common.opt (-floop-optimize, [...]): Remove.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void estimate_loops_at_level (struct loop *, bitmap);
78 static void propagate_freq (struct loop *, bitmap);
79 static void estimate_bb_frequencies (struct loops *);
80 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
81 static bool last_basic_block_p (basic_block);
82 static void compute_function_frequency (void);
83 static void choose_function_section (void);
84 static bool can_predict_insn_p (rtx);
85
86 /* Information we hold about each branch predictor.
87 Filled using information from predict.def. */
88
89 struct predictor_info
90 {
91 const char *const name; /* Name used in the debugging dumps. */
92 const int hitrate; /* Expected hitrate used by
93 predict_insn_def call. */
94 const int flags;
95 };
96
97 /* Use given predictor without Dempster-Shaffer theory if it matches
98 using first_match heuristics. */
99 #define PRED_FLAG_FIRST_MATCH 1
100
101 /* Recompute hitrate in percent to our representation. */
102
103 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104
105 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
106 static const struct predictor_info predictor_info[]= {
107 #include "predict.def"
108
109 /* Upper bound on predictors. */
110 {NULL, 0, 0}
111 };
112 #undef DEF_PREDICTOR
113
114 /* Return true in case BB can be CPU intensive and should be optimized
115 for maximal performance. */
116
117 bool
118 maybe_hot_bb_p (basic_block bb)
119 {
120 if (profile_info && flag_branch_probabilities
121 && (bb->count
122 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
123 return false;
124 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
125 return false;
126 return true;
127 }
128
129 /* Return true in case BB is cold and should be optimized for size. */
130
131 bool
132 probably_cold_bb_p (basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return true;
138 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
139 return true;
140 return false;
141 }
142
143 /* Return true in case BB is probably never executed. */
144 bool
145 probably_never_executed_bb_p (basic_block bb)
146 {
147 if (profile_info && flag_branch_probabilities)
148 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
149 return false;
150 }
151
152 /* Return true if the one of outgoing edges is already predicted by
153 PREDICTOR. */
154
155 bool
156 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 {
158 rtx note;
159 if (!INSN_P (BB_END (bb)))
160 return false;
161 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
162 if (REG_NOTE_KIND (note) == REG_BR_PRED
163 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
164 return true;
165 return false;
166 }
167
168 /* Return true if the one of outgoing edges is already predicted by
169 PREDICTOR. */
170
171 bool
172 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 {
174 struct edge_prediction *i;
175 for (i = bb->predictions; i; i = i->ep_next)
176 if (i->ep_predictor == predictor)
177 return true;
178 return false;
179 }
180
181 static void
182 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 {
184 gcc_assert (any_condjump_p (insn));
185 if (!flag_guess_branch_prob)
186 return;
187
188 REG_NOTES (insn)
189 = gen_rtx_EXPR_LIST (REG_BR_PRED,
190 gen_rtx_CONCAT (VOIDmode,
191 GEN_INT ((int) predictor),
192 GEN_INT ((int) probability)),
193 REG_NOTES (insn));
194 }
195
196 /* Predict insn by given predictor. */
197
198 void
199 predict_insn_def (rtx insn, enum br_predictor predictor,
200 enum prediction taken)
201 {
202 int probability = predictor_info[(int) predictor].hitrate;
203
204 if (taken != TAKEN)
205 probability = REG_BR_PROB_BASE - probability;
206
207 predict_insn (insn, predictor, probability);
208 }
209
210 /* Predict edge E with given probability if possible. */
211
212 void
213 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
214 {
215 rtx last_insn;
216 last_insn = BB_END (e->src);
217
218 /* We can store the branch prediction information only about
219 conditional jumps. */
220 if (!any_condjump_p (last_insn))
221 return;
222
223 /* We always store probability of branching. */
224 if (e->flags & EDGE_FALLTHRU)
225 probability = REG_BR_PROB_BASE - probability;
226
227 predict_insn (last_insn, predictor, probability);
228 }
229
230 /* Predict edge E with the given PROBABILITY. */
231 void
232 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
233 {
234 gcc_assert (profile_status != PROFILE_GUESSED);
235 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
236 && flag_guess_branch_prob && optimize)
237 {
238 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
239
240 i->ep_next = e->src->predictions;
241 e->src->predictions = i;
242 i->ep_probability = probability;
243 i->ep_predictor = predictor;
244 i->ep_edge = e;
245 }
246 }
247
248 /* Remove all predictions on given basic block that are attached
249 to edge E. */
250 void
251 remove_predictions_associated_with_edge (edge e)
252 {
253 if (e->src->predictions)
254 {
255 struct edge_prediction **prediction = &e->src->predictions;
256 while (*prediction)
257 {
258 if ((*prediction)->ep_edge == e)
259 *prediction = (*prediction)->ep_next;
260 else
261 prediction = &((*prediction)->ep_next);
262 }
263 }
264 }
265
266 /* Return true when we can store prediction on insn INSN.
