Makefile.in (passes.o, [...]): Add dependencies.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
78 static bool last_basic_block_p (basic_block);
79 static void compute_function_frequency (void);
80 static void choose_function_section (void);
81 static bool can_predict_insn_p (rtx);
82
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
85
86 struct predictor_info
87 {
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
92 };
93
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
97
98 /* Recompute hitrate in percent to our representation. */
99
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
101
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
105
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
108 };
109 #undef DEF_PREDICTOR
110
111 /* Return true in case BB can be CPU intensive and should be optimized
112 for maximal performance. */
113
114 bool
115 maybe_hot_bb_p (basic_block bb)
116 {
117 if (profile_info && flag_branch_probabilities
118 && (bb->count
119 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
120 return false;
121 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
122 return false;
123 return true;
124 }
125
126 /* Return true in case BB is cold and should be optimized for size. */
127
128 bool
129 probably_cold_bb_p (basic_block bb)
130 {
131 if (profile_info && flag_branch_probabilities
132 && (bb->count
133 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
134 return true;
135 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
136 return true;
137 return false;
138 }
139
140 /* Return true in case BB is probably never executed. */
141 bool
142 probably_never_executed_bb_p (basic_block bb)
143 {
144 if (profile_info && flag_branch_probabilities)
145 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
146 return false;
147 }
148
149 /* Return true if the one of outgoing edges is already predicted by
150 PREDICTOR. */
151
152 bool
153 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
154 {
155 rtx note;
156 if (!INSN_P (BB_END (bb)))
157 return false;
158 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
159 if (REG_NOTE_KIND (note) == REG_BR_PRED
160 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
161 return true;
162 return false;
163 }
164
165 /* Return true if the one of outgoing edges is already predicted by
166 PREDICTOR. */
167
168 bool
169 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
170 {
171 struct edge_prediction *i;
172 for (i = bb->predictions; i; i = i->ep_next)
173 if (i->ep_predictor == predictor)
174 return true;
175 return false;
176 }
177
178 /* Return true when the probability of edge is reliable.
179
180 The profile guessing code is good at predicting branch outcome (ie.
181 taken/not taken), that is predicted right slightly over 75% of time.
182 It is however notoriously poor on predicting the probability itself.
183 In general the profile appear a lot flatter (with probabilities closer
184 to 50%) than the reality so it is bad idea to use it to drive optimization
185 such as those disabling dynamic branch prediction for well predictable
186 branches.
187
188 There are two exceptions - edges leading to noreturn edges and edges
189 predicted by number of iterations heuristics are predicted well. This macro
190 should be able to distinguish those, but at the moment it simply check for
191 noreturn heuristic that is only one giving probability over 99% or bellow
192 1%. In future we might want to propagate reliability information across the
193 CFG if we find this information useful on multiple places. */
194 static bool
195 probability_reliable_p (int prob)
196 {
197 return (profile_status == PROFILE_READ
198 || (profile_status == PROFILE_GUESSED
199 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
200 }
201
202 /* Same predicate as above, working on edges. */
203 bool
204 edge_probability_reliable_p (edge e)
205 {
206 return probability_reliable_p (e->probability);
207 }
208
209 /* Same predicate as edge_probability_reliable_p, working on notes. */
210 bool
211 br_prob_note_reliable_p (rtx note)
212 {
213 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
214 return probability_reliable_p (INTVAL (XEXP (note, 0)));
215 }
216
217 static void
218 predict_insn (rtx insn, enum br_predictor predictor, int probability)
219 {
220 gcc_assert (any_condjump_p (insn));
221 if (!flag_guess_branch_prob)
222 return;
223
224 REG_NOTES (insn)
225 = gen_rtx_EXPR_LIST (REG_BR_PRED,
226 gen_rtx_CONCAT (VOIDmode,
227 GEN_INT ((int) predictor),
228 GEN_INT ((int) probability)),
229 REG_NOTES (insn));
230 }
231
232 /* Predict insn by given predictor. */
233
234 void
235 predict_insn_def (rtx insn, enum br_predictor predictor,
236 enum prediction taken)
237 {
238 int probability = predictor_info[(int) predictor].hitrate;
239
240 if (taken != TAKEN)
241 probability = REG_BR_PROB_BASE - probability;
242
243 predict_insn (insn, predictor, probability);
244 }
245
246 /* Predict edge E with given probability if possible. */
247
248 void
249 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
250 {
251 rtx last_insn;
252 last_insn = BB_END (e->src);
253
254 /* We can store the branch prediction information only about
255 conditional jumps. */
256 if (!any_condjump_p (last_insn))
257 return;
258
259 /* We always store probability of branching. */
260 if (e->flags & EDGE_FALLTHRU)
261 probability = REG_BR_PROB_BASE - probability;
262
263 predict_insn (last_insn, predictor, probability);
264 }
265
266 /* Predict edge E with the given PROBABILITY. */
267 void
268 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
269 {
270 gcc_assert (profile_status != PROFILE_GUESSED);
271 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
272 && flag_guess_branch_prob && optimize)
273 {
274 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
275
276 i->ep_next = e->src->predictions;
277 e->src->predictions = i;
278 i->ep_probability = probability;
279 i->ep_predictor = predictor;
280 i->ep_edge = e;
281 }
282 }
283
284 /* Remove all predictions on given basic block that are attached
285 to edge E. */
286 void
287 remove_predictions_associated_with_edge (edge e)
288 {
289 if (e->src->predictions)
290 {
291 struct edge_prediction **prediction = &e->src->predictions;
292 while (*prediction)
293 {
294 if ((*prediction)->ep_edge == e)
295 *prediction = (*prediction)->ep_next;
296 else
297 prediction = &((*prediction)->ep_next);
298 }
299 }
300 }
301
302 /* Return true when we can store prediction on insn INSN.
