predict.c (predict_paths_leading_to): Rewrite.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
78 static void compute_function_frequency (void);
79 static void choose_function_section (void);
80 static bool can_predict_insn_p (const_rtx);
81
82 /* Information we hold about each branch predictor.
83 Filled using information from predict.def. */
84
85 struct predictor_info
86 {
87 const char *const name; /* Name used in the debugging dumps. */
88 const int hitrate; /* Expected hitrate used by
89 predict_insn_def call. */
90 const int flags;
91 };
92
93 /* Use given predictor without Dempster-Shaffer theory if it matches
94 using first_match heuristics. */
95 #define PRED_FLAG_FIRST_MATCH 1
96
97 /* Recompute hitrate in percent to our representation. */
98
99 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
100
101 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
102 static const struct predictor_info predictor_info[]= {
103 #include "predict.def"
104
105 /* Upper bound on predictors. */
106 {NULL, 0, 0}
107 };
108 #undef DEF_PREDICTOR
109
110 /* Return true in case BB can be CPU intensive and should be optimized
111 for maximal performance. */
112
113 bool
114 maybe_hot_bb_p (const_basic_block bb)
115 {
116 if (profile_info && flag_branch_probabilities
117 && (bb->count
118 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
119 return false;
120 if (!profile_info || !flag_branch_probabilities)
121 {
122 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
123 return false;
124 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
125 return true;
126 }
127 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
128 return false;
129 return true;
130 }
131
132 /* Return true in case BB is cold and should be optimized for size. */
133
134 bool
135 probably_cold_bb_p (const_basic_block bb)
136 {
137 if (profile_info && flag_branch_probabilities
138 && (bb->count
139 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
140 return true;
141 if ((!profile_info || !flag_branch_probabilities)
142 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
143 return true;
144 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
145 return true;
146 return false;
147 }
148
149 /* Return true in case BB is probably never executed. */
150 bool
151 probably_never_executed_bb_p (const_basic_block bb)
152 {
153 if (profile_info && flag_branch_probabilities)
154 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
155 if ((!profile_info || !flag_branch_probabilities)
156 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
157 return true;
158 return false;
159 }
160
161 /* Return true if the one of outgoing edges is already predicted by
162 PREDICTOR. */
163
164 bool
165 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
166 {
167 rtx note;
168 if (!INSN_P (BB_END (bb)))
169 return false;
170 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
171 if (REG_NOTE_KIND (note) == REG_BR_PRED
172 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
173 return true;
174 return false;
175 }
176
177 /* This map contains for a basic block the list of predictions for the
178 outgoing edges. */
179
180 static struct pointer_map_t *bb_predictions;
181
182 /* Return true if the one of outgoing edges is already predicted by
183 PREDICTOR. */
184
185 bool
186 tree_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
187 {
188 struct edge_prediction *i;
189 void **preds = pointer_map_contains (bb_predictions, bb);
190
191 if (!preds)
192 return false;
193
194 for (i = *preds; i; i = i->ep_next)
195 if (i->ep_predictor == predictor)
196 return true;
197 return false;
198 }
199
200 /* Return true when the probability of edge is reliable.
201
202 The profile guessing code is good at predicting branch outcome (ie.
203 taken/not taken), that is predicted right slightly over 75% of time.
204 It is however notoriously poor on predicting the probability itself.
205 In general the profile appear a lot flatter (with probabilities closer
206 to 50%) than the reality so it is bad idea to use it to drive optimization
207 such as those disabling dynamic branch prediction for well predictable
208 branches.
209
210 There are two exceptions - edges leading to noreturn edges and edges
211 predicted by number of iterations heuristics are predicted well. This macro
212 should be able to distinguish those, but at the moment it simply check for
213 noreturn heuristic that is only one giving probability over 99% or bellow
214 1%. In future we might want to propagate reliability information across the
215 CFG if we find this information useful on multiple places. */
216 static bool
217 probability_reliable_p (int prob)
218 {
219 return (profile_status == PROFILE_READ
220 || (profile_status == PROFILE_GUESSED
221 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
222 }
223
224 /* Same predicate as above, working on edges. */
225 bool
226 edge_probability_reliable_p (const_edge e)
227 {
228 return probability_reliable_p (e->probability);
229 }
230
231 /* Same predicate as edge_probability_reliable_p, working on notes. */
232 bool
233 br_prob_note_reliable_p (const_rtx note)
234 {
235 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
236 return probability_reliable_p (INTVAL (XEXP (note, 0)));
237 }
238
239 static void
240 predict_insn (rtx insn, enum br_predictor predictor, int probability)
241 {
242 gcc_assert (any_condjump_p (insn));
243 if (!flag_guess_branch_prob)
244 return;
245
246 REG_NOTES (insn)
247 = gen_rtx_EXPR_LIST (REG_BR_PRED,
248 gen_rtx_CONCAT (VOIDmode,
249 GEN_INT ((int) predictor),
250 GEN_INT ((int) probability)),
251 REG_NOTES (insn));
252 }
253
254 /* Predict insn by given predictor. */
255
256 void
257 predict_insn_def (rtx insn, enum br_predictor predictor,
258 enum prediction taken)
259 {
260 int probability = predictor_info[(int) predictor].hitrate;
261
262 if (taken != TAKEN)
263 probability = REG_BR_PROB_BASE - probability;
264
265 predict_insn (insn, predictor, probability);
266 }
267
268 /* Predict edge E with given probability if possible. */
269
270 void
271 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
272 {
273 rtx last_insn;
274 last_insn = BB_END (e->src);
275
276 /* We can store the branch prediction information only about
277 conditional jumps. */
278 if (!any_condjump_p (last_insn))
279 return;
280
281 /* We always store probability of branching. */
282 if (e->flags & EDGE_FALLTHRU)
283 probability = REG_BR_PROB_BASE - probability;
284
285 predict_insn (last_insn, predictor, probability);
286 }
287
288 /* Predict edge E with the given PROBABILITY. */
289 void
290 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
291 {
292 gcc_assert (profile_status != PROFILE_GUESSED);
293 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
294 && flag_guess_branch_prob && optimize)
295 {
296 struct edge_prediction *i = XNEW (struct edge_prediction);
297 void **preds = pointer_map_insert (bb_predictions, e->src);
298
299 i->ep_next = *preds;
300 *preds = i;
301 i->ep_probability = probability;
302 i->ep_predictor = predictor;
303 i->ep_edge = e;
304 }
305 }
306
307 /* Remove all predictions on given basic block that are attached
308 to edge E. */
309 void
310 remove_predictions_associated_with_edge (edge e)
311 {
312 void **preds;
313
314 if (!bb_predictions)
315 return;
316
317 preds = pointer_map_contains (bb_predictions, e->src);
318
319 if (preds)
320 {
321 struct edge_prediction **prediction = (struct edge_prediction **) preds;
322 struct edge_prediction *next;
323
324 while (*prediction)
325 {
326 if ((*prediction)->ep_edge == e)
327 {
328 next = (*prediction)->ep_next;
329 free (*prediction);
330 *prediction = next;
331 }
332 else
333 prediction = &((*prediction)->ep_next);
334 }
335 }
336 }
337
338 /* Clears the list of predictions stored for BB. */
339
340 static void
341 clear_bb_predictions (basic_block bb)
342 {
343 void **preds = pointer_map_contains (bb_predictions, bb);
344 struct edge_prediction *pred, *next;
345
346 if (!preds)
347 return;
348
349 for (pred = *preds; pred; pred = next)
350 {
351 next = pred->ep_next;
352 free (pred);
353 }
354 *preds = NULL;
355 }
356
357 /* Return true when we can store prediction on insn INSN.
