predict.c (apply_return_prediction): Standardize PHI chain walking.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void estimate_loops_at_level (struct loop *, bitmap);
78 static void propagate_freq (struct loop *, bitmap);
79 static void estimate_bb_frequencies (struct loops *);
80 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
81 static bool last_basic_block_p (basic_block);
82 static void compute_function_frequency (void);
83 static void choose_function_section (void);
84 static bool can_predict_insn_p (rtx);
85
86 /* Information we hold about each branch predictor.
87 Filled using information from predict.def. */
88
89 struct predictor_info
90 {
91 const char *const name; /* Name used in the debugging dumps. */
92 const int hitrate; /* Expected hitrate used by
93 predict_insn_def call. */
94 const int flags;
95 };
96
97 /* Use given predictor without Dempster-Shaffer theory if it matches
98 using first_match heuristics. */
99 #define PRED_FLAG_FIRST_MATCH 1
100
101 /* Recompute hitrate in percent to our representation. */
102
103 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104
105 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
106 static const struct predictor_info predictor_info[]= {
107 #include "predict.def"
108
109 /* Upper bound on predictors. */
110 {NULL, 0, 0}
111 };
112 #undef DEF_PREDICTOR
113
114 /* Return true in case BB can be CPU intensive and should be optimized
115 for maximal performance. */
116
117 bool
118 maybe_hot_bb_p (basic_block bb)
119 {
120 if (profile_info && flag_branch_probabilities
121 && (bb->count
122 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
123 return false;
124 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
125 return false;
126 return true;
127 }
128
129 /* Return true in case BB is cold and should be optimized for size. */
130
131 bool
132 probably_cold_bb_p (basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return true;
138 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
139 return true;
140 return false;
141 }
142
143 /* Return true in case BB is probably never executed. */
144 bool
145 probably_never_executed_bb_p (basic_block bb)
146 {
147 if (profile_info && flag_branch_probabilities)
148 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
149 return false;
150 }
151
152 /* Return true if the one of outgoing edges is already predicted by
153 PREDICTOR. */
154
155 bool
156 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 {
158 rtx note;
159 if (!INSN_P (BB_END (bb)))
160 return false;
161 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
162 if (REG_NOTE_KIND (note) == REG_BR_PRED
163 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
164 return true;
165 return false;
166 }
167
168 /* Return true if the one of outgoing edges is already predicted by
169 PREDICTOR. */
170
171 bool
172 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 {
174 struct edge_prediction *i = bb_ann (bb)->predictions;
175 for (i = bb_ann (bb)->predictions; i; i = i->next)
176 if (i->predictor == predictor)
177 return true;
178 return false;
179 }
180
181 static void
182 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 {
184 if (!any_condjump_p (insn))
185 abort ();
186 if (!flag_guess_branch_prob)
187 return;
188
189 REG_NOTES (insn)
190 = gen_rtx_EXPR_LIST (REG_BR_PRED,
191 gen_rtx_CONCAT (VOIDmode,
192 GEN_INT ((int) predictor),
193 GEN_INT ((int) probability)),
194 REG_NOTES (insn));
195 }
196
197 /* Predict insn by given predictor. */
198
199 void
200 predict_insn_def (rtx insn, enum br_predictor predictor,
201 enum prediction taken)
202 {
203 int probability = predictor_info[(int) predictor].hitrate;
204
205 if (taken != TAKEN)
206 probability = REG_BR_PROB_BASE - probability;
207
208 predict_insn (insn, predictor, probability);
209 }
210
211 /* Predict edge E with given probability if possible. */
212
213 void
214 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
215 {
216 rtx last_insn;
217 last_insn = BB_END (e->src);
218
219 /* We can store the branch prediction information only about
220 conditional jumps. */
221 if (!any_condjump_p (last_insn))
222 return;
223
224 /* We always store probability of branching. */
225 if (e->flags & EDGE_FALLTHRU)
226 probability = REG_BR_PROB_BASE - probability;
227
228 predict_insn (last_insn, predictor, probability);
229 }
230
231 /* Predict edge E with the given PROBABILITY. */
232 void
233 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
234 {
235 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
236
237 i->next = bb_ann (e->src)->predictions;
238 bb_ann (e->src)->predictions = i;
239 i->probability = probability;
240 i->predictor = predictor;
241 i->edge = e;
242 }
243
244 /* Return true when we can store prediction on insn INSN.