303 At the moment we represent predictions only on conditional
304 jumps, not at computed jump or other complicated cases. */
305 static bool
306 can_predict_insn_p (rtx insn)
307 {
308 return (JUMP_P (insn)
309 && any_condjump_p (insn)
310 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
311 }
312
313 /* Predict edge E by given predictor if possible. */
314
315 void
316 predict_edge_def (edge e, enum br_predictor predictor,
317 enum prediction taken)
318 {
319 int probability = predictor_info[(int) predictor].hitrate;
320
321 if (taken != TAKEN)
322 probability = REG_BR_PROB_BASE - probability;
323
324 predict_edge (e, predictor, probability);
325 }
326
327 /* Invert all branch predictions or probability notes in the INSN. This needs
328 to be done each time we invert the condition used by the jump. */
329
330 void
331 invert_br_probabilities (rtx insn)
332 {
333 rtx note;
334
335 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
336 if (REG_NOTE_KIND (note) == REG_BR_PROB)
337 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
338 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
339 XEXP (XEXP (note, 0), 1)
340 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
341 }
342
343 /* Dump information about the branch prediction to the output file. */
344
345 static void
346 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
347 basic_block bb, int used)
348 {
349 edge e;
350 edge_iterator ei;
351
352 if (!file)
353 return;
354
355 FOR_EACH_EDGE (e, ei, bb->succs)
356 if (! (e->flags & EDGE_FALLTHRU))
357 break;
358
359 fprintf (file, " %s heuristics%s: %.1f%%",
360 predictor_info[predictor].name,
361 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
362
363 if (bb->count)
364 {
365 fprintf (file, " exec ");
366 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
367 if (e)
368 {
369 fprintf (file, " hit ");
370 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
371 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
372 }
373 }
374
375 fprintf (file, "\n");
376 }
377
378 /* We can not predict the probabilities of outgoing edges of bb. Set them
379 evenly and hope for the best. */
380 static void
381 set_even_probabilities (basic_block bb)
382 {
383 int nedges = 0;
384 edge e;
385 edge_iterator ei;
386
387 FOR_EACH_EDGE (e, ei, bb->succs)
388 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
389 nedges ++;
390 FOR_EACH_EDGE (e, ei, bb->succs)
391 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
392 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
393 else
394 e->probability = 0;
395 }
396
397 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
398 note if not already present. Remove now useless REG_BR_PRED notes. */
399
400 static void
401 combine_predictions_for_insn (rtx insn, basic_block bb)
402 {
403 rtx prob_note;
404 rtx *pnote;
405 rtx note;
406 int best_probability = PROB_EVEN;
407 int best_predictor = END_PREDICTORS;
408 int combined_probability = REG_BR_PROB_BASE / 2;
409 int d;
410 bool first_match = false;
411 bool found = false;
412
413 if (!can_predict_insn_p (insn))
414 {
415 set_even_probabilities (bb);
416 return;
417 }
418
419 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
420 pnote = &REG_NOTES (insn);
421 if (dump_file)
422 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
423 bb->index);
424
425 /* We implement "first match" heuristics and use probability guessed
426 by predictor with smallest index. */
427 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
428 if (REG_NOTE_KIND (note) == REG_BR_PRED)
429 {
430 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
431 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
432
433 found = true;
434 if (best_predictor > predictor)
435 best_probability = probability, best_predictor = predictor;
436
437 d = (combined_probability * probability
438 + (REG_BR_PROB_BASE - combined_probability)
439 * (REG_BR_PROB_BASE - probability));
440
441 /* Use FP math to avoid overflows of 32bit integers. */
442 if (d == 0)
443 /* If one probability is 0% and one 100%, avoid division by zero. */
444 combined_probability = REG_BR_PROB_BASE / 2;
445 else
446 combined_probability = (((double) combined_probability) * probability
447 * REG_BR_PROB_BASE / d + 0.5);
448 }
449
450 /* Decide which heuristic to use. In case we didn't match anything,
451 use no_prediction heuristic, in case we did match, use either
452 first match or Dempster-Shaffer theory depending on the flags. */
453
454 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
455 first_match = true;
456
457 if (!found)
458 dump_prediction (dump_file, PRED_NO_PREDICTION,
459 combined_probability, bb, true);
460 else
461 {
462 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
463 bb, !first_match);
464 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
465 bb, first_match);
466 }
467
468 if (first_match)
469 combined_probability = best_probability;
470 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
471
472 while (*pnote)
473 {
474 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
475 {
476 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
477 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
478
479 dump_prediction (dump_file, predictor, probability, bb,
480 !first_match || best_predictor == predictor);
481 *pnote = XEXP (*pnote, 1);
482 }
483 else
484 pnote = &XEXP (*pnote, 1);
485 }
486
487 if (!prob_note)
488 {
489 REG_NOTES (insn)
490 = gen_rtx_EXPR_LIST (REG_BR_PROB,
491 GEN_INT (combined_probability), REG_NOTES (insn));
492
493 /* Save the prediction into CFG in case we are seeing non-degenerated
494 conditional jump. */
495 if (!single_succ_p (bb))
496 {
497 BRANCH_EDGE (bb)->probability = combined_probability;
498 FALLTHRU_EDGE (bb)->probability
499 = REG_BR_PROB_BASE - combined_probability;
500 }
501 }
502 else if (!single_succ_p (bb))
503 {
504 int prob = INTVAL (XEXP (prob_note, 0));
505
506 BRANCH_EDGE (bb)->probability = prob;
507 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
508 }
509 else
510 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
511 }
512
513 /* Combine predictions into single probability and store them into CFG.
514 Remove now useless prediction entries. */
515
516 static void
517 combine_predictions_for_bb (basic_block bb)
518 {
519 int best_probability = PROB_EVEN;
520 int best_predictor = END_PREDICTORS;
521 int combined_probability = REG_BR_PROB_BASE / 2;
522 int d;
523 bool first_match = false;
524 bool found = false;
525 struct edge_prediction *pred;
526 int nedges = 0;
527 edge e, first = NULL, second = NULL;
528 edge_iterator ei;
529
530 FOR_EACH_EDGE (e, ei, bb->succs)
531 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
532 {
533 nedges ++;
534 if (first && !second)
535 second = e;
536 if (!first)
537 first = e;
538 }
539
540 /* When there is no successor or only one choice, prediction is easy.
