re PR lto/45375 ([meta-bug] Issues with building Mozilla (i.e. Firefox) with LTO)
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "tree-flow.h"
55 #include "ggc.h"
56 #include "tree-pass.h"
57 #include "tree-scalar-evolution.h"
58 #include "cfgloop.h"
59 #include "pointer-set.h"
60
61 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
62 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
63 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
64 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
65
66 /* Random guesstimation given names.
67 PROV_VERY_UNLIKELY should be small enough so basic block predicted
68 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
69 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
70 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
71 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
72 #define PROB_ALWAYS (REG_BR_PROB_BASE)
73
74 static void combine_predictions_for_insn (rtx, basic_block);
75 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
76 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
77 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
78 static bool can_predict_insn_p (const_rtx);
79
80 /* Information we hold about each branch predictor.
81 Filled using information from predict.def. */
82
83 struct predictor_info
84 {
85 const char *const name; /* Name used in the debugging dumps. */
86 const int hitrate; /* Expected hitrate used by
87 predict_insn_def call. */
88 const int flags;
89 };
90
91 /* Use given predictor without Dempster-Shaffer theory if it matches
92 using first_match heuristics. */
93 #define PRED_FLAG_FIRST_MATCH 1
94
95 /* Recompute hitrate in percent to our representation. */
96
97 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
98
99 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
100 static const struct predictor_info predictor_info[]= {
101 #include "predict.def"
102
103 /* Upper bound on predictors. */
104 {NULL, 0, 0}
105 };
106 #undef DEF_PREDICTOR
107
108 /* Return TRUE if frequency FREQ is considered to be hot. */
109
110 static inline bool
111 maybe_hot_frequency_p (int freq)
112 {
113 struct cgraph_node *node = cgraph_get_node (current_function_decl);
114 if (!profile_info || !flag_branch_probabilities)
115 {
116 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
117 return false;
118 if (node->frequency == NODE_FREQUENCY_HOT)
119 return true;
120 }
121 if (profile_status == PROFILE_ABSENT)
122 return true;
123 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
124 && freq < (ENTRY_BLOCK_PTR->frequency * 2 / 3))
125 return false;
126 if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
127 return false;
128 return true;
129 }
130
131 /* Return TRUE if frequency FREQ is considered to be hot. */
132
133 static inline bool
134 maybe_hot_count_p (gcov_type count)
135 {
136 if (profile_status != PROFILE_READ)
137 return true;
138 /* Code executed at most once is not hot. */
139 if (profile_info->runs >= count)
140 return false;
141 return (count
142 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
143 }
144
145 /* Return true in case BB can be CPU intensive and should be optimized
146 for maximal performance. */
147
148 bool
149 maybe_hot_bb_p (const_basic_block bb)
150 {
151 /* Make sure CFUN exists, for dump_bb_info. */
152 gcc_assert (cfun);
153 if (profile_status == PROFILE_READ)
154 return maybe_hot_count_p (bb->count);
155 return maybe_hot_frequency_p (bb->frequency);
156 }
157
158 /* Return true if the call can be hot. */
159
160 bool
161 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
162 {
163 if (profile_info && flag_branch_probabilities
164 && (edge->count
165 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
166 return false;
167 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
168 || (edge->callee
169 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && (edge->callee
173 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
174 return false;
175 if (optimize_size)
176 return false;
177 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
178 return true;
179 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
180 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
181 return false;
182 if (flag_guess_branch_prob
183 && edge->frequency <= (CGRAPH_FREQ_BASE
184 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
185 return false;
186 return true;
187 }
188
189 /* Return true in case BB can be CPU intensive and should be optimized
190 for maximal performance. */
191
192 bool
193 maybe_hot_edge_p (edge e)
194 {
195 if (profile_status == PROFILE_READ)
196 return maybe_hot_count_p (e->count);
197 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
198 }
199
200
201 /* Return true in case BB is probably never executed. */
202
203 bool
204 probably_never_executed_bb_p (const_basic_block bb)
205 {
206 /* Make sure CFUN exists, for dump_bb_info. */
207 gcc_assert (cfun);
208 if (profile_info && flag_branch_probabilities)
209 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
210 if ((!profile_info || !flag_branch_probabilities)
211 && (cgraph_get_node (current_function_decl)->frequency
212 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
213 return true;
214 return false;
215 }
216
217 /* Return true if NODE should be optimized for size. */
218
219 bool
220 cgraph_optimize_for_size_p (struct cgraph_node *node)
221 {
222 if (optimize_size)
223 return true;
224 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
225 return true;
226 else
227 return false;
228 }
229
230 /* Return true when current function should always be optimized for size. */
231
232 bool
233 optimize_function_for_size_p (struct function *fun)
234 {
235 if (optimize_size)
236 return true;
237 if (!fun || !fun->decl)
238 return false;
239 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
240 }
241
242 /* Return true when current function should always be optimized for speed. */
243
244 bool
245 optimize_function_for_speed_p (struct function *fun)
246 {
247 return !optimize_function_for_size_p (fun);
248 }
249
250 /* Return TRUE when BB should be optimized for size. */
251
252 bool
253 optimize_bb_for_size_p (const_basic_block bb)
254 {
255 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
256 }
257
258 /* Return TRUE when BB should be optimized for speed. */
259
260 bool
261 optimize_bb_for_speed_p (const_basic_block bb)
262 {
263 return !optimize_bb_for_size_p (bb);
264 }
265
266 /* Return TRUE when BB should be optimized for size. */
267
268 bool
269 optimize_edge_for_size_p (edge e)
270 {
271 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
272 }
273
274 /* Return TRUE when BB should be optimized for speed. */
275
276 bool
277 optimize_edge_for_speed_p (edge e)
278 {
279 return !optimize_edge_for_size_p (e);
280 }
281
282 /* Return TRUE when BB should be optimized for size. */
283
284 bool
285 optimize_insn_for_size_p (void)
286 {
287 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
288 }
289
290 /* Return TRUE when BB should be optimized for speed. */
291
292 bool
293 optimize_insn_for_speed_p (void)
294 {
295 return !optimize_insn_for_size_p ();
296 }
297
298 /* Return TRUE when LOOP should be optimized for size. */
299
300 bool
301 optimize_loop_for_size_p (struct loop *loop)
302 {
303 return optimize_bb_for_size_p (loop->header);
304 }
305
306 /* Return TRUE when LOOP should be optimized for speed. */
307
308 bool
309 optimize_loop_for_speed_p (struct loop *loop)
310 {
311 return optimize_bb_for_speed_p (loop->header);
312 }
313
314 /* Return TRUE when LOOP nest should be optimized for speed. */
315
316 bool
317 optimize_loop_nest_for_speed_p (struct loop *loop)
318 {
319 struct loop *l = loop;
320 if (optimize_loop_for_speed_p (loop))
321 return true;
322 l = loop->inner;
323 while (l && l != loop)
324 {
325 if (optimize_loop_for_speed_p (l))
326 return true;
327 if (l->inner)
328 l = l->inner;
329 else if (l->next)
330 l = l->next;
331 else
332 {
333 while (l != loop && !l->next)
334 l = loop_outer (l);
335 if (l != loop)
336 l = l->next;
337 }
338 }
339 return false;
340 }
341
342 /* Return TRUE when LOOP nest should be optimized for size. */
343
344 bool
345 optimize_loop_nest_for_size_p (struct loop *loop)
346 {
347 return !optimize_loop_nest_for_speed_p (loop);
348 }
349
350 /* Return true when edge E is likely to be well predictable by branch
351 predictor. */
352
353 bool
354 predictable_edge_p (edge e)
355 {
356 if (profile_status == PROFILE_ABSENT)
357 return false;
358 if ((e->probability
359 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
360 || (REG_BR_PROB_BASE - e->probability
361 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
362 return true;
363 return false;
364 }
365
366
367 /* Set RTL expansion for BB profile. */
368
369 void
370 rtl_profile_for_bb (basic_block bb)
371 {
372 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
373 }
374
375 /* Set RTL expansion for edge profile. */
376
377 void
378 rtl_profile_for_edge (edge e)
379 {
380 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
381 }
382
383 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
384 void
385 default_rtl_profile (void)
386 {
387 crtl->maybe_hot_insn_p = true;
388 }
389
390 /* Return true if the one of outgoing edges is already predicted by
391 PREDICTOR. */
392
393 bool
394 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
395 {
396 rtx note;
397 if (!INSN_P (BB_END (bb)))
398 return false;
399 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
400 if (REG_NOTE_KIND (note) == REG_BR_PRED
401 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
402 return true;
403 return false;
404 }
405
406 /* This map contains for a basic block the list of predictions for the
407 outgoing edges. */
408
409 static struct pointer_map_t *bb_predictions;
410
411 /* Structure representing predictions in tree level. */
412
413 struct edge_prediction {
414 struct edge_prediction *ep_next;
415 edge ep_edge;
416 enum br_predictor ep_predictor;
417 int ep_probability;
418 };
419
420 /* Return true if the one of outgoing edges is already predicted by
421 PREDICTOR. */
422
423 bool
424 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
425 {
426 struct edge_prediction *i;
427 void **preds = pointer_map_contains (bb_predictions, bb);
428
429 if (!preds)
430 return false;
431
432 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
433 if (i->ep_predictor == predictor)
434 return true;
435 return false;
436 }
437
438 /* Return true when the probability of edge is reliable.
439
440 The profile guessing code is good at predicting branch outcome (ie.
441 taken/not taken), that is predicted right slightly over 75% of time.