245 At the moment we represent predictions only on conditional
246 jumps, not at computed jump or other complicated cases. */
247 static bool
248 can_predict_insn_p (rtx insn)
249 {
250 return (JUMP_P (insn)
251 && any_condjump_p (insn)
252 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
253 }
254
255 /* Predict edge E by given predictor if possible. */
256
257 void
258 predict_edge_def (edge e, enum br_predictor predictor,
259 enum prediction taken)
260 {
261 int probability = predictor_info[(int) predictor].hitrate;
262
263 if (taken != TAKEN)
264 probability = REG_BR_PROB_BASE - probability;
265
266 predict_edge (e, predictor, probability);
267 }
268
269 /* Invert all branch predictions or probability notes in the INSN. This needs
270 to be done each time we invert the condition used by the jump. */
271
272 void
273 invert_br_probabilities (rtx insn)
274 {
275 rtx note;
276
277 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
278 if (REG_NOTE_KIND (note) == REG_BR_PROB)
279 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
280 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
281 XEXP (XEXP (note, 0), 1)
282 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
283 }
284
285 /* Dump information about the branch prediction to the output file. */
286
287 static void
288 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
289 basic_block bb, int used)
290 {
291 edge e;
292 edge_iterator ei;
293
294 if (!file)
295 return;
296
297 FOR_EACH_EDGE (e, ei, bb->succs)
298 if (! (e->flags & EDGE_FALLTHRU))
299 break;
300
301 fprintf (file, " %s heuristics%s: %.1f%%",
302 predictor_info[predictor].name,
303 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
304
305 if (bb->count)
306 {
307 fprintf (file, " exec ");
308 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
309 if (e)
310 {
311 fprintf (file, " hit ");
312 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
313 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
314 }
315 }
316
317 fprintf (file, "\n");
318 }
319
320 /* We can not predict the probabilities of outgoing edges of bb. Set them
321 evenly and hope for the best. */
322 static void
323 set_even_probabilities (basic_block bb)
324 {
325 int nedges = 0;
326 edge e;
327 edge_iterator ei;
328
329 FOR_EACH_EDGE (e, ei, bb->succs)
330 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
331 nedges ++;
332 FOR_EACH_EDGE (e, ei, bb->succs)
333 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
334 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
335 else
336 e->probability = 0;
337 }
338
339 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
340 note if not already present. Remove now useless REG_BR_PRED notes. */
341
342 static void
343 combine_predictions_for_insn (rtx insn, basic_block bb)
344 {
345 rtx prob_note;
346 rtx *pnote;
347 rtx note;
348 int best_probability = PROB_EVEN;
349 int best_predictor = END_PREDICTORS;
350 int combined_probability = REG_BR_PROB_BASE / 2;
351 int d;
352 bool first_match = false;
353 bool found = false;
354
355 if (!can_predict_insn_p (insn))
356 {
357 set_even_probabilities (bb);
358 return;
359 }
360
361 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
362 pnote = &REG_NOTES (insn);
363 if (dump_file)
364 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
365 bb->index);
366
367 /* We implement "first match" heuristics and use probability guessed
368 by predictor with smallest index. */
369 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
370 if (REG_NOTE_KIND (note) == REG_BR_PRED)
371 {
372 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
373 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
374
375 found = true;
376 if (best_predictor > predictor)
377 best_probability = probability, best_predictor = predictor;
378
379 d = (combined_probability * probability
380 + (REG_BR_PROB_BASE - combined_probability)
381 * (REG_BR_PROB_BASE - probability));
382
383 /* Use FP math to avoid overflows of 32bit integers. */
384 if (d == 0)
385 /* If one probability is 0% and one 100%, avoid division by zero. */
386 combined_probability = REG_BR_PROB_BASE / 2;
387 else
388 combined_probability = (((double) combined_probability) * probability
389 * REG_BR_PROB_BASE / d + 0.5);
390 }
391
392 /* Decide which heuristic to use. In case we didn't match anything,
393 use no_prediction heuristic, in case we did match, use either
394 first match or Dempster-Shaffer theory depending on the flags. */
395
396 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
397 first_match = true;
398
399 if (!found)
400 dump_prediction (dump_file, PRED_NO_PREDICTION,
401 combined_probability, bb, true);
402 else
403 {
404 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
405 bb, !first_match);
406 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
407 bb, first_match);
408 }
409
410 if (first_match)
411 combined_probability = best_probability;
412 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
413
414 while (*pnote)
415 {
416 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
417 {
418 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
419 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
420
421 dump_prediction (dump_file, predictor, probability, bb,
422 !first_match || best_predictor == predictor);
423 *pnote = XEXP (*pnote, 1);
424 }
425 else
426 pnote = &XEXP (*pnote, 1);
427 }
428
429 if (!prob_note)
430 {
431 REG_NOTES (insn)
432 = gen_rtx_EXPR_LIST (REG_BR_PROB,
433 GEN_INT (combined_probability), REG_NOTES (insn));
434
435 /* Save the prediction into CFG in case we are seeing non-degenerated
436 conditional jump. */
437 if (EDGE_COUNT (bb->succs) > 1)
438 {
439 BRANCH_EDGE (bb)->probability = combined_probability;
440 FALLTHRU_EDGE (bb)->probability
441 = REG_BR_PROB_BASE - combined_probability;
442 }
443 }
444 else if (EDGE_COUNT (bb->succs) > 1)
445 {
446 int prob = INTVAL (XEXP (prob_note, 0));
447
448 BRANCH_EDGE (bb)->probability = prob;
449 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
450 }
451 else
452 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
453 }
454
455 /* Combine predictions into single probability and store them into CFG.