541
542 We are lazy for now and predict only basic blocks with two outgoing
543 edges. It is possible to predict generic case too, but we have to
544 ignore first match heuristics and do more involved combining. Implement
545 this later. */
546 if (nedges != 2)
547 {
548 if (!bb->count)
549 set_even_probabilities (bb);
550 bb->predictions = NULL;
551 if (dump_file)
552 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
553 nedges, bb->index);
554 return;
555 }
556
557 if (dump_file)
558 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
559
560 /* We implement "first match" heuristics and use probability guessed
561 by predictor with smallest index. */
562 for (pred = bb->predictions; pred; pred = pred->ep_next)
563 {
564 int predictor = pred->ep_predictor;
565 int probability = pred->ep_probability;
566
567 if (pred->ep_edge != first)
568 probability = REG_BR_PROB_BASE - probability;
569
570 found = true;
571 if (best_predictor > predictor)
572 best_probability = probability, best_predictor = predictor;
573
574 d = (combined_probability * probability
575 + (REG_BR_PROB_BASE - combined_probability)
576 * (REG_BR_PROB_BASE - probability));
577
578 /* Use FP math to avoid overflows of 32bit integers. */
579 if (d == 0)
580 /* If one probability is 0% and one 100%, avoid division by zero. */
581 combined_probability = REG_BR_PROB_BASE / 2;
582 else
583 combined_probability = (((double) combined_probability) * probability
584 * REG_BR_PROB_BASE / d + 0.5);
585 }
586
587 /* Decide which heuristic to use. In case we didn't match anything,
588 use no_prediction heuristic, in case we did match, use either
589 first match or Dempster-Shaffer theory depending on the flags. */
590
591 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
592 first_match = true;
593
594 if (!found)
595 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
596 else
597 {
598 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
599 !first_match);
600 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
601 first_match);
602 }
603
604 if (first_match)
605 combined_probability = best_probability;
606 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
607
608 for (pred = bb->predictions; pred; pred = pred->ep_next)
609 {
610 int predictor = pred->ep_predictor;
611 int probability = pred->ep_probability;
612
613 if (pred->ep_edge != EDGE_SUCC (bb, 0))
614 probability = REG_BR_PROB_BASE - probability;
615 dump_prediction (dump_file, predictor, probability, bb,
616 !first_match || best_predictor == predictor);
617 }
618 bb->predictions = NULL;
619
620 if (!bb->count)
621 {
622 first->probability = combined_probability;
623 second->probability = REG_BR_PROB_BASE - combined_probability;
624 }
625 }
626
627 /* Predict edge probabilities by exploiting loop structure. */
628
629 static void
630 predict_loops (void)
631 {
632 loop_iterator li;
633 struct loop *loop;
634
635 scev_initialize ();
636
637 /* Try to predict out blocks in a loop that are not part of a
638 natural loop. */
639 FOR_EACH_LOOP (li, loop, 0)
640 {
641 basic_block bb, *bbs;
642 unsigned j, n_exits;
643 VEC (edge, heap) *exits;
644 struct tree_niter_desc niter_desc;
645 edge ex;
646
647 exits = get_loop_exit_edges (loop);
648 n_exits = VEC_length (edge, exits);
649
650 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
651 {
652 tree niter = NULL;
653
654 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
655 niter = niter_desc.niter;
656 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
657 niter = loop_niter_by_eval (loop, ex);
658
659 if (TREE_CODE (niter) == INTEGER_CST)
660 {
661 int probability;
662 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
663 if (host_integerp (niter, 1)
664 && compare_tree_int (niter, max-1) == -1)
665 {
666 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
667 probability = ((REG_BR_PROB_BASE + nitercst / 2)
668 / nitercst);
669 }
670 else
671 probability = ((REG_BR_PROB_BASE + max / 2) / max);
672
673 predict_edge (ex, PRED_LOOP_ITERATIONS, probability);
674 }
675 }
676 VEC_free (edge, heap, exits);
677
678 bbs = get_loop_body (loop);
679
680 for (j = 0; j < loop->num_nodes; j++)
681 {
682 int header_found = 0;
683 edge e;
684 edge_iterator ei;
685
686 bb = bbs[j];
687
688 /* Bypass loop heuristics on continue statement. These
689 statements construct loops via "non-loop" constructs
690 in the source language and are better to be handled
691 separately. */
692 if (predicted_by_p (bb, PRED_CONTINUE))
693 continue;
694
695 /* Loop branch heuristics - predict an edge back to a
696 loop's head as taken. */
697 if (bb == loop->latch)
698 {
699 e = find_edge (loop->latch, loop->header);
700 if (e)
701 {
702 header_found = 1;
703 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
704 }
705 }
706
707 /* Loop exit heuristics - predict an edge exiting the loop if the
708 conditional has no loop header successors as not taken. */
709 if (!header_found)
710 {
711 /* For loop with many exits we don't want to predict all exits
712 with the pretty large probability, because if all exits are
713 considered in row, the loop would be predicted to iterate
714 almost never. The code to divide probability by number of
715 exits is very rough. It should compute the number of exits
716 taken in each patch through function (not the overall number
717 of exits that might be a lot higher for loops with wide switch
718 statements in them) and compute n-th square root.
719
720 We limit the minimal probability by 2% to avoid
721 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
722 as this was causing regression in perl benchmark containing such
723 a wide loop. */
724
725 int probability = ((REG_BR_PROB_BASE
726 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
727 / n_exits);
728 if (probability < HITRATE (2))
729 probability = HITRATE (2);
730 FOR_EACH_EDGE (e, ei, bb->succs)
731 if (e->dest->index < NUM_FIXED_BLOCKS
732 || !flow_bb_inside_loop_p (loop, e->dest))
733 predict_edge (e, PRED_LOOP_EXIT, probability);
734 }
735 }
736
737 /* Free basic blocks from get_loop_body. */
738 free (bbs);
739 }
740
741 scev_finalize ();
742 }
743
744 /* Attempt to predict probabilities of BB outgoing edges using local
745 properties. */
746 static void
747 bb_estimate_probability_locally (basic_block bb)
748 {
749 rtx last_insn = BB_END (bb);
750 rtx cond;
751
752 if (! can_predict_insn_p (last_insn))
753 return;
754 cond = get_condition (last_insn, NULL, false, false);
755 if (! cond)
756 return;
757
758 /* Try "pointer heuristic."
759 A comparison ptr == 0 is predicted as false.
760 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
761 if (COMPARISON_P (cond)
762 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
763 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
764 {
765 if (GET_CODE (cond) == EQ)
766 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
767 else if (GET_CODE (cond) == NE)
768 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
769 }
770 else
771
772 /* Try "opcode heuristic."
