tree-vrp.c (adjust_range_with_scev): Use get_chrec_loop.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
78 static bool last_basic_block_p (basic_block);
79 static void compute_function_frequency (void);
80 static void choose_function_section (void);
81 static bool can_predict_insn_p (rtx);
82 static void estimate_bb_frequencies (void);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return true in case BB can be CPU intensive and should be optimized
113 for maximal performance. */
114
115 bool
116 maybe_hot_bb_p (basic_block bb)
117 {
118 if (profile_info && flag_branch_probabilities
119 && (bb->count
120 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
121 return false;
122 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
123 return false;
124 return true;
125 }
126
127 /* Return true in case BB is cold and should be optimized for size. */
128
129 bool
130 probably_cold_bb_p (basic_block bb)
131 {
132 if (profile_info && flag_branch_probabilities
133 && (bb->count
134 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
135 return true;
136 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
137 return true;
138 return false;
139 }
140
141 /* Return true in case BB is probably never executed. */
142 bool
143 probably_never_executed_bb_p (basic_block bb)
144 {
145 if (profile_info && flag_branch_probabilities)
146 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
147 return false;
148 }
149
150 /* Return true if the one of outgoing edges is already predicted by
151 PREDICTOR. */
152
153 bool
154 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
155 {
156 rtx note;
157 if (!INSN_P (BB_END (bb)))
158 return false;
159 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
160 if (REG_NOTE_KIND (note) == REG_BR_PRED
161 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
162 return true;
163 return false;
164 }
165
166 /* Return true if the one of outgoing edges is already predicted by
167 PREDICTOR. */
168
169 bool
170 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
171 {
172 struct edge_prediction *i;
173 for (i = bb->predictions; i; i = i->ep_next)
174 if (i->ep_predictor == predictor)
175 return true;
176 return false;
177 }
178
179 /* Return true when the probability of edge is reliable.
180
181 The profile guessing code is good at predicting branch outcome (ie.
182 taken/not taken), that is predicted right slightly over 75% of time.
183 It is however notoriously poor on predicting the probability itself.
184 In general the profile appear a lot flatter (with probabilities closer
185 to 50%) than the reality so it is bad idea to use it to drive optimization
186 such as those disabling dynamic branch prediction for well predictable
187 branches.
188
189 There are two exceptions - edges leading to noreturn edges and edges
190 predicted by number of iterations heuristics are predicted well. This macro
191 should be able to distinguish those, but at the moment it simply check for
192 noreturn heuristic that is only one giving probability over 99% or bellow
193 1%. In future we might want to propagate reliability information across the
194 CFG if we find this information useful on multiple places. */
195 static bool
196 probability_reliable_p (int prob)
197 {
198 return (profile_status == PROFILE_READ
199 || (profile_status == PROFILE_GUESSED
200 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
201 }
202
203 /* Same predicate as above, working on edges. */
204 bool
205 edge_probability_reliable_p (edge e)
206 {
207 return probability_reliable_p (e->probability);
208 }
209
210 /* Same predicate as edge_probability_reliable_p, working on notes. */
211 bool
212 br_prob_note_reliable_p (rtx note)
213 {
214 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
215 return probability_reliable_p (INTVAL (XEXP (note, 0)));
216 }
217
218 static void
219 predict_insn (rtx insn, enum br_predictor predictor, int probability)
220 {
221 gcc_assert (any_condjump_p (insn));
222 if (!flag_guess_branch_prob)
223 return;
224
225 REG_NOTES (insn)
226 = gen_rtx_EXPR_LIST (REG_BR_PRED,
227 gen_rtx_CONCAT (VOIDmode,
228 GEN_INT ((int) predictor),
229 GEN_INT ((int) probability)),
230 REG_NOTES (insn));
231 }
232
233 /* Predict insn by given predictor. */
234
235 void
236 predict_insn_def (rtx insn, enum br_predictor predictor,
237 enum prediction taken)
238 {
239 int probability = predictor_info[(int) predictor].hitrate;
240
241 if (taken != TAKEN)
242 probability = REG_BR_PROB_BASE - probability;
243
244 predict_insn (insn, predictor, probability);
245 }
246
247 /* Predict edge E with given probability if possible. */
248
249 void
250 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
251 {
252 rtx last_insn;
253 last_insn = BB_END (e->src);
254
255 /* We can store the branch prediction information only about
256 conditional jumps. */
257 if (!any_condjump_p (last_insn))
258 return;
259
260 /* We always store probability of branching. */
261 if (e->flags & EDGE_FALLTHRU)
262 probability = REG_BR_PROB_BASE - probability;
263
264 predict_insn (last_insn, predictor, probability);
265 }
266
267 /* Predict edge E with the given PROBABILITY. */
268 void
269 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
270 {
271 gcc_assert (profile_status != PROFILE_GUESSED);
272 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
273 && flag_guess_branch_prob && optimize)
274 {
275 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
276
277 i->ep_next = e->src->predictions;
278 e->src->predictions = i;
279 i->ep_probability = probability;
280 i->ep_predictor = predictor;
281 i->ep_edge = e;
282 }
283 }
284
285 /* Remove all predictions on given basic block that are attached
286 to edge E. */
287 void
288 remove_predictions_associated_with_edge (edge e)
289 {
290 if (e->src->predictions)
291 {
292 struct edge_prediction **prediction = &e->src->predictions;
293 while (*prediction)
294 {
295 if ((*prediction)->ep_edge == e)
296 *prediction = (*prediction)->ep_next;
297 else
298 prediction = &((*prediction)->ep_next);
299 }
300 }
301 }
302
303 /* Return true when we can store prediction on insn INSN.