456 Remove now useless prediction entries. */
457
458 static void
459 combine_predictions_for_bb (FILE *file, basic_block bb)
460 {
461 int best_probability = PROB_EVEN;
462 int best_predictor = END_PREDICTORS;
463 int combined_probability = REG_BR_PROB_BASE / 2;
464 int d;
465 bool first_match = false;
466 bool found = false;
467 struct edge_prediction *pred;
468 int nedges = 0;
469 edge e, first = NULL, second = NULL;
470 edge_iterator ei;
471
472 FOR_EACH_EDGE (e, ei, bb->succs)
473 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
474 {
475 nedges ++;
476 if (first && !second)
477 second = e;
478 if (!first)
479 first = e;
480 }
481
482 /* When there is no successor or only one choice, prediction is easy.
483
484 We are lazy for now and predict only basic blocks with two outgoing
485 edges. It is possible to predict generic case too, but we have to
486 ignore first match heuristics and do more involved combining. Implement
487 this later. */
488 if (nedges != 2)
489 {
490 if (!bb->count)
491 set_even_probabilities (bb);
492 bb_ann (bb)->predictions = NULL;
493 if (file)
494 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
495 nedges, bb->index);
496 return;
497 }
498
499 if (file)
500 fprintf (file, "Predictions for bb %i\n", bb->index);
501
502 /* We implement "first match" heuristics and use probability guessed
503 by predictor with smallest index. */
504 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
505 {
506 int predictor = pred->predictor;
507 int probability = pred->probability;
508
509 if (pred->edge != first)
510 probability = REG_BR_PROB_BASE - probability;
511
512 found = true;
513 if (best_predictor > predictor)
514 best_probability = probability, best_predictor = predictor;
515
516 d = (combined_probability * probability
517 + (REG_BR_PROB_BASE - combined_probability)
518 * (REG_BR_PROB_BASE - probability));
519
520 /* Use FP math to avoid overflows of 32bit integers. */
521 if (d == 0)
522 /* If one probability is 0% and one 100%, avoid division by zero. */
523 combined_probability = REG_BR_PROB_BASE / 2;
524 else
525 combined_probability = (((double) combined_probability) * probability
526 * REG_BR_PROB_BASE / d + 0.5);
527 }
528
529 /* Decide which heuristic to use. In case we didn't match anything,
530 use no_prediction heuristic, in case we did match, use either
531 first match or Dempster-Shaffer theory depending on the flags. */
532
533 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
534 first_match = true;
535
536 if (!found)
537 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
538 else
539 {
540 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
541 !first_match);
542 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
543 first_match);
544 }
545
546 if (first_match)
547 combined_probability = best_probability;
548 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
549
550 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
551 {
552 int predictor = pred->predictor;
553 int probability = pred->probability;
554
555 if (pred->edge != EDGE_SUCC (bb, 0))
556 probability = REG_BR_PROB_BASE - probability;
557 dump_prediction (file, predictor, probability, bb,
558 !first_match || best_predictor == predictor);
559 }
560 bb_ann (bb)->predictions = NULL;
561
562 if (!bb->count)
563 {
564 first->probability = combined_probability;
565 second->probability = REG_BR_PROB_BASE - combined_probability;
566 }
567 }
568
569 /* Predict edge probabilities by exploiting loop structure.