773 EQ tests are usually false and NE tests are usually true. Also,
774 most quantities are positive, so we can make the appropriate guesses
775 about signed comparisons against zero. */
776 switch (GET_CODE (cond))
777 {
778 case CONST_INT:
779 /* Unconditional branch. */
780 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
781 cond == const0_rtx ? NOT_TAKEN : TAKEN);
782 break;
783
784 case EQ:
785 case UNEQ:
786 /* Floating point comparisons appears to behave in a very
787 unpredictable way because of special role of = tests in
788 FP code. */
789 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
790 ;
791 /* Comparisons with 0 are often used for booleans and there is
792 nothing useful to predict about them. */
793 else if (XEXP (cond, 1) == const0_rtx
794 || XEXP (cond, 0) == const0_rtx)
795 ;
796 else
797 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
798 break;
799
800 case NE:
801 case LTGT:
802 /* Floating point comparisons appears to behave in a very
803 unpredictable way because of special role of = tests in
804 FP code. */
805 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
806 ;
807 /* Comparisons with 0 are often used for booleans and there is
808 nothing useful to predict about them. */
809 else if (XEXP (cond, 1) == const0_rtx
810 || XEXP (cond, 0) == const0_rtx)
811 ;
812 else
813 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
814 break;
815
816 case ORDERED:
817 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
818 break;
819
820 case UNORDERED:
821 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
822 break;
823
824 case LE:
825 case LT:
826 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
827 || XEXP (cond, 1) == constm1_rtx)
828 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
829 break;
830
831 case GE:
832 case GT:
833 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
834 || XEXP (cond, 1) == constm1_rtx)
835 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
836 break;
837
838 default:
839 break;
840 }
841 }
842
843 /* Set edge->probability for each successor edge of BB. */
844 void
845 guess_outgoing_edge_probabilities (basic_block bb)
846 {
847 bb_estimate_probability_locally (bb);
848 combine_predictions_for_insn (BB_END (bb), bb);
849 }
850 \f
851 /* Return constant EXPR will likely have at execution time, NULL if unknown.
852 The function is used by builtin_expect branch predictor so the evidence
853 must come from this construct and additional possible constant folding.
854
855 We may want to implement more involved value guess (such as value range
856 propagation based prediction), but such tricks shall go to new
857 implementation. */
858
859 static tree
860 expr_expected_value (tree expr, bitmap visited)
861 {
862 if (TREE_CONSTANT (expr))
863 return expr;
864 else if (TREE_CODE (expr) == SSA_NAME)
865 {
866 tree def = SSA_NAME_DEF_STMT (expr);
867
868 /* If we were already here, break the infinite cycle. */
869 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
870 return NULL;
871 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
872
873 if (TREE_CODE (def) == PHI_NODE)
874 {
875 /* All the arguments of the PHI node must have the same constant
876 length. */
877 int i;
878 tree val = NULL, new_val;
879
880 for (i = 0; i < PHI_NUM_ARGS (def); i++)
881 {
882 tree arg = PHI_ARG_DEF (def, i);
883
884 /* If this PHI has itself as an argument, we cannot
885 determine the string length of this argument. However,
886 if we can find an expected constant value for the other
887 PHI args then we can still be sure that this is
888 likely a constant. So be optimistic and just
889 continue with the next argument. */
890 if (arg == PHI_RESULT (def))
891 continue;
892
893 new_val = expr_expected_value (arg, visited);
894 if (!new_val)
895 return NULL;
896 if (!val)
897 val = new_val;
898 else if (!operand_equal_p (val, new_val, false))
899 return NULL;
900 }
901 return val;
902 }
903 if (TREE_CODE (def) != GIMPLE_MODIFY_STMT
904 || GIMPLE_STMT_OPERAND (def, 0) != expr)
905 return NULL;
906 return expr_expected_value (GIMPLE_STMT_OPERAND (def, 1), visited);
907 }
908 else if (TREE_CODE (expr) == CALL_EXPR)
909 {
910 tree decl = get_callee_fndecl (expr);
911 if (!decl)
912 return NULL;
913 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
914 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
915 {
916 tree arglist = TREE_OPERAND (expr, 1);
917 tree val;
918
919 if (arglist == NULL_TREE
920 || TREE_CHAIN (arglist) == NULL_TREE)
921 return NULL;
922 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
923 if (TREE_CONSTANT (val))
924 return val;
925 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
926 }
927 }
928 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
929 {
930 tree op0, op1, res;
931 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
932 if (!op0)
933 return NULL;
934 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
935 if (!op1)
936 return NULL;
937 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
938 if (TREE_CONSTANT (res))
939 return res;
940 return NULL;
941 }
942 if (UNARY_CLASS_P (expr))
943 {
944 tree op0, res;
945 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
946 if (!op0)
947 return NULL;
948 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
949 if (TREE_CONSTANT (res))
950 return res;
951 return NULL;
952 }
953 return NULL;
954 }
955 \f
956 /* Get rid of all builtin_expect calls we no longer need. */
957 static void
958 strip_builtin_expect (void)
959 {
960 basic_block bb;
961 FOR_EACH_BB (bb)
962 {
963 block_stmt_iterator bi;
964 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
965 {
966 tree stmt = bsi_stmt (bi);
967 tree fndecl;
968 tree arglist;
969
970 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
971 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR
972 && (fndecl = get_callee_fndecl (GIMPLE_STMT_OPERAND (stmt, 1)))
973 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
974 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
975 && (arglist = TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt, 1), 1))
976 && TREE_CHAIN (arglist))
977 {
978 GIMPLE_STMT_OPERAND (stmt, 1) = TREE_VALUE (arglist);
979 update_stmt (stmt);
980 }
981 }
982 }
983 }
984 \f
985 /* Predict using opcode of the last statement in basic block. */
986 static void
987 tree_predict_by_opcode (basic_block bb)
988 {
989 tree stmt = last_stmt (bb);
990 edge then_edge;
991 tree cond;
992 tree op0;
993 tree type;
994 tree val;
995 bitmap visited;
996 edge_iterator ei;
997
998 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
999 return;
1000 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1001 if (then_edge->flags & EDGE_TRUE_VALUE)
1002 break;
1003 cond = TREE_OPERAND (stmt, 0);
1004 if (!COMPARISON_CLASS_P (cond))
1005 return;
1006 op0 = TREE_OPERAND (cond, 0);
1007 type = TREE_TYPE (op0);
1008 visited = BITMAP_ALLOC (NULL);
1009 val = expr_expected_value (cond, visited);
1010 BITMAP_FREE (visited);
1011 if (val)
1012 {
1013 if (integer_zerop (val))
1014 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1015 else
1016 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1017 return;
1018 }
1019 /* Try "pointer heuristic."