267 At the moment we represent predictions only on conditional
268 jumps, not at computed jump or other complicated cases. */
269 static bool
270 can_predict_insn_p (rtx insn)
271 {
272 return (JUMP_P (insn)
273 && any_condjump_p (insn)
274 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
275 }
276
277 /* Predict edge E by given predictor if possible. */
278
279 void
280 predict_edge_def (edge e, enum br_predictor predictor,
281 enum prediction taken)
282 {
283 int probability = predictor_info[(int) predictor].hitrate;
284
285 if (taken != TAKEN)
286 probability = REG_BR_PROB_BASE - probability;
287
288 predict_edge (e, predictor, probability);
289 }
290
291 /* Invert all branch predictions or probability notes in the INSN. This needs
292 to be done each time we invert the condition used by the jump. */
293
294 void
295 invert_br_probabilities (rtx insn)
296 {
297 rtx note;
298
299 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
300 if (REG_NOTE_KIND (note) == REG_BR_PROB)
301 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
302 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
303 XEXP (XEXP (note, 0), 1)
304 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
305 }
306
307 /* Dump information about the branch prediction to the output file. */
308
309 static void
310 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
311 basic_block bb, int used)
312 {
313 edge e;
314 edge_iterator ei;
315
316 if (!file)
317 return;
318
319 FOR_EACH_EDGE (e, ei, bb->succs)
320 if (! (e->flags & EDGE_FALLTHRU))
321 break;
322
323 fprintf (file, " %s heuristics%s: %.1f%%",
324 predictor_info[predictor].name,
325 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
326
327 if (bb->count)
328 {
329 fprintf (file, " exec ");
330 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
331 if (e)
332 {
333 fprintf (file, " hit ");
334 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
335 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
336 }
337 }
338
339 fprintf (file, "\n");
340 }
341
342 /* We can not predict the probabilities of outgoing edges of bb. Set them
343 evenly and hope for the best. */
344 static void
345 set_even_probabilities (basic_block bb)
346 {
347 int nedges = 0;
348 edge e;
349 edge_iterator ei;
350
351 FOR_EACH_EDGE (e, ei, bb->succs)
352 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
353 nedges ++;
354 FOR_EACH_EDGE (e, ei, bb->succs)
355 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
356 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
357 else
358 e->probability = 0;
359 }
360
361 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
362 note if not already present. Remove now useless REG_BR_PRED notes. */
363
364 static void
365 combine_predictions_for_insn (rtx insn, basic_block bb)
366 {
367 rtx prob_note;
368 rtx *pnote;
369 rtx note;
370 int best_probability = PROB_EVEN;
371 int best_predictor = END_PREDICTORS;
372 int combined_probability = REG_BR_PROB_BASE / 2;
373 int d;
374 bool first_match = false;
375 bool found = false;
376
377 if (!can_predict_insn_p (insn))
378 {
379 set_even_probabilities (bb);
380 return;
381 }
382
383 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
384 pnote = &REG_NOTES (insn);
385 if (dump_file)
386 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
387 bb->index);
388
389 /* We implement "first match" heuristics and use probability guessed
390 by predictor with smallest index. */
391 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
392 if (REG_NOTE_KIND (note) == REG_BR_PRED)
393 {
394 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
395 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
396
397 found = true;
398 if (best_predictor > predictor)
399 best_probability = probability, best_predictor = predictor;
400
401 d = (combined_probability * probability
402 + (REG_BR_PROB_BASE - combined_probability)
403 * (REG_BR_PROB_BASE - probability));
404
405 /* Use FP math to avoid overflows of 32bit integers. */
406 if (d == 0)
407 /* If one probability is 0% and one 100%, avoid division by zero. */
408 combined_probability = REG_BR_PROB_BASE / 2;
409 else
410 combined_probability = (((double) combined_probability) * probability
411 * REG_BR_PROB_BASE / d + 0.5);
412 }
413
414 /* Decide which heuristic to use. In case we didn't match anything,
415 use no_prediction heuristic, in case we did match, use either
416 first match or Dempster-Shaffer theory depending on the flags. */
417
418 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
419 first_match = true;
420
421 if (!found)
422 dump_prediction (dump_file, PRED_NO_PREDICTION,
423 combined_probability, bb, true);
424 else
425 {
426 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
427 bb, !first_match);
428 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
429 bb, first_match);
430 }
431
432 if (first_match)
433 combined_probability = best_probability;
434 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
435
436 while (*pnote)
437 {
438 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
439 {
440 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
441 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
442
443 dump_prediction (dump_file, predictor, probability, bb,
444 !first_match || best_predictor == predictor);
445 *pnote = XEXP (*pnote, 1);
446 }
447 else
448 pnote = &XEXP (*pnote, 1);
449 }
450
451 if (!prob_note)
452 {
453 REG_NOTES (insn)
454 = gen_rtx_EXPR_LIST (REG_BR_PROB,
455 GEN_INT (combined_probability), REG_NOTES (insn));
456
457 /* Save the prediction into CFG in case we are seeing non-degenerated
458 conditional jump. */
459 if (!single_succ_p (bb))
460 {
461 BRANCH_EDGE (bb)->probability = combined_probability;
462 FALLTHRU_EDGE (bb)->probability
463 = REG_BR_PROB_BASE - combined_probability;
464 }
465 }
466 else if (!single_succ_p (bb))
467 {
468 int prob = INTVAL (XEXP (prob_note, 0));
469
470 BRANCH_EDGE (bb)->probability = prob;
471 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
472 }
473 else
474 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
475 }
476
477 /* Combine predictions into single probability and store them into CFG.
478 Remove now useless prediction entries. */
479
480 static void
481 combine_predictions_for_bb (basic_block bb)
482 {
483 int best_probability = PROB_EVEN;
484 int best_predictor = END_PREDICTORS;
485 int combined_probability = REG_BR_PROB_BASE / 2;
486 int d;
487 bool first_match = false;
488 bool found = false;
489 struct edge_prediction *pred;
490 int nedges = 0;
491 edge e, first = NULL, second = NULL;
492 edge_iterator ei;
493
494 FOR_EACH_EDGE (e, ei, bb->succs)
495 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
496 {
497 nedges ++;
498 if (first && !second)
499 second = e;
500 if (!first)
501 first = e;
502 }
503
504 /* When there is no successor or only one choice, prediction is easy.
505
506 We are lazy for now and predict only basic blocks with two outgoing
507 edges. It is possible to predict generic case too, but we have to
508 ignore first match heuristics and do more involved combining. Implement
509 this later. */
510 if (nedges != 2)
511 {
512 if (!bb->count)
513 set_even_probabilities (bb);
514 bb->predictions = NULL;
515 if (dump_file)
516 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
517 nedges, bb->index);
518 return;
519 }
520
521 if (dump_file)
522 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
523
524 /* We implement "first match" heuristics and use probability guessed
525 by predictor with smallest index. */
526 for (pred = bb->predictions; pred; pred = pred->ep_next)
527 {
528 int predictor = pred->ep_predictor;
529 int probability = pred->ep_probability;
530
531 if (pred->ep_edge != first)
532 probability = REG_BR_PROB_BASE - probability;
533
534 found = true;
535 if (best_predictor > predictor)
536 best_probability = probability, best_predictor = predictor;
537
538 d = (combined_probability * probability
539 + (REG_BR_PROB_BASE - combined_probability)
540 * (REG_BR_PROB_BASE - probability));
541
542 /* Use FP math to avoid overflows of 32bit integers. */
543 if (d == 0)
544 /* If one probability is 0% and one 100%, avoid division by zero. */
545 combined_probability = REG_BR_PROB_BASE / 2;
546 else
547 combined_probability = (((double) combined_probability) * probability
548 * REG_BR_PROB_BASE / d + 0.5);
549 }
550
551 /* Decide which heuristic to use. In case we didn't match anything,
552 use no_prediction heuristic, in case we did match, use either
553 first match or Dempster-Shaffer theory depending on the flags. */
554
555 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
556 first_match = true;
557
558 if (!found)
559 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
560 else
561 {
562 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
563 !first_match);
564 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
565 first_match);
566 }
567
568 if (first_match)
569 combined_probability = best_probability;
570 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
571
572 for (pred = bb->predictions; pred; pred = pred->ep_next)
573 {
574 int predictor = pred->ep_predictor;
575 int probability = pred->ep_probability;
576
577 if (pred->ep_edge != EDGE_SUCC (bb, 0))
578 probability = REG_BR_PROB_BASE - probability;
579 dump_prediction (dump_file, predictor, probability, bb,
580 !first_match || best_predictor == predictor);
581 }
582 bb->predictions = NULL;
583
584 if (!bb->count)
585 {
586 first->probability = combined_probability;
587 second->probability = REG_BR_PROB_BASE - combined_probability;
588 }
589 }
590
591 /* Predict edge probabilities by exploiting loop structure.