570 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
571 RTL otherwise use tree based approach. */
572 static void
573 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
574 {
575 unsigned i;
576
577 if (!rtlsimpleloops)
578 scev_initialize (loops_info);
579
580 /* Try to predict out blocks in a loop that are not part of a
581 natural loop. */
582 for (i = 1; i < loops_info->num; i++)
583 {
584 basic_block bb, *bbs;
585 unsigned j;
586 unsigned n_exits;
587 struct loop *loop = loops_info->parray[i];
588 struct niter_desc desc;
589 unsigned HOST_WIDE_INT niter;
590 edge *exits;
591
592 exits = get_loop_exit_edges (loop, &n_exits);
593
594 if (rtlsimpleloops)
595 {
596 iv_analysis_loop_init (loop);
597 find_simple_exit (loop, &desc);
598
599 if (desc.simple_p && desc.const_iter)
600 {
601 int prob;
602 niter = desc.niter + 1;
603 if (niter == 0) /* We might overflow here. */
604 niter = desc.niter;
605
606 prob = (REG_BR_PROB_BASE
607 - (REG_BR_PROB_BASE + niter /2) / niter);
608 /* Branch prediction algorithm gives 0 frequency for everything
609 after the end of loop for loop having 0 probability to finish. */
610 if (prob == REG_BR_PROB_BASE)
611 prob = REG_BR_PROB_BASE - 1;
612 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
613 prob);
614 }
615 }
616 else
617 {
618 struct tree_niter_desc niter_desc;
619
620 for (j = 0; j < n_exits; j++)
621 {
622 tree niter = NULL;
623
624 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
625 niter = niter_desc.niter;
626 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
627 niter = loop_niter_by_eval (loop, exits[j]);
628
629 if (TREE_CODE (niter) == INTEGER_CST)
630 {
631 int probability;
632 if (host_integerp (niter, 1)
633 && tree_int_cst_lt (niter,
634 build_int_cstu (NULL_TREE,
635 REG_BR_PROB_BASE - 1)))
636 {
637 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
638 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
639 }
640 else
641 probability = 1;
642
643 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
644 }
645 }
646
647 }
648 free (exits);
649
650 bbs = get_loop_body (loop);
651
652 for (j = 0; j < loop->num_nodes; j++)
653 {
654 int header_found = 0;
655 edge e;
656 edge_iterator ei;
657
658 bb = bbs[j];
659
660 /* Bypass loop heuristics on continue statement. These
661 statements construct loops via "non-loop" constructs
662 in the source language and are better to be handled
663 separately. */
664 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
665 || predicted_by_p (bb, PRED_CONTINUE))
666 continue;
667
668 /* Loop branch heuristics - predict an edge back to a
669 loop's head as taken. */
670 if (bb == loop->latch)
671 {
672 e = find_edge (loop->latch, loop->header);
673 if (e)
674 {
675 header_found = 1;
676 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
677 }
678 }
679
680 /* Loop exit heuristics - predict an edge exiting the loop if the
681 conditional has no loop header successors as not taken. */
682 if (!header_found)
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (e->dest->index < 0
685 || !flow_bb_inside_loop_p (loop, e->dest))
686 predict_edge
687 (e, PRED_LOOP_EXIT,
688 (REG_BR_PROB_BASE
689 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
690 / n_exits);
691 }
692
693 /* Free basic blocks from get_loop_body. */
694 free (bbs);
695 }
696
697 if (!rtlsimpleloops)
698 scev_finalize ();
699 }
700
701 /* Attempt to predict probabilities of BB outgoing edges using local
702 properties. */
703 static void
704 bb_estimate_probability_locally (basic_block bb)
705 {
706 rtx last_insn = BB_END (bb);
707 rtx cond;
708
709 if (! can_predict_insn_p (last_insn))
710 return;
711 cond = get_condition (last_insn, NULL, false, false);
712 if (! cond)
713 return;
714
715 /* Try "pointer heuristic."
716 A comparison ptr == 0 is predicted as false.
717 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
718 if (COMPARISON_P (cond)
719 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
720 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
721 {
722 if (GET_CODE (cond) == EQ)
723 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
724 else if (GET_CODE (cond) == NE)
725 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
726 }
727 else
728
729 /* Try "opcode heuristic."