442 It is however notoriously poor on predicting the probability itself.
443 In general the profile appear a lot flatter (with probabilities closer
444 to 50%) than the reality so it is bad idea to use it to drive optimization
445 such as those disabling dynamic branch prediction for well predictable
446 branches.
447
448 There are two exceptions - edges leading to noreturn edges and edges
449 predicted by number of iterations heuristics are predicted well. This macro
450 should be able to distinguish those, but at the moment it simply check for
451 noreturn heuristic that is only one giving probability over 99% or bellow
452 1%. In future we might want to propagate reliability information across the
453 CFG if we find this information useful on multiple places. */
454 static bool
455 probability_reliable_p (int prob)
456 {
457 return (profile_status == PROFILE_READ
458 || (profile_status == PROFILE_GUESSED
459 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
460 }
461
462 /* Same predicate as above, working on edges. */
463 bool
464 edge_probability_reliable_p (const_edge e)
465 {
466 return probability_reliable_p (e->probability);
467 }
468
469 /* Same predicate as edge_probability_reliable_p, working on notes. */
470 bool
471 br_prob_note_reliable_p (const_rtx note)
472 {
473 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
474 return probability_reliable_p (INTVAL (XEXP (note, 0)));
475 }
476
477 static void
478 predict_insn (rtx insn, enum br_predictor predictor, int probability)
479 {
480 gcc_assert (any_condjump_p (insn));
481 if (!flag_guess_branch_prob)
482 return;
483
484 add_reg_note (insn, REG_BR_PRED,
485 gen_rtx_CONCAT (VOIDmode,
486 GEN_INT ((int) predictor),
487 GEN_INT ((int) probability)));
488 }
489
490 /* Predict insn by given predictor. */
491
492 void
493 predict_insn_def (rtx insn, enum br_predictor predictor,
494 enum prediction taken)
495 {
496 int probability = predictor_info[(int) predictor].hitrate;
497
498 if (taken != TAKEN)
499 probability = REG_BR_PROB_BASE - probability;
500
501 predict_insn (insn, predictor, probability);
502 }
503
504 /* Predict edge E with given probability if possible. */
505
506 void
507 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
508 {
509 rtx last_insn;
510 last_insn = BB_END (e->src);
511
512 /* We can store the branch prediction information only about
513 conditional jumps. */
514 if (!any_condjump_p (last_insn))
515 return;
516
517 /* We always store probability of branching. */
518 if (e->flags & EDGE_FALLTHRU)
519 probability = REG_BR_PROB_BASE - probability;
520
521 predict_insn (last_insn, predictor, probability);
522 }
523
524 /* Predict edge E with the given PROBABILITY. */
525 void
526 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
527 {
528 gcc_assert (profile_status != PROFILE_GUESSED);
529 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
530 && flag_guess_branch_prob && optimize)
531 {
532 struct edge_prediction *i = XNEW (struct edge_prediction);
533 void **preds = pointer_map_insert (bb_predictions, e->src);
534
535 i->ep_next = (struct edge_prediction *) *preds;
536 *preds = i;
537 i->ep_probability = probability;
538 i->ep_predictor = predictor;
539 i->ep_edge = e;
540 }
541 }
542
543 /* Remove all predictions on given basic block that are attached
544 to edge E. */
545 void
546 remove_predictions_associated_with_edge (edge e)
547 {
548 void **preds;
549
550 if (!bb_predictions)
551 return;
552
553 preds = pointer_map_contains (bb_predictions, e->src);
554
555 if (preds)
556 {
557 struct edge_prediction **prediction = (struct edge_prediction **) preds;
558 struct edge_prediction *next;
559
560 while (*prediction)
561 {
562 if ((*prediction)->ep_edge == e)
563 {
564 next = (*prediction)->ep_next;
565 free (*prediction);
566 *prediction = next;
567 }
568 else
569 prediction = &((*prediction)->ep_next);
570 }
571 }
572 }
573
574 /* Clears the list of predictions stored for BB. */
575
576 static void
577 clear_bb_predictions (basic_block bb)
578 {
579 void **preds = pointer_map_contains (bb_predictions, bb);
580 struct edge_prediction *pred, *next;
581
582 if (!preds)
583 return;
584
585 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
586 {
587 next = pred->ep_next;
588 free (pred);
589 }
590 *preds = NULL;
591 }
592
593 /* Return true when we can store prediction on insn INSN.
594 At the moment we represent predictions only on conditional
595 jumps, not at computed jump or other complicated cases. */
596 static bool
597 can_predict_insn_p (const_rtx insn)
598 {
599 return (JUMP_P (insn)
600 && any_condjump_p (insn)
601 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
602 }
603
604 /* Predict edge E by given predictor if possible. */
605
606 void
607 predict_edge_def (edge e, enum br_predictor predictor,
608 enum prediction taken)
609 {
610 int probability = predictor_info[(int) predictor].hitrate;
611
612 if (taken != TAKEN)
613 probability = REG_BR_PROB_BASE - probability;
614
615 predict_edge (e, predictor, probability);
616 }
617
618 /* Invert all branch predictions or probability notes in the INSN. This needs
619 to be done each time we invert the condition used by the jump. */
620
621 void
622 invert_br_probabilities (rtx insn)
623 {
624 rtx note;
625
626 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
627 if (REG_NOTE_KIND (note) == REG_BR_PROB)
628 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
629 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
630 XEXP (XEXP (note, 0), 1)
631 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
632 }
633
634 /* Dump information about the branch prediction to the output file. */
635
636 static void
637 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
638 basic_block bb, int used)
639 {
640 edge e;
641 edge_iterator ei;
642
643 if (!file)
644 return;
645
646 FOR_EACH_EDGE (e, ei, bb->succs)
647 if (! (e->flags & EDGE_FALLTHRU))
648 break;
649
650 fprintf (file, " %s heuristics%s: %.1f%%",
651 predictor_info[predictor].name,
652 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
653
654 if (bb->count)
655 {
656 fprintf (file, " exec ");
657 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
658 if (e)
659 {
660 fprintf (file, " hit ");
661 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
662 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
663 }
664 }
665
666 fprintf (file, "\n");
667 }
668
669 /* We can not predict the probabilities of outgoing edges of bb. Set them
670 evenly and hope for the best. */
671 static void
672 set_even_probabilities (basic_block bb)
673 {
674 int nedges = 0;
675 edge e;
676 edge_iterator ei;
677
678 FOR_EACH_EDGE (e, ei, bb->succs)
679 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
680 nedges ++;
681 FOR_EACH_EDGE (e, ei, bb->succs)
682 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
683 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
684 else
685 e->probability = 0;
686 }
687
688 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
689 note if not already present. Remove now useless REG_BR_PRED notes. */
690
691 static void
692 combine_predictions_for_insn (rtx insn, basic_block bb)
693 {
694 rtx prob_note;
695 rtx *pnote;
696 rtx note;
697 int best_probability = PROB_EVEN;
698 enum br_predictor best_predictor = END_PREDICTORS;
699 int combined_probability = REG_BR_PROB_BASE / 2;
700 int d;
701 bool first_match = false;
702 bool found = false;
703
704 if (!can_predict_insn_p (insn))
705 {
706 set_even_probabilities (bb);
707 return;
708 }
709
710 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
711 pnote = &REG_NOTES (insn);
712 if (dump_file)
713 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
714 bb->index);
715
716 /* We implement "first match" heuristics and use probability guessed
717 by predictor with smallest index. */
718 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
719 if (REG_NOTE_KIND (note) == REG_BR_PRED)
720 {
721 enum br_predictor predictor = ((enum br_predictor)
722 INTVAL (XEXP (XEXP (note, 0), 0)));
723 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
724
725 found = true;
726 if (best_predictor > predictor)
727 best_probability = probability, best_predictor = predictor;
728
729 d = (combined_probability * probability
730 + (REG_BR_PROB_BASE - combined_probability)
731 * (REG_BR_PROB_BASE - probability));
732
733 /* Use FP math to avoid overflows of 32bit integers. */
734 if (d == 0)
735 /* If one probability is 0% and one 100%, avoid division by zero. */
736 combined_probability = REG_BR_PROB_BASE / 2;
737 else
738 combined_probability = (((double) combined_probability) * probability
739 * REG_BR_PROB_BASE / d + 0.5);
740 }
741
742 /* Decide which heuristic to use. In case we didn't match anything,
743 use no_prediction heuristic, in case we did match, use either
744 first match or Dempster-Shaffer theory depending on the flags. */
745
746 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
747 first_match = true;
748
749 if (!found)
750 dump_prediction (dump_file, PRED_NO_PREDICTION,
751 combined_probability, bb, true);
752 else
753 {
754 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
755 bb, !first_match);
756 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
757 bb, first_match);
758 }
759
760 if (first_match)
761 combined_probability = best_probability;
762 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
763
764 while (*pnote)
765 {
766 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
767 {
768 enum br_predictor predictor = ((enum br_predictor)
769 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
770 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
771
772 dump_prediction (dump_file, predictor, probability, bb,
773 !first_match || best_predictor == predictor);
774 *pnote = XEXP (*pnote, 1);
775 }
776 else
777 pnote = &XEXP (*pnote, 1);
778 }
779
780 if (!prob_note)
781 {
782 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
783
784 /* Save the prediction into CFG in case we are seeing non-degenerated
785 conditional jump. */
786 if (!single_succ_p (bb))
787 {
788 BRANCH_EDGE (bb)->probability = combined_probability;
789 FALLTHRU_EDGE (bb)->probability
790 = REG_BR_PROB_BASE - combined_probability;
791 }
792 }
793 else if (!single_succ_p (bb))
794 {
795 int prob = INTVAL (XEXP (prob_note, 0));
796
797 BRANCH_EDGE (bb)->probability = prob;
798 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
799 }
800 else
801 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
802 }
803
804 /* Combine predictions into single probability and store them into CFG.