592 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
593 RTL otherwise use tree based approach. */
594 static void
595 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
596 {
597 unsigned i;
598
599 if (!rtlsimpleloops)
600 scev_initialize (loops_info);
601
602 /* Try to predict out blocks in a loop that are not part of a
603 natural loop. */
604 for (i = 1; i < loops_info->num; i++)
605 {
606 basic_block bb, *bbs;
607 unsigned j;
608 unsigned n_exits;
609 struct loop *loop = loops_info->parray[i];
610 struct niter_desc desc;
611 unsigned HOST_WIDE_INT niter;
612 edge *exits;
613
614 exits = get_loop_exit_edges (loop, &n_exits);
615
616 if (rtlsimpleloops)
617 {
618 iv_analysis_loop_init (loop);
619 find_simple_exit (loop, &desc);
620
621 if (desc.simple_p && desc.const_iter)
622 {
623 int prob;
624 niter = desc.niter + 1;
625 if (niter == 0) /* We might overflow here. */
626 niter = desc.niter;
627 if (niter
628 > (unsigned int) PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS))
629 niter = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
630
631 prob = (REG_BR_PROB_BASE
632 - (REG_BR_PROB_BASE + niter /2) / niter);
633 /* Branch prediction algorithm gives 0 frequency for everything
634 after the end of loop for loop having 0 probability to finish. */
635 if (prob == REG_BR_PROB_BASE)
636 prob = REG_BR_PROB_BASE - 1;
637 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
638 prob);
639 }
640 }
641 else
642 {
643 struct tree_niter_desc niter_desc;
644
645 for (j = 0; j < n_exits; j++)
646 {
647 tree niter = NULL;
648
649 if (number_of_iterations_exit (loop, exits[j], &niter_desc, false))
650 niter = niter_desc.niter;
651 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
652 niter = loop_niter_by_eval (loop, exits[j]);
653
654 if (TREE_CODE (niter) == INTEGER_CST)
655 {
656 int probability;
657 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
658 if (host_integerp (niter, 1)
659 && tree_int_cst_lt (niter,
660 build_int_cstu (NULL_TREE, max - 1)))
661 {
662 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
663 probability = ((REG_BR_PROB_BASE + nitercst / 2)
664 / nitercst);
665 }
666 else
667 probability = ((REG_BR_PROB_BASE + max / 2) / max);
668
669 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
670 }
671 }
672
673 }
674 free (exits);
675
676 bbs = get_loop_body (loop);
677
678 for (j = 0; j < loop->num_nodes; j++)
679 {
680 int header_found = 0;
681 edge e;
682 edge_iterator ei;
683
684 bb = bbs[j];
685
686 /* Bypass loop heuristics on continue statement. These
687 statements construct loops via "non-loop" constructs
688 in the source language and are better to be handled
689 separately. */
690 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
691 || predicted_by_p (bb, PRED_CONTINUE))
692 continue;
693
694 /* Loop branch heuristics - predict an edge back to a
695 loop's head as taken. */
696 if (bb == loop->latch)
697 {
698 e = find_edge (loop->latch, loop->header);
699 if (e)
700 {
701 header_found = 1;
702 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
703 }
704 }
705
706 /* Loop exit heuristics - predict an edge exiting the loop if the
707 conditional has no loop header successors as not taken. */
708 if (!header_found)
709 FOR_EACH_EDGE (e, ei, bb->succs)
710 if (e->dest->index < NUM_FIXED_BLOCKS
711 || !flow_bb_inside_loop_p (loop, e->dest))
712 predict_edge
713 (e, PRED_LOOP_EXIT,
714 (REG_BR_PROB_BASE
715 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
716 / n_exits);
717 }
718
719 /* Free basic blocks from get_loop_body. */
720 free (bbs);
721 }
722
723 if (!rtlsimpleloops)
724 {
725 scev_finalize ();
726 current_loops = NULL;
727 }
728 }
729
730 /* Attempt to predict probabilities of BB outgoing edges using local
731 properties. */
732 static void
733 bb_estimate_probability_locally (basic_block bb)
734 {
735 rtx last_insn = BB_END (bb);
736 rtx cond;
737
738 if (! can_predict_insn_p (last_insn))
739 return;
740 cond = get_condition (last_insn, NULL, false, false);
741 if (! cond)
742 return;
743
744 /* Try "pointer heuristic."
745 A comparison ptr == 0 is predicted as false.
746 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
747 if (COMPARISON_P (cond)
748 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
749 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
750 {
751 if (GET_CODE (cond) == EQ)
752 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
753 else if (GET_CODE (cond) == NE)
754 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
755 }
756 else
757
758 /* Try "opcode heuristic."