358 At the moment we represent predictions only on conditional
359 jumps, not at computed jump or other complicated cases. */
360 static bool
361 can_predict_insn_p (const_rtx insn)
362 {
363 return (JUMP_P (insn)
364 && any_condjump_p (insn)
365 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
366 }
367
368 /* Predict edge E by given predictor if possible. */
369
370 void
371 predict_edge_def (edge e, enum br_predictor predictor,
372 enum prediction taken)
373 {
374 int probability = predictor_info[(int) predictor].hitrate;
375
376 if (taken != TAKEN)
377 probability = REG_BR_PROB_BASE - probability;
378
379 predict_edge (e, predictor, probability);
380 }
381
382 /* Invert all branch predictions or probability notes in the INSN. This needs
383 to be done each time we invert the condition used by the jump. */
384
385 void
386 invert_br_probabilities (rtx insn)
387 {
388 rtx note;
389
390 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
391 if (REG_NOTE_KIND (note) == REG_BR_PROB)
392 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
393 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
394 XEXP (XEXP (note, 0), 1)
395 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
396 }
397
398 /* Dump information about the branch prediction to the output file. */
399
400 static void
401 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
402 basic_block bb, int used)
403 {
404 edge e;
405 edge_iterator ei;
406
407 if (!file)
408 return;
409
410 FOR_EACH_EDGE (e, ei, bb->succs)
411 if (! (e->flags & EDGE_FALLTHRU))
412 break;
413
414 fprintf (file, " %s heuristics%s: %.1f%%",
415 predictor_info[predictor].name,
416 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
417
418 if (bb->count)
419 {
420 fprintf (file, " exec ");
421 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
422 if (e)
423 {
424 fprintf (file, " hit ");
425 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
426 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
427 }
428 }
429
430 fprintf (file, "\n");
431 }
432
433 /* We can not predict the probabilities of outgoing edges of bb. Set them
434 evenly and hope for the best. */
435 static void
436 set_even_probabilities (basic_block bb)
437 {
438 int nedges = 0;
439 edge e;
440 edge_iterator ei;
441
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
444 nedges ++;
445 FOR_EACH_EDGE (e, ei, bb->succs)
446 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
447 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
448 else
449 e->probability = 0;
450 }
451
452 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
453 note if not already present. Remove now useless REG_BR_PRED notes. */
454
455 static void
456 combine_predictions_for_insn (rtx insn, basic_block bb)
457 {
458 rtx prob_note;
459 rtx *pnote;
460 rtx note;
461 int best_probability = PROB_EVEN;
462 int best_predictor = END_PREDICTORS;
463 int combined_probability = REG_BR_PROB_BASE / 2;
464 int d;
465 bool first_match = false;
466 bool found = false;
467
468 if (!can_predict_insn_p (insn))
469 {
470 set_even_probabilities (bb);
471 return;
472 }
473
474 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
475 pnote = &REG_NOTES (insn);
476 if (dump_file)
477 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
478 bb->index);
479
480 /* We implement "first match" heuristics and use probability guessed
481 by predictor with smallest index. */
482 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
483 if (REG_NOTE_KIND (note) == REG_BR_PRED)
484 {
485 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
486 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
487
488 found = true;
489 if (best_predictor > predictor)
490 best_probability = probability, best_predictor = predictor;
491
492 d = (combined_probability * probability
493 + (REG_BR_PROB_BASE - combined_probability)
494 * (REG_BR_PROB_BASE - probability));
495
496 /* Use FP math to avoid overflows of 32bit integers. */
497 if (d == 0)
498 /* If one probability is 0% and one 100%, avoid division by zero. */
499 combined_probability = REG_BR_PROB_BASE / 2;
500 else
501 combined_probability = (((double) combined_probability) * probability
502 * REG_BR_PROB_BASE / d + 0.5);
503 }
504
505 /* Decide which heuristic to use. In case we didn't match anything,
506 use no_prediction heuristic, in case we did match, use either
507 first match or Dempster-Shaffer theory depending on the flags. */
508
509 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
510 first_match = true;
511
512 if (!found)
513 dump_prediction (dump_file, PRED_NO_PREDICTION,
514 combined_probability, bb, true);
515 else
516 {
517 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
518 bb, !first_match);
519 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
520 bb, first_match);
521 }
522
523 if (first_match)
524 combined_probability = best_probability;
525 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
526
527 while (*pnote)
528 {
529 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
530 {
531 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
532 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
533
534 dump_prediction (dump_file, predictor, probability, bb,
535 !first_match || best_predictor == predictor);
536 *pnote = XEXP (*pnote, 1);
537 }
538 else
539 pnote = &XEXP (*pnote, 1);
540 }
541
542 if (!prob_note)
543 {
544 REG_NOTES (insn)
545 = gen_rtx_EXPR_LIST (REG_BR_PROB,
546 GEN_INT (combined_probability), REG_NOTES (insn));
547
548 /* Save the prediction into CFG in case we are seeing non-degenerated
549 conditional jump. */
550 if (!single_succ_p (bb))
551 {
552 BRANCH_EDGE (bb)->probability = combined_probability;
553 FALLTHRU_EDGE (bb)->probability
554 = REG_BR_PROB_BASE - combined_probability;
555 }
556 }
557 else if (!single_succ_p (bb))
558 {
559 int prob = INTVAL (XEXP (prob_note, 0));
560
561 BRANCH_EDGE (bb)->probability = prob;
562 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
563 }
564 else
565 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
566 }
567
568 /* Combine predictions into single probability and store them into CFG.