805 Remove now useless prediction entries. */
806
807 static void
808 combine_predictions_for_bb (basic_block bb)
809 {
810 int best_probability = PROB_EVEN;
811 enum br_predictor best_predictor = END_PREDICTORS;
812 int combined_probability = REG_BR_PROB_BASE / 2;
813 int d;
814 bool first_match = false;
815 bool found = false;
816 struct edge_prediction *pred;
817 int nedges = 0;
818 edge e, first = NULL, second = NULL;
819 edge_iterator ei;
820 void **preds;
821
822 FOR_EACH_EDGE (e, ei, bb->succs)
823 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
824 {
825 nedges ++;
826 if (first && !second)
827 second = e;
828 if (!first)
829 first = e;
830 }
831
832 /* When there is no successor or only one choice, prediction is easy.
833
834 We are lazy for now and predict only basic blocks with two outgoing
835 edges. It is possible to predict generic case too, but we have to
836 ignore first match heuristics and do more involved combining. Implement
837 this later. */
838 if (nedges != 2)
839 {
840 if (!bb->count)
841 set_even_probabilities (bb);
842 clear_bb_predictions (bb);
843 if (dump_file)
844 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
845 nedges, bb->index);
846 return;
847 }
848
849 if (dump_file)
850 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
851
852 preds = pointer_map_contains (bb_predictions, bb);
853 if (preds)
854 {
855 /* We implement "first match" heuristics and use probability guessed
856 by predictor with smallest index. */
857 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
858 {
859 enum br_predictor predictor = pred->ep_predictor;
860 int probability = pred->ep_probability;
861
862 if (pred->ep_edge != first)
863 probability = REG_BR_PROB_BASE - probability;
864
865 found = true;
866 /* First match heuristics would be widly confused if we predicted
867 both directions. */
868 if (best_predictor > predictor)
869 {
870 struct edge_prediction *pred2;
871 int prob = probability;
872
873 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
874 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
875 {
876 int probability2 = pred->ep_probability;
877
878 if (pred2->ep_edge != first)
879 probability2 = REG_BR_PROB_BASE - probability2;
880
881 if ((probability < REG_BR_PROB_BASE / 2) !=
882 (probability2 < REG_BR_PROB_BASE / 2))
883 break;
884
885 /* If the same predictor later gave better result, go for it! */
886 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
887 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
888 prob = probability2;
889 }
890 if (!pred2)
891 best_probability = prob, best_predictor = predictor;
892 }
893
894 d = (combined_probability * probability
895 + (REG_BR_PROB_BASE - combined_probability)
896 * (REG_BR_PROB_BASE - probability));
897
898 /* Use FP math to avoid overflows of 32bit integers. */
899 if (d == 0)
900 /* If one probability is 0% and one 100%, avoid division by zero. */
901 combined_probability = REG_BR_PROB_BASE / 2;
902 else
903 combined_probability = (((double) combined_probability)
904 * probability
905 * REG_BR_PROB_BASE / d + 0.5);
906 }
907 }
908
909 /* Decide which heuristic to use. In case we didn't match anything,
910 use no_prediction heuristic, in case we did match, use either
911 first match or Dempster-Shaffer theory depending on the flags. */
912
913 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
914 first_match = true;
915
916 if (!found)
917 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
918 else
919 {
920 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
921 !first_match);
922 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
923 first_match);
924 }
925
926 if (first_match)
927 combined_probability = best_probability;
928 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
929
930 if (preds)
931 {
932 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
933 {
934 enum br_predictor predictor = pred->ep_predictor;
935 int probability = pred->ep_probability;
936
937 if (pred->ep_edge != EDGE_SUCC (bb, 0))
938 probability = REG_BR_PROB_BASE - probability;
939 dump_prediction (dump_file, predictor, probability, bb,
940 !first_match || best_predictor == predictor);
941 }
942 }
943 clear_bb_predictions (bb);
944
945 if (!bb->count)
946 {
947 first->probability = combined_probability;
948 second->probability = REG_BR_PROB_BASE - combined_probability;
949 }
950 }
951
952 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
953 Return the SSA_NAME if the condition satisfies, NULL otherwise.
954
955 T1 and T2 should be one of the following cases:
956 1. T1 is SSA_NAME, T2 is NULL
957 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
958 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
959
960 static tree
961 strips_small_constant (tree t1, tree t2)
962 {
963 tree ret = NULL;
964 int value = 0;
965
966 if (!t1)
967 return NULL;
968 else if (TREE_CODE (t1) == SSA_NAME)
969 ret = t1;
970 else if (host_integerp (t1, 0))
971 value = tree_low_cst (t1, 0);
972 else
973 return NULL;
974
975 if (!t2)
976 return ret;
977 else if (host_integerp (t2, 0))
978 value = tree_low_cst (t2, 0);
979 else if (TREE_CODE (t2) == SSA_NAME)
980 {
981 if (ret)
982 return NULL;
983 else
984 ret = t2;
985 }
986
987 if (value <= 4 && value >= -4)
988 return ret;
989 else
990 return NULL;
991 }
992
993 /* Return the SSA_NAME in T or T's operands.
994 Return NULL if SSA_NAME cannot be found. */
995
996 static tree
997 get_base_value (tree t)
998 {
999 if (TREE_CODE (t) == SSA_NAME)
1000 return t;
1001
1002 if (!BINARY_CLASS_P (t))
1003 return NULL;
1004
1005 switch (TREE_OPERAND_LENGTH (t))
1006 {
1007 case 1:
1008 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1009 case 2:
1010 return strips_small_constant (TREE_OPERAND (t, 0),
1011 TREE_OPERAND (t, 1));
1012 default:
1013 return NULL;
1014 }
1015 }
1016
1017 /* Check the compare STMT in LOOP. If it compares an induction
1018 variable to a loop invariant, return true, and save
1019 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1020 Otherwise return false and set LOOP_INVAIANT to NULL. */
1021
1022 static bool
1023 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1024 tree *loop_invariant,
1025 enum tree_code *compare_code,
1026 int *loop_step,
1027 tree *loop_iv_base)
1028 {
1029 tree op0, op1, bound, base;
1030 affine_iv iv0, iv1;
1031 enum tree_code code;
1032 int step;
1033
1034 code = gimple_cond_code (stmt);
1035 *loop_invariant = NULL;
1036
1037 switch (code)
1038 {
1039 case GT_EXPR:
1040 case GE_EXPR:
1041 case NE_EXPR:
1042 case LT_EXPR:
1043 case LE_EXPR:
1044 case EQ_EXPR:
1045 break;
1046
1047 default:
1048 return false;
1049 }
1050
1051 op0 = gimple_cond_lhs (stmt);
1052 op1 = gimple_cond_rhs (stmt);
1053
1054 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1055 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1056 return false;
1057 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1058 return false;
1059 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1060 return false;
1061 if (TREE_CODE (iv0.step) != INTEGER_CST
1062 || TREE_CODE (iv1.step) != INTEGER_CST)
1063 return false;
1064 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1065 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1066 return false;
1067
1068 if (integer_zerop (iv0.step))
1069 {
1070 if (code != NE_EXPR && code != EQ_EXPR)
1071 code = invert_tree_comparison (code, false);
1072 bound = iv0.base;
1073 base = iv1.base;
1074 if (host_integerp (iv1.step, 0))
1075 step = tree_low_cst (iv1.step, 0);
1076 else
1077 return false;
1078 }
1079 else
1080 {
1081 bound = iv1.base;
1082 base = iv0.base;
1083 if (host_integerp (iv0.step, 0))
1084 step = tree_low_cst (iv0.step, 0);
1085 else
1086 return false;
1087 }
1088
1089 if (TREE_CODE (bound) != INTEGER_CST)
1090 bound = get_base_value (bound);
1091 if (!bound)
1092 return false;
1093 if (TREE_CODE (base) != INTEGER_CST)
1094 base = get_base_value (base);
1095 if (!base)
1096 return false;
1097
1098 *loop_invariant = bound;
1099 *compare_code = code;
1100 *loop_step = step;
1101 *loop_iv_base = base;
1102 return true;
1103 }
1104
1105 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1106
1107 static bool
1108 expr_coherent_p (tree t1, tree t2)
1109 {
1110 gimple stmt;
1111 tree ssa_name_1 = NULL;
1112 tree ssa_name_2 = NULL;
1113
1114 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1115 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1116
1117 if (t1 == t2)
1118 return true;
1119
1120 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1121 return true;
1122 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1123 return false;
1124
1125 /* Check to see if t1 is expressed/defined with t2. */
1126 stmt = SSA_NAME_DEF_STMT (t1);
1127 gcc_assert (stmt != NULL);
1128 if (is_gimple_assign (stmt))
1129 {
1130 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1131 if (ssa_name_1 && ssa_name_1 == t2)
1132 return true;
1133 }
1134
1135 /* Check to see if t2 is expressed/defined with t1. */
1136 stmt = SSA_NAME_DEF_STMT (t2);
1137 gcc_assert (stmt != NULL);
1138 if (is_gimple_assign (stmt))
1139 {
1140 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1141 if (ssa_name_2 && ssa_name_2 == t1)
1142 return true;
1143 }
1144
1145 /* Compare if t1 and t2's def_stmts are identical. */
1146 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1147 return true;
1148 else
1149 return false;
1150 }
1151
1152 /* Predict branch probability of BB when BB contains a branch that compares
1153 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1154 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1155