759 EQ tests are usually false and NE tests are usually true. Also,
760 most quantities are positive, so we can make the appropriate guesses
761 about signed comparisons against zero. */
762 switch (GET_CODE (cond))
763 {
764 case CONST_INT:
765 /* Unconditional branch. */
766 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
767 cond == const0_rtx ? NOT_TAKEN : TAKEN);
768 break;
769
770 case EQ:
771 case UNEQ:
772 /* Floating point comparisons appears to behave in a very
773 unpredictable way because of special role of = tests in
774 FP code. */
775 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
776 ;
777 /* Comparisons with 0 are often used for booleans and there is
778 nothing useful to predict about them. */
779 else if (XEXP (cond, 1) == const0_rtx
780 || XEXP (cond, 0) == const0_rtx)
781 ;
782 else
783 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
784 break;
785
786 case NE:
787 case LTGT:
788 /* Floating point comparisons appears to behave in a very
789 unpredictable way because of special role of = tests in
790 FP code. */
791 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
792 ;
793 /* Comparisons with 0 are often used for booleans and there is
794 nothing useful to predict about them. */
795 else if (XEXP (cond, 1) == const0_rtx
796 || XEXP (cond, 0) == const0_rtx)
797 ;
798 else
799 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
800 break;
801
802 case ORDERED:
803 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
804 break;
805
806 case UNORDERED:
807 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
808 break;
809
810 case LE:
811 case LT:
812 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
813 || XEXP (cond, 1) == constm1_rtx)
814 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
815 break;
816
817 case GE:
818 case GT:
819 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
820 || XEXP (cond, 1) == constm1_rtx)
821 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
822 break;
823
824 default:
825 break;
826 }
827 }
828
829 /* Statically estimate the probability that a branch will be taken and produce
830 estimated profile. When profile feedback is present never executed portions
831 of function gets estimated. */
832
833 void
834 estimate_probability (struct loops *loops_info)
835 {
836 basic_block bb;
837
838 connect_infinite_loops_to_exit ();
839 calculate_dominance_info (CDI_DOMINATORS);
840 calculate_dominance_info (CDI_POST_DOMINATORS);
841
842 predict_loops (loops_info, true);
843
844 iv_analysis_done ();
845
846 /* Attempt to predict conditional jumps using a number of heuristics. */
847 FOR_EACH_BB (bb)
848 {
849 rtx last_insn = BB_END (bb);
850 edge e;
851 edge_iterator ei;
852
853 if (! can_predict_insn_p (last_insn))
854 continue;
855
856 FOR_EACH_EDGE (e, ei, bb->succs)
857 {
858 /* Predict early returns to be probable, as we've already taken
859 care for error returns and other are often used for fast paths
860 trought function. */
861 if ((e->dest == EXIT_BLOCK_PTR
862 || (single_succ_p (e->dest)
863 && single_succ (e->dest) == EXIT_BLOCK_PTR))
864 && !predicted_by_p (bb, PRED_NULL_RETURN)
865 && !predicted_by_p (bb, PRED_CONST_RETURN)
866 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
867 && !last_basic_block_p (e->dest))
868 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
869
870 /* Look for block we are guarding (i.e. we dominate it,
871 but it doesn't postdominate us). */
872 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
873 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
874 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
875 {
876 rtx insn;
877
878 /* The call heuristic claims that a guarded function call
879 is improbable. This is because such calls are often used
880 to signal exceptional situations such as printing error
881 messages. */
882 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
883 insn = NEXT_INSN (insn))
884 if (CALL_P (insn)
885 /* Constant and pure calls are hardly used to signalize
886 something exceptional. */
887 && ! CONST_OR_PURE_CALL_P (insn))
888 {
889 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
890 break;
891 }
892 }
893 }
894 bb_estimate_probability_locally (bb);
895 }
896
897 /* Attach the combined probability to each conditional jump. */
898 FOR_EACH_BB (bb)
899 combine_predictions_for_insn (BB_END (bb), bb);
900
901 remove_fake_edges ();
902 estimate_bb_frequencies (loops_info);
903 free_dominance_info (CDI_POST_DOMINATORS);
904 if (profile_status == PROFILE_ABSENT)
905 profile_status = PROFILE_GUESSED;
906 }
907
908 /* Set edge->probability for each successor edge of BB. */
909 void
910 guess_outgoing_edge_probabilities (basic_block bb)
911 {
912 bb_estimate_probability_locally (bb);
913 combine_predictions_for_insn (BB_END (bb), bb);
914 }
915 \f
916 /* Return constant EXPR will likely have at execution time, NULL if unknown.
917 The function is used by builtin_expect branch predictor so the evidence
918 must come from this construct and additional possible constant folding.
919
920 We may want to implement more involved value guess (such as value range
921 propagation based prediction), but such tricks shall go to new
922 implementation. */
923
924 static tree
925 expr_expected_value (tree expr, bitmap visited)
926 {
927 if (TREE_CONSTANT (expr))
928 return expr;
929 else if (TREE_CODE (expr) == SSA_NAME)
930 {
931 tree def = SSA_NAME_DEF_STMT (expr);
932
933 /* If we were already here, break the infinite cycle. */
934 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
935 return NULL;
936 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
937
938 if (TREE_CODE (def) == PHI_NODE)
939 {
940 /* All the arguments of the PHI node must have the same constant
941 length. */
942 int i;
943 tree val = NULL, new_val;
944
945 for (i = 0; i < PHI_NUM_ARGS (def); i++)
946 {
947 tree arg = PHI_ARG_DEF (def, i);
948
949 /* If this PHI has itself as an argument, we cannot
950 determine the string length of this argument. However,
951 if we can find an expected constant value for the other
952 PHI args then we can still be sure that this is
953 likely a constant. So be optimistic and just
954 continue with the next argument. */
955 if (arg == PHI_RESULT (def))
956 continue;
957
958 new_val = expr_expected_value (arg, visited);
959 if (!new_val)
960 return NULL;
961 if (!val)
962 val = new_val;
963 else if (!operand_equal_p (val, new_val, false))
964 return NULL;
965 }
966 return val;
967 }
968 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
969 return NULL;
970 return expr_expected_value (TREE_OPERAND (def, 1), visited);
971 }
972 else if (TREE_CODE (expr) == CALL_EXPR)
973 {
974 tree decl = get_callee_fndecl (expr);
975 if (!decl)
976 return NULL;
977 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
978 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
979 {
980 tree arglist = TREE_OPERAND (expr, 1);
981 tree val;
982
983 if (arglist == NULL_TREE
984 || TREE_CHAIN (arglist) == NULL_TREE)
985 return NULL;
986 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
987 if (TREE_CONSTANT (val))
988 return val;
989 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
990 }
991 }
992 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
993 {
994 tree op0, op1, res;
995 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
996 if (!op0)
997 return NULL;
998 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
999 if (!op1)
1000 return NULL;
1001 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
1002 if (TREE_CONSTANT (res))
1003 return res;
1004 return NULL;
1005 }
1006 if (UNARY_CLASS_P (expr))
1007 {
1008 tree op0, res;
1009 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
1010 if (!op0)
1011 return NULL;
1012 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
1013 if (TREE_CONSTANT (res))
1014 return res;
1015 return NULL;
1016 }
1017 return NULL;
1018 }
1019 \f
1020 /* Get rid of all builtin_expect calls we no longer need. */
1021 static void
1022 strip_builtin_expect (void)
1023 {
1024 basic_block bb;
1025 FOR_EACH_BB (bb)
1026 {
1027 block_stmt_iterator bi;
1028 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1029 {
1030 tree stmt = bsi_stmt (bi);
1031 tree fndecl;
1032 tree arglist;
1033
1034 if (TREE_CODE (stmt) == MODIFY_EXPR
1035 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1036 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1037 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1038 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1039 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1040 && TREE_CHAIN (arglist))
1041 {
1042 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1043 update_stmt (stmt);
1044 }
1045 }
1046 }
1047 }
1048 \f
1049 /* Predict using opcode of the last statement in basic block. */
1050 static void
1051 tree_predict_by_opcode (basic_block bb)
1052 {
1053 tree stmt = last_stmt (bb);
1054 edge then_edge;
1055 tree cond;
1056 tree op0;
1057 tree type;
1058 tree val;
1059 bitmap visited;
1060 edge_iterator ei;
1061
1062 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1063 return;
1064 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1065 if (then_edge->flags & EDGE_TRUE_VALUE)
1066 break;
1067 cond = TREE_OPERAND (stmt, 0);
1068 if (!COMPARISON_CLASS_P (cond))
1069 return;
1070 op0 = TREE_OPERAND (cond, 0);
1071 type = TREE_TYPE (op0);
1072 visited = BITMAP_ALLOC (NULL);
1073 val = expr_expected_value (cond, visited);
1074 BITMAP_FREE (visited);
1075 if (val)
1076 {
1077 if (integer_zerop (val))
1078 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1079 else
1080 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1081 return;
1082 }
1083 /* Try "pointer heuristic."