730 EQ tests are usually false and NE tests are usually true. Also,
731 most quantities are positive, so we can make the appropriate guesses
732 about signed comparisons against zero. */
733 switch (GET_CODE (cond))
734 {
735 case CONST_INT:
736 /* Unconditional branch. */
737 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
738 cond == const0_rtx ? NOT_TAKEN : TAKEN);
739 break;
740
741 case EQ:
742 case UNEQ:
743 /* Floating point comparisons appears to behave in a very
744 unpredictable way because of special role of = tests in
745 FP code. */
746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
747 ;
748 /* Comparisons with 0 are often used for booleans and there is
749 nothing useful to predict about them. */
750 else if (XEXP (cond, 1) == const0_rtx
751 || XEXP (cond, 0) == const0_rtx)
752 ;
753 else
754 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
755 break;
756
757 case NE:
758 case LTGT:
759 /* Floating point comparisons appears to behave in a very
760 unpredictable way because of special role of = tests in
761 FP code. */
762 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
763 ;
764 /* Comparisons with 0 are often used for booleans and there is
765 nothing useful to predict about them. */
766 else if (XEXP (cond, 1) == const0_rtx
767 || XEXP (cond, 0) == const0_rtx)
768 ;
769 else
770 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
771 break;
772
773 case ORDERED:
774 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
775 break;
776
777 case UNORDERED:
778 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
779 break;
780
781 case LE:
782 case LT:
783 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
784 || XEXP (cond, 1) == constm1_rtx)
785 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
786 break;
787
788 case GE:
789 case GT:
790 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
791 || XEXP (cond, 1) == constm1_rtx)
792 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
793 break;
794
795 default:
796 break;
797 }
798 }
799
800 /* Statically estimate the probability that a branch will be taken and produce
801 estimated profile. When profile feedback is present never executed portions
802 of function gets estimated. */
803
804 void
805 estimate_probability (struct loops *loops_info)
806 {
807 basic_block bb;
808
809 connect_infinite_loops_to_exit ();
810 calculate_dominance_info (CDI_DOMINATORS);
811 calculate_dominance_info (CDI_POST_DOMINATORS);
812
813 predict_loops (loops_info, true);
814
815 iv_analysis_done ();
816
817 /* Attempt to predict conditional jumps using a number of heuristics. */
818 FOR_EACH_BB (bb)
819 {
820 rtx last_insn = BB_END (bb);
821 edge e;
822 edge_iterator ei;
823
824 if (! can_predict_insn_p (last_insn))
825 continue;
826
827 FOR_EACH_EDGE (e, ei, bb->succs)
828 {
829 /* Predict early returns to be probable, as we've already taken
830 care for error returns and other are often used for fast paths
831 trought function. */
832 if ((e->dest == EXIT_BLOCK_PTR
833 || (EDGE_COUNT (e->dest->succs) == 1
834 && EDGE_SUCC (e->dest, 0)->dest == EXIT_BLOCK_PTR))
835 && !predicted_by_p (bb, PRED_NULL_RETURN)
836 && !predicted_by_p (bb, PRED_CONST_RETURN)
837 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
838 && !last_basic_block_p (e->dest))
839 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
840
841 /* Look for block we are guarding (i.e. we dominate it,
842 but it doesn't postdominate us). */
843 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
844 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
845 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
846 {
847 rtx insn;
848
849 /* The call heuristic claims that a guarded function call
850 is improbable. This is because such calls are often used
851 to signal exceptional situations such as printing error
852 messages. */
853 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
854 insn = NEXT_INSN (insn))
855 if (CALL_P (insn)
856 /* Constant and pure calls are hardly used to signalize
857 something exceptional. */
858 && ! CONST_OR_PURE_CALL_P (insn))
859 {
860 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
861 break;
862 }
863 }
864 }
865 bb_estimate_probability_locally (bb);
866 }
867
868 /* Attach the combined probability to each conditional jump. */
869 FOR_EACH_BB (bb)
870 combine_predictions_for_insn (BB_END (bb), bb);
871
872 remove_fake_edges ();
873 estimate_bb_frequencies (loops_info);
874 free_dominance_info (CDI_POST_DOMINATORS);
875 if (profile_status == PROFILE_ABSENT)
876 profile_status = PROFILE_GUESSED;
877 }
878
879 /* Set edge->probability for each successor edge of BB. */
880 void
881 guess_outgoing_edge_probabilities (basic_block bb)
882 {
883 bb_estimate_probability_locally (bb);
884 combine_predictions_for_insn (BB_END (bb), bb);
885 }
886 \f
887 /* Return constant EXPR will likely have at execution time, NULL if unknown.
888 The function is used by builtin_expect branch predictor so the evidence
889 must come from this construct and additional possible constant folding.