1156 E.g.
1157 for (int i = 0; i < bound; i++) {
1158 if (i < bound - 2)
1159 computation_1();
1160 else
1161 computation_2();
1162 }
1163
1164 In this loop, we will predict the branch inside the loop to be taken. */
1165
1166 static void
1167 predict_iv_comparison (struct loop *loop, basic_block bb,
1168 tree loop_bound_var,
1169 tree loop_iv_base_var,
1170 enum tree_code loop_bound_code,
1171 int loop_bound_step)
1172 {
1173 gimple stmt;
1174 tree compare_var, compare_base;
1175 enum tree_code compare_code;
1176 int compare_step;
1177 edge then_edge;
1178 edge_iterator ei;
1179
1180 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1181 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1182 || predicted_by_p (bb, PRED_LOOP_EXIT))
1183 return;
1184
1185 stmt = last_stmt (bb);
1186 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1187 return;
1188 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1189 &compare_code,
1190 &compare_step,
1191 &compare_base))
1192 return;
1193
1194 /* Find the taken edge. */
1195 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1196 if (then_edge->flags & EDGE_TRUE_VALUE)
1197 break;
1198
1199 /* When comparing an IV to a loop invariant, NE is more likely to be
1200 taken while EQ is more likely to be not-taken. */
1201 if (compare_code == NE_EXPR)
1202 {
1203 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1204 return;
1205 }
1206 else if (compare_code == EQ_EXPR)
1207 {
1208 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1209 return;
1210 }
1211
1212 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1213 return;
1214
1215 /* If loop bound, base and compare bound are all constants, we can
1216 calculate the probability directly. */
1217 if (host_integerp (loop_bound_var, 0)
1218 && host_integerp (compare_var, 0)
1219 && host_integerp (compare_base, 0))
1220 {
1221 int probability;
1222 HOST_WIDE_INT compare_count;
1223 HOST_WIDE_INT loop_bound = tree_low_cst (loop_bound_var, 0);
1224 HOST_WIDE_INT compare_bound = tree_low_cst (compare_var, 0);
1225 HOST_WIDE_INT base = tree_low_cst (compare_base, 0);
1226 HOST_WIDE_INT loop_count = (loop_bound - base) / compare_step;
1227
1228 if ((compare_step > 0)
1229 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1230 compare_count = (loop_bound - compare_bound) / compare_step;
1231 else
1232 compare_count = (compare_bound - base) / compare_step;
1233
1234 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1235 compare_count ++;
1236 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1237 loop_count ++;
1238 if (compare_count < 0)
1239 compare_count = 0;
1240 if (loop_count < 0)
1241 loop_count = 0;
1242
1243 if (loop_count == 0)
1244 probability = 0;
1245 else if (compare_count > loop_count)
1246 probability = REG_BR_PROB_BASE;
1247 else
1248 probability = (double) REG_BR_PROB_BASE * compare_count / loop_count;
1249 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1250 return;
1251 }
1252
1253 if (expr_coherent_p (loop_bound_var, compare_var))
1254 {
1255 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1256 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1257 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1258 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1259 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1260 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1261 else if (loop_bound_code == NE_EXPR)
1262 {
1263 /* If the loop backedge condition is "(i != bound)", we do
1264 the comparison based on the step of IV:
1265 * step < 0 : backedge condition is like (i > bound)
1266 * step > 0 : backedge condition is like (i < bound) */
1267 gcc_assert (loop_bound_step != 0);
1268 if (loop_bound_step > 0
1269 && (compare_code == LT_EXPR
1270 || compare_code == LE_EXPR))
1271 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1272 else if (loop_bound_step < 0
1273 && (compare_code == GT_EXPR
1274 || compare_code == GE_EXPR))
1275 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1276 else
1277 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1278 }
1279 else
1280 /* The branch is predicted not-taken if loop_bound_code is
1281 opposite with compare_code. */
1282 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1283 }
1284 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1285 {
1286 /* For cases like:
1287 for (i = s; i < h; i++)
1288 if (i > s + 2) ....
1289 The branch should be predicted taken. */
1290 if (loop_bound_step > 0
1291 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1292 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1293 else if (loop_bound_step < 0
1294 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1295 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1296 else
1297 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1298 }
1299 }
1300
1301 /* Predict edge probabilities by exploiting loop structure. */
1302
1303 static void
1304 predict_loops (void)
1305 {
1306 loop_iterator li;
1307 struct loop *loop;
1308
1309 /* Try to predict out blocks in a loop that are not part of a
1310 natural loop. */
1311 FOR_EACH_LOOP (li, loop, 0)
1312 {
1313 basic_block bb, *bbs;
1314 unsigned j, n_exits;
1315 VEC (edge, heap) *exits;
1316 struct tree_niter_desc niter_desc;
1317 edge ex;
1318 struct nb_iter_bound *nb_iter;
1319 enum tree_code loop_bound_code = ERROR_MARK;
1320 int loop_bound_step = 0;
1321 tree loop_bound_var = NULL;
1322 tree loop_iv_base = NULL;
1323 gimple stmt = NULL;
1324
1325 exits = get_loop_exit_edges (loop);
1326 n_exits = VEC_length (edge, exits);
1327
1328 FOR_EACH_VEC_ELT (edge, exits, j, ex)
1329 {
1330 tree niter = NULL;
1331 HOST_WIDE_INT nitercst;
1332 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1333 int probability;
1334 enum br_predictor predictor;
1335
1336 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
1337 niter = niter_desc.niter;
1338 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1339 niter = loop_niter_by_eval (loop, ex);
1340
1341 if (TREE_CODE (niter) == INTEGER_CST)
1342 {
1343 if (host_integerp (niter, 1)
1344 && compare_tree_int (niter, max-1) == -1)
1345 nitercst = tree_low_cst (niter, 1) + 1;
1346 else
1347 nitercst = max;
1348 predictor = PRED_LOOP_ITERATIONS;
1349 }
1350 /* If we have just one exit and we can derive some information about
1351 the number of iterations of the loop from the statements inside
1352 the loop, use it to predict this exit. */
1353 else if (n_exits == 1)
1354 {
1355 nitercst = estimated_stmt_executions_int (loop);
1356 if (nitercst < 0)
1357 continue;
1358 if (nitercst > max)
1359 nitercst = max;
1360
1361 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1362 }
1363 else
1364 continue;
1365
1366 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1367 predict_edge (ex, predictor, probability);
1368 }
1369 VEC_free (edge, heap, exits);
1370
1371 /* Find information about loop bound variables. */
1372 for (nb_iter = loop->bounds; nb_iter;
1373 nb_iter = nb_iter->next)
1374 if (nb_iter->stmt
1375 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1376 {
1377 stmt = nb_iter->stmt;
1378 break;
1379 }
1380 if (!stmt && last_stmt (loop->header)
1381 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1382 stmt = last_stmt (loop->header);
1383 if (stmt)
1384 is_comparison_with_loop_invariant_p (stmt, loop,
1385 &loop_bound_var,
1386 &loop_bound_code,
1387 &loop_bound_step,
1388 &loop_iv_base);
1389
1390 bbs = get_loop_body (loop);
1391
1392 for (j = 0; j < loop->num_nodes; j++)
1393 {
1394 int header_found = 0;
1395 edge e;
1396 edge_iterator ei;
1397
1398 bb = bbs[j];
1399
1400 /* Bypass loop heuristics on continue statement. These
1401 statements construct loops via "non-loop" constructs
1402 in the source language and are better to be handled
1403 separately. */
1404 if (predicted_by_p (bb, PRED_CONTINUE))
1405 continue;
1406
1407 /* Loop branch heuristics - predict an edge back to a
1408 loop's head as taken. */
1409 if (bb == loop->latch)
1410 {
1411 e = find_edge (loop->latch, loop->header);
1412 if (e)
1413 {
1414 header_found = 1;
1415 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1416 }
1417 }
1418
1419 /* Loop exit heuristics - predict an edge exiting the loop if the
1420 conditional has no loop header successors as not taken. */
1421 if (!header_found
1422 /* If we already used more reliable loop exit predictors, do not
1423 bother with PRED_LOOP_EXIT. */
1424 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1425 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1426 {
1427 /* For loop with many exits we don't want to predict all exits
1428 with the pretty large probability, because if all exits are
1429 considered in row, the loop would be predicted to iterate
1430 almost never. The code to divide probability by number of
1431 exits is very rough. It should compute the number of exits
1432 taken in each patch through function (not the overall number
1433 of exits that might be a lot higher for loops with wide switch
1434 statements in them) and compute n-th square root.
1435
1436 We limit the minimal probability by 2% to avoid
1437 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1438 as this was causing regression in perl benchmark containing such
1439 a wide loop. */
1440
1441 int probability = ((REG_BR_PROB_BASE
1442 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1443 / n_exits);
1444 if (probability < HITRATE (2))
1445 probability = HITRATE (2);
1446 FOR_EACH_EDGE (e, ei, bb->succs)
1447 if (e->dest->index < NUM_FIXED_BLOCKS
1448 || !flow_bb_inside_loop_p (loop, e->dest))
1449 predict_edge (e, PRED_LOOP_EXIT, probability);
1450 }
1451 if (loop_bound_var)
1452 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1453 loop_bound_code,
1454 loop_bound_step);
1455 }
1456
1457 /* Free basic blocks from get_loop_body. */
1458 free (bbs);
1459 }
1460 }
1461
1462 /* Attempt to predict probabilities of BB outgoing edges using local
1463 properties. */
1464 static void
1465 bb_estimate_probability_locally (basic_block bb)
1466 {
1467 rtx last_insn = BB_END (bb);
1468 rtx cond;
1469
1470 if (! can_predict_insn_p (last_insn))
1471 return;
1472 cond = get_condition (last_insn, NULL, false, false);
1473 if (! cond)
1474 return;
1475
1476 /* Try "pointer heuristic."