569 Remove now useless prediction entries. */
570
571 static void
572 combine_predictions_for_bb (basic_block bb)
573 {
574 int best_probability = PROB_EVEN;
575 int best_predictor = END_PREDICTORS;
576 int combined_probability = REG_BR_PROB_BASE / 2;
577 int d;
578 bool first_match = false;
579 bool found = false;
580 struct edge_prediction *pred;
581 int nedges = 0;
582 edge e, first = NULL, second = NULL;
583 edge_iterator ei;
584 void **preds;
585
586 FOR_EACH_EDGE (e, ei, bb->succs)
587 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
588 {
589 nedges ++;
590 if (first && !second)
591 second = e;
592 if (!first)
593 first = e;
594 }
595
596 /* When there is no successor or only one choice, prediction is easy.
597
598 We are lazy for now and predict only basic blocks with two outgoing
599 edges. It is possible to predict generic case too, but we have to
600 ignore first match heuristics and do more involved combining. Implement
601 this later. */
602 if (nedges != 2)
603 {
604 if (!bb->count)
605 set_even_probabilities (bb);
606 clear_bb_predictions (bb);
607 if (dump_file)
608 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
609 nedges, bb->index);
610 return;
611 }
612
613 if (dump_file)
614 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
615
616 preds = pointer_map_contains (bb_predictions, bb);
617 if (preds)
618 {
619 /* We implement "first match" heuristics and use probability guessed
620 by predictor with smallest index. */
621 for (pred = *preds; pred; pred = pred->ep_next)
622 {
623 int predictor = pred->ep_predictor;
624 int probability = pred->ep_probability;
625
626 if (pred->ep_edge != first)
627 probability = REG_BR_PROB_BASE - probability;
628
629 found = true;
630 if (best_predictor > predictor)
631 best_probability = probability, best_predictor = predictor;
632
633 d = (combined_probability * probability
634 + (REG_BR_PROB_BASE - combined_probability)
635 * (REG_BR_PROB_BASE - probability));
636
637 /* Use FP math to avoid overflows of 32bit integers. */
638 if (d == 0)
639 /* If one probability is 0% and one 100%, avoid division by zero. */
640 combined_probability = REG_BR_PROB_BASE / 2;
641 else
642 combined_probability = (((double) combined_probability)
643 * probability
644 * REG_BR_PROB_BASE / d + 0.5);
645 }
646 }
647
648 /* Decide which heuristic to use. In case we didn't match anything,
649 use no_prediction heuristic, in case we did match, use either
650 first match or Dempster-Shaffer theory depending on the flags. */
651
652 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
653 first_match = true;
654
655 if (!found)
656 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
657 else
658 {
659 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
660 !first_match);
661 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
662 first_match);
663 }
664
665 if (first_match)
666 combined_probability = best_probability;
667 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
668
669 if (preds)
670 {
671 for (pred = *preds; pred; pred = pred->ep_next)
672 {
673 int predictor = pred->ep_predictor;
674 int probability = pred->ep_probability;
675
676 if (pred->ep_edge != EDGE_SUCC (bb, 0))
677 probability = REG_BR_PROB_BASE - probability;
678 dump_prediction (dump_file, predictor, probability, bb,
679 !first_match || best_predictor == predictor);
680 }
681 }
682 clear_bb_predictions (bb);
683
684 if (!bb->count)
685 {
686 first->probability = combined_probability;
687 second->probability = REG_BR_PROB_BASE - combined_probability;
688 }
689 }
690
691 /* Predict edge probabilities by exploiting loop structure. */
692
693 static void
694 predict_loops (void)
695 {
696 loop_iterator li;
697 struct loop *loop;
698
699 scev_initialize ();
700
701 /* Try to predict out blocks in a loop that are not part of a
702 natural loop. */
703 FOR_EACH_LOOP (li, loop, 0)
704 {
705 basic_block bb, *bbs;
706 unsigned j, n_exits;
707 VEC (edge, heap) *exits;
708 struct tree_niter_desc niter_desc;
709 edge ex;
710
711 exits = get_loop_exit_edges (loop);
712 n_exits = VEC_length (edge, exits);
713
714 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
715 {
716 tree niter = NULL;
717 HOST_WIDE_INT nitercst;
718 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
719 int probability;
720 enum br_predictor predictor;
721
722 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
723 niter = niter_desc.niter;
724 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
725 niter = loop_niter_by_eval (loop, ex);
726
727 if (TREE_CODE (niter) == INTEGER_CST)
728 {
729 if (host_integerp (niter, 1)
730 && compare_tree_int (niter, max-1) == -1)
731 nitercst = tree_low_cst (niter, 1) + 1;
732 else
733 nitercst = max;
734 predictor = PRED_LOOP_ITERATIONS;
735 }
736 /* If we have just one exit and we can derive some information about
737 the number of iterations of the loop from the statements inside
738 the loop, use it to predict this exit. */
739 else if (n_exits == 1)
740 {
741 nitercst = estimated_loop_iterations_int (loop, false);
742 if (nitercst < 0)
743 continue;
744 if (nitercst > max)
745 nitercst = max;
746
747 predictor = PRED_LOOP_ITERATIONS_GUESSED;
748 }
749 else
750 continue;
751
752 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
753 predict_edge (ex, predictor, probability);
754 }
755 VEC_free (edge, heap, exits);
756
757 bbs = get_loop_body (loop);
758
759 for (j = 0; j < loop->num_nodes; j++)
760 {
761 int header_found = 0;
762 edge e;
763 edge_iterator ei;
764
765 bb = bbs[j];
766
767 /* Bypass loop heuristics on continue statement. These
768 statements construct loops via "non-loop" constructs
769 in the source language and are better to be handled
770 separately. */
771 if (predicted_by_p (bb, PRED_CONTINUE))
772 continue;
773
774 /* Loop branch heuristics - predict an edge back to a
775 loop's head as taken. */
776 if (bb == loop->latch)
777 {
778 e = find_edge (loop->latch, loop->header);
779 if (e)
780 {
781 header_found = 1;
782 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
783 }
784 }
785
786 /* Loop exit heuristics - predict an edge exiting the loop if the
787 conditional has no loop header successors as not taken. */
788 if (!header_found
789 /* If we already used more reliable loop exit predictors, do not
790 bother with PRED_LOOP_EXIT. */
791 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
792 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
793 {
794 /* For loop with many exits we don't want to predict all exits
795 with the pretty large probability, because if all exits are
796 considered in row, the loop would be predicted to iterate
797 almost never. The code to divide probability by number of
798 exits is very rough. It should compute the number of exits
799 taken in each patch through function (not the overall number
800 of exits that might be a lot higher for loops with wide switch
801 statements in them) and compute n-th square root.