304 At the moment we represent predictions only on conditional
305 jumps, not at computed jump or other complicated cases. */
306 static bool
307 can_predict_insn_p (rtx insn)
308 {
309 return (JUMP_P (insn)
310 && any_condjump_p (insn)
311 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
312 }
313
314 /* Predict edge E by given predictor if possible. */
315
316 void
317 predict_edge_def (edge e, enum br_predictor predictor,
318 enum prediction taken)
319 {
320 int probability = predictor_info[(int) predictor].hitrate;
321
322 if (taken != TAKEN)
323 probability = REG_BR_PROB_BASE - probability;
324
325 predict_edge (e, predictor, probability);
326 }
327
328 /* Invert all branch predictions or probability notes in the INSN. This needs
329 to be done each time we invert the condition used by the jump. */
330
331 void
332 invert_br_probabilities (rtx insn)
333 {
334 rtx note;
335
336 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
337 if (REG_NOTE_KIND (note) == REG_BR_PROB)
338 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
339 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
340 XEXP (XEXP (note, 0), 1)
341 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
342 }
343
344 /* Dump information about the branch prediction to the output file. */
345
346 static void
347 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
348 basic_block bb, int used)
349 {
350 edge e;
351 edge_iterator ei;
352
353 if (!file)
354 return;
355
356 FOR_EACH_EDGE (e, ei, bb->succs)
357 if (! (e->flags & EDGE_FALLTHRU))
358 break;
359
360 fprintf (file, " %s heuristics%s: %.1f%%",
361 predictor_info[predictor].name,
362 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
363
364 if (bb->count)
365 {
366 fprintf (file, " exec ");
367 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
368 if (e)
369 {
370 fprintf (file, " hit ");
371 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
372 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
373 }
374 }
375
376 fprintf (file, "\n");
377 }
378
379 /* We can not predict the probabilities of outgoing edges of bb. Set them
380 evenly and hope for the best. */
381 static void
382 set_even_probabilities (basic_block bb)
383 {
384 int nedges = 0;
385 edge e;
386 edge_iterator ei;
387
388 FOR_EACH_EDGE (e, ei, bb->succs)
389 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
390 nedges ++;
391 FOR_EACH_EDGE (e, ei, bb->succs)
392 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
393 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
394 else
395 e->probability = 0;
396 }
397
398 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
399 note if not already present. Remove now useless REG_BR_PRED notes. */
400
401 static void
402 combine_predictions_for_insn (rtx insn, basic_block bb)
403 {
404 rtx prob_note;
405 rtx *pnote;
406 rtx note;
407 int best_probability = PROB_EVEN;
408 int best_predictor = END_PREDICTORS;
409 int combined_probability = REG_BR_PROB_BASE / 2;
410 int d;
411 bool first_match = false;
412 bool found = false;
413
414 if (!can_predict_insn_p (insn))
415 {
416 set_even_probabilities (bb);
417 return;
418 }
419
420 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
421 pnote = &REG_NOTES (insn);
422 if (dump_file)
423 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
424 bb->index);
425
426 /* We implement "first match" heuristics and use probability guessed
427 by predictor with smallest index. */
428 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
429 if (REG_NOTE_KIND (note) == REG_BR_PRED)
430 {
431 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
432 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
433
434 found = true;
435 if (best_predictor > predictor)
436 best_probability = probability, best_predictor = predictor;
437
438 d = (combined_probability * probability
439 + (REG_BR_PROB_BASE - combined_probability)
440 * (REG_BR_PROB_BASE - probability));
441
442 /* Use FP math to avoid overflows of 32bit integers. */
443 if (d == 0)
444 /* If one probability is 0% and one 100%, avoid division by zero. */
445 combined_probability = REG_BR_PROB_BASE / 2;
446 else
447 combined_probability = (((double) combined_probability) * probability
448 * REG_BR_PROB_BASE / d + 0.5);
449 }
450
451 /* Decide which heuristic to use. In case we didn't match anything,
452 use no_prediction heuristic, in case we did match, use either
453 first match or Dempster-Shaffer theory depending on the flags. */
454
455 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
456 first_match = true;
457
458 if (!found)
459 dump_prediction (dump_file, PRED_NO_PREDICTION,
460 combined_probability, bb, true);
461 else
462 {
463 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
464 bb, !first_match);
465 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
466 bb, first_match);
467 }
468
469 if (first_match)
470 combined_probability = best_probability;
471 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
472
473 while (*pnote)
474 {
475 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
476 {
477 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
478 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
479
480 dump_prediction (dump_file, predictor, probability, bb,
481 !first_match || best_predictor == predictor);
482 *pnote = XEXP (*pnote, 1);
483 }
484 else
485 pnote = &XEXP (*pnote, 1);
486 }
487
488 if (!prob_note)
489 {
490 REG_NOTES (insn)
491 = gen_rtx_EXPR_LIST (REG_BR_PROB,
492 GEN_INT (combined_probability), REG_NOTES (insn));
493
494 /* Save the prediction into CFG in case we are seeing non-degenerated
495 conditional jump. */
496 if (!single_succ_p (bb))
497 {
498 BRANCH_EDGE (bb)->probability = combined_probability;
499 FALLTHRU_EDGE (bb)->probability
500 = REG_BR_PROB_BASE - combined_probability;
501 }
502 }
503 else if (!single_succ_p (bb))
504 {
505 int prob = INTVAL (XEXP (prob_note, 0));
506
507 BRANCH_EDGE (bb)->probability = prob;
508 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
509 }
510 else
511 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
512 }
513
514 /* Combine predictions into single probability and store them into CFG.
515 Remove now useless prediction entries. */
516
517 static void
518 combine_predictions_for_bb (basic_block bb)
519 {
520 int best_probability = PROB_EVEN;
521 int best_predictor = END_PREDICTORS;
522 int combined_probability = REG_BR_PROB_BASE / 2;
523 int d;
524 bool first_match = false;
525 bool found = false;
526 struct edge_prediction *pred;
527 int nedges = 0;
528 edge e, first = NULL, second = NULL;
529 edge_iterator ei;
530
531 FOR_EACH_EDGE (e, ei, bb->succs)
532 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
533 {
534 nedges ++;
535 if (first && !second)
536 second = e;
537 if (!first)
538 first = e;
539 }
540
541 /* When there is no successor or only one choice, prediction is easy.