1084 A comparison ptr == 0 is predicted as false.
1085 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1086 if (POINTER_TYPE_P (type))
1087 {
1088 if (TREE_CODE (cond) == EQ_EXPR)
1089 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1090 else if (TREE_CODE (cond) == NE_EXPR)
1091 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1092 }
1093 else
1094
1095 /* Try "opcode heuristic."
1096 EQ tests are usually false and NE tests are usually true. Also,
1097 most quantities are positive, so we can make the appropriate guesses
1098 about signed comparisons against zero. */
1099 switch (TREE_CODE (cond))
1100 {
1101 case EQ_EXPR:
1102 case UNEQ_EXPR:
1103 /* Floating point comparisons appears to behave in a very
1104 unpredictable way because of special role of = tests in
1105 FP code. */
1106 if (FLOAT_TYPE_P (type))
1107 ;
1108 /* Comparisons with 0 are often used for booleans and there is
1109 nothing useful to predict about them. */
1110 else if (integer_zerop (op0)
1111 || integer_zerop (TREE_OPERAND (cond, 1)))
1112 ;
1113 else
1114 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1115 break;
1116
1117 case NE_EXPR:
1118 case LTGT_EXPR:
1119 /* Floating point comparisons appears to behave in a very
1120 unpredictable way because of special role of = tests in
1121 FP code. */
1122 if (FLOAT_TYPE_P (type))
1123 ;
1124 /* Comparisons with 0 are often used for booleans and there is
1125 nothing useful to predict about them. */
1126 else if (integer_zerop (op0)
1127 || integer_zerop (TREE_OPERAND (cond, 1)))
1128 ;
1129 else
1130 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1131 break;
1132
1133 case ORDERED_EXPR:
1134 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1135 break;
1136
1137 case UNORDERED_EXPR:
1138 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1139 break;
1140
1141 case LE_EXPR:
1142 case LT_EXPR:
1143 if (integer_zerop (TREE_OPERAND (cond, 1))
1144 || integer_onep (TREE_OPERAND (cond, 1))
1145 || integer_all_onesp (TREE_OPERAND (cond, 1))
1146 || real_zerop (TREE_OPERAND (cond, 1))
1147 || real_onep (TREE_OPERAND (cond, 1))
1148 || real_minus_onep (TREE_OPERAND (cond, 1)))
1149 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1150 break;
1151
1152 case GE_EXPR:
1153 case GT_EXPR:
1154 if (integer_zerop (TREE_OPERAND (cond, 1))
1155 || integer_onep (TREE_OPERAND (cond, 1))
1156 || integer_all_onesp (TREE_OPERAND (cond, 1))
1157 || real_zerop (TREE_OPERAND (cond, 1))
1158 || real_onep (TREE_OPERAND (cond, 1))
1159 || real_minus_onep (TREE_OPERAND (cond, 1)))
1160 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1161 break;
1162
1163 default:
1164 break;
1165 }
1166 }
1167
1168 /* Try to guess whether the value of return means error code. */
1169 static enum br_predictor
1170 return_prediction (tree val, enum prediction *prediction)
1171 {
1172 /* VOID. */
1173 if (!val)
1174 return PRED_NO_PREDICTION;
1175 /* Different heuristics for pointers and scalars. */
1176 if (POINTER_TYPE_P (TREE_TYPE (val)))
1177 {
1178 /* NULL is usually not returned. */
1179 if (integer_zerop (val))
1180 {
1181 *prediction = NOT_TAKEN;
1182 return PRED_NULL_RETURN;
1183 }
1184 }
1185 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1186 {
1187 /* Negative return values are often used to indicate
1188 errors. */
1189 if (TREE_CODE (val) == INTEGER_CST
1190 && tree_int_cst_sgn (val) < 0)
1191 {
1192 *prediction = NOT_TAKEN;
1193 return PRED_NEGATIVE_RETURN;
1194 }
1195 /* Constant return values seems to be commonly taken.
1196 Zero/one often represent booleans so exclude them from the
1197 heuristics. */
1198 if (TREE_CONSTANT (val)
1199 && (!integer_zerop (val) && !integer_onep (val)))
1200 {
1201 *prediction = TAKEN;
1202 return PRED_NEGATIVE_RETURN;
1203 }
1204 }
1205 return PRED_NO_PREDICTION;
1206 }
1207
1208 /* Find the basic block with return expression and look up for possible
1209 return value trying to apply RETURN_PREDICTION heuristics. */
1210 static void
1211 apply_return_prediction (int *heads)
1212 {
1213 tree return_stmt = NULL;
1214 tree return_val;
1215 edge e;
1216 tree phi;
1217 int phi_num_args, i;
1218 enum br_predictor pred;
1219 enum prediction direction;
1220 edge_iterator ei;
1221
1222 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1223 {
1224 return_stmt = last_stmt (e->src);
1225 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1226 break;
1227 }
1228 if (!e)
1229 return;
1230 return_val = TREE_OPERAND (return_stmt, 0);
1231 if (!return_val)
1232 return;
1233 if (TREE_CODE (return_val) == MODIFY_EXPR)
1234 return_val = TREE_OPERAND (return_val, 1);
1235 if (TREE_CODE (return_val) != SSA_NAME
1236 || !SSA_NAME_DEF_STMT (return_val)
1237 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1238 return;
1239 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1240 if (PHI_RESULT (phi) == return_val)
1241 break;
1242 if (!phi)
1243 return;
1244 phi_num_args = PHI_NUM_ARGS (phi);
1245 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1246
1247 /* Avoid the degenerate case where all return values form the function
1248 belongs to same category (ie they are all positive constants)
1249 so we can hardly say something about them. */
1250 for (i = 1; i < phi_num_args; i++)
1251 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1252 break;
1253 if (i != phi_num_args)
1254 for (i = 0; i < phi_num_args; i++)
1255 {
1256 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1257 if (pred != PRED_NO_PREDICTION)
1258 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1259 direction);