802
803 We limit the minimal probability by 2% to avoid
804 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
805 as this was causing regression in perl benchmark containing such
806 a wide loop. */
807
808 int probability = ((REG_BR_PROB_BASE
809 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
810 / n_exits);
811 if (probability < HITRATE (2))
812 probability = HITRATE (2);
813 FOR_EACH_EDGE (e, ei, bb->succs)
814 if (e->dest->index < NUM_FIXED_BLOCKS
815 || !flow_bb_inside_loop_p (loop, e->dest))
816 predict_edge (e, PRED_LOOP_EXIT, probability);
817 }
818 }
819
820 /* Free basic blocks from get_loop_body. */
821 free (bbs);
822 }
823
824 scev_finalize ();
825 }
826
827 /* Attempt to predict probabilities of BB outgoing edges using local
828 properties. */
829 static void
830 bb_estimate_probability_locally (basic_block bb)
831 {
832 rtx last_insn = BB_END (bb);
833 rtx cond;
834
835 if (! can_predict_insn_p (last_insn))
836 return;
837 cond = get_condition (last_insn, NULL, false, false);
838 if (! cond)
839 return;
840
841 /* Try "pointer heuristic."
842 A comparison ptr == 0 is predicted as false.
843 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
844 if (COMPARISON_P (cond)
845 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
846 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
847 {
848 if (GET_CODE (cond) == EQ)
849 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
850 else if (GET_CODE (cond) == NE)
851 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
852 }
853 else
854
855 /* Try "opcode heuristic."
856 EQ tests are usually false and NE tests are usually true. Also,
857 most quantities are positive, so we can make the appropriate guesses
858 about signed comparisons against zero. */
859 switch (GET_CODE (cond))
860 {
861 case CONST_INT:
862 /* Unconditional branch. */
863 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
864 cond == const0_rtx ? NOT_TAKEN : TAKEN);
865 break;
866
867 case EQ:
868 case UNEQ:
869 /* Floating point comparisons appears to behave in a very
870 unpredictable way because of special role of = tests in
871 FP code. */
872 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
873 ;
874 /* Comparisons with 0 are often used for booleans and there is
875 nothing useful to predict about them. */
876 else if (XEXP (cond, 1) == const0_rtx
877 || XEXP (cond, 0) == const0_rtx)
878 ;
879 else
880 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
881 break;
882
883 case NE:
884 case LTGT:
885 /* Floating point comparisons appears to behave in a very
886 unpredictable way because of special role of = tests in
887 FP code. */
888 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
889 ;
890 /* Comparisons with 0 are often used for booleans and there is
891 nothing useful to predict about them. */
892 else if (XEXP (cond, 1) == const0_rtx
893 || XEXP (cond, 0) == const0_rtx)
894 ;
895 else
896 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
897 break;
898
899 case ORDERED:
900 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
901 break;
902
903 case UNORDERED:
904 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
905 break;
906
907 case LE:
908 case LT:
909 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
910 || XEXP (cond, 1) == constm1_rtx)
911 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
912 break;
913
914 case GE:
915 case GT:
916 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
917 || XEXP (cond, 1) == constm1_rtx)
918 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
919 break;
920
921 default:
922 break;
923 }
924 }
925
926 /* Set edge->probability for each successor edge of BB. */
927 void
928 guess_outgoing_edge_probabilities (basic_block bb)
929 {
930 bb_estimate_probability_locally (bb);
931 combine_predictions_for_insn (BB_END (bb), bb);
932 }
933 \f
934 /* Return constant EXPR will likely have at execution time, NULL if unknown.
935 The function is used by builtin_expect branch predictor so the evidence
936 must come from this construct and additional possible constant folding.
937
938 We may want to implement more involved value guess (such as value range
939 propagation based prediction), but such tricks shall go to new
940 implementation. */
941
942 static tree
943 expr_expected_value (tree expr, bitmap visited)
944 {
945 if (TREE_CONSTANT (expr))
946 return expr;
947 else if (TREE_CODE (expr) == SSA_NAME)
948 {
949 tree def = SSA_NAME_DEF_STMT (expr);
950
951 /* If we were already here, break the infinite cycle. */
952 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
953 return NULL;
954 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
955
956 if (TREE_CODE (def) == PHI_NODE)
957 {
958 /* All the arguments of the PHI node must have the same constant
959 length. */
960 int i;
961 tree val = NULL, new_val;
962
963 for (i = 0; i < PHI_NUM_ARGS (def); i++)
964 {
965 tree arg = PHI_ARG_DEF (def, i);
966
967 /* If this PHI has itself as an argument, we cannot
968 determine the string length of this argument. However,
969 if we can find an expected constant value for the other
970 PHI args then we can still be sure that this is
971 likely a constant. So be optimistic and just
972 continue with the next argument. */
973 if (arg == PHI_RESULT (def))
974 continue;
975
976 new_val = expr_expected_value (arg, visited);
977 if (!new_val)
978 return NULL;
979 if (!val)
980 val = new_val;
981 else if (!operand_equal_p (val, new_val, false))
982 return NULL;
983 }
984 return val;
985 }
986 if (TREE_CODE (def) != GIMPLE_MODIFY_STMT
987 || GIMPLE_STMT_OPERAND (def, 0) != expr)
988 return NULL;
989 return expr_expected_value (GIMPLE_STMT_OPERAND (def, 1), visited);
990 }
991 else if (TREE_CODE (expr) == CALL_EXPR)
992 {
993 tree decl = get_callee_fndecl (expr);
994 if (!decl)
995 return NULL;
996 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
997 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
998 {
999 tree val;
1000
1001 if (call_expr_nargs (expr) != 2)
1002 return NULL;
1003 val = CALL_EXPR_ARG (expr, 0);
1004 if (TREE_CONSTANT (val))
1005 return val;
1006 return CALL_EXPR_ARG (expr, 1);
1007 }
1008 }
1009 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1010 {
1011 tree op0, op1, res;
1012 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
1013 if (!op0)
1014 return NULL;
1015 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
1016 if (!op1)
1017 return NULL;
1018 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
1019 if (TREE_CONSTANT (res))
1020 return res;
1021 return NULL;
1022 }
1023 if (UNARY_CLASS_P (expr))
1024 {
1025 tree op0, res;
1026 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
1027 if (!op0)
1028 return NULL;
1029 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
1030 if (TREE_CONSTANT (res))
1031 return res;
1032 return NULL;
1033 }
1034 return NULL;
1035 }
1036 \f
1037 /* Get rid of all builtin_expect calls we no longer need. */
1038 static void
1039 strip_builtin_expect (void)
1040 {
1041 basic_block bb;
1042 FOR_EACH_BB (bb)
1043 {
1044 block_stmt_iterator bi;
1045 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1046 {
1047 tree stmt = bsi_stmt (bi);
1048 tree fndecl;
1049 tree call;
1050
1051 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1052 && (call = GIMPLE_STMT_OPERAND (stmt, 1))
1053 && TREE_CODE (call) == CALL_EXPR
1054 && (fndecl = get_callee_fndecl (call))
1055 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1056 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1057 && call_expr_nargs (call) == 2)
1058 {
1059 GIMPLE_STMT_OPERAND (stmt, 1) = CALL_EXPR_ARG (call, 0);
1060 update_stmt (stmt);
1061 }
1062 }
1063 }
1064 }
1065 \f
1066 /* Predict using opcode of the last statement in basic block. */
1067 static void
1068 tree_predict_by_opcode (basic_block bb)
1069 {
1070 tree stmt = last_stmt (bb);
1071 edge then_edge;
1072 tree cond;
1073 tree op0;
1074 tree type;
1075 tree val;
1076 bitmap visited;
1077 edge_iterator ei;
1078
1079 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1080 return;
1081 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1082 if (then_edge->flags & EDGE_TRUE_VALUE)
1083 break;
1084 cond = TREE_OPERAND (stmt, 0);
1085 if (!COMPARISON_CLASS_P (cond))
1086 return;
1087 op0 = TREE_OPERAND (cond, 0);
1088 type = TREE_TYPE (op0);
1089 visited = BITMAP_ALLOC (NULL);
1090 val = expr_expected_value (cond, visited);
1091 BITMAP_FREE (visited);
1092 if (val)
1093 {
1094 if (integer_zerop (val))
1095 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1096 else
1097 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1098 return;
1099 }
1100 /* Try "pointer heuristic."