542
543 We are lazy for now and predict only basic blocks with two outgoing
544 edges. It is possible to predict generic case too, but we have to
545 ignore first match heuristics and do more involved combining. Implement
546 this later. */
547 if (nedges != 2)
548 {
549 if (!bb->count)
550 set_even_probabilities (bb);
551 bb->predictions = NULL;
552 if (dump_file)
553 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
554 nedges, bb->index);
555 return;
556 }
557
558 if (dump_file)
559 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
560
561 /* We implement "first match" heuristics and use probability guessed
562 by predictor with smallest index. */
563 for (pred = bb->predictions; pred; pred = pred->ep_next)
564 {
565 int predictor = pred->ep_predictor;
566 int probability = pred->ep_probability;
567
568 if (pred->ep_edge != first)
569 probability = REG_BR_PROB_BASE - probability;
570
571 found = true;
572 if (best_predictor > predictor)
573 best_probability = probability, best_predictor = predictor;
574
575 d = (combined_probability * probability
576 + (REG_BR_PROB_BASE - combined_probability)
577 * (REG_BR_PROB_BASE - probability));
578
579 /* Use FP math to avoid overflows of 32bit integers. */
580 if (d == 0)
581 /* If one probability is 0% and one 100%, avoid division by zero. */
582 combined_probability = REG_BR_PROB_BASE / 2;
583 else
584 combined_probability = (((double) combined_probability) * probability
585 * REG_BR_PROB_BASE / d + 0.5);
586 }
587
588 /* Decide which heuristic to use. In case we didn't match anything,
589 use no_prediction heuristic, in case we did match, use either
590 first match or Dempster-Shaffer theory depending on the flags. */
591
592 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
593 first_match = true;
594
595 if (!found)
596 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
597 else
598 {
599 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
600 !first_match);
601 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
602 first_match);
603 }
604
605 if (first_match)
606 combined_probability = best_probability;
607 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
608
609 for (pred = bb->predictions; pred; pred = pred->ep_next)
610 {
611 int predictor = pred->ep_predictor;
612 int probability = pred->ep_probability;
613
614 if (pred->ep_edge != EDGE_SUCC (bb, 0))
615 probability = REG_BR_PROB_BASE - probability;
616 dump_prediction (dump_file, predictor, probability, bb,
617 !first_match || best_predictor == predictor);
618 }
619 bb->predictions = NULL;
620
621 if (!bb->count)
622 {
623 first->probability = combined_probability;
624 second->probability = REG_BR_PROB_BASE - combined_probability;
625 }
626 }
627
628 /* Predict edge probabilities by exploiting loop structure. */
629
630 static void
631 predict_loops (void)
632 {
633 loop_iterator li;
634 struct loop *loop;
635
636 scev_initialize ();
637
638 /* Try to predict out blocks in a loop that are not part of a
639 natural loop. */
640 FOR_EACH_LOOP (li, loop, 0)
641 {
642 basic_block bb, *bbs;
643 unsigned j, n_exits;
644 VEC (edge, heap) *exits;
645 struct tree_niter_desc niter_desc;
646 edge ex;
647
648 exits = get_loop_exit_edges (loop);
649 n_exits = VEC_length (edge, exits);
650
651 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
652 {
653 tree niter = NULL;
654
655 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
656 niter = niter_desc.niter;
657 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
658 niter = loop_niter_by_eval (loop, ex);
659
660 if (TREE_CODE (niter) == INTEGER_CST)
661 {
662 int probability;
663 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
664 if (host_integerp (niter, 1)
665 && tree_int_cst_lt (niter,
666 build_int_cstu (NULL_TREE, max - 1)))
667 {
668 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
669 probability = ((REG_BR_PROB_BASE + nitercst / 2)
670 / nitercst);
671 }
672 else
673 probability = ((REG_BR_PROB_BASE + max / 2) / max);
674
675 predict_edge (ex, PRED_LOOP_ITERATIONS, probability);
676 }
677 }
678 VEC_free (edge, heap, exits);
679
680 bbs = get_loop_body (loop);
681
682 for (j = 0; j < loop->num_nodes; j++)
683 {
684 int header_found = 0;
685 edge e;
686 edge_iterator ei;
687
688 bb = bbs[j];
689
690 /* Bypass loop heuristics on continue statement. These
691 statements construct loops via "non-loop" constructs
692 in the source language and are better to be handled
693 separately. */
694 if (predicted_by_p (bb, PRED_CONTINUE))
695 continue;
696
697 /* Loop branch heuristics - predict an edge back to a
698 loop's head as taken. */
699 if (bb == loop->latch)
700 {
701 e = find_edge (loop->latch, loop->header);
702 if (e)
703 {
704 header_found = 1;
705 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
706 }
707 }
708
709 /* Loop exit heuristics - predict an edge exiting the loop if the
710 conditional has no loop header successors as not taken. */
711 if (!header_found)
712 {
713 /* For loop with many exits we don't want to predict all exits
714 with the pretty large probability, because if all exits are
715 considered in row, the loop would be predicted to iterate
716 almost never. The code to divide probability by number of
717 exits is very rough. It should compute the number of exits
718 taken in each patch through function (not the overall number
719 of exits that might be a lot higher for loops with wide switch
720 statements in them) and compute n-th square root.
721
722 We limit the minimal probability by 2% to avoid
723 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
724 as this was causing regression in perl benchmark containing such
725 a wide loop. */
726
727 int probability = ((REG_BR_PROB_BASE
728 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
729 / n_exits);
730 if (probability < HITRATE (2))
731 probability = HITRATE (2);
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 if (e->dest->index < NUM_FIXED_BLOCKS
734 || !flow_bb_inside_loop_p (loop, e->dest))
735 predict_edge (e, PRED_LOOP_EXIT, probability);
736 }
737 }
738
739 /* Free basic blocks from get_loop_body. */
740 free (bbs);
741 }
742
743 scev_finalize ();
744 }
745
746 /* Attempt to predict probabilities of BB outgoing edges using local
747 properties. */
748 static void
749 bb_estimate_probability_locally (basic_block bb)
750 {
751 rtx last_insn = BB_END (bb);
752 rtx cond;
753
754 if (! can_predict_insn_p (last_insn))
755 return;
756 cond = get_condition (last_insn, NULL, false, false);
757 if (! cond)
758 return;
759
760 /* Try "pointer heuristic."
761 A comparison ptr == 0 is predicted as false.
762 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
763 if (COMPARISON_P (cond)
764 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
765 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
766 {
767 if (GET_CODE (cond) == EQ)
768 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
769 else if (GET_CODE (cond) == NE)
770 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
771 }
772 else
773
774 /* Try "opcode heuristic."