1477 A comparison ptr == 0 is predicted as false.
1478 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1479 if (COMPARISON_P (cond)
1480 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1481 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1482 {
1483 if (GET_CODE (cond) == EQ)
1484 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1485 else if (GET_CODE (cond) == NE)
1486 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1487 }
1488 else
1489
1490 /* Try "opcode heuristic."
1491 EQ tests are usually false and NE tests are usually true. Also,
1492 most quantities are positive, so we can make the appropriate guesses
1493 about signed comparisons against zero. */
1494 switch (GET_CODE (cond))
1495 {
1496 case CONST_INT:
1497 /* Unconditional branch. */
1498 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1499 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1500 break;
1501
1502 case EQ:
1503 case UNEQ:
1504 /* Floating point comparisons appears to behave in a very
1505 unpredictable way because of special role of = tests in
1506 FP code. */
1507 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1508 ;
1509 /* Comparisons with 0 are often used for booleans and there is
1510 nothing useful to predict about them. */
1511 else if (XEXP (cond, 1) == const0_rtx
1512 || XEXP (cond, 0) == const0_rtx)
1513 ;
1514 else
1515 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1516 break;
1517
1518 case NE:
1519 case LTGT:
1520 /* Floating point comparisons appears to behave in a very
1521 unpredictable way because of special role of = tests in
1522 FP code. */
1523 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1524 ;
1525 /* Comparisons with 0 are often used for booleans and there is
1526 nothing useful to predict about them. */
1527 else if (XEXP (cond, 1) == const0_rtx
1528 || XEXP (cond, 0) == const0_rtx)
1529 ;
1530 else
1531 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1532 break;
1533
1534 case ORDERED:
1535 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1536 break;
1537
1538 case UNORDERED:
1539 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1540 break;
1541
1542 case LE:
1543 case LT:
1544 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1545 || XEXP (cond, 1) == constm1_rtx)
1546 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1547 break;
1548
1549 case GE:
1550 case GT:
1551 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1552 || XEXP (cond, 1) == constm1_rtx)
1553 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1554 break;
1555
1556 default:
1557 break;
1558 }
1559 }
1560
1561 /* Set edge->probability for each successor edge of BB. */
1562 void
1563 guess_outgoing_edge_probabilities (basic_block bb)
1564 {
1565 bb_estimate_probability_locally (bb);
1566 combine_predictions_for_insn (BB_END (bb), bb);
1567 }
1568 \f
1569 static tree expr_expected_value (tree, bitmap);
1570
1571 /* Helper function for expr_expected_value. */
1572
1573 static tree
1574 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1575 tree op1, bitmap visited)
1576 {
1577 gimple def;
1578
1579 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1580 {
1581 if (TREE_CONSTANT (op0))
1582 return op0;
1583
1584 if (code != SSA_NAME)
1585 return NULL_TREE;
1586
1587 def = SSA_NAME_DEF_STMT (op0);
1588
1589 /* If we were already here, break the infinite cycle. */
1590 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1591 return NULL;
1592
1593 if (gimple_code (def) == GIMPLE_PHI)
1594 {
1595 /* All the arguments of the PHI node must have the same constant
1596 length. */
1597 int i, n = gimple_phi_num_args (def);
1598 tree val = NULL, new_val;
1599
1600 for (i = 0; i < n; i++)
1601 {
1602 tree arg = PHI_ARG_DEF (def, i);
1603
1604 /* If this PHI has itself as an argument, we cannot
1605 determine the string length of this argument. However,
1606 if we can find an expected constant value for the other
1607 PHI args then we can still be sure that this is
1608 likely a constant. So be optimistic and just
1609 continue with the next argument. */
1610 if (arg == PHI_RESULT (def))
1611 continue;
1612
1613 new_val = expr_expected_value (arg, visited);
1614 if (!new_val)
1615 return NULL;
1616 if (!val)
1617 val = new_val;
1618 else if (!operand_equal_p (val, new_val, false))
1619 return NULL;
1620 }
1621 return val;
1622 }
1623 if (is_gimple_assign (def))
1624 {
1625 if (gimple_assign_lhs (def) != op0)
1626 return NULL;
1627
1628 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1629 gimple_assign_rhs1 (def),
1630 gimple_assign_rhs_code (def),
1631 gimple_assign_rhs2 (def),
1632 visited);
1633 }
1634
1635 if (is_gimple_call (def))
1636 {
1637 tree decl = gimple_call_fndecl (def);
1638 if (!decl)
1639 return NULL;
1640 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1641 switch (DECL_FUNCTION_CODE (decl))
1642 {
1643 case BUILT_IN_EXPECT:
1644 {
1645 tree val;
1646 if (gimple_call_num_args (def) != 2)
1647 return NULL;
1648 val = gimple_call_arg (def, 0);
1649 if (TREE_CONSTANT (val))
1650 return val;
1651 return gimple_call_arg (def, 1);
1652 }
1653
1654 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1655 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1656 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1657 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1658 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1659 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1660 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1663 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1664 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1665 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1666 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1667 /* Assume that any given atomic operation has low contention,
1668 and thus the compare-and-swap operation succeeds. */
1669 return boolean_true_node;
1670 }
1671 }
1672
1673 return NULL;
1674 }
1675
1676 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1677 {
1678 tree res;
1679 op0 = expr_expected_value (op0, visited);
1680 if (!op0)
1681 return NULL;
1682 op1 = expr_expected_value (op1, visited);
1683 if (!op1)
1684 return NULL;
1685 res = fold_build2 (code, type, op0, op1);
1686 if (TREE_CONSTANT (res))
1687 return res;
1688 return NULL;
1689 }
1690 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1691 {
1692 tree res;
1693 op0 = expr_expected_value (op0, visited);
1694 if (!op0)
1695 return NULL;
1696 res = fold_build1 (code, type, op0);
1697 if (TREE_CONSTANT (res))
1698 return res;
1699 return NULL;
1700 }
1701 return NULL;
1702 }
1703
1704 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1705 The function is used by builtin_expect branch predictor so the evidence
1706 must come from this construct and additional possible constant folding.
1707
1708 We may want to implement more involved value guess (such as value range
1709 propagation based prediction), but such tricks shall go to new
1710 implementation. */
1711
1712 static tree
1713 expr_expected_value (tree expr, bitmap visited)
1714 {
1715 enum tree_code code;
1716 tree op0, op1;
1717
1718 if (TREE_CONSTANT (expr))
1719 return expr;
1720
1721 extract_ops_from_tree (expr, &code, &op0, &op1);
1722 return expr_expected_value_1 (TREE_TYPE (expr),
1723 op0, code, op1, visited);
1724 }
1725
1726 \f
1727 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1728 we no longer need. */
1729 static unsigned int
1730 strip_predict_hints (void)
1731 {
1732 basic_block bb;
1733 gimple ass_stmt;
1734 tree var;
1735
1736 FOR_EACH_BB (bb)
1737 {
1738 gimple_stmt_iterator bi;
1739 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1740 {
1741 gimple stmt = gsi_stmt (bi);
1742
1743 if (gimple_code (stmt) == GIMPLE_PREDICT)
1744 {
1745 gsi_remove (&bi, true);
1746 continue;
1747 }
1748 else if (gimple_code (stmt) == GIMPLE_CALL)
1749 {
1750 tree fndecl = gimple_call_fndecl (stmt);
1751
1752 if (fndecl
1753 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1754 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1755 && gimple_call_num_args (stmt) == 2)
1756 {
1757 var = gimple_call_lhs (stmt);
1758 if (var)
1759 {
1760 ass_stmt
1761 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1762 gsi_replace (&bi, ass_stmt, true);
1763 }
1764 else
1765 {
1766 gsi_remove (&bi, true);
1767 continue;
1768 }
1769 }
1770 }
1771 gsi_next (&bi);
1772 }
1773 }
1774 return 0;
1775 }
1776 \f
1777 /* Predict using opcode of the last statement in basic block. */
1778 static void
1779 tree_predict_by_opcode (basic_block bb)
1780 {
1781 gimple stmt = last_stmt (bb);
1782 edge then_edge;
1783 tree op0, op1;
1784 tree type;
1785 tree val;
1786 enum tree_code cmp;
1787 bitmap visited;
1788 edge_iterator ei;
1789
1790 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1791 return;
1792 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1793 if (then_edge->flags & EDGE_TRUE_VALUE)
1794 break;
1795 op0 = gimple_cond_lhs (stmt);
1796 op1 = gimple_cond_rhs (stmt);
1797 cmp = gimple_cond_code (stmt);
1798 type = TREE_TYPE (op0);
1799 visited = BITMAP_ALLOC (NULL);
1800 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1801 BITMAP_FREE (visited);
1802 if (val)
1803 {
1804 if (integer_zerop (val))
1805 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1806 else
1807 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1808 return;
1809 }
1810 /* Try "pointer heuristic."
1811 A comparison ptr == 0 is predicted as false.
1812 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1813 if (POINTER_TYPE_P (type))
1814 {
1815 if (cmp == EQ_EXPR)
1816 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1817 else if (cmp == NE_EXPR)
1818 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1819 }
1820 else
1821
1822 /* Try "opcode heuristic."