1101 A comparison ptr == 0 is predicted as false.
1102 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1103 if (POINTER_TYPE_P (type))
1104 {
1105 if (TREE_CODE (cond) == EQ_EXPR)
1106 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1107 else if (TREE_CODE (cond) == NE_EXPR)
1108 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1109 }
1110 else
1111
1112 /* Try "opcode heuristic."
1113 EQ tests are usually false and NE tests are usually true. Also,
1114 most quantities are positive, so we can make the appropriate guesses
1115 about signed comparisons against zero. */
1116 switch (TREE_CODE (cond))
1117 {
1118 case EQ_EXPR:
1119 case UNEQ_EXPR:
1120 /* Floating point comparisons appears to behave in a very
1121 unpredictable way because of special role of = tests in
1122 FP code. */
1123 if (FLOAT_TYPE_P (type))
1124 ;
1125 /* Comparisons with 0 are often used for booleans and there is
1126 nothing useful to predict about them. */
1127 else if (integer_zerop (op0)
1128 || integer_zerop (TREE_OPERAND (cond, 1)))
1129 ;
1130 else
1131 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1132 break;
1133
1134 case NE_EXPR:
1135 case LTGT_EXPR:
1136 /* Floating point comparisons appears to behave in a very
1137 unpredictable way because of special role of = tests in
1138 FP code. */
1139 if (FLOAT_TYPE_P (type))
1140 ;
1141 /* Comparisons with 0 are often used for booleans and there is
1142 nothing useful to predict about them. */
1143 else if (integer_zerop (op0)
1144 || integer_zerop (TREE_OPERAND (cond, 1)))
1145 ;
1146 else
1147 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1148 break;
1149
1150 case ORDERED_EXPR:
1151 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1152 break;
1153
1154 case UNORDERED_EXPR:
1155 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1156 break;
1157
1158 case LE_EXPR:
1159 case LT_EXPR:
1160 if (integer_zerop (TREE_OPERAND (cond, 1))
1161 || integer_onep (TREE_OPERAND (cond, 1))
1162 || integer_all_onesp (TREE_OPERAND (cond, 1))
1163 || real_zerop (TREE_OPERAND (cond, 1))
1164 || real_onep (TREE_OPERAND (cond, 1))
1165 || real_minus_onep (TREE_OPERAND (cond, 1)))
1166 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1167 break;
1168
1169 case GE_EXPR:
1170 case GT_EXPR:
1171 if (integer_zerop (TREE_OPERAND (cond, 1))
1172 || integer_onep (TREE_OPERAND (cond, 1))
1173 || integer_all_onesp (TREE_OPERAND (cond, 1))
1174 || real_zerop (TREE_OPERAND (cond, 1))
1175 || real_onep (TREE_OPERAND (cond, 1))
1176 || real_minus_onep (TREE_OPERAND (cond, 1)))
1177 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1178 break;
1179
1180 default:
1181 break;
1182 }
1183 }
1184
1185 /* Try to guess whether the value of return means error code. */
1186 static enum br_predictor
1187 return_prediction (tree val, enum prediction *prediction)
1188 {
1189 /* VOID. */
1190 if (!val)
1191 return PRED_NO_PREDICTION;
1192 /* Different heuristics for pointers and scalars. */
1193 if (POINTER_TYPE_P (TREE_TYPE (val)))
1194 {
1195 /* NULL is usually not returned. */
1196 if (integer_zerop (val))
1197 {
1198 *prediction = NOT_TAKEN;
1199 return PRED_NULL_RETURN;
1200 }
1201 }
1202 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1203 {
1204 /* Negative return values are often used to indicate
1205 errors. */
1206 if (TREE_CODE (val) == INTEGER_CST
1207 && tree_int_cst_sgn (val) < 0)
1208 {
1209 *prediction = NOT_TAKEN;
1210 return PRED_NEGATIVE_RETURN;
1211 }
1212 /* Constant return values seems to be commonly taken.