775 EQ tests are usually false and NE tests are usually true. Also,
776 most quantities are positive, so we can make the appropriate guesses
777 about signed comparisons against zero. */
778 switch (GET_CODE (cond))
779 {
780 case CONST_INT:
781 /* Unconditional branch. */
782 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
783 cond == const0_rtx ? NOT_TAKEN : TAKEN);
784 break;
785
786 case EQ:
787 case UNEQ:
788 /* Floating point comparisons appears to behave in a very
789 unpredictable way because of special role of = tests in
790 FP code. */
791 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
792 ;
793 /* Comparisons with 0 are often used for booleans and there is
794 nothing useful to predict about them. */
795 else if (XEXP (cond, 1) == const0_rtx
796 || XEXP (cond, 0) == const0_rtx)
797 ;
798 else
799 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
800 break;
801
802 case NE:
803 case LTGT:
804 /* Floating point comparisons appears to behave in a very
805 unpredictable way because of special role of = tests in
806 FP code. */
807 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
808 ;
809 /* Comparisons with 0 are often used for booleans and there is
810 nothing useful to predict about them. */
811 else if (XEXP (cond, 1) == const0_rtx
812 || XEXP (cond, 0) == const0_rtx)
813 ;
814 else
815 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
816 break;
817
818 case ORDERED:
819 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
820 break;
821
822 case UNORDERED:
823 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
824 break;
825
826 case LE:
827 case LT:
828 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
829 || XEXP (cond, 1) == constm1_rtx)
830 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
831 break;
832
833 case GE:
834 case GT:
835 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
836 || XEXP (cond, 1) == constm1_rtx)
837 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
838 break;
839
840 default:
841 break;
842 }
843 }
844
845 /* Set edge->probability for each successor edge of BB. */
846 void
847 guess_outgoing_edge_probabilities (basic_block bb)
848 {
849 bb_estimate_probability_locally (bb);
850 combine_predictions_for_insn (BB_END (bb), bb);
851 }
852 \f
853 /* Return constant EXPR will likely have at execution time, NULL if unknown.
854 The function is used by builtin_expect branch predictor so the evidence
855 must come from this construct and additional possible constant folding.
856
857 We may want to implement more involved value guess (such as value range
858 propagation based prediction), but such tricks shall go to new
859 implementation. */
860
861 static tree
862 expr_expected_value (tree expr, bitmap visited)
863 {
864 if (TREE_CONSTANT (expr))
865 return expr;
866 else if (TREE_CODE (expr) == SSA_NAME)
867 {
868 tree def = SSA_NAME_DEF_STMT (expr);
869
870 /* If we were already here, break the infinite cycle. */
871 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
872 return NULL;
873 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
874
875 if (TREE_CODE (def) == PHI_NODE)
876 {
877 /* All the arguments of the PHI node must have the same constant
878 length. */
879 int i;
880 tree val = NULL, new_val;
881
882 for (i = 0; i < PHI_NUM_ARGS (def); i++)
883 {
884 tree arg = PHI_ARG_DEF (def, i);
885
886 /* If this PHI has itself as an argument, we cannot
887 determine the string length of this argument. However,
888 if we can find an expected constant value for the other
889 PHI args then we can still be sure that this is
890 likely a constant. So be optimistic and just
891 continue with the next argument. */
892 if (arg == PHI_RESULT (def))
893 continue;
894
895 new_val = expr_expected_value (arg, visited);
896 if (!new_val)
897 return NULL;
898 if (!val)
899 val = new_val;
900 else if (!operand_equal_p (val, new_val, false))
901 return NULL;
902 }
903 return val;
904 }
905 if (TREE_CODE (def) != GIMPLE_MODIFY_STMT
906 || GIMPLE_STMT_OPERAND (def, 0) != expr)
907 return NULL;
908 return expr_expected_value (GIMPLE_STMT_OPERAND (def, 1), visited);
909 }
910 else if (TREE_CODE (expr) == CALL_EXPR)
911 {
912 tree decl = get_callee_fndecl (expr);
913 if (!decl)
914 return NULL;
915 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
916 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
917 {
918 tree arglist = TREE_OPERAND (expr, 1);
919 tree val;
920
921 if (arglist == NULL_TREE
922 || TREE_CHAIN (arglist) == NULL_TREE)
923 return NULL;
924 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
925 if (TREE_CONSTANT (val))
926 return val;
927 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
928 }
929 }
930 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
931 {
932 tree op0, op1, res;
933 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
934 if (!op0)
935 return NULL;
936 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
937 if (!op1)
938 return NULL;
939 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
940 if (TREE_CONSTANT (res))
941 return res;
942 return NULL;
943 }
944 if (UNARY_CLASS_P (expr))
945 {
946 tree op0, res;
947 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
948 if (!op0)
949 return NULL;
950 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
951 if (TREE_CONSTANT (res))
952 return res;
953 return NULL;
954 }
955 return NULL;
956 }
957 \f
958 /* Get rid of all builtin_expect calls we no longer need. */
959 static void
960 strip_builtin_expect (void)
961 {
962 basic_block bb;
963 FOR_EACH_BB (bb)
964 {
965 block_stmt_iterator bi;
966 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
967 {
968 tree stmt = bsi_stmt (bi);
969 tree fndecl;
970 tree arglist;
971
972 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
973 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR
974 && (fndecl = get_callee_fndecl (GIMPLE_STMT_OPERAND (stmt, 1)))
975 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
976 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
977 && (arglist = TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt, 1), 1))
978 && TREE_CHAIN (arglist))
979 {
980 GIMPLE_STMT_OPERAND (stmt, 1) = TREE_VALUE (arglist);
981 update_stmt (stmt);
982 }
983 }
984 }
985 }
986 \f
987 /* Predict using opcode of the last statement in basic block. */
988 static void
989 tree_predict_by_opcode (basic_block bb)
990 {
991 tree stmt = last_stmt (bb);
992 edge then_edge;
993 tree cond;
994 tree op0;
995 tree type;
996 tree val;
997 bitmap visited;
998 edge_iterator ei;
999
1000 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1001 return;
1002 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1003 if (then_edge->flags & EDGE_TRUE_VALUE)
1004 break;
1005 cond = TREE_OPERAND (stmt, 0);
1006 if (!COMPARISON_CLASS_P (cond))
1007 return;
1008 op0 = TREE_OPERAND (cond, 0);
1009 type = TREE_TYPE (op0);
1010 visited = BITMAP_ALLOC (NULL);
1011 val = expr_expected_value (cond, visited);
1012 BITMAP_FREE (visited);
1013 if (val)
1014 {
1015 if (integer_zerop (val))
1016 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1017 else
1018 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1019 return;
1020 }
1021 /* Try "pointer heuristic."