1020 A comparison ptr == 0 is predicted as false.
1021 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1022 if (POINTER_TYPE_P (type))
1023 {
1024 if (TREE_CODE (cond) == EQ_EXPR)
1025 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1026 else if (TREE_CODE (cond) == NE_EXPR)
1027 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1028 }
1029 else
1030
1031 /* Try "opcode heuristic."
1032 EQ tests are usually false and NE tests are usually true. Also,
1033 most quantities are positive, so we can make the appropriate guesses
1034 about signed comparisons against zero. */
1035 switch (TREE_CODE (cond))
1036 {
1037 case EQ_EXPR:
1038 case UNEQ_EXPR:
1039 /* Floating point comparisons appears to behave in a very
1040 unpredictable way because of special role of = tests in
1041 FP code. */
1042 if (FLOAT_TYPE_P (type))
1043 ;
1044 /* Comparisons with 0 are often used for booleans and there is
1045 nothing useful to predict about them. */
1046 else if (integer_zerop (op0)
1047 || integer_zerop (TREE_OPERAND (cond, 1)))
1048 ;
1049 else
1050 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1051 break;
1052
1053 case NE_EXPR:
1054 case LTGT_EXPR:
1055 /* Floating point comparisons appears to behave in a very
1056 unpredictable way because of special role of = tests in
1057 FP code. */
1058 if (FLOAT_TYPE_P (type))
1059 ;
1060 /* Comparisons with 0 are often used for booleans and there is
1061 nothing useful to predict about them. */
1062 else if (integer_zerop (op0)
1063 || integer_zerop (TREE_OPERAND (cond, 1)))
1064 ;
1065 else
1066 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1067 break;
1068
1069 case ORDERED_EXPR:
1070 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1071 break;
1072
1073 case UNORDERED_EXPR:
1074 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1075 break;
1076
1077 case LE_EXPR:
1078 case LT_EXPR:
1079 if (integer_zerop (TREE_OPERAND (cond, 1))
1080 || integer_onep (TREE_OPERAND (cond, 1))
1081 || integer_all_onesp (TREE_OPERAND (cond, 1))
1082 || real_zerop (TREE_OPERAND (cond, 1))
1083 || real_onep (TREE_OPERAND (cond, 1))
1084 || real_minus_onep (TREE_OPERAND (cond, 1)))
1085 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1086 break;
1087
1088 case GE_EXPR:
1089 case GT_EXPR:
1090 if (integer_zerop (TREE_OPERAND (cond, 1))
1091 || integer_onep (TREE_OPERAND (cond, 1))
1092 || integer_all_onesp (TREE_OPERAND (cond, 1))
1093 || real_zerop (TREE_OPERAND (cond, 1))
1094 || real_onep (TREE_OPERAND (cond, 1))
1095 || real_minus_onep (TREE_OPERAND (cond, 1)))
1096 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1097 break;
1098
1099 default:
1100 break;
1101 }
1102 }
1103
1104 /* Try to guess whether the value of return means error code. */
1105 static enum br_predictor
1106 return_prediction (tree val, enum prediction *prediction)
1107 {
1108 /* VOID. */
1109 if (!val)
1110 return PRED_NO_PREDICTION;
1111 /* Different heuristics for pointers and scalars. */
1112 if (POINTER_TYPE_P (TREE_TYPE (val)))
1113 {
1114 /* NULL is usually not returned. */
1115 if (integer_zerop (val))
1116 {
1117 *prediction = NOT_TAKEN;
1118 return PRED_NULL_RETURN;
1119 }
1120 }
1121 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1122 {
1123 /* Negative return values are often used to indicate
1124 errors. */
1125 if (TREE_CODE (val) == INTEGER_CST
1126 && tree_int_cst_sgn (val) < 0)
1127 {
1128 *prediction = NOT_TAKEN;
1129 return PRED_NEGATIVE_RETURN;
1130 }
1131 /* Constant return values seems to be commonly taken.
1132 Zero/one often represent booleans so exclude them from the
1133 heuristics. */
1134 if (TREE_CONSTANT (val)
1135 && (!integer_zerop (val) && !integer_onep (val)))
1136 {
1137 *prediction = TAKEN;
1138 return PRED_NEGATIVE_RETURN;
1139 }
1140 }
1141 return PRED_NO_PREDICTION;
1142 }
1143
1144 /* Find the basic block with return expression and look up for possible
1145 return value trying to apply RETURN_PREDICTION heuristics. */
1146 static void
1147 apply_return_prediction (int *heads)
1148 {
1149 tree return_stmt = NULL;
1150 tree return_val;
1151 edge e;
1152 tree phi;
1153 int phi_num_args, i;
1154 enum br_predictor pred;
1155 enum prediction direction;
1156 edge_iterator ei;
1157
1158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1159 {
1160 return_stmt = last_stmt (e->src);
1161 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1162 break;
1163 }
1164 if (!e)
1165 return;
1166 return_val = TREE_OPERAND (return_stmt, 0);
1167 if (!return_val)
1168 return;
1169 if (TREE_CODE (return_val) == GIMPLE_MODIFY_STMT)
1170 return_val = GIMPLE_STMT_OPERAND (return_val, 1);
1171 if (TREE_CODE (return_val) != SSA_NAME
1172 || !SSA_NAME_DEF_STMT (return_val)
1173 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1174 return;
1175 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1176 if (PHI_RESULT (phi) == return_val)
1177 break;
1178 if (!phi)
1179 return;
1180 phi_num_args = PHI_NUM_ARGS (phi);
1181 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1182
1183 /* Avoid the degenerate case where all return values form the function
1184 belongs to same category (ie they are all positive constants)
1185 so we can hardly say something about them. */
1186 for (i = 1; i < phi_num_args; i++)
1187 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1188 break;
1189 if (i != phi_num_args)
1190 for (i = 0; i < phi_num_args; i++)
1191 {
1192 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1193 if (pred != PRED_NO_PREDICTION)
1194 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1195 direction);
1196 }
1197 }
1198
1199 /* Look for basic block that contains unlikely to happen events
1200 (such as noreturn calls) and mark all paths leading to execution
1201 of this basic blocks as unlikely. */
1202
1203 static void
1204 tree_bb_level_predictions (void)
1205 {
1206 basic_block bb;
1207 int *heads;
1208
1209 heads = XCNEWVEC (int, last_basic_block);
1210 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1211
1212 apply_return_prediction (heads);
1213
1214 FOR_EACH_BB (bb)
1215 {
1216 block_stmt_iterator bsi = bsi_last (bb);
1217
1218 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1219 {
1220 tree stmt = bsi_stmt (bsi);
1221 switch (TREE_CODE (stmt))
1222 {
1223 case GIMPLE_MODIFY_STMT:
1224 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR)
1225 {
1226 stmt = GIMPLE_STMT_OPERAND (stmt, 1);
1227 goto call_expr;
1228 }
1229 break;
1230 case CALL_EXPR:
1231 call_expr:;
1232 if (call_expr_flags (stmt) & ECF_NORETURN)
1233 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1234 NOT_TAKEN);
1235 break;
1236 default:
1237 break;
1238 }
1239 }
1240 }
1241
1242 free (heads);
1243 }
1244
1245 /* Predict branch probabilities and estimate profile of the tree CFG. */
1246 static unsigned int
1247 tree_estimate_probability (void)
1248 {
1249 basic_block bb;
1250
1251 loop_optimizer_init (0);
1252 if (current_loops && dump_file && (dump_flags & TDF_DETAILS))
1253 flow_loops_dump (dump_file, NULL, 0);
1254
1255 add_noreturn_fake_exit_edges ();
1256 connect_infinite_loops_to_exit ();
1257 calculate_dominance_info (CDI_DOMINATORS);
1258 calculate_dominance_info (CDI_POST_DOMINATORS);
1259
1260 tree_bb_level_predictions ();
1261
1262 mark_irreducible_loops ();
1263 if (current_loops)
1264 predict_loops ();
1265
1266 FOR_EACH_BB (bb)
1267 {
1268 edge e;
1269 edge_iterator ei;
1270
1271 FOR_EACH_EDGE (e, ei, bb->succs)
1272 {
1273 /* Predict early returns to be probable, as we've already taken
1274 care for error returns and other cases are often used for
1275 fast paths through function. */
1276 if (e->dest == EXIT_BLOCK_PTR
1277 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1278 && !single_pred_p (bb))
1279 {
1280 edge e1;
1281 edge_iterator ei1;
1282
1283 FOR_EACH_EDGE (e1, ei1, bb->preds)
1284 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1285 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1286 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1287 && !last_basic_block_p (e1->src))
1288 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1289 }
1290
1291 /* Look for block we are guarding (ie we dominate it,
1292 but it doesn't postdominate us). */
1293 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1294 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1295 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1296 {
1297 block_stmt_iterator bi;
1298
1299 /* The call heuristic claims that a guarded function call
1300 is improbable. This is because such calls are often used
1301 to signal exceptional situations such as printing error
1302 messages. */
1303 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1304 bsi_next (&bi))
1305 {
1306 tree stmt = bsi_stmt (bi);
1307 if ((TREE_CODE (stmt) == CALL_EXPR
1308 || (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1309 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1))
1310 == CALL_EXPR))
1311 /* Constant and pure calls are hardly used to signalize
1312 something exceptional. */
1313 && TREE_SIDE_EFFECTS (stmt))
1314 {
1315 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1316 break;
1317 }
1318 }
1319 }
1320 }
1321 tree_predict_by_opcode (bb);
1322 }
1323 FOR_EACH_BB (bb)
1324 combine_predictions_for_bb (bb);
1325
1326 strip_builtin_expect ();
1327 estimate_bb_frequencies ();
1328 free_dominance_info (CDI_POST_DOMINATORS);
1329 remove_fake_exit_edges ();
1330 loop_optimizer_finalize ();
1331 if (dump_file && (dump_flags & TDF_DETAILS))
1332 dump_tree_cfg (dump_file, dump_flags);
1333 if (profile_status == PROFILE_ABSENT)
1334 profile_status = PROFILE_GUESSED;
1335 return 0;
1336 }
1337 \f
1338 /* Check whether this is the last basic block of function. Commonly
1339 there is one extra common cleanup block. */
1340 static bool
1341 last_basic_block_p (basic_block bb)
1342 {
1343 if (bb == EXIT_BLOCK_PTR)
1344 return false;
1345
1346 return (bb->next_bb == EXIT_BLOCK_PTR
1347 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1348 && single_succ_p (bb)
1349 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1350 }
1351
1352 /* Sets branch probabilities according to PREDiction and
1353 FLAGS. HEADS[bb->index] should be index of basic block in that we
1354 need to alter branch predictions (i.e. the first of our dominators
1355 such that we do not post-dominate it) (but we fill this information
1356 on demand, so -1 may be there in case this was not needed yet). */
1357
1358 static void
1359 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1360 enum prediction taken)
1361 {
1362 edge e;
1363 edge_iterator ei;
1364 int y;
1365
1366 if (heads[bb->index] == ENTRY_BLOCK)
1367 {
1368 /* This is first time we need this field in heads array; so
1369 find first dominator that we do not post-dominate (we are
1370 using already known members of heads array). */
1371 basic_block ai = bb;
1372 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1373 int head;
1374
1375 while (heads[next_ai->index] == ENTRY_BLOCK)
1376 {
1377 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1378 break;
1379 heads[next_ai->index] = ai->index;
1380 ai = next_ai;
1381 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1382 }
1383 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1384 head = next_ai->index;
1385 else
1386 head = heads[next_ai->index];
1387 while (next_ai != bb)
1388 {
1389 next_ai = ai;
1390 ai = BASIC_BLOCK (heads[ai->index]);
1391 heads[next_ai->index] = head;
1392 }
1393 }
1394 y = heads[bb->index];
1395
1396 /* Now find the edge that leads to our branch and aply the prediction. */
1397
1398 if (y == last_basic_block)
1399 return;
1400 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1401 if (e->dest->index >= NUM_FIXED_BLOCKS
1402 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1403 predict_edge_def (e, pred, taken);
1404 }
1405 \f
1406 /* This is used to carry information about basic blocks. It is
1407 attached to the AUX field of the standard CFG block. */
1408
1409 typedef struct block_info_def
1410 {
1411 /* Estimated frequency of execution of basic_block. */
1412 sreal frequency;
1413
1414 /* To keep queue of basic blocks to process. */
1415 basic_block next;
1416
1417 /* Number of predecessors we need to visit first. */
1418 int npredecessors;
1419 } *block_info;
1420
1421 /* Similar information for edges. */
1422 typedef struct edge_info_def
1423 {
1424 /* In case edge is a loopback edge, the probability edge will be reached
1425 in case header is. Estimated number of iterations of the loop can be
1426 then computed as 1 / (1 - back_edge_prob). */
1427 sreal back_edge_prob;
1428 /* True if the edge is a loopback edge in the natural loop. */
1429 unsigned int back_edge:1;
1430 } *edge_info;
1431
1432 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1433 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1434
1435 /* Helper function for estimate_bb_frequencies.