890
891 We may want to implement more involved value guess (such as value range
892 propagation based prediction), but such tricks shall go to new
893 implementation. */
894
895 static tree
896 expr_expected_value (tree expr, bitmap visited)
897 {
898 if (TREE_CONSTANT (expr))
899 return expr;
900 else if (TREE_CODE (expr) == SSA_NAME)
901 {
902 tree def = SSA_NAME_DEF_STMT (expr);
903
904 /* If we were already here, break the infinite cycle. */
905 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
906 return NULL;
907 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
908
909 if (TREE_CODE (def) == PHI_NODE)
910 {
911 /* All the arguments of the PHI node must have the same constant
912 length. */
913 int i;
914 tree val = NULL, new_val;
915
916 for (i = 0; i < PHI_NUM_ARGS (def); i++)
917 {
918 tree arg = PHI_ARG_DEF (def, i);
919
920 /* If this PHI has itself as an argument, we cannot
921 determine the string length of this argument. However,
922 if we can find an expected constant value for the other
923 PHI args then we can still be sure that this is
924 likely a constant. So be optimistic and just
925 continue with the next argument. */
926 if (arg == PHI_RESULT (def))
927 continue;
928
929 new_val = expr_expected_value (arg, visited);
930 if (!new_val)
931 return NULL;
932 if (!val)
933 val = new_val;
934 else if (!operand_equal_p (val, new_val, false))
935 return NULL;
936 }
937 return val;
938 }
939 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
940 return NULL;
941 return expr_expected_value (TREE_OPERAND (def, 1), visited);
942 }
943 else if (TREE_CODE (expr) == CALL_EXPR)
944 {
945 tree decl = get_callee_fndecl (expr);
946 if (!decl)
947 return NULL;
948 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
949 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
950 {
951 tree arglist = TREE_OPERAND (expr, 1);
952 tree val;
953
954 if (arglist == NULL_TREE
955 || TREE_CHAIN (arglist) == NULL_TREE)
956 return NULL;
957 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
958 if (TREE_CONSTANT (val))
959 return val;
960 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
961 }
962 }
963 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
964 {
965 tree op0, op1, res;
966 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
967 if (!op0)
968 return NULL;
969 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
970 if (!op1)
971 return NULL;
972 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
973 if (TREE_CONSTANT (res))
974 return res;
975 return NULL;
976 }
977 if (UNARY_CLASS_P (expr))
978 {
979 tree op0, res;
980 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
981 if (!op0)
982 return NULL;
983 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
984 if (TREE_CONSTANT (res))
985 return res;
986 return NULL;
987 }
988 return NULL;
989 }
990 \f
991 /* Get rid of all builtin_expect calls we no longer need. */
992 static void
993 strip_builtin_expect (void)
994 {
995 basic_block bb;
996 FOR_EACH_BB (bb)
997 {
998 block_stmt_iterator bi;
999 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1000 {
1001 tree stmt = bsi_stmt (bi);
1002 tree fndecl;
1003 tree arglist;
1004
1005 if (TREE_CODE (stmt) == MODIFY_EXPR
1006 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1007 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1008 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1009 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1010 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1011 && TREE_CHAIN (arglist))
1012 {
1013 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1014 modify_stmt (stmt);
1015 }
1016 }
1017 }
1018 }
1019 \f
1020 /* Predict using opcode of the last statement in basic block. */
1021 static void
1022 tree_predict_by_opcode (basic_block bb)
1023 {
1024 tree stmt = last_stmt (bb);
1025 edge then_edge;
1026 tree cond;
1027 tree op0;
1028 tree type;
1029 tree val;
1030 bitmap visited;
1031 edge_iterator ei;
1032
1033 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1034 return;
1035 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1036 if (then_edge->flags & EDGE_TRUE_VALUE)
1037 break;
1038 cond = TREE_OPERAND (stmt, 0);
1039 if (!COMPARISON_CLASS_P (cond))
1040 return;
1041 op0 = TREE_OPERAND (cond, 0);
1042 type = TREE_TYPE (op0);
1043 visited = BITMAP_ALLOC (NULL);
1044 val = expr_expected_value (cond, visited);
1045 BITMAP_FREE (visited);
1046 if (val)
1047 {
1048 if (integer_zerop (val))
1049 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1050 else
1051 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1052 return;
1053 }
1054 /* Try "pointer heuristic."
1055 A comparison ptr == 0 is predicted as false.
1056 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1057 if (POINTER_TYPE_P (type))
1058 {
1059 if (TREE_CODE (cond) == EQ_EXPR)
1060 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1061 else if (TREE_CODE (cond) == NE_EXPR)
1062 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1063 }
1064 else
1065
1066 /* Try "opcode heuristic."