1823 EQ tests are usually false and NE tests are usually true. Also,
1824 most quantities are positive, so we can make the appropriate guesses
1825 about signed comparisons against zero. */
1826 switch (cmp)
1827 {
1828 case EQ_EXPR:
1829 case UNEQ_EXPR:
1830 /* Floating point comparisons appears to behave in a very
1831 unpredictable way because of special role of = tests in
1832 FP code. */
1833 if (FLOAT_TYPE_P (type))
1834 ;
1835 /* Comparisons with 0 are often used for booleans and there is
1836 nothing useful to predict about them. */
1837 else if (integer_zerop (op0) || integer_zerop (op1))
1838 ;
1839 else
1840 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1841 break;
1842
1843 case NE_EXPR:
1844 case LTGT_EXPR:
1845 /* Floating point comparisons appears to behave in a very
1846 unpredictable way because of special role of = tests in
1847 FP code. */
1848 if (FLOAT_TYPE_P (type))
1849 ;
1850 /* Comparisons with 0 are often used for booleans and there is
1851 nothing useful to predict about them. */
1852 else if (integer_zerop (op0)
1853 || integer_zerop (op1))
1854 ;
1855 else
1856 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1857 break;
1858
1859 case ORDERED_EXPR:
1860 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1861 break;
1862
1863 case UNORDERED_EXPR:
1864 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1865 break;
1866
1867 case LE_EXPR:
1868 case LT_EXPR:
1869 if (integer_zerop (op1)
1870 || integer_onep (op1)
1871 || integer_all_onesp (op1)
1872 || real_zerop (op1)
1873 || real_onep (op1)
1874 || real_minus_onep (op1))
1875 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1876 break;
1877
1878 case GE_EXPR:
1879 case GT_EXPR:
1880 if (integer_zerop (op1)
1881 || integer_onep (op1)
1882 || integer_all_onesp (op1)
1883 || real_zerop (op1)
1884 || real_onep (op1)
1885 || real_minus_onep (op1))
1886 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1887 break;
1888
1889 default:
1890 break;
1891 }
1892 }
1893
1894 /* Try to guess whether the value of return means error code. */
1895
1896 static enum br_predictor
1897 return_prediction (tree val, enum prediction *prediction)
1898 {
1899 /* VOID. */
1900 if (!val)
1901 return PRED_NO_PREDICTION;
1902 /* Different heuristics for pointers and scalars. */
1903 if (POINTER_TYPE_P (TREE_TYPE (val)))
1904 {
1905 /* NULL is usually not returned. */
1906 if (integer_zerop (val))
1907 {
1908 *prediction = NOT_TAKEN;
1909 return PRED_NULL_RETURN;
1910 }
1911 }
1912 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1913 {
1914 /* Negative return values are often used to indicate
1915 errors. */
1916 if (TREE_CODE (val) == INTEGER_CST
1917 && tree_int_cst_sgn (val) < 0)
1918 {
1919 *prediction = NOT_TAKEN;
1920 return PRED_NEGATIVE_RETURN;
1921 }
1922 /* Constant return values seems to be commonly taken.
1923 Zero/one often represent booleans so exclude them from the
1924 heuristics. */
1925 if (TREE_CONSTANT (val)
1926 && (!integer_zerop (val) && !integer_onep (val)))
1927 {
1928 *prediction = TAKEN;
1929 return PRED_CONST_RETURN;
1930 }
1931 }
1932 return PRED_NO_PREDICTION;
1933 }
1934
1935 /* Find the basic block with return expression and look up for possible
1936 return value trying to apply RETURN_PREDICTION heuristics. */
1937 static void
1938 apply_return_prediction (void)
1939 {
1940 gimple return_stmt = NULL;
1941 tree return_val;
1942 edge e;
1943 gimple phi;
1944 int phi_num_args, i;
1945 enum br_predictor pred;
1946 enum prediction direction;
1947 edge_iterator ei;
1948
1949 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1950 {
1951 return_stmt = last_stmt (e->src);
1952 if (return_stmt
1953 && gimple_code (return_stmt) == GIMPLE_RETURN)
1954 break;
1955 }
1956 if (!e)
1957 return;
1958 return_val = gimple_return_retval (return_stmt);
1959 if (!return_val)
1960 return;
1961 if (TREE_CODE (return_val) != SSA_NAME
1962 || !SSA_NAME_DEF_STMT (return_val)
1963 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1964 return;
1965 phi = SSA_NAME_DEF_STMT (return_val);
1966 phi_num_args = gimple_phi_num_args (phi);
1967 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1968
1969 /* Avoid the degenerate case where all return values form the function
1970 belongs to same category (ie they are all positive constants)
1971 so we can hardly say something about them. */
1972 for (i = 1; i < phi_num_args; i++)
1973 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1974 break;
1975 if (i != phi_num_args)
1976 for (i = 0; i < phi_num_args; i++)
1977 {
1978 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1979 if (pred != PRED_NO_PREDICTION)
1980 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
1981 direction);
1982 }
1983 }
1984
1985 /* Look for basic block that contains unlikely to happen events
1986 (such as noreturn calls) and mark all paths leading to execution
1987 of this basic blocks as unlikely. */
1988
1989 static void
1990 tree_bb_level_predictions (void)
1991 {
1992 basic_block bb;
1993 bool has_return_edges = false;
1994 edge e;
1995 edge_iterator ei;
1996
1997 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1998 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1999 {
2000 has_return_edges = true;
2001 break;
2002 }
2003
2004 apply_return_prediction ();
2005
2006 FOR_EACH_BB (bb)
2007 {
2008 gimple_stmt_iterator gsi;
2009
2010 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2011 {
2012 gimple stmt = gsi_stmt (gsi);
2013 tree decl;
2014
2015 if (is_gimple_call (stmt))
2016 {
2017 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2018 && has_return_edges)
2019 predict_paths_leading_to (bb, PRED_NORETURN,
2020 NOT_TAKEN);
2021 decl = gimple_call_fndecl (stmt);
2022 if (decl
2023 && lookup_attribute ("cold",
2024 DECL_ATTRIBUTES (decl)))
2025 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2026 NOT_TAKEN);
2027 }
2028 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2029 {
2030 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2031 gimple_predict_outcome (stmt));
2032 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2033 hints to callers. */
2034 }
2035 }
2036 }
2037 }
2038
2039 #ifdef ENABLE_CHECKING
2040
2041 /* Callback for pointer_map_traverse, asserts that the pointer map is
2042 empty. */
2043
2044 static bool
2045 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2046 void *data ATTRIBUTE_UNUSED)
2047 {
2048 gcc_assert (!*value);
2049 return false;
2050 }
2051 #endif
2052
2053 /* Predict branch probabilities and estimate profile for basic block BB. */
2054
2055 static void
2056 tree_estimate_probability_bb (basic_block bb)
2057 {
2058 edge e;
2059 edge_iterator ei;
2060 gimple last;
2061
2062 FOR_EACH_EDGE (e, ei, bb->succs)
2063 {
2064 /* Predict edges to user labels with attributes. */
2065 if (e->dest != EXIT_BLOCK_PTR)
2066 {
2067 gimple_stmt_iterator gi;
2068 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2069 {
2070 gimple stmt = gsi_stmt (gi);
2071 tree decl;
2072
2073 if (gimple_code (stmt) != GIMPLE_LABEL)
2074 break;
2075 decl = gimple_label_label (stmt);
2076 if (DECL_ARTIFICIAL (decl))
2077 continue;
2078
2079 /* Finally, we have a user-defined label. */
2080 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2081 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2082 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2083 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2084 }
2085 }
2086
2087 /* Predict early returns to be probable, as we've already taken
2088 care for error returns and other cases are often used for
2089 fast paths through function.
2090
2091 Since we've already removed the return statements, we are
2092 looking for CFG like:
2093
2094 if (conditional)
2095 {
2096 ..
2097 goto return_block
2098 }
2099 some other blocks
2100 return_block:
2101 return_stmt. */
2102 if (e->dest != bb->next_bb
2103 && e->dest != EXIT_BLOCK_PTR
2104 && single_succ_p (e->dest)
2105 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
2106 && (last = last_stmt (e->dest)) != NULL
2107 && gimple_code (last) == GIMPLE_RETURN)
2108 {
2109 edge e1;
2110 edge_iterator ei1;
2111
2112 if (single_succ_p (bb))
2113 {
2114 FOR_EACH_EDGE (e1, ei1, bb->preds)
2115 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2116 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2117 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2118 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2119 }
2120 else
2121 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2122 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2123 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2124 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2125 }
2126
2127 /* Look for block we are guarding (ie we dominate it,
2128 but it doesn't postdominate us). */
2129 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
2130 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2131 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2132 {
2133 gimple_stmt_iterator bi;
2134
2135 /* The call heuristic claims that a guarded function call
2136 is improbable. This is because such calls are often used
2137 to signal exceptional situations such as printing error
2138 messages. */
2139 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2140 gsi_next (&bi))
2141 {
2142 gimple stmt = gsi_stmt (bi);
2143 if (is_gimple_call (stmt)
2144 /* Constant and pure calls are hardly used to signalize
2145 something exceptional. */
2146 && gimple_has_side_effects (stmt))
2147 {
2148 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2149 break;
2150 }
2151 }
2152 }
2153 }
2154 tree_predict_by_opcode (bb);
2155 }
2156
2157 /* Predict branch probabilities and estimate profile of the tree CFG.