1022 A comparison ptr == 0 is predicted as false.
1023 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1024 if (POINTER_TYPE_P (type))
1025 {
1026 if (TREE_CODE (cond) == EQ_EXPR)
1027 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1028 else if (TREE_CODE (cond) == NE_EXPR)
1029 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1030 }
1031 else
1032
1033 /* Try "opcode heuristic."
1034 EQ tests are usually false and NE tests are usually true. Also,
1035 most quantities are positive, so we can make the appropriate guesses
1036 about signed comparisons against zero. */
1037 switch (TREE_CODE (cond))
1038 {
1039 case EQ_EXPR:
1040 case UNEQ_EXPR:
1041 /* Floating point comparisons appears to behave in a very
1042 unpredictable way because of special role of = tests in
1043 FP code. */
1044 if (FLOAT_TYPE_P (type))
1045 ;
1046 /* Comparisons with 0 are often used for booleans and there is
1047 nothing useful to predict about them. */
1048 else if (integer_zerop (op0)
1049 || integer_zerop (TREE_OPERAND (cond, 1)))
1050 ;
1051 else
1052 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1053 break;
1054
1055 case NE_EXPR:
1056 case LTGT_EXPR:
1057 /* Floating point comparisons appears to behave in a very
1058 unpredictable way because of special role of = tests in
1059 FP code. */
1060 if (FLOAT_TYPE_P (type))
1061 ;
1062 /* Comparisons with 0 are often used for booleans and there is
1063 nothing useful to predict about them. */
1064 else if (integer_zerop (op0)
1065 || integer_zerop (TREE_OPERAND (cond, 1)))
1066 ;
1067 else
1068 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1069 break;
1070
1071 case ORDERED_EXPR:
1072 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1073 break;
1074
1075 case UNORDERED_EXPR:
1076 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1077 break;
1078
1079 case LE_EXPR:
1080 case LT_EXPR:
1081 if (integer_zerop (TREE_OPERAND (cond, 1))
1082 || integer_onep (TREE_OPERAND (cond, 1))
1083 || integer_all_onesp (TREE_OPERAND (cond, 1))
1084 || real_zerop (TREE_OPERAND (cond, 1))
1085 || real_onep (TREE_OPERAND (cond, 1))
1086 || real_minus_onep (TREE_OPERAND (cond, 1)))
1087 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1088 break;
1089
1090 case GE_EXPR:
1091 case GT_EXPR:
1092 if (integer_zerop (TREE_OPERAND (cond, 1))
1093 || integer_onep (TREE_OPERAND (cond, 1))
1094 || integer_all_onesp (TREE_OPERAND (cond, 1))
1095 || real_zerop (TREE_OPERAND (cond, 1))
1096 || real_onep (TREE_OPERAND (cond, 1))
1097 || real_minus_onep (TREE_OPERAND (cond, 1)))
1098 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1099 break;
1100
1101 default:
1102 break;
1103 }
1104 }
1105
1106 /* Try to guess whether the value of return means error code. */
1107 static enum br_predictor
1108 return_prediction (tree val, enum prediction *prediction)
1109 {
1110 /* VOID. */
1111 if (!val)
1112 return PRED_NO_PREDICTION;
1113 /* Different heuristics for pointers and scalars. */
1114 if (POINTER_TYPE_P (TREE_TYPE (val)))
1115 {
1116 /* NULL is usually not returned. */
1117 if (integer_zerop (val))
1118 {
1119 *prediction = NOT_TAKEN;
1120 return PRED_NULL_RETURN;
1121 }
1122 }
1123 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1124 {
1125 /* Negative return values are often used to indicate
1126 errors. */
1127 if (TREE_CODE (val) == INTEGER_CST
1128 && tree_int_cst_sgn (val) < 0)
1129 {
1130 *prediction = NOT_TAKEN;
1131 return PRED_NEGATIVE_RETURN;
1132 }
1133 /* Constant return values seems to be commonly taken.
1134 Zero/one often represent booleans so exclude them from the
1135 heuristics. */
1136 if (TREE_CONSTANT (val)
1137 && (!integer_zerop (val) && !integer_onep (val)))
1138 {
1139 *prediction = TAKEN;
1140 return PRED_NEGATIVE_RETURN;
1141 }
1142 }
1143 return PRED_NO_PREDICTION;
1144 }
1145
1146 /* Find the basic block with return expression and look up for possible
1147 return value trying to apply RETURN_PREDICTION heuristics. */
1148 static void
1149 apply_return_prediction (int *heads)
1150 {
1151 tree return_stmt = NULL;
1152 tree return_val;
1153 edge e;
1154 tree phi;
1155 int phi_num_args, i;
1156 enum br_predictor pred;
1157 enum prediction direction;
1158 edge_iterator ei;
1159
1160 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1161 {
1162 return_stmt = last_stmt (e->src);
1163 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1164 break;
1165 }
1166 if (!e)
1167 return;
1168 return_val = TREE_OPERAND (return_stmt, 0);
1169 if (!return_val)
1170 return;
1171 if (TREE_CODE (return_val) == GIMPLE_MODIFY_STMT)
1172 return_val = GIMPLE_STMT_OPERAND (return_val, 1);
1173 if (TREE_CODE (return_val) != SSA_NAME
1174 || !SSA_NAME_DEF_STMT (return_val)
1175 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1176 return;
1177 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1178 if (PHI_RESULT (phi) == return_val)
1179 break;
1180 if (!phi)
1181 return;
1182 phi_num_args = PHI_NUM_ARGS (phi);
1183 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1184
1185 /* Avoid the degenerate case where all return values form the function
1186 belongs to same category (ie they are all positive constants)
1187 so we can hardly say something about them. */
1188 for (i = 1; i < phi_num_args; i++)
1189 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1190 break;
1191 if (i != phi_num_args)
1192 for (i = 0; i < phi_num_args; i++)
1193 {
1194 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1195 if (pred != PRED_NO_PREDICTION)
1196 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1197 direction);
1198 }
1199 }
1200
1201 /* Look for basic block that contains unlikely to happen events
1202 (such as noreturn calls) and mark all paths leading to execution
1203 of this basic blocks as unlikely. */
1204
1205 static void
1206 tree_bb_level_predictions (void)
1207 {
1208 basic_block bb;
1209 int *heads;
1210
1211 heads = XCNEWVEC (int, last_basic_block);
1212 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1213
1214 apply_return_prediction (heads);
1215
1216 FOR_EACH_BB (bb)
1217 {
1218 block_stmt_iterator bsi = bsi_last (bb);
1219
1220 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1221 {
1222 tree stmt = bsi_stmt (bsi);
1223 switch (TREE_CODE (stmt))
1224 {
1225 case GIMPLE_MODIFY_STMT:
1226 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR)
1227 {
1228 stmt = GIMPLE_STMT_OPERAND (stmt, 1);
1229 goto call_expr;
1230 }
1231 break;
1232 case CALL_EXPR:
1233 call_expr:;
1234 if (call_expr_flags (stmt) & ECF_NORETURN)
1235 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1236 NOT_TAKEN);
1237 break;
1238 default:
1239 break;
1240 }
1241 }
1242 }
1243
1244 free (heads);
1245 }
1246
1247 /* Predict branch probabilities and estimate profile of the tree CFG. */
1248 static unsigned int
1249 tree_estimate_probability (void)
1250 {
1251 basic_block bb;
1252
1253 loop_optimizer_init (0);
1254 if (current_loops && dump_file && (dump_flags & TDF_DETAILS))
1255 flow_loops_dump (dump_file, NULL, 0);
1256
1257 add_noreturn_fake_exit_edges ();
1258 connect_infinite_loops_to_exit ();
1259 calculate_dominance_info (CDI_DOMINATORS);
1260 calculate_dominance_info (CDI_POST_DOMINATORS);
1261
1262 tree_bb_level_predictions ();
1263
1264 mark_irreducible_loops ();
1265 if (current_loops)
1266 predict_loops ();
1267
1268 FOR_EACH_BB (bb)
1269 {
1270 edge e;
1271 edge_iterator ei;
1272
1273 FOR_EACH_EDGE (e, ei, bb->succs)
1274 {
1275 /* Predict early returns to be probable, as we've already taken
1276 care for error returns and other cases are often used for
1277 fast paths through function. */
1278 if (e->dest == EXIT_BLOCK_PTR
1279 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1280 && !single_pred_p (bb))
1281 {
1282 edge e1;
1283 edge_iterator ei1;
1284
1285 FOR_EACH_EDGE (e1, ei1, bb->preds)
1286 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1287 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1288 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1289 && !last_basic_block_p (e1->src))
1290 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1291 }
1292
1293 /* Look for block we are guarding (ie we dominate it,
1294 but it doesn't postdominate us). */
1295 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1296 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1297 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1298 {
1299 block_stmt_iterator bi;
1300
1301 /* The call heuristic claims that a guarded function call
1302 is improbable. This is because such calls are often used
1303 to signal exceptional situations such as printing error
1304 messages. */
1305 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1306 bsi_next (&bi))
1307 {
1308 tree stmt = bsi_stmt (bi);
1309 if ((TREE_CODE (stmt) == CALL_EXPR
1310 || (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1311 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1))
1312 == CALL_EXPR))
1313 /* Constant and pure calls are hardly used to signalize
1314 something exceptional. */
1315 && TREE_SIDE_EFFECTS (stmt))
1316 {
1317 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1318 break;
1319 }
1320 }
1321 }
1322 }
1323 tree_predict_by_opcode (bb);
1324 }
1325 FOR_EACH_BB (bb)
1326 combine_predictions_for_bb (bb);
1327
1328 strip_builtin_expect ();
1329 estimate_bb_frequencies ();
1330 free_dominance_info (CDI_POST_DOMINATORS);
1331 remove_fake_exit_edges ();
1332 loop_optimizer_finalize ();
1333 if (dump_file && (dump_flags & TDF_DETAILS))
1334 dump_tree_cfg (dump_file, dump_flags);
1335 if (profile_status == PROFILE_ABSENT)
1336 profile_status = PROFILE_GUESSED;
1337 return 0;
1338 }
1339 \f
1340 /* Check whether this is the last basic block of function. Commonly
1341 there is one extra common cleanup block. */
1342 static bool
1343 last_basic_block_p (basic_block bb)
1344 {
1345 if (bb == EXIT_BLOCK_PTR)
1346 return false;
1347
1348 return (bb->next_bb == EXIT_BLOCK_PTR
1349 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1350 && single_succ_p (bb)
1351 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1352 }
1353
1354 /* Sets branch probabilities according to PREDiction and
1355 FLAGS. HEADS[bb->index] should be index of basic block in that we
1356 need to alter branch predictions (i.e. the first of our dominators
1357 such that we do not post-dominate it) (but we fill this information
1358 on demand, so -1 may be there in case this was not needed yet). */
1359
1360 static void
1361 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1362 enum prediction taken)
1363 {
1364 edge e;
1365 edge_iterator ei;
1366 int y;
1367
1368 if (heads[bb->index] == ENTRY_BLOCK)
1369 {
1370 /* This is first time we need this field in heads array; so
1371 find first dominator that we do not post-dominate (we are
1372 using already known members of heads array). */
1373 basic_block ai = bb;
1374 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1375 int head;
1376
1377 while (heads[next_ai->index] == ENTRY_BLOCK)
1378 {
1379 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1380 break;
1381 heads[next_ai->index] = ai->index;
1382 ai = next_ai;
1383 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1384 }
1385 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1386 head = next_ai->index;
1387 else
1388 head = heads[next_ai->index];
1389 while (next_ai != bb)
1390 {
1391 next_ai = ai;
1392 ai = BASIC_BLOCK (heads[ai->index]);
1393 heads[next_ai->index] = head;
1394 }
1395 }
1396 y = heads[bb->index];
1397
1398 /* Now find the edge that leads to our branch and aply the prediction. */
1399
1400 if (y == last_basic_block)
1401 return;
1402 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1403 if (e->dest->index >= NUM_FIXED_BLOCKS
1404 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1405 predict_edge_def (e, pred, taken);
1406 }
1407 \f
1408 /* This is used to carry information about basic blocks. It is
1409 attached to the AUX field of the standard CFG block. */
1410
1411 typedef struct block_info_def
1412 {
1413 /* Estimated frequency of execution of basic_block. */
1414 sreal frequency;
1415
1416 /* To keep queue of basic blocks to process. */
1417 basic_block next;
1418
1419 /* Number of predecessors we need to visit first. */
1420 int npredecessors;
1421 } *block_info;
1422
1423 /* Similar information for edges. */
1424 typedef struct edge_info_def
1425 {
1426 /* In case edge is a loopback edge, the probability edge will be reached
1427 in case header is. Estimated number of iterations of the loop can be
1428 then computed as 1 / (1 - back_edge_prob). */
1429 sreal back_edge_prob;
1430 /* True if the edge is a loopback edge in the natural loop. */
1431 unsigned int back_edge:1;
1432 } *edge_info;
1433
1434 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1435 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1436
1437 /* Helper function for estimate_bb_frequencies.