1067 EQ tests are usually false and NE tests are usually true. Also,
1068 most quantities are positive, so we can make the appropriate guesses
1069 about signed comparisons against zero. */
1070 switch (TREE_CODE (cond))
1071 {
1072 case EQ_EXPR:
1073 case UNEQ_EXPR:
1074 /* Floating point comparisons appears to behave in a very
1075 unpredictable way because of special role of = tests in
1076 FP code. */
1077 if (FLOAT_TYPE_P (type))
1078 ;
1079 /* Comparisons with 0 are often used for booleans and there is
1080 nothing useful to predict about them. */
1081 else if (integer_zerop (op0)
1082 || integer_zerop (TREE_OPERAND (cond, 1)))
1083 ;
1084 else
1085 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1086 break;
1087
1088 case NE_EXPR:
1089 case LTGT_EXPR:
1090 /* Floating point comparisons appears to behave in a very
1091 unpredictable way because of special role of = tests in
1092 FP code. */
1093 if (FLOAT_TYPE_P (type))
1094 ;
1095 /* Comparisons with 0 are often used for booleans and there is
1096 nothing useful to predict about them. */
1097 else if (integer_zerop (op0)
1098 || integer_zerop (TREE_OPERAND (cond, 1)))
1099 ;
1100 else
1101 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1102 break;
1103
1104 case ORDERED_EXPR:
1105 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1106 break;
1107
1108 case UNORDERED_EXPR:
1109 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1110 break;
1111
1112 case LE_EXPR:
1113 case LT_EXPR:
1114 if (integer_zerop (TREE_OPERAND (cond, 1))
1115 || integer_onep (TREE_OPERAND (cond, 1))
1116 || integer_all_onesp (TREE_OPERAND (cond, 1))
1117 || real_zerop (TREE_OPERAND (cond, 1))
1118 || real_onep (TREE_OPERAND (cond, 1))
1119 || real_minus_onep (TREE_OPERAND (cond, 1)))
1120 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1121 break;
1122
1123 case GE_EXPR:
1124 case GT_EXPR:
1125 if (integer_zerop (TREE_OPERAND (cond, 1))
1126 || integer_onep (TREE_OPERAND (cond, 1))
1127 || integer_all_onesp (TREE_OPERAND (cond, 1))
1128 || real_zerop (TREE_OPERAND (cond, 1))
1129 || real_onep (TREE_OPERAND (cond, 1))
1130 || real_minus_onep (TREE_OPERAND (cond, 1)))
1131 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1132 break;
1133
1134 default:
1135 break;
1136 }
1137 }
1138
1139 /* Try to guess whether the value of return means error code. */
1140 static enum br_predictor
1141 return_prediction (tree val, enum prediction *prediction)
1142 {
1143 /* VOID. */
1144 if (!val)
1145 return PRED_NO_PREDICTION;
1146 /* Different heuristics for pointers and scalars. */
1147 if (POINTER_TYPE_P (TREE_TYPE (val)))
1148 {
1149 /* NULL is usually not returned. */
1150 if (integer_zerop (val))
1151 {
1152 *prediction = NOT_TAKEN;
1153 return PRED_NULL_RETURN;
1154 }
1155 }
1156 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1157 {
1158 /* Negative return values are often used to indicate
1159 errors. */
1160 if (TREE_CODE (val) == INTEGER_CST
1161 && tree_int_cst_sgn (val) < 0)
1162 {
1163 *prediction = NOT_TAKEN;
1164 return PRED_NEGATIVE_RETURN;
1165 }
1166 /* Constant return values seems to be commonly taken.
1167 Zero/one often represent booleans so exclude them from the
1168 heuristics. */
1169 if (TREE_CONSTANT (val)
1170 && (!integer_zerop (val) && !integer_onep (val)))
1171 {
1172 *prediction = TAKEN;
1173 return PRED_NEGATIVE_RETURN;
1174 }
1175 }
1176 return PRED_NO_PREDICTION;
1177 }
1178
1179 /* Find the basic block with return expression and look up for possible
1180 return value trying to apply RETURN_PREDICTION heuristics. */
1181 static void
1182 apply_return_prediction (int *heads)
1183 {
1184 tree return_stmt;
1185 tree return_val;
1186 edge e;
1187 tree phi;
1188 int phi_num_args, i;
1189 enum br_predictor pred;
1190 enum prediction direction;
1191 edge_iterator ei;
1192
1193 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1194 {
1195 return_stmt = last_stmt (e->src);
1196 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1197 break;
1198 }
1199 if (!e)
1200 return;
1201 return_val = TREE_OPERAND (return_stmt, 0);
1202 if (!return_val)
1203 return;
1204 if (TREE_CODE (return_val) == MODIFY_EXPR)
1205 return_val = TREE_OPERAND (return_val, 1);
1206 if (TREE_CODE (return_val) != SSA_NAME
1207 || !SSA_NAME_DEF_STMT (return_val)
1208 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1209 return;
1210 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1211 if (PHI_RESULT (phi) == return_val)
1212 break;
1213 if (!phi)
1214 return;
1215 phi_num_args = PHI_NUM_ARGS (phi);
1216 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1217
1218 /* Avoid the degenerate case where all return values form the function
1219 belongs to same category (ie they are all positive constants)
1220 so we can hardly say something about them. */
1221 for (i = 1; i < phi_num_args; i++)
1222 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1223 break;
1224 if (i != phi_num_args)
1225 for (i = 0; i < phi_num_args; i++)
1226 {