1213 Zero/one often represent booleans so exclude them from the
1214 heuristics. */
1215 if (TREE_CONSTANT (val)
1216 && (!integer_zerop (val) && !integer_onep (val)))
1217 {
1218 *prediction = TAKEN;
1219 return PRED_CONST_RETURN;
1220 }
1221 }
1222 return PRED_NO_PREDICTION;
1223 }
1224
1225 /* Find the basic block with return expression and look up for possible
1226 return value trying to apply RETURN_PREDICTION heuristics. */
1227 static void
1228 apply_return_prediction (void)
1229 {
1230 tree return_stmt = NULL;
1231 tree return_val;
1232 edge e;
1233 tree phi;
1234 int phi_num_args, i;
1235 enum br_predictor pred;
1236 enum prediction direction;
1237 edge_iterator ei;
1238
1239 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1240 {
1241 return_stmt = last_stmt (e->src);
1242 if (return_stmt
1243 && TREE_CODE (return_stmt) == RETURN_EXPR)
1244 break;
1245 }
1246 if (!e)
1247 return;
1248 return_val = TREE_OPERAND (return_stmt, 0);
1249 if (!return_val)
1250 return;
1251 if (TREE_CODE (return_val) == GIMPLE_MODIFY_STMT)
1252 return_val = GIMPLE_STMT_OPERAND (return_val, 1);
1253 if (TREE_CODE (return_val) != SSA_NAME
1254 || !SSA_NAME_DEF_STMT (return_val)
1255 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1256 return;
1257 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1258 if (PHI_RESULT (phi) == return_val)
1259 break;
1260 if (!phi)
1261 return;
1262 phi_num_args = PHI_NUM_ARGS (phi);
1263 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1264
1265 /* Avoid the degenerate case where all return values form the function
1266 belongs to same category (ie they are all positive constants)
1267 so we can hardly say something about them. */
1268 for (i = 1; i < phi_num_args; i++)
1269 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1270 break;
1271 if (i != phi_num_args)
1272 for (i = 0; i < phi_num_args; i++)
1273 {
1274 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1275 if (pred != PRED_NO_PREDICTION)
1276 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, pred,
1277 direction);
1278 }
1279 }
1280
1281 /* Look for basic block that contains unlikely to happen events
1282 (such as noreturn calls) and mark all paths leading to execution
1283 of this basic blocks as unlikely. */
1284
1285 static void
1286 tree_bb_level_predictions (void)
1287 {
1288 basic_block bb;
1289
1290 apply_return_prediction ();
1291
1292 FOR_EACH_BB (bb)
1293 {
1294 block_stmt_iterator bsi = bsi_last (bb);
1295
1296 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1297 {
1298 tree stmt = bsi_stmt (bsi);
1299 tree decl;
1300 bool next = false;
1301 switch (TREE_CODE (stmt))
1302 {
1303 case GIMPLE_MODIFY_STMT:
1304 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR)
1305 {
1306 stmt = GIMPLE_STMT_OPERAND (stmt, 1);
1307 goto call_expr;
1308 }
1309 break;
1310 case CALL_EXPR:
1311 call_expr:;
1312 if (call_expr_flags (stmt) & ECF_NORETURN)
1313 predict_paths_leading_to (bb, PRED_NORETURN,
1314 NOT_TAKEN);
1315 decl = get_callee_fndecl (stmt);
1316 if (decl
1317 && lookup_attribute ("cold",
1318 DECL_ATTRIBUTES (decl)))
1319 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1320 NOT_TAKEN);
1321 break;
1322 default:
1323 break;
1324 }
1325 }
1326 }
1327 }
1328
1329 #ifdef ENABLE_CHECKING
1330
1331 /* Callback for pointer_map_traverse, asserts that the pointer map is
1332 empty. */
1333
1334 static bool
1335 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1336 void *data ATTRIBUTE_UNUSED)
1337 {
1338 gcc_assert (!*value);
1339 return false;
1340 }
1341 #endif
1342
1343 /* Predict branch probabilities and estimate profile of the tree CFG. */
1344 static unsigned int
1345 tree_estimate_probability (void)
1346 {
1347 basic_block bb;
1348
1349 loop_optimizer_init (0);
1350 if (dump_file && (dump_flags & TDF_DETAILS))
1351 flow_loops_dump (dump_file, NULL, 0);
1352
1353 add_noreturn_fake_exit_edges ();
1354 connect_infinite_loops_to_exit ();
1355 /* We use loop_niter_by_eval, which requires that the loops have
1356 preheaders. */
1357 create_preheaders (CP_SIMPLE_PREHEADERS);
1358 calculate_dominance_info (CDI_POST_DOMINATORS);
1359
1360 bb_predictions = pointer_map_create ();
1361 tree_bb_level_predictions ();
1362
1363 mark_irreducible_loops ();
1364 record_loop_exits ();
1365 if (number_of_loops () > 1)
1366 predict_loops ();
1367
1368 FOR_EACH_BB (bb)
1369 {
1370 edge e;
1371 edge_iterator ei;
1372
1373 FOR_EACH_EDGE (e, ei, bb->succs)
1374 {
1375 /* Predict early returns to be probable, as we've already taken
1376 care for error returns and other cases are often used for
1377 fast paths through function.
1378
1379 Since we've already removed the return statements, we are
1380 looking for CFG like:
1381
1382 if (conditional)
1383 {
1384 ..
1385 goto return_block
1386 }
1387 some other blocks
1388 return_block:
1389 return_stmt. */
1390 if (e->dest != bb->next_bb
1391 && e->dest != EXIT_BLOCK_PTR
1392 && single_succ_p (e->dest)
1393 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1394 && TREE_CODE (last_stmt (e->dest)) == RETURN_EXPR)
1395 {
1396 edge e1;
1397 edge_iterator ei1;
1398
1399 if (single_succ_p (bb))
1400 {
1401 FOR_EACH_EDGE (e1, ei1, bb->preds)
1402 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1403 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1404 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1405 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1406 }
1407 else
1408 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1409 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1410 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1411 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1412 }
1413
1414 /* Look for block we are guarding (ie we dominate it,
1415 but it doesn't postdominate us). */
1416 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1417 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1418 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1419 {
1420 block_stmt_iterator bi;
1421
1422 /* The call heuristic claims that a guarded function call
1423 is improbable. This is because such calls are often used
1424 to signal exceptional situations such as printing error
1425 messages. */
1426 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1427 bsi_next (&bi))
1428 {
1429 tree stmt = bsi_stmt (bi);
1430 if ((TREE_CODE (stmt) == CALL_EXPR
1431 || (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1432 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1))
1433 == CALL_EXPR))
1434 /* Constant and pure calls are hardly used to signalize
1435 something exceptional. */
1436 && TREE_SIDE_EFFECTS (stmt))
1437 {
1438 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1439 break;
1440 }
1441 }
1442 }
1443 }
1444 tree_predict_by_opcode (bb);
1445 }
1446 FOR_EACH_BB (bb)
1447 combine_predictions_for_bb (bb);
1448
1449 #ifdef ENABLE_CHECKING
1450 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1451 #endif
1452 pointer_map_destroy (bb_predictions);
1453 bb_predictions = NULL;
1454
1455 strip_builtin_expect ();
1456 estimate_bb_frequencies ();
1457 free_dominance_info (CDI_POST_DOMINATORS);
1458 remove_fake_exit_edges ();
1459 loop_optimizer_finalize ();
1460 if (dump_file && (dump_flags & TDF_DETAILS))
1461 dump_tree_cfg (dump_file, dump_flags);
1462 if (profile_status == PROFILE_ABSENT)
1463 profile_status = PROFILE_GUESSED;
1464 return 0;
1465 }
1466 \f
1467 /* Predict edges to succestors of CUR whose sources are not postdominated by
1468 BB by PRED and recurse to all postdominators. */
1469
1470 static void
1471 predict_paths_for_bb (basic_block cur, basic_block bb,
1472 enum br_predictor pred,
1473 enum prediction taken)
1474 {
1475 edge e;
1476 edge_iterator ei;
1477 basic_block son;
1478
1479 /* We are looking for all edges forming edge cut induced by
1480 set of all blocks postdominated by BB. */
1481 FOR_EACH_EDGE (e, ei, cur->preds)
1482 if (e->src->index >= NUM_FIXED_BLOCKS
1483 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1484 {
1485 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1486 predict_edge_def (e, pred, taken);
1487 }
1488 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1489 son;
1490 son = next_dom_son (CDI_POST_DOMINATORS, son))
1491 predict_paths_for_bb (son, bb, pred, taken);
1492 }
1493
1494 /* Sets branch probabilities according to PREDiction and
1495 FLAGS. */
1496
1497 static void
1498 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1499 enum prediction taken)
1500 {
1501 predict_paths_for_bb (bb, bb, pred, taken);
1502 }
1503 \f
1504 /* This is used to carry information about basic blocks. It is
1505 attached to the AUX field of the standard CFG block. */
1506
1507 typedef struct block_info_def
1508 {
1509 /* Estimated frequency of execution of basic_block. */
1510 sreal frequency;
1511
1512 /* To keep queue of basic blocks to process. */
1513 basic_block next;
1514
1515 /* Number of predecessors we need to visit first. */
1516 int npredecessors;
1517 } *block_info;
1518
1519 /* Similar information for edges. */
1520 typedef struct edge_info_def
1521 {
1522 /* In case edge is a loopback edge, the probability edge will be reached
1523 in case header is. Estimated number of iterations of the loop can be
1524 then computed as 1 / (1 - back_edge_prob). */
1525 sreal back_edge_prob;
1526 /* True if the edge is a loopback edge in the natural loop. */
1527 unsigned int back_edge:1;
1528 } *edge_info;
1529
1530 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1531 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1532
1533 /* Helper function for estimate_bb_frequencies.