2158 This function can be called from the loop optimizers to recompute
2159 the profile information. */
2160
2161 void
2162 tree_estimate_probability (void)
2163 {
2164 basic_block bb;
2165
2166 add_noreturn_fake_exit_edges ();
2167 connect_infinite_loops_to_exit ();
2168 /* We use loop_niter_by_eval, which requires that the loops have
2169 preheaders. */
2170 create_preheaders (CP_SIMPLE_PREHEADERS);
2171 calculate_dominance_info (CDI_POST_DOMINATORS);
2172
2173 bb_predictions = pointer_map_create ();
2174 tree_bb_level_predictions ();
2175 record_loop_exits ();
2176
2177 if (number_of_loops () > 1)
2178 predict_loops ();
2179
2180 FOR_EACH_BB (bb)
2181 tree_estimate_probability_bb (bb);
2182
2183 FOR_EACH_BB (bb)
2184 combine_predictions_for_bb (bb);
2185
2186 #ifdef ENABLE_CHECKING
2187 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2188 #endif
2189 pointer_map_destroy (bb_predictions);
2190 bb_predictions = NULL;
2191
2192 estimate_bb_frequencies ();
2193 free_dominance_info (CDI_POST_DOMINATORS);
2194 remove_fake_exit_edges ();
2195 }
2196
2197 /* Predict branch probabilities and estimate profile of the tree CFG.
2198 This is the driver function for PASS_PROFILE. */
2199
2200 static unsigned int
2201 tree_estimate_probability_driver (void)
2202 {
2203 unsigned nb_loops;
2204
2205 loop_optimizer_init (LOOPS_NORMAL);
2206 if (dump_file && (dump_flags & TDF_DETAILS))
2207 flow_loops_dump (dump_file, NULL, 0);
2208
2209 mark_irreducible_loops ();
2210
2211 nb_loops = number_of_loops ();
2212 if (nb_loops > 1)
2213 scev_initialize ();
2214
2215 tree_estimate_probability ();
2216
2217 if (nb_loops > 1)
2218 scev_finalize ();
2219
2220 loop_optimizer_finalize ();
2221 if (dump_file && (dump_flags & TDF_DETAILS))
2222 gimple_dump_cfg (dump_file, dump_flags);
2223 if (profile_status == PROFILE_ABSENT)
2224 profile_status = PROFILE_GUESSED;
2225 return 0;
2226 }
2227 \f
2228 /* Predict edges to successors of CUR whose sources are not postdominated by
2229 BB by PRED and recurse to all postdominators. */
2230
2231 static void
2232 predict_paths_for_bb (basic_block cur, basic_block bb,
2233 enum br_predictor pred,
2234 enum prediction taken,
2235 bitmap visited)
2236 {
2237 edge e;
2238 edge_iterator ei;
2239 basic_block son;
2240
2241 /* We are looking for all edges forming edge cut induced by
2242 set of all blocks postdominated by BB. */
2243 FOR_EACH_EDGE (e, ei, cur->preds)
2244 if (e->src->index >= NUM_FIXED_BLOCKS
2245 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2246 {
2247 edge e2;
2248 edge_iterator ei2;
2249 bool found = false;
2250
2251 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2252 if (e->flags & (EDGE_EH | EDGE_FAKE))
2253 continue;
2254 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2255
2256 /* See if there is an edge from e->src that is not abnormal
2257 and does not lead to BB. */
2258 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2259 if (e2 != e
2260 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2261 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2262 {
2263 found = true;
2264 break;
2265 }
2266
2267 /* If there is non-abnormal path leaving e->src, predict edge
2268 using predictor. Otherwise we need to look for paths
2269 leading to e->src.
2270
2271 The second may lead to infinite loop in the case we are predicitng
2272 regions that are only reachable by abnormal edges. We simply
2273 prevent visiting given BB twice. */
2274 if (found)
2275 predict_edge_def (e, pred, taken);
2276 else if (bitmap_set_bit (visited, e->src->index))
2277 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2278 }
2279 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2280 son;
2281 son = next_dom_son (CDI_POST_DOMINATORS, son))
2282 predict_paths_for_bb (son, bb, pred, taken, visited);
2283 }
2284
2285 /* Sets branch probabilities according to PREDiction and
2286 FLAGS. */
2287
2288 static void
2289 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2290 enum prediction taken)
2291 {
2292 bitmap visited = BITMAP_ALLOC (NULL);
2293 predict_paths_for_bb (bb, bb, pred, taken, visited);
2294 BITMAP_FREE (visited);
2295 }
2296
2297 /* Like predict_paths_leading_to but take edge instead of basic block. */
2298
2299 static void
2300 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2301 enum prediction taken)
2302 {
2303 bool has_nonloop_edge = false;
2304 edge_iterator ei;
2305 edge e2;
2306
2307 basic_block bb = e->src;
2308 FOR_EACH_EDGE (e2, ei, bb->succs)
2309 if (e2->dest != e->src && e2->dest != e->dest
2310 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2311 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2312 {
2313 has_nonloop_edge = true;
2314 break;
2315 }
2316 if (!has_nonloop_edge)
2317 {
2318 bitmap visited = BITMAP_ALLOC (NULL);
2319 predict_paths_for_bb (bb, bb, pred, taken, visited);
2320 BITMAP_FREE (visited);
2321 }
2322 else
2323 predict_edge_def (e, pred, taken);
2324 }
2325 \f
2326 /* This is used to carry information about basic blocks. It is
2327 attached to the AUX field of the standard CFG block. */
2328
2329 typedef struct block_info_def
2330 {
2331 /* Estimated frequency of execution of basic_block. */
2332 sreal frequency;
2333
2334 /* To keep queue of basic blocks to process. */
2335 basic_block next;
2336
2337 /* Number of predecessors we need to visit first. */
2338 int npredecessors;
2339 } *block_info;
2340
2341 /* Similar information for edges. */
2342 typedef struct edge_info_def
2343 {
2344 /* In case edge is a loopback edge, the probability edge will be reached
2345 in case header is. Estimated number of iterations of the loop can be
2346 then computed as 1 / (1 - back_edge_prob). */
2347 sreal back_edge_prob;
2348 /* True if the edge is a loopback edge in the natural loop. */
2349 unsigned int back_edge:1;
2350 } *edge_info;
2351
2352 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2353 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2354
2355 /* Helper function for estimate_bb_frequencies.
2356 Propagate the frequencies in blocks marked in
2357 TOVISIT, starting in HEAD. */
2358
2359 static void
2360 propagate_freq (basic_block head, bitmap tovisit)
2361 {
2362 basic_block bb;
2363 basic_block last;
2364 unsigned i;
2365 edge e;
2366 basic_block nextbb;
2367 bitmap_iterator bi;
2368
2369 /* For each basic block we need to visit count number of his predecessors
2370 we need to visit first. */
2371 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2372 {
2373 edge_iterator ei;
2374 int count = 0;
2375
2376 bb = BASIC_BLOCK (i);
2377
2378 FOR_EACH_EDGE (e, ei, bb->preds)
2379 {
2380 bool visit = bitmap_bit_p (tovisit, e->src->index);
2381
2382 if (visit && !(e->flags & EDGE_DFS_BACK))
2383 count++;
2384 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2385 fprintf (dump_file,
2386 "Irreducible region hit, ignoring edge to %i->%i\n",
2387 e->src->index, bb->index);
2388 }
2389 BLOCK_INFO (bb)->npredecessors = count;
2390 /* When function never returns, we will never process exit block. */
2391 if (!count && bb == EXIT_BLOCK_PTR)
2392 bb->count = bb->frequency = 0;
2393 }
2394
2395 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2396 last = head;
2397 for (bb = head; bb; bb = nextbb)
2398 {
2399 edge_iterator ei;
2400 sreal cyclic_probability, frequency;
2401
2402 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2403 memcpy (&frequency, &real_zero, sizeof (real_zero));
2404
2405 nextbb = BLOCK_INFO (bb)->next;
2406 BLOCK_INFO (bb)->next = NULL;
2407
2408 /* Compute frequency of basic block. */
2409 if (bb != head)
2410 {
2411 #ifdef ENABLE_CHECKING
2412 FOR_EACH_EDGE (e, ei, bb->preds)
2413 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2414 || (e->flags & EDGE_DFS_BACK));
2415 #endif
2416
2417 FOR_EACH_EDGE (e, ei, bb->preds)
2418 if (EDGE_INFO (e)->back_edge)
2419 {
2420 sreal_add (&cyclic_probability, &cyclic_probability,
2421 &EDGE_INFO (e)->back_edge_prob);
2422 }
2423 else if (!(e->flags & EDGE_DFS_BACK))
2424 {
2425 sreal tmp;
2426
2427 /* frequency += (e->probability
2428 * BLOCK_INFO (e->src)->frequency /
2429 REG_BR_PROB_BASE); */
2430
2431 sreal_init (&tmp, e->probability, 0);
2432 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2433 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2434 sreal_add (&frequency, &frequency, &tmp);
2435 }
2436
2437 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2438 {
2439 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2440 sizeof (frequency));
2441 }
2442 else
2443 {
2444 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2445 {
2446 memcpy (&cyclic_probability, &real_almost_one,
2447 sizeof (real_almost_one));
2448 }
2449
2450 /* BLOCK_INFO (bb)->frequency = frequency
2451 / (1 - cyclic_probability) */
2452
2453 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2454 sreal_div (&BLOCK_INFO (bb)->frequency,
2455 &frequency, &cyclic_probability);
2456 }
2457 }
2458
2459 bitmap_clear_bit (tovisit, bb->index);
2460
2461 e = find_edge (bb, head);
2462 if (e)
2463 {
2464 sreal tmp;
2465
2466 /* EDGE_INFO (e)->back_edge_prob
2467 = ((e->probability * BLOCK_INFO (bb)->frequency)
2468 / REG_BR_PROB_BASE); */
2469
2470 sreal_init (&tmp, e->probability, 0);
2471 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2472 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2473 &tmp, &real_inv_br_prob_base);
2474 }
2475
2476 /* Propagate to successor blocks. */
2477 FOR_EACH_EDGE (e, ei, bb->succs)
2478 if (!(e->flags & EDGE_DFS_BACK)
2479 && BLOCK_INFO (e->dest)->npredecessors)
2480 {
2481 BLOCK_INFO (e->dest)->npredecessors--;
2482 if (!BLOCK_INFO (e->dest)->npredecessors)
2483 {
2484 if (!nextbb)
2485 nextbb = e->dest;
2486 else
2487 BLOCK_INFO (last)->next = e->dest;
2488
2489 last = e->dest;
2490 }
2491 }
2492 }
2493 }
2494
2495 /* Estimate probabilities of loopback edges in loops at same nest level. */
2496
2497 static void
2498 estimate_loops_at_level (struct loop *first_loop)
2499 {
2500 struct loop *loop;
2501
2502 for (loop = first_loop; loop; loop = loop->next)
2503 {
2504 edge e;
2505 basic_block *bbs;
2506 unsigned i;
2507 bitmap tovisit = BITMAP_ALLOC (NULL);
2508
2509 estimate_loops_at_level (loop->inner);
2510
2511 /* Find current loop back edge and mark it. */
2512 e = loop_latch_edge (loop);
2513 EDGE_INFO (e)->back_edge = 1;
2514
2515 bbs = get_loop_body (loop);
2516 for (i = 0; i < loop->num_nodes; i++)
2517 bitmap_set_bit (tovisit, bbs[i]->index);
2518 free (bbs);
2519 propagate_freq (loop->header, tovisit);
2520 BITMAP_FREE (tovisit);
2521 }
2522 }
2523
2524 /* Propagates frequencies through structure of loops. */
2525
2526 static void
2527 estimate_loops (void)
2528 {
2529 bitmap tovisit = BITMAP_ALLOC (NULL);
2530 basic_block bb;
2531
2532 /* Start by estimating the frequencies in the loops. */
2533 if (number_of_loops () > 1)
2534 estimate_loops_at_level (current_loops->tree_root->inner);
2535
2536 /* Now propagate the frequencies through all the blocks. */
2537 FOR_ALL_BB (bb)
2538 {
2539 bitmap_set_bit (tovisit, bb->index);
2540 }
2541 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2542 BITMAP_FREE (tovisit);
2543 }
2544
2545 /* Convert counts measured by profile driven feedback to frequencies.