1436 Propagate the frequencies in blocks marked in
1437 TOVISIT, starting in HEAD. */
1438
1439 static void
1440 propagate_freq (basic_block head, bitmap tovisit)
1441 {
1442 basic_block bb;
1443 basic_block last;
1444 unsigned i;
1445 edge e;
1446 basic_block nextbb;
1447 bitmap_iterator bi;
1448
1449 /* For each basic block we need to visit count number of his predecessors
1450 we need to visit first. */
1451 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1452 {
1453 edge_iterator ei;
1454 int count = 0;
1455
1456 /* The outermost "loop" includes the exit block, which we can not
1457 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1458 directly. Do the same for the entry block. */
1459 bb = BASIC_BLOCK (i);
1460
1461 FOR_EACH_EDGE (e, ei, bb->preds)
1462 {
1463 bool visit = bitmap_bit_p (tovisit, e->src->index);
1464
1465 if (visit && !(e->flags & EDGE_DFS_BACK))
1466 count++;
1467 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1468 fprintf (dump_file,
1469 "Irreducible region hit, ignoring edge to %i->%i\n",
1470 e->src->index, bb->index);
1471 }
1472 BLOCK_INFO (bb)->npredecessors = count;
1473 }
1474
1475 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1476 last = head;
1477 for (bb = head; bb; bb = nextbb)
1478 {
1479 edge_iterator ei;
1480 sreal cyclic_probability, frequency;
1481
1482 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1483 memcpy (&frequency, &real_zero, sizeof (real_zero));
1484
1485 nextbb = BLOCK_INFO (bb)->next;
1486 BLOCK_INFO (bb)->next = NULL;
1487
1488 /* Compute frequency of basic block. */
1489 if (bb != head)
1490 {
1491 #ifdef ENABLE_CHECKING
1492 FOR_EACH_EDGE (e, ei, bb->preds)
1493 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1494 || (e->flags & EDGE_DFS_BACK));
1495 #endif
1496
1497 FOR_EACH_EDGE (e, ei, bb->preds)
1498 if (EDGE_INFO (e)->back_edge)
1499 {
1500 sreal_add (&cyclic_probability, &cyclic_probability,
1501 &EDGE_INFO (e)->back_edge_prob);
1502 }
1503 else if (!(e->flags & EDGE_DFS_BACK))
1504 {
1505 sreal tmp;
1506
1507 /* frequency += (e->probability
1508 * BLOCK_INFO (e->src)->frequency /
1509 REG_BR_PROB_BASE); */
1510
1511 sreal_init (&tmp, e->probability, 0);
1512 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1513 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1514 sreal_add (&frequency, &frequency, &tmp);
1515 }
1516
1517 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1518 {
1519 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1520 sizeof (frequency));
1521 }
1522 else
1523 {
1524 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1525 {
1526 memcpy (&cyclic_probability, &real_almost_one,
1527 sizeof (real_almost_one));
1528 }
1529
1530 /* BLOCK_INFO (bb)->frequency = frequency
1531 / (1 - cyclic_probability) */
1532
1533 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1534 sreal_div (&BLOCK_INFO (bb)->frequency,
1535 &frequency, &cyclic_probability);
1536 }
1537 }
1538
1539 bitmap_clear_bit (tovisit, bb->index);
1540
1541 e = find_edge (bb, head);
1542 if (e)
1543 {
1544 sreal tmp;
1545
1546 /* EDGE_INFO (e)->back_edge_prob
1547 = ((e->probability * BLOCK_INFO (bb)->frequency)
1548 / REG_BR_PROB_BASE); */
1549
1550 sreal_init (&tmp, e->probability, 0);
1551 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1552 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1553 &tmp, &real_inv_br_prob_base);
1554 }
1555
1556 /* Propagate to successor blocks. */
1557 FOR_EACH_EDGE (e, ei, bb->succs)
1558 if (!(e->flags & EDGE_DFS_BACK)
1559 && BLOCK_INFO (e->dest)->npredecessors)
1560 {
1561 BLOCK_INFO (e->dest)->npredecessors--;
1562 if (!BLOCK_INFO (e->dest)->npredecessors)
1563 {
1564 if (!nextbb)
1565 nextbb = e->dest;
1566 else
1567 BLOCK_INFO (last)->next = e->dest;
1568
1569 last = e->dest;
1570 }
1571 }
1572 }
1573 }
1574
1575 /* Estimate probabilities of loopback edges in loops at same nest level. */
1576
1577 static void
1578 estimate_loops_at_level (struct loop *first_loop)
1579 {
1580 struct loop *loop;
1581
1582 for (loop = first_loop; loop; loop = loop->next)
1583 {
1584 edge e;
1585 basic_block *bbs;
1586 unsigned i;
1587 bitmap tovisit = BITMAP_ALLOC (NULL);
1588
1589 estimate_loops_at_level (loop->inner);
1590
1591 /* Find current loop back edge and mark it. */
1592 e = loop_latch_edge (loop);
1593 EDGE_INFO (e)->back_edge = 1;
1594
1595 bbs = get_loop_body (loop);
1596 for (i = 0; i < loop->num_nodes; i++)
1597 bitmap_set_bit (tovisit, bbs[i]->index);
1598 free (bbs);
1599 propagate_freq (loop->header, tovisit);
1600 BITMAP_FREE (tovisit);
1601 }
1602 }
1603
1604 /* Propagates frequencies through structure of loops. */
1605
1606 static void
1607 estimate_loops (void)
1608 {
1609 bitmap tovisit = BITMAP_ALLOC (NULL);
1610 basic_block bb;
1611
1612 /* Start by estimating the frequencies in the loops. */
1613 if (current_loops)
1614 estimate_loops_at_level (current_loops->tree_root->inner);
1615
1616 /* Now propagate the frequencies through all the blocks. */
1617 FOR_ALL_BB (bb)
1618 {
1619 bitmap_set_bit (tovisit, bb->index);
1620 }
1621 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1622 BITMAP_FREE (tovisit);
1623 }
1624
1625 /* Convert counts measured by profile driven feedback to frequencies.