1534 Propagate the frequencies in blocks marked in
1535 TOVISIT, starting in HEAD. */
1536
1537 static void
1538 propagate_freq (basic_block head, bitmap tovisit)
1539 {
1540 basic_block bb;
1541 basic_block last;
1542 unsigned i;
1543 edge e;
1544 basic_block nextbb;
1545 bitmap_iterator bi;
1546
1547 /* For each basic block we need to visit count number of his predecessors
1548 we need to visit first. */
1549 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1550 {
1551 edge_iterator ei;
1552 int count = 0;
1553
1554 /* The outermost "loop" includes the exit block, which we can not
1555 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1556 directly. Do the same for the entry block. */
1557 bb = BASIC_BLOCK (i);
1558
1559 FOR_EACH_EDGE (e, ei, bb->preds)
1560 {
1561 bool visit = bitmap_bit_p (tovisit, e->src->index);
1562
1563 if (visit && !(e->flags & EDGE_DFS_BACK))
1564 count++;
1565 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1566 fprintf (dump_file,
1567 "Irreducible region hit, ignoring edge to %i->%i\n",
1568 e->src->index, bb->index);
1569 }
1570 BLOCK_INFO (bb)->npredecessors = count;
1571 }
1572
1573 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1574 last = head;
1575 for (bb = head; bb; bb = nextbb)
1576 {
1577 edge_iterator ei;
1578 sreal cyclic_probability, frequency;
1579
1580 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1581 memcpy (&frequency, &real_zero, sizeof (real_zero));
1582
1583 nextbb = BLOCK_INFO (bb)->next;
1584 BLOCK_INFO (bb)->next = NULL;
1585
1586 /* Compute frequency of basic block. */
1587 if (bb != head)
1588 {
1589 #ifdef ENABLE_CHECKING
1590 FOR_EACH_EDGE (e, ei, bb->preds)
1591 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1592 || (e->flags & EDGE_DFS_BACK));
1593 #endif
1594
1595 FOR_EACH_EDGE (e, ei, bb->preds)
1596 if (EDGE_INFO (e)->back_edge)
1597 {
1598 sreal_add (&cyclic_probability, &cyclic_probability,
1599 &EDGE_INFO (e)->back_edge_prob);
1600 }
1601 else if (!(e->flags & EDGE_DFS_BACK))
1602 {
1603 sreal tmp;
1604
1605 /* frequency += (e->probability
1606 * BLOCK_INFO (e->src)->frequency /
1607 REG_BR_PROB_BASE); */
1608
1609 sreal_init (&tmp, e->probability, 0);
1610 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1611 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1612 sreal_add (&frequency, &frequency, &tmp);
1613 }
1614
1615 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1616 {
1617 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1618 sizeof (frequency));
1619 }
1620 else
1621 {
1622 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1623 {
1624 memcpy (&cyclic_probability, &real_almost_one,
1625 sizeof (real_almost_one));
1626 }
1627
1628 /* BLOCK_INFO (bb)->frequency = frequency
1629 / (1 - cyclic_probability) */
1630
1631 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1632 sreal_div (&BLOCK_INFO (bb)->frequency,
1633 &frequency, &cyclic_probability);
1634 }
1635 }
1636
1637 bitmap_clear_bit (tovisit, bb->index);
1638
1639 e = find_edge (bb, head);
1640 if (e)
1641 {
1642 sreal tmp;
1643
1644 /* EDGE_INFO (e)->back_edge_prob
1645 = ((e->probability * BLOCK_INFO (bb)->frequency)
1646 / REG_BR_PROB_BASE); */
1647
1648 sreal_init (&tmp, e->probability, 0);
1649 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1650 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1651 &tmp, &real_inv_br_prob_base);
1652 }
1653
1654 /* Propagate to successor blocks. */
1655 FOR_EACH_EDGE (e, ei, bb->succs)
1656 if (!(e->flags & EDGE_DFS_BACK)
1657 && BLOCK_INFO (e->dest)->npredecessors)
1658 {
1659 BLOCK_INFO (e->dest)->npredecessors--;
1660 if (!BLOCK_INFO (e->dest)->npredecessors)
1661 {
1662 if (!nextbb)
1663 nextbb = e->dest;
1664 else
1665 BLOCK_INFO (last)->next = e->dest;
1666
1667 last = e->dest;
1668 }
1669 }
1670 }
1671 }
1672
1673 /* Estimate probabilities of loopback edges in loops at same nest level. */
1674
1675 static void
1676 estimate_loops_at_level (struct loop *first_loop)
1677 {
1678 struct loop *loop;
1679
1680 for (loop = first_loop; loop; loop = loop->next)
1681 {
1682 edge e;
1683 basic_block *bbs;
1684 unsigned i;
1685 bitmap tovisit = BITMAP_ALLOC (NULL);
1686
1687 estimate_loops_at_level (loop->inner);
1688
1689 /* Find current loop back edge and mark it. */
1690 e = loop_latch_edge (loop);
1691 EDGE_INFO (e)->back_edge = 1;
1692
1693 bbs = get_loop_body (loop);
1694 for (i = 0; i < loop->num_nodes; i++)
1695 bitmap_set_bit (tovisit, bbs[i]->index);
1696 free (bbs);
1697 propagate_freq (loop->header, tovisit);
1698 BITMAP_FREE (tovisit);
1699 }
1700 }
1701
1702 /* Propagates frequencies through structure of loops. */
1703
1704 static void
1705 estimate_loops (void)
1706 {
1707 bitmap tovisit = BITMAP_ALLOC (NULL);
1708 basic_block bb;
1709
1710 /* Start by estimating the frequencies in the loops. */
1711 if (number_of_loops () > 1)
1712 estimate_loops_at_level (current_loops->tree_root->inner);
1713
1714 /* Now propagate the frequencies through all the blocks. */
1715 FOR_ALL_BB (bb)
1716 {
1717 bitmap_set_bit (tovisit, bb->index);
1718 }
1719 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1720 BITMAP_FREE (tovisit);
1721 }
1722
1723 /* Convert counts measured by profile driven feedback to frequencies.