1438 Propagate the frequencies in blocks marked in
1439 TOVISIT, starting in HEAD. */
1440
1441 static void
1442 propagate_freq (basic_block head, bitmap tovisit)
1443 {
1444 basic_block bb;
1445 basic_block last;
1446 unsigned i;
1447 edge e;
1448 basic_block nextbb;
1449 bitmap_iterator bi;
1450
1451 /* For each basic block we need to visit count number of his predecessors
1452 we need to visit first. */
1453 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1454 {
1455 edge_iterator ei;
1456 int count = 0;
1457
1458 /* The outermost "loop" includes the exit block, which we can not
1459 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1460 directly. Do the same for the entry block. */
1461 bb = BASIC_BLOCK (i);
1462
1463 FOR_EACH_EDGE (e, ei, bb->preds)
1464 {
1465 bool visit = bitmap_bit_p (tovisit, e->src->index);
1466
1467 if (visit && !(e->flags & EDGE_DFS_BACK))
1468 count++;
1469 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1470 fprintf (dump_file,
1471 "Irreducible region hit, ignoring edge to %i->%i\n",
1472 e->src->index, bb->index);
1473 }
1474 BLOCK_INFO (bb)->npredecessors = count;
1475 }
1476
1477 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1478 last = head;
1479 for (bb = head; bb; bb = nextbb)
1480 {
1481 edge_iterator ei;
1482 sreal cyclic_probability, frequency;
1483
1484 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1485 memcpy (&frequency, &real_zero, sizeof (real_zero));
1486
1487 nextbb = BLOCK_INFO (bb)->next;
1488 BLOCK_INFO (bb)->next = NULL;
1489
1490 /* Compute frequency of basic block. */
1491 if (bb != head)
1492 {
1493 #ifdef ENABLE_CHECKING
1494 FOR_EACH_EDGE (e, ei, bb->preds)
1495 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1496 || (e->flags & EDGE_DFS_BACK));
1497 #endif
1498
1499 FOR_EACH_EDGE (e, ei, bb->preds)
1500 if (EDGE_INFO (e)->back_edge)
1501 {
1502 sreal_add (&cyclic_probability, &cyclic_probability,
1503 &EDGE_INFO (e)->back_edge_prob);
1504 }
1505 else if (!(e->flags & EDGE_DFS_BACK))
1506 {
1507 sreal tmp;
1508
1509 /* frequency += (e->probability
1510 * BLOCK_INFO (e->src)->frequency /
1511 REG_BR_PROB_BASE); */
1512
1513 sreal_init (&tmp, e->probability, 0);
1514 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1515 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1516 sreal_add (&frequency, &frequency, &tmp);
1517 }
1518
1519 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1520 {
1521 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1522 sizeof (frequency));
1523 }
1524 else
1525 {
1526 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1527 {
1528 memcpy (&cyclic_probability, &real_almost_one,
1529 sizeof (real_almost_one));
1530 }
1531
1532 /* BLOCK_INFO (bb)->frequency = frequency
1533 / (1 - cyclic_probability) */
1534
1535 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1536 sreal_div (&BLOCK_INFO (bb)->frequency,
1537 &frequency, &cyclic_probability);
1538 }
1539 }
1540
1541 bitmap_clear_bit (tovisit, bb->index);
1542
1543 e = find_edge (bb, head);
1544 if (e)
1545 {
1546 sreal tmp;
1547
1548 /* EDGE_INFO (e)->back_edge_prob
1549 = ((e->probability * BLOCK_INFO (bb)->frequency)
1550 / REG_BR_PROB_BASE); */
1551
1552 sreal_init (&tmp, e->probability, 0);
1553 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1554 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1555 &tmp, &real_inv_br_prob_base);
1556 }
1557
1558 /* Propagate to successor blocks. */
1559 FOR_EACH_EDGE (e, ei, bb->succs)
1560 if (!(e->flags & EDGE_DFS_BACK)
1561 && BLOCK_INFO (e->dest)->npredecessors)
1562 {
1563 BLOCK_INFO (e->dest)->npredecessors--;
1564 if (!BLOCK_INFO (e->dest)->npredecessors)
1565 {
1566 if (!nextbb)
1567 nextbb = e->dest;
1568 else
1569 BLOCK_INFO (last)->next = e->dest;
1570
1571 last = e->dest;
1572 }
1573 }
1574 }
1575 }
1576
1577 /* Estimate probabilities of loopback edges in loops at same nest level. */
1578
1579 static void
1580 estimate_loops_at_level (struct loop *first_loop)
1581 {
1582 struct loop *loop;
1583
1584 for (loop = first_loop; loop; loop = loop->next)
1585 {
1586 edge e;
1587 basic_block *bbs;
1588 unsigned i;
1589 bitmap tovisit = BITMAP_ALLOC (NULL);
1590
1591 estimate_loops_at_level (loop->inner);
1592
1593 /* Find current loop back edge and mark it. */
1594 e = loop_latch_edge (loop);
1595 EDGE_INFO (e)->back_edge = 1;
1596
1597 bbs = get_loop_body (loop);
1598 for (i = 0; i < loop->num_nodes; i++)
1599 bitmap_set_bit (tovisit, bbs[i]->index);
1600 free (bbs);
1601 propagate_freq (loop->header, tovisit);
1602 BITMAP_FREE (tovisit);
1603 }
1604 }
1605
1606 /* Propagates frequencies through structure of loops. */
1607
1608 static void
1609 estimate_loops (void)
1610 {
1611 bitmap tovisit = BITMAP_ALLOC (NULL);
1612 basic_block bb;
1613
1614 /* Start by estimating the frequencies in the loops. */
1615 if (current_loops)
1616 estimate_loops_at_level (current_loops->tree_root->inner);
1617
1618 /* Now propagate the frequencies through all the blocks. */
1619 FOR_ALL_BB (bb)
1620 {
1621 bitmap_set_bit (tovisit, bb->index);
1622 }
1623 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1624 BITMAP_FREE (tovisit);
1625 }
1626
1627 /* Convert counts measured by profile driven feedback to frequencies.
