop from innermost
1835 to outermost to examine probabilities for back edges. */
1836 estimate_loops_at_level (loops->tree_root, tovisit);
1837
1838 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1839 FOR_EACH_BB (bb)
1840 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1841 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1842
1843 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1844 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1845 {
1846 sreal tmp;
1847
1848 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1849 sreal_add (&tmp, &tmp, &real_one_half);
1850 bb->frequency = sreal_to_int (&tmp);
1851 }
1852
1853 free_aux_for_blocks ();
1854 free_aux_for_edges ();
1855 BITMAP_FREE (tovisit);
1856 }
1857 compute_function_frequency ();
1858 if (flag_reorder_functions)
1859 choose_function_section ();
1860 }
1861
1862 /* Decide whether function is hot, cold or unlikely executed. */
1863 static void
1864 compute_function_frequency (void)
1865 {
1866 basic_block bb;
1867
1868 if (!profile_info || !flag_branch_probabilities)
1869 return;
1870 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1871 FOR_EACH_BB (bb)
1872 {
1873 if (maybe_hot_bb_p (bb))
1874 {
1875 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1876 return;
1877 }
1878 if (!probably_never_executed_bb_p (bb))
1879 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1880 }
1881 }
1882
1883 /* Choose appropriate section for the function. */
1884 static void
1885 choose_function_section (void)
1886 {
1887 if (DECL_SECTION_NAME (current_function_decl)
1888 || !targetm.have_named_sections
1889 /* Theoretically we can split the gnu.linkonce text section too,
1890 but this requires more work as the frequency needs to match
1891 for all generated objects so we need to merge the frequency
1892 of all instances. For now just never set frequency for these. */
1893 || DECL_ONE_ONLY (current_function_decl))
1894 return;
1895
1896 /* If we are doing the partitioning optimization, let the optimization
1897 choose the correct section into which to put things. */
1898
1899 if (flag_reorder_blocks_and_partition)
1900 return;
1901
1902 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1903 DECL_SECTION_NAME (current_function_decl) =
1904 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1905 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1906 DECL_SECTION_NAME (current_function_decl) =
1907 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1908 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1909 }
1910
1911
1912 struct tree_opt_pass pass_profile =
1913 {
1914 "profile", /* name */
1915 NULL, /* gate */
1916 tree_estimate_probability, /* execute */
1917 NULL, /* sub */
1918 NULL, /* next */
1919 0, /* static_pass_number */
1920 TV_BRANCH_PROB, /* tv_id */
1921 PROP_cfg, /* properties_required */
1922 0, /* properties_provided */
1923 0, /* properties_destroyed */
1924 0, /* todo_flags_start */
1925 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1926 0 /* letter */
1927 };