1260 }
1261 }
1262
1263 /* Look for basic block that contains unlikely to happen events
1264 (such as noreturn calls) and mark all paths leading to execution
1265 of this basic blocks as unlikely. */
1266
1267 static void
1268 tree_bb_level_predictions (void)
1269 {
1270 basic_block bb;
1271 int *heads;
1272
1273 heads = XNEWVEC (int, last_basic_block);
1274 memset (heads, ENTRY_BLOCK, sizeof (int) * last_basic_block);
1275 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1276
1277 apply_return_prediction (heads);
1278
1279 FOR_EACH_BB (bb)
1280 {
1281 block_stmt_iterator bsi = bsi_last (bb);
1282
1283 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1284 {
1285 tree stmt = bsi_stmt (bsi);
1286 switch (TREE_CODE (stmt))
1287 {
1288 case MODIFY_EXPR:
1289 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1290 {
1291 stmt = TREE_OPERAND (stmt, 1);
1292 goto call_expr;
1293 }
1294 break;
1295 case CALL_EXPR:
1296 call_expr:;
1297 if (call_expr_flags (stmt) & ECF_NORETURN)
1298 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1299 NOT_TAKEN);
1300 break;
1301 default:
1302 break;
1303 }
1304 }
1305 }
1306
1307 free (heads);
1308 }
1309
1310 /* Predict branch probabilities and estimate profile of the tree CFG. */
1311 static void
1312 tree_estimate_probability (void)
1313 {
1314 basic_block bb;
1315 struct loops loops_info;
1316
1317 flow_loops_find (&loops_info);
1318 if (dump_file && (dump_flags & TDF_DETAILS))
1319 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1320
1321 add_noreturn_fake_exit_edges ();
1322 connect_infinite_loops_to_exit ();
1323 calculate_dominance_info (CDI_DOMINATORS);
1324 calculate_dominance_info (CDI_POST_DOMINATORS);
1325
1326 tree_bb_level_predictions ();
1327
1328 mark_irreducible_loops (&loops_info);
1329 predict_loops (&loops_info, false);
1330
1331 FOR_EACH_BB (bb)
1332 {
1333 edge e;
1334 edge_iterator ei;
1335
1336 FOR_EACH_EDGE (e, ei, bb->succs)
1337 {
1338 /* Predict early returns to be probable, as we've already taken
1339 care for error returns and other cases are often used for
1340 fast paths trought function. */
1341 if (e->dest == EXIT_BLOCK_PTR
1342 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1343 && !single_pred_p (bb))
1344 {
1345 edge e1;
1346 edge_iterator ei1;
1347
1348 FOR_EACH_EDGE (e1, ei1, bb->preds)
1349 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1350 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1351 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1352 && !last_basic_block_p (e1->src))
1353 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1354 }
1355
1356 /* Look for block we are guarding (ie we dominate it,
1357 but it doesn't postdominate us). */
1358 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1359 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1360 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1361 {
1362 block_stmt_iterator bi;
1363
1364 /* The call heuristic claims that a guarded function call
1365 is improbable. This is because such calls are often used
1366 to signal exceptional situations such as printing error
1367 messages. */
1368 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1369 bsi_next (&bi))
1370 {
1371 tree stmt = bsi_stmt (bi);
1372 if ((TREE_CODE (stmt) == CALL_EXPR
1373 || (TREE_CODE (stmt) == MODIFY_EXPR
1374 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1375 /* Constant and pure calls are hardly used to signalize
1376 something exceptional. */
1377 && TREE_SIDE_EFFECTS (stmt))
1378 {
1379 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1380 break;
1381 }
1382 }
1383 }
1384 }
1385 tree_predict_by_opcode (bb);
1386 }
1387 FOR_EACH_BB (bb)
1388 combine_predictions_for_bb (bb);
1389
1390 strip_builtin_expect ();
1391 estimate_bb_frequencies (&loops_info);
1392 free_dominance_info (CDI_POST_DOMINATORS);
1393 remove_fake_exit_edges ();
1394 flow_loops_free (&loops_info);
1395 if (dump_file && (dump_flags & TDF_DETAILS))
1396 dump_tree_cfg (dump_file, dump_flags);
1397 if (profile_status == PROFILE_ABSENT)
1398 profile_status = PROFILE_GUESSED;
1399 }
1400 \f
1401 /* __builtin_expect dropped tokens into the insn stream describing expected
1402 values of registers. Generate branch probabilities based off these
1403 values. */
1404
1405 void
1406 expected_value_to_br_prob (void)
1407 {
1408 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1409
1410 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1411 {
1412 switch (GET_CODE (insn))
1413 {
1414 case NOTE:
1415 /* Look for expected value notes. */
1416 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1417 {
1418 ev = NOTE_EXPECTED_VALUE (insn);
1419 ev_reg = XEXP (ev, 0);
1420 delete_insn (insn);
1421 }
1422 continue;
1423
1424 case CODE_LABEL:
1425 /* Never propagate across labels. */
1426 ev = NULL_RTX;
1427 continue;
1428
1429 case JUMP_INSN:
1430 /* Look for simple conditional branches. If we haven't got an
1431 expected value yet, no point going further. */
1432 if (!JUMP_P (insn) || ev == NULL_RTX
1433 || ! any_condjump_p (insn))
1434 continue;
1435 break;
1436
1437 default:
1438 /* Look for insns that clobber the EV register. */
1439 if (ev && reg_set_p (ev_reg, insn))
1440 ev = NULL_RTX;
1441 continue;
1442 }
1443
1444 /* Collect the branch condition, hopefully relative to EV_REG. */
1445 /* ??? At present we'll miss things like
1446 (expected_value (eq r70 0))
1447 (set r71 -1)
1448 (set r80 (lt r70 r71))
1449 (set pc (if_then_else (ne r80 0) ...))