1227 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1228 if (pred != PRED_NO_PREDICTION)
1229 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1230 direction);
1231 }
1232 }
1233
1234 /* Look for basic block that contains unlikely to happen events
1235 (such as noreturn calls) and mark all paths leading to execution
1236 of this basic blocks as unlikely. */
1237
1238 static void
1239 tree_bb_level_predictions (void)
1240 {
1241 basic_block bb;
1242 int *heads;
1243
1244 heads = xmalloc (sizeof (int) * last_basic_block);
1245 memset (heads, -1, sizeof (int) * last_basic_block);
1246 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1247
1248 apply_return_prediction (heads);
1249
1250 FOR_EACH_BB (bb)
1251 {
1252 block_stmt_iterator bsi = bsi_last (bb);
1253
1254 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1255 {
1256 tree stmt = bsi_stmt (bsi);
1257 switch (TREE_CODE (stmt))
1258 {
1259 case MODIFY_EXPR:
1260 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1261 {
1262 stmt = TREE_OPERAND (stmt, 1);
1263 goto call_expr;
1264 }
1265 break;
1266 case CALL_EXPR:
1267 call_expr:;
1268 if (call_expr_flags (stmt) & ECF_NORETURN)
1269 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1270 NOT_TAKEN);
1271 break;
1272 default:
1273 break;
1274 }
1275 }
1276 }
1277
1278 free (heads);
1279 }
1280
1281 /* Predict branch probabilities and estimate profile of the tree CFG. */
1282 static void
1283 tree_estimate_probability (void)
1284 {
1285 basic_block bb;
1286 struct loops loops_info;
1287
1288 flow_loops_find (&loops_info);
1289 if (dump_file && (dump_flags & TDF_DETAILS))
1290 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1291
1292 add_noreturn_fake_exit_edges ();
1293 connect_infinite_loops_to_exit ();
1294 calculate_dominance_info (CDI_DOMINATORS);
1295 calculate_dominance_info (CDI_POST_DOMINATORS);
1296
1297 tree_bb_level_predictions ();
1298
1299 mark_irreducible_loops (&loops_info);
1300 predict_loops (&loops_info, false);
1301
1302 FOR_EACH_BB (bb)
1303 {
1304 edge e;
1305 edge_iterator ei;
1306
1307 FOR_EACH_EDGE (e, ei, bb->succs)
1308 {
1309 /* Predict early returns to be probable, as we've already taken
1310 care for error returns and other cases are often used for
1311 fast paths trought function. */
1312 if (e->dest == EXIT_BLOCK_PTR
1313 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1314 && EDGE_COUNT (bb->preds) > 1)
1315 {
1316 edge e1;
1317 edge_iterator ei1;
1318
1319 FOR_EACH_EDGE (e1, ei1, bb->preds)
1320 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1321 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1322 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1323 && !last_basic_block_p (e1->src))
1324 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1325 }
1326
1327 /* Look for block we are guarding (ie we dominate it,
1328 but it doesn't postdominate us). */
1329 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1330 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1331 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1332 {
1333 block_stmt_iterator bi;
1334
1335 /* The call heuristic claims that a guarded function call
1336 is improbable. This is because such calls are often used
1337 to signal exceptional situations such as printing error
1338 messages. */
1339 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1340 bsi_next (&bi))
1341 {
1342 tree stmt = bsi_stmt (bi);
1343 if ((TREE_CODE (stmt) == CALL_EXPR
1344 || (TREE_CODE (stmt) == MODIFY_EXPR
1345 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1346 /* Constant and pure calls are hardly used to signalize
1347 something exceptional. */
1348 && TREE_SIDE_EFFECTS (stmt))
1349 {
1350 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1351 break;
1352 }
1353 }
1354 }
1355 }
1356 tree_predict_by_opcode (bb);
1357 }
1358 FOR_EACH_BB (bb)
1359 combine_predictions_for_bb (dump_file, bb);
1360
1361 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1362 strip_builtin_expect ();
1363 estimate_bb_frequencies (&loops_info);
1364 free_dominance_info (CDI_POST_DOMINATORS);
1365 remove_fake_exit_edges ();
1366 flow_loops_free (&loops_info);
1367 if (dump_file && (dump_flags & TDF_DETAILS))
1368 dump_tree_cfg (dump_file, dump_flags);
1369 if (profile_status == PROFILE_ABSENT)
1370 profile_status = PROFILE_GUESSED;
1371 }
1372 \f
1373 /* __builtin_expect dropped tokens into the insn stream describing expected
1374 values of registers. Generate branch probabilities based off these
1375 values. */
1376
1377 void
1378 expected_value_to_br_prob (void)
1379 {
1380 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1381
1382 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1383 {
1384 switch (GET_CODE (insn))
1385 {
1386 case NOTE:
1387 /* Look for expected value notes. */
1388 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1389 {
1390 ev = NOTE_EXPECTED_VALUE (insn);
1391 ev_reg = XEXP (ev, 0);
1392 delete_insn (insn);
1393 }
1394 continue;
1395
1396 case CODE_LABEL:
1397