1628 Return nonzero iff there was any nonzero execution count. */
1629
1630 int
1631 counts_to_freqs (void)
1632 {
1633 gcov_type count_max, true_count_max = 0;
1634 basic_block bb;
1635
1636 FOR_EACH_BB (bb)
1637 true_count_max = MAX (bb->count, true_count_max);
1638
1639 count_max = MAX (true_count_max, 1);
1640 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1641 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1642 return true_count_max;
1643 }
1644
1645 /* Return true if function is likely to be expensive, so there is no point to
1646 optimize performance of prologue, epilogue or do inlining at the expense
1647 of code size growth. THRESHOLD is the limit of number of instructions
1648 function can execute at average to be still considered not expensive. */
1649
1650 bool
1651 expensive_function_p (int threshold)
1652 {
1653 unsigned int sum = 0;
1654 basic_block bb;
1655 unsigned int limit;
1656
1657 /* We can not compute accurately for large thresholds due to scaled
1658 frequencies. */
1659 gcc_assert (threshold <= BB_FREQ_MAX);
1660
1661 /* Frequencies are out of range. This either means that function contains
1662 internal loop executing more than BB_FREQ_MAX times or profile feedback
1663 is available and function has not been executed at all. */
1664 if (ENTRY_BLOCK_PTR->frequency == 0)
1665 return true;
1666
1667 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1668 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1669 FOR_EACH_BB (bb)
1670 {
1671 rtx insn;
1672
1673 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1674 insn = NEXT_INSN (insn))
1675 if (active_insn_p (insn))
1676 {
1677 sum += bb->frequency;
1678 if (sum > limit)
1679 return true;
1680 }
1681 }
1682
1683 return false;
1684 }
1685
1686 /* Estimate basic blocks frequency by given branch probabilities. */
1687
1688 static void
1689 estimate_bb_frequencies (void)
1690 {
1691 basic_block bb;
1692 sreal freq_max;
1693
1694 if (!flag_branch_probabilities || !counts_to_freqs ())
1695 {
1696 static int real_values_initialized = 0;
1697
1698 if (!real_values_initialized)
1699 {
1700 real_values_initialized = 1;
1701 sreal_init (&real_zero, 0, 0);
1702 sreal_init (&real_one, 1, 0);
1703 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1704 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1705 sreal_init (&real_one_half, 1, -1);
1706 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1707 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1708 }
1709
1710 mark_dfs_back_edges ();
1711
1712 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1713
1714 /* Set up block info for each basic block. */
1715 alloc_aux_for_blocks (sizeof (struct block_info_def));
1716 alloc_aux_for_edges (sizeof (struct edge_info_def));
1717 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1718 {
1719 edge e;
1720 edge_iterator ei;
1721
1722 FOR_EACH_EDGE (e, ei, bb->succs)
1723 {
1724 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1725 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1726 &EDGE_INFO (e)->back_edge_prob,
1727 &real_inv_br_prob_base);
1728 }
1729 }
1730
1731 /* First compute probabilities locally for each loop from innermost
1732 to outermost to examine probabilities for back edges. */
1733 estimate_loops ();
1734
1735 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1736 FOR_EACH_BB (bb)
1737 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1738 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1739
1740 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1741 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1742 {
1743 sreal tmp;
1744
1745 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1746 sreal_add (&tmp, &tmp, &real_one_half);
1747 bb->frequency = sreal_to_int (&tmp);
1748 }
1749
1750 free_aux_for_blocks ();
1751 free_aux_for_edges ();
1752 }
1753 compute_function_frequency ();
1754 if (flag_reorder_functions)
1755 choose_function_section ();
1756 }
1757
1758 /* Decide whether function is hot, cold or unlikely executed. */
1759 static void
1760 compute_function_frequency (void)
1761 {
1762 basic_block bb;
1763
1764 if (!profile_info || !flag_branch_probabilities)
1765 return;
1766 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1767 FOR_EACH_BB (bb)
1768 {
1769 if (maybe_hot_bb_p (bb))
1770 {
1771 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1772 return;
1773 }
1774 if (!probably_never_executed_bb_p (bb))
1775 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1776 }
1777 }
1778
1779 /* Choose appropriate section for the function. */
1780 static void
1781 choose_function_section (void)
1782 {
1783 if (DECL_SECTION_NAME (current_function_decl)
1784 || !targetm.have_named_sections
1785 /* Theoretically we can split the gnu.linkonce text section too,
1786 but this requires more work as the frequency needs to match
1787 for all generated objects so we need to merge the frequency
1788 of all instances. For now just never set frequency for these. */
1789 || DECL_ONE_ONLY (current_function_decl))
1790 return;
1791
1792 /* If we are doing the partitioning optimization, let the optimization
1793 choose the correct section into which to put things. */
1794
1795 if (flag_reorder_blocks_and_partition)
1796 return;
1797
1798 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1799 DECL_SECTION_NAME (current_function_decl) =
1800 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1801 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1802 DECL_SECTION_NAME (current_function_decl) =
1803 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1804 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1805 }
1806
1807 static bool
1808 gate_estimate_probability (void)
1809 {
1810 return flag_guess_branch_prob;
1811 }
1812
1813 struct tree_opt_pass pass_profile =
1814 {
1815 "profile", /* name */
1816 gate_estimate_probability, /* gate */
1817 tree_estimate_probability, /* execute */
1818 NULL, /* sub */
1819 NULL, /* next */
1820 0, /* static_pass_number */
1821 TV_BRANCH_PROB, /* tv_id */
1822 PROP_cfg, /* properties_required */
1823 0, /* properties_provided */
1824 0, /* properties_destroyed */
1825 0, /* todo_flags_start */
1826 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1827 0 /* letter */
1828 };