1450 as canonicalize_condition will render this to us as
1451 (lt r70, r71)
1452 Could use cselib to try and reduce this further. */
1453 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1454 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1455 false, false);
1456 if (! cond || XEXP (cond, 0) != ev_reg
1457 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1458 continue;
1459
1460 /* Substitute and simplify. Given that the expression we're
1461 building involves two constants, we should wind up with either
1462 true or false. */
1463 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1464 XEXP (ev, 1), XEXP (cond, 1));
1465 cond = simplify_rtx (cond);
1466
1467 /* Turn the condition into a scaled branch probability. */
1468 gcc_assert (cond == const_true_rtx || cond == const0_rtx);
1469 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1470 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1471 }
1472 }
1473 \f
1474 /* Check whether this is the last basic block of function. Commonly
1475 there is one extra common cleanup block. */
1476 static bool
1477 last_basic_block_p (basic_block bb)
1478 {
1479 if (bb == EXIT_BLOCK_PTR)
1480 return false;
1481
1482 return (bb->next_bb == EXIT_BLOCK_PTR
1483 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1484 && single_succ_p (bb)
1485 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1486 }
1487
1488 /* Sets branch probabilities according to PREDiction and
1489 FLAGS. HEADS[bb->index] should be index of basic block in that we
1490 need to alter branch predictions (i.e. the first of our dominators
1491 such that we do not post-dominate it) (but we fill this information
1492 on demand, so -1 may be there in case this was not needed yet). */
1493
1494 static void
1495 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1496 enum prediction taken)
1497 {
1498 edge e;
1499 edge_iterator ei;
1500 int y;
1501
1502 if (heads[bb->index] == ENTRY_BLOCK)
1503 {
1504 /* This is first time we need this field in heads array; so
1505 find first dominator that we do not post-dominate (we are
1506 using already known members of heads array). */
1507 basic_block ai = bb;
1508 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1509 int head;
1510
1511 while (heads[next_ai->index] == ENTRY_BLOCK)
1512 {
1513 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1514 break;
1515 heads[next_ai->index] = ai->index;
1516 ai = next_ai;
1517 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1518 }
1519 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1520 head = next_ai->index;
1521 else
1522 head = heads[next_ai->index];
1523 while (next_ai != bb)
1524 {
1525 next_ai = ai;
1526 ai = BASIC_BLOCK (heads[ai->index]);
1527 heads[next_ai->index] = head;
1528 }
1529 }
1530 y = heads[bb->index];
1531
1532 /* Now find the edge that leads to our branch and aply the prediction. */
1533
1534 if (y == last_basic_block)
1535 return;
1536 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1537 if (e->dest->index >= NUM_FIXED_BLOCKS
1538 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1539 predict_edge_def (e, pred, taken);
1540 }
1541 \f
1542 /* This is used to carry information about basic blocks. It is
1543 attached to the AUX field of the standard CFG block. */
1544
1545 typedef struct block_info_def
1546 {
1547 /* Estimated frequency of execution of basic_block. */
1548 sreal frequency;
1549
1550 /* To keep queue of basic blocks to process. */
1551 basic_block next;
1552
1553 /* Number of predecessors we need to visit first. */
1554 int npredecessors;
1555 } *block_info;
1556
1557 /* Similar information for edges. */
1558 typedef struct edge_info_def
1559 {
1560 /* In case edge is a loopback edge, the probability edge will be reached
1561 in case header is. Estimated number of iterations of the loop can be
1562 then computed as 1 / (1 - back_edge_prob). */
1563 sreal back_edge_prob;
1564 /* True if the edge is a loopback edge in the natural loop. */
1565 unsigned int back_edge:1;
1566 } *edge_info;
1567
1568 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1569 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1570
1571 /* Helper function for estimate_bb_frequencies.
1572 Propagate the frequencies for LOOP. */
1573
1574 static void
1575 propagate_freq (struct loop *loop, bitmap tovisit)
1576 {
1577 basic_block head = loop->header;
1578 basic_block bb;
1579 basic_block last;
1580 unsigned i;
1581 edge e;
1582 basic_block nextbb;
1583 bitmap_iterator bi;
1584
1585 /* For each basic block we need to visit count number of his predecessors
1586 we need to visit first. */
1587 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1588 {
1589 edge_iterator ei;
1590 int count = 0;
1591
1592 /* The outermost "loop" includes the exit block, which we can not
1593 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1594 directly. Do the same for the entry block. */
1595 bb = BASIC_BLOCK (i);
1596
1597 FOR_EACH_EDGE (e, ei, bb->preds)
1598 {
1599 bool visit = bitmap_bit_p (tovisit, e->src->index);
1600
1601 if (visit && !(e->flags & EDGE_DFS_BACK))
1602 count++;
1603 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1604 fprintf (dump_file,
1605 "Irreducible region hit, ignoring edge to %i->%i\n",
1606 e->src->index, bb->index);
1607 }
1608 BLOCK_INFO (bb)->npredecessors = count;
1609 }
1610
1611 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1612 last = head;
1613 for (bb = head; bb; bb = nextbb)
1614 {
1615 edge_iterator ei;
1616 sreal cyclic_probability, frequency;
1617
1618 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1619 memcpy (&frequency, &real_zero, sizeof (real_zero));
1620
1621 nextbb = BLOCK_INFO (bb)->next;
1622 BLOCK_INFO (bb)->next = NULL;
1623
1624 /* Compute frequency of basic block. */
1625 if (bb != head)
1626 {
1627 #ifdef ENABLE_CHECKING
1628 FOR_EACH_EDGE (e, ei, bb->preds)
1629 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1630 || (e->flags & EDGE_DFS_BACK));
1631 #endif
1632
1633 FOR_EACH_EDGE (e, ei, bb->preds)
1634 if (EDGE_INFO (e)->back_edge)
1635 {
1636 sreal_add (&cyclic_probability, &cyclic_probability,
1637 &EDGE_INFO (e)->back_edge_prob);
1638 }
1639 else if (!(e->flags & EDGE_DFS_BACK))
1640 {
1641 sreal tmp;
1642
1643 /* frequency += (e->probability
1644 * BLOCK_INFO (e->src)->frequency /
1645 REG_BR_PROB_BASE); */
1646
1647 sreal_init (&tmp, e->probability, 0);
1648 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1649 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1650 sreal_add (&frequency, &frequency, &tmp);
1651 }
1652
1653 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1654 {
1655 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1656 sizeof (frequency));
1657 }
1658 else
1659 {
1660 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1661 {
1662 memcpy (&cyclic_probability, &real_almost_one,
1663 sizeof (real_almost_one));
1664 }
1665
1666 /* BLOCK_INFO (bb)->frequency = frequency
1667 / (1 - cyclic_probability) */
1668
1669 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1670 sreal_div (&BLOCK_INFO (bb)->frequency,
1671 &frequency, &cyclic_probability);
1672 }
1673 }
1674
1675 bitmap_clear_bit (tovisit, bb->index);
1676
1677 e = find_edge (bb, head);
1678 if (e)
1679 {
1680 sreal tmp;
1681
1682 /* EDGE_INFO (e)->back_edge_prob
1683 = ((e->probability * BLOCK_INFO (bb)->frequency)
1684 / REG_BR_PROB_BASE); */
1685
1686 sreal_init (&tmp, e->probability, 0);
1687 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1688 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1689 &tmp, &real_inv_br_prob_base);
1690 }
1691
1692 /* Propagate to successor blocks. */
1693 FOR_EACH_EDGE (e, ei, bb->succs)
1694 if (!(e->flags & EDGE_DFS_BACK)
1695 && BLOCK_INFO (e->dest)->npredecessors)
1696 {
1697 BLOCK_INFO (e->dest)->npredecessors--;
1698 if (!BLOCK_INFO (e->dest)->npredecessors)
1699 {
1700 if (!nextbb)
1701 nextbb = e->dest;
1702 else
1703 BLOCK_INFO (last)->next = e->dest;
1704
1705 last = e->dest;
1706 }
1707 }
1708 }
1709 }
1710
1711 /* Estimate probabilities of loopback edges in loops at same nest level. */
1712
1713 static void
1714 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1715 {
1716 struct loop *loop;
1717
1718 for (loop = first_loop; loop; loop = loop->next)
1719 {
1720 edge e;
1721 basic_block *bbs;
1722 unsigned i;
1723
1724 estimate_loops_at_level (loop->inner, tovisit);
1725
1726 /* Do not do this for dummy function loop. */
1727 if (EDGE_COUNT (loop->latch->succs) > 0)
1728 {
1729 /* Find current loop back edge and mark it. */
1730 e = loop_latch_edge (loop);
1731 EDGE_INFO (e)->back_edge = 1;
1732 }
1733
1734 bbs = get_loop_body (loop);
1735 for (i = 0; i < loop->num_nodes; i++)
1736 bitmap_set_bit (tovisit, bbs[i]->index);
1737 free (bbs);
1738 propagate_freq (loop, tovisit);
1739 }
1740 }
1741
1742 /* Convert counts measured by profile driven feedback to frequencies.