1724 Return nonzero iff there was any nonzero execution count. */
1725
1726 int
1727 counts_to_freqs (void)
1728 {
1729 gcov_type count_max, true_count_max = 0;
1730 basic_block bb;
1731
1732 FOR_EACH_BB (bb)
1733 true_count_max = MAX (bb->count, true_count_max);
1734
1735 count_max = MAX (true_count_max, 1);
1736 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1737 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1738
1739 return true_count_max;
1740 }
1741
1742 /* Return true if function is likely to be expensive, so there is no point to
1743 optimize performance of prologue, epilogue or do inlining at the expense
1744 of code size growth. THRESHOLD is the limit of number of instructions
1745 function can execute at average to be still considered not expensive. */
1746
1747 bool
1748 expensive_function_p (int threshold)
1749 {
1750 unsigned int sum = 0;
1751 basic_block bb;
1752 unsigned int limit;
1753
1754 /* We can not compute accurately for large thresholds due to scaled
1755 frequencies. */
1756 gcc_assert (threshold <= BB_FREQ_MAX);
1757
1758 /* Frequencies are out of range. This either means that function contains
1759 internal loop executing more than BB_FREQ_MAX times or profile feedback
1760 is available and function has not been executed at all. */
1761 if (ENTRY_BLOCK_PTR->frequency == 0)
1762 return true;
1763
1764 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1765 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1766 FOR_EACH_BB (bb)
1767 {
1768 rtx insn;
1769
1770 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1771 insn = NEXT_INSN (insn))
1772 if (active_insn_p (insn))
1773 {
1774 sum += bb->frequency;
1775 if (sum > limit)
1776 return true;
1777 }
1778 }
1779
1780 return false;
1781 }
1782
1783 /* Estimate basic blocks frequency by given branch probabilities. */
1784
1785 void
1786 estimate_bb_frequencies (void)
1787 {
1788 basic_block bb;
1789 sreal freq_max;
1790
1791 if (!flag_branch_probabilities || !counts_to_freqs ())
1792 {
1793 static int real_values_initialized = 0;
1794
1795 if (!real_values_initialized)
1796 {
1797 real_values_initialized = 1;
1798 sreal_init (&real_zero, 0, 0);
1799 sreal_init (&real_one, 1, 0);
1800 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1801 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1802 sreal_init (&real_one_half, 1, -1);
1803 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1804 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1805 }
1806
1807 mark_dfs_back_edges ();
1808
1809 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1810
1811 /* Set up block info for each basic block. */
1812 alloc_aux_for_blocks (sizeof (struct block_info_def));
1813 alloc_aux_for_edges (sizeof (struct edge_info_def));
1814 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1815 {
1816 edge e;
1817 edge_iterator ei;
1818
1819 FOR_EACH_EDGE (e, ei, bb->succs)
1820 {
1821 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1822 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1823 &EDGE_INFO (e)->back_edge_prob,
1824 &real_inv_br_prob_base);
1825 }
1826 }
1827
1828 /* First compute probabilities locally for each loop from innermost
1829 to outermost to examine probabilities for back edges. */
1830 estimate_loops ();
1831
1832 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1833 FOR_EACH_BB (bb)
1834 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1835 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1836
1837 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1838 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1839 {
1840 sreal tmp;
1841
1842 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1843 sreal_add (&tmp, &tmp, &real_one_half);
1844 bb->frequency = sreal_to_int (&tmp);
1845 }
1846
1847 free_aux_for_blocks ();
1848 free_aux_for_edges ();
1849 }
1850 compute_function_frequency ();
1851 if (flag_reorder_functions)
1852 choose_function_section ();
1853 }
1854
1855 /* Decide whether function is hot, cold or unlikely executed. */
1856 static void
1857 compute_function_frequency (void)
1858 {
1859 basic_block bb;
1860
1861 if (!profile_info || !flag_branch_probabilities)
1862 {
1863 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
1864 != NULL)
1865 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1866 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
1867 != NULL)
1868 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1869 return;
1870 }
1871 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1872 FOR_EACH_BB (bb)
1873 {
1874 if (maybe_hot_bb_p (bb))
1875 {
1876 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1877 return;
1878 }
1879 if (!probably_never_executed_bb_p (bb))
1880 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1881 }
1882 }
1883
1884 /* Choose appropriate section for the function. */
1885 static void
1886 choose_function_section (void)
1887 {
1888 if (DECL_SECTION_NAME (current_function_decl)
1889 || !targetm.have_named_sections
1890 /* Theoretically we can split the gnu.linkonce text section too,
1891 but this requires more work as the frequency needs to match
1892 for all generated objects so we need to merge the frequency
1893 of all instances. For now just never set frequency for these. */
1894 || DECL_ONE_ONLY (current_function_decl))
1895 return;
1896
1897 /* If we are doing the partitioning optimization, let the optimization
1898 choose the correct section into which to put things. */
1899
1900 if (flag_reorder_blocks_and_partition)
1901 return;
1902
1903 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1904 DECL_SECTION_NAME (current_function_decl) =
1905 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1906 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1907 DECL_SECTION_NAME (current_function_decl) =
1908 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1909 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1910 }
1911
1912 static bool
1913 gate_estimate_probability (void)
1914 {
1915 return flag_guess_branch_prob;
1916 }
1917
1918 struct tree_opt_pass pass_profile =
1919 {
1920 "profile", /* name */
1921 gate_estimate_probability, /* gate */
1922 tree_estimate_probability, /* execute */
1923 NULL, /* sub */
1924 NULL, /* next */
1925 0, /* static_pass_number */
1926 TV_BRANCH_PROB, /* tv_id */
1927 PROP_cfg, /* properties_required */
1928 0, /* properties_provided */
1929 0, /* properties_destroyed */
1930 0, /* todo_flags_start */
1931 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1932 0 /* letter */
1933 };