2546 Return nonzero iff there was any nonzero execution count. */
2547
2548 int
2549 counts_to_freqs (void)
2550 {
2551 gcov_type count_max, true_count_max = 0;
2552 basic_block bb;
2553
2554 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2555 true_count_max = MAX (bb->count, true_count_max);
2556
2557 count_max = MAX (true_count_max, 1);
2558 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2559 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2560
2561 return true_count_max;
2562 }
2563
2564 /* Return true if function is likely to be expensive, so there is no point to
2565 optimize performance of prologue, epilogue or do inlining at the expense
2566 of code size growth. THRESHOLD is the limit of number of instructions
2567 function can execute at average to be still considered not expensive. */
2568
2569 bool
2570 expensive_function_p (int threshold)
2571 {
2572 unsigned int sum = 0;
2573 basic_block bb;
2574 unsigned int limit;
2575
2576 /* We can not compute accurately for large thresholds due to scaled
2577 frequencies. */
2578 gcc_assert (threshold <= BB_FREQ_MAX);
2579
2580 /* Frequencies are out of range. This either means that function contains
2581 internal loop executing more than BB_FREQ_MAX times or profile feedback
2582 is available and function has not been executed at all. */
2583 if (ENTRY_BLOCK_PTR->frequency == 0)
2584 return true;
2585
2586 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2587 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2588 FOR_EACH_BB (bb)
2589 {
2590 rtx insn;
2591
2592 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2593 insn = NEXT_INSN (insn))
2594 if (active_insn_p (insn))
2595 {
2596 sum += bb->frequency;
2597 if (sum > limit)
2598 return true;
2599 }
2600 }
2601
2602 return false;
2603 }
2604
2605 /* Estimate basic blocks frequency by given branch probabilities. */
2606
2607 void
2608 estimate_bb_frequencies (void)
2609 {
2610 basic_block bb;
2611 sreal freq_max;
2612
2613 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2614 {
2615 static int real_values_initialized = 0;
2616
2617 if (!real_values_initialized)
2618 {
2619 real_values_initialized = 1;
2620 sreal_init (&real_zero, 0, 0);
2621 sreal_init (&real_one, 1, 0);
2622 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2623 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2624 sreal_init (&real_one_half, 1, -1);
2625 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2626 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2627 }
2628
2629 mark_dfs_back_edges ();
2630
2631 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2632
2633 /* Set up block info for each basic block. */
2634 alloc_aux_for_blocks (sizeof (struct block_info_def));
2635 alloc_aux_for_edges (sizeof (struct edge_info_def));
2636 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2637 {
2638 edge e;
2639 edge_iterator ei;
2640
2641 FOR_EACH_EDGE (e, ei, bb->succs)
2642 {
2643 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2644 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2645 &EDGE_INFO (e)->back_edge_prob,
2646 &real_inv_br_prob_base);
2647 }
2648 }
2649
2650 /* First compute probabilities locally for each loop from innermost
2651 to outermost to examine probabilities for back edges. */
2652 estimate_loops ();
2653
2654 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2655 FOR_EACH_BB (bb)
2656 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2657 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2658
2659 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2660 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2661 {
2662 sreal tmp;
2663
2664 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2665 sreal_add (&tmp, &tmp, &real_one_half);
2666 bb->frequency = sreal_to_int (&tmp);
2667 }
2668
2669 free_aux_for_blocks ();
2670 free_aux_for_edges ();
2671 }
2672 compute_function_frequency ();
2673 }
2674
2675 /* Decide whether function is hot, cold or unlikely executed. */
2676 void
2677 compute_function_frequency (void)
2678 {
2679 basic_block bb;
2680 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2681 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2682 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2683 node->only_called_at_startup = true;
2684 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2685 node->only_called_at_exit = true;
2686
2687 if (!profile_info || !flag_branch_probabilities)
2688 {
2689 int flags = flags_from_decl_or_type (current_function_decl);
2690 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2691 != NULL)
2692 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2693 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2694 != NULL)
2695 node->frequency = NODE_FREQUENCY_HOT;
2696 else if (flags & ECF_NORETURN)
2697 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2698 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2699 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2700 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2701 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2702 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2703 return;
2704 }
2705 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2706 FOR_EACH_BB (bb)
2707 {
2708 if (maybe_hot_bb_p (bb))
2709 {
2710 node->frequency = NODE_FREQUENCY_HOT;
2711 return;
2712 }
2713 if (!probably_never_executed_bb_p (bb))
2714 node->frequency = NODE_FREQUENCY_NORMAL;
2715 }
2716 }
2717
2718 static bool
2719 gate_estimate_probability (void)
2720 {
2721 return flag_guess_branch_prob;
2722 }
2723
2724 /* Build PREDICT_EXPR. */
2725 tree
2726 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2727 {
2728 tree t = build1 (PREDICT_EXPR, void_type_node,
2729 build_int_cst (integer_type_node, predictor));
2730 SET_PREDICT_EXPR_OUTCOME (t, taken);
2731 return t;
2732 }
2733
2734 const char *
2735 predictor_name (enum br_predictor predictor)
2736 {
2737 return predictor_info[predictor].name;
2738 }
2739
2740 struct gimple_opt_pass pass_profile =
2741 {
2742 {
2743 GIMPLE_PASS,
2744 "profile_estimate", /* name */
2745 gate_estimate_probability, /* gate */
2746 tree_estimate_probability_driver, /* execute */
2747 NULL, /* sub */
2748 NULL, /* next */
2749 0, /* static_pass_number */
2750 TV_BRANCH_PROB, /* tv_id */
2751 PROP_cfg, /* properties_required */
2752 0, /* properties_provided */
2753 0, /* properties_destroyed */
2754 0, /* todo_flags_start */
2755 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2756 }
2757 };
2758
2759 struct gimple_opt_pass pass_strip_predict_hints =
2760 {
2761 {
2762 GIMPLE_PASS,
2763 "*strip_predict_hints", /* name */
2764 NULL, /* gate */
2765 strip_predict_hints, /* execute */
2766 NULL, /* sub */
2767 NULL, /* next */
2768 0, /* static_pass_number */
2769 TV_BRANCH_PROB, /* tv_id */
2770 PROP_cfg, /* properties_required */
2771 0, /* properties_provided */
2772 0, /* properties_destroyed */
2773 0, /* todo_flags_start */
2774 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2775 }
2776 };
2777
2778 /* Rebuild function frequencies. Passes are in general expected to
2779 maintain profile by hand, however in some cases this is not possible:
2780 for example when inlining several functions with loops freuqencies might run
2781 out of scale and thus needs to be recomputed. */
2782
2783 void
2784 rebuild_frequencies (void)
2785 {
2786 timevar_push (TV_REBUILD_FREQUENCIES);
2787 if (profile_status == PROFILE_GUESSED)
2788 {
2789 loop_optimizer_init (0);
2790 add_noreturn_fake_exit_edges ();
2791 mark_irreducible_loops ();
2792 connect_infinite_loops_to_exit ();
2793 estimate_bb_frequencies ();
2794 remove_fake_exit_edges ();
2795 loop_optimizer_finalize ();
2796 }
2797 else if (profile_status == PROFILE_READ)
2798 counts_to_freqs ();
2799 else
2800 gcc_unreachable ();
2801 timevar_pop (TV_REBUILD_FREQUENCIES);
2802 }