1743 Return nonzero iff there was any nonzero execution count. */
1744
1745 int
1746 counts_to_freqs (void)
1747 {
1748 gcov_type count_max, true_count_max = 0;
1749 basic_block bb;
1750
1751 FOR_EACH_BB (bb)
1752 true_count_max = MAX (bb->count, true_count_max);
1753
1754 count_max = MAX (true_count_max, 1);
1755 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1756 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1757 return true_count_max;
1758 }
1759
1760 /* Return true if function is likely to be expensive, so there is no point to
1761 optimize performance of prologue, epilogue or do inlining at the expense
1762 of code size growth. THRESHOLD is the limit of number of instructions
1763 function can execute at average to be still considered not expensive. */
1764
1765 bool
1766 expensive_function_p (int threshold)
1767 {
1768 unsigned int sum = 0;
1769 basic_block bb;
1770 unsigned int limit;
1771
1772 /* We can not compute accurately for large thresholds due to scaled
1773 frequencies. */
1774 gcc_assert (threshold <= BB_FREQ_MAX);
1775
1776 /* Frequencies are out of range. This either means that function contains
1777 internal loop executing more than BB_FREQ_MAX times or profile feedback
1778 is available and function has not been executed at all. */
1779 if (ENTRY_BLOCK_PTR->frequency == 0)
1780 return true;
1781
1782 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1783 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1784 FOR_EACH_BB (bb)
1785 {
1786 rtx insn;
1787
1788 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1789 insn = NEXT_INSN (insn))
1790 if (active_insn_p (insn))
1791 {
1792 sum += bb->frequency;
1793 if (sum > limit)
1794 return true;
1795 }
1796 }
1797
1798 return false;
1799 }
1800
1801 /* Estimate basic blocks frequency by given branch probabilities. */
1802
1803 static void
1804 estimate_bb_frequencies (struct loops *loops)
1805 {
1806 basic_block bb;
1807 sreal freq_max;
1808
1809 if (!flag_branch_probabilities || !counts_to_freqs ())
1810 {
1811 static int real_values_initialized = 0;
1812 bitmap tovisit;
1813
1814 if (!real_values_initialized)
1815 {
1816 real_values_initialized = 1;
1817 sreal_init (&real_zero, 0, 0);
1818 sreal_init (&real_one, 1, 0);
1819 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1820 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1821 sreal_init (&real_one_half, 1, -1);
1822 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1823 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1824 }
1825
1826 mark_dfs_back_edges ();
1827
1828 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1829
1830 /* Set up block info for each basic block. */
1831 tovisit = BITMAP_ALLOC (NULL);
1832 alloc_aux_for_blocks (sizeof (struct block_info_def));
1833 alloc_aux_for_edges (sizeof (struct edge_info_def));
1834 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1835 {
1836 edge e;
1837 edge_iterator ei;
1838
1839 FOR_EACH_EDGE (e, ei, bb->succs)
1840 {
1841 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1842 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1843 &EDGE_INFO (e)->back_edge_prob,
1844 &real_inv_br_prob_base);
1845 }
1846 }
1847
1848 /* First compute probabilities locally for each loop from innermost
1849 to outermost to examine probabilities for back edges. */
1850 estimate_loops_at_level (loops->tree_root, tovisit);
1851
1852 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1853 FOR_EACH_BB (bb)
1854 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1855 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1856
1857 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1858 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1859 {
1860 sreal tmp;
1861
1862 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1863 sreal_add (&tmp, &tmp, &real_one_half);
1864 bb->frequency = sreal_to_int (&tmp);
1865 }
1866
1867 free_aux_for_blocks ();
1868 free_aux_for_edges ();
1869 BITMAP_FREE (tovisit);
1870 }
1871 compute_function_frequency ();
1872 if (flag_reorder_functions)
1873 choose_function_section ();
1874 }
1875
1876 /* Decide whether function is hot, cold or unlikely executed. */
1877 static void
1878 compute_function_frequency (void)
1879 {
1880 basic_block bb;
1881
1882 if (!profile_info || !flag_branch_probabilities)
1883 return;
1884 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1885 FOR_EACH_BB (bb)
1886 {
1887 if (maybe_hot_bb_p (bb))
1888 {
1889 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1890 return;
1891 }
1892 if (!probably_never_executed_bb_p (bb))
1893 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1894 }
1895 }
1896
1897 /* Choose appropriate section for the function. */
1898 static void
1899 choose_function_section (void)
1900 {
1901 if (DECL_SECTION_NAME (current_function_decl)
1902 || !targetm.have_named_sections
1903 /* Theoretically we can split the gnu.linkonce text section too,
1904 but this requires more work as the frequency needs to match
1905 for all generated objects so we need to merge the frequency
1906 of all instances. For now just never set frequency for these. */
1907 || DECL_ONE_ONLY (current_function_decl))
1908 return;
1909
1910 /* If we are doing the partitioning optimization, let the optimization
1911 choose the correct section into which to put things. */
1912
1913 if (flag_reorder_blocks_and_partition)
1914 return;
1915
1916 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1917 DECL_SECTION_NAME (current_function_decl) =
1918 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1919 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1920 DECL_SECTION_NAME (current_function_decl) =
1921 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1922 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1923 }
1924
1925 static bool
1926 gate_estimate_probability (void)
1927 {
1928 return flag_guess_branch_prob;
1929 }
1930
1931 struct tree_opt_pass pass_profile =
1932 {
1933 "profile", /* name */
1934 gate_estimate_probability, /* gate */
1935 tree_estimate_probability, /* execute */
1936 NULL, /* sub */
1937 NULL, /* next */
1938 0, /* static_pass_number */
1939 TV_BRANCH_PROB, /* tv_id */
1940 PROP_cfg, /* properties_required */
1941 0, /* properties_provided */
1942 0, /* properties_destroyed */
1943 0, /* todo_flags_start */
1944 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1945 0 /* letter */
1946 };