1626 Return nonzero iff there was any nonzero execution count. */
1627
1628 int
1629 counts_to_freqs (void)
1630 {
1631 gcov_type count_max, true_count_max = 0;
1632 basic_block bb;
1633
1634 FOR_EACH_BB (bb)
1635 true_count_max = MAX (bb->count, true_count_max);
1636
1637 count_max = MAX (true_count_max, 1);
1638 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1639 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1640
1641 return true_count_max;
1642 }
1643
1644 /* Return true if function is likely to be expensive, so there is no point to
1645 optimize performance of prologue, epilogue or do inlining at the expense
1646 of code size growth. THRESHOLD is the limit of number of instructions
1647 function can execute at average to be still considered not expensive. */
1648
1649 bool
1650 expensive_function_p (int threshold)
1651 {
1652 unsigned int sum = 0;
1653 basic_block bb;
1654 unsigned int limit;
1655
1656 /* We can not compute accurately for large thresholds due to scaled
1657 frequencies. */
1658 gcc_assert (threshold <= BB_FREQ_MAX);
1659
1660 /* Frequencies are out of range. This either means that function contains
1661 internal loop executing more than BB_FREQ_MAX times or profile feedback
1662 is available and function has not been executed at all. */
1663 if (ENTRY_BLOCK_PTR->frequency == 0)
1664 return true;
1665
1666 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1667 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1668 FOR_EACH_BB (bb)
1669 {
1670 rtx insn;
1671
1672 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1673 insn = NEXT_INSN (insn))
1674 if (active_insn_p (insn))
1675 {
1676 sum += bb->frequency;
1677 if (sum > limit)
1678 return true;
1679 }
1680 }
1681
1682 return false;
1683 }
1684
1685 /* Estimate basic blocks frequency by given branch probabilities. */
1686
1687 void
1688 estimate_bb_frequencies (void)
1689 {
1690 basic_block bb;
1691 sreal freq_max;
1692
1693 if (!flag_branch_probabilities || !counts_to_freqs ())
1694 {
1695 static int real_values_initialized = 0;
1696
1697 if (!real_values_initialized)
1698 {
1699 real_values_initialized = 1;
1700 sreal_init (&real_zero, 0, 0);
1701 sreal_init (&real_one, 1, 0);
1702 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1703 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1704 sreal_init (&real_one_half, 1, -1);
1705 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1706 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1707 }
1708
1709 mark_dfs_back_edges ();
1710
1711 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1712
1713 /* Set up block info for each basic block. */
1714 alloc_aux_for_blocks (sizeof (struct block_info_def));
1715 alloc_aux_for_edges (sizeof (struct edge_info_def));
1716 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1717 {
1718 edge e;
1719 edge_iterator ei;
1720
1721 FOR_EACH_EDGE (e, ei, bb->succs)
1722 {
1723 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1724 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1725 &EDGE_INFO (e)->back_edge_prob,
1726 &real_inv_br_prob_base);
1727 }
1728 }
1729
1730 /* First compute probabilities locally for each loop from innermost
1731 to outermost to examine probabilities for back edges. */
1732 estimate_loops ();
1733
1734 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1735 FOR_EACH_BB (bb)
1736 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1737 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1738
1739 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1740 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1741 {
1742 sreal tmp;
1743
1744 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1745 sreal_add (&tmp, &tmp, &real_one_half);
1746 bb->frequency = sreal_to_int (&tmp);
1747 }
1748
1749 free_aux_for_blocks ();
1750 free_aux_for_edges ();
1751 }
1752 compute_function_frequency ();
1753 if (flag_reorder_functions)
1754 choose_function_section ();
1755 }
1756
1757 /* Decide whether function is hot, cold or unlikely executed. */
1758 static void
1759 compute_function_frequency (void)
1760 {
1761 basic_block bb;
1762
1763 if (!profile_info || !flag_branch_probabilities)
1764 return;
1765 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1766 FOR_EACH_BB (bb)
1767 {
1768 if (maybe_hot_bb_p (bb))
1769 {
1770 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1771 return;
1772 }
1773 if (!probably_never_executed_bb_p (bb))
1774 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1775 }
1776 }
1777
1778 /* Choose appropriate section for the function. */
1779 static void
1780 choose_function_section (void)
1781 {
1782 if (DECL_SECTION_NAME (current_function_decl)
1783 || !targetm.have_named_sections
1784 /* Theoretically we can split the gnu.linkonce text section too,
1785 but this requires more work as the frequency needs to match
1786 for all generated objects so we need to merge the frequency
1787 of all instances. For now just never set frequency for these. */
1788 || DECL_ONE_ONLY (current_function_decl))
1789 return;
1790
1791 /* If we are doing the partitioning optimization, let the optimization
1792 choose the correct section into which to put things. */
1793
1794 if (flag_reorder_blocks_and_partition)
1795 return;
1796
1797 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1798 DECL_SECTION_NAME (current_function_decl) =
1799 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1800 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1801 DECL_SECTION_NAME (current_function_decl) =
1802 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1803 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1804 }
1805
1806 static bool
1807 gate_estimate_probability (void)
1808 {
1809 return flag_guess_branch_prob;
1810 }
1811
1812 struct tree_opt_pass pass_profile =
1813 {
1814 "profile", /* name */
1815 gate_estimate_probability, /* gate */
1816 tree_estimate_probability, /* execute */
1817 NULL, /* sub */
1818 NULL, /* next */
1819 0, /* static_pass_number */
1820 TV_BRANCH_PROB, /* tv_id */
1821 PROP_cfg, /* properties_required */
1822 0, /* properties_provided */
1823 0, /* properties_destroyed */
1824 0, /* todo_flags_start */
1825 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1826 0 /* letter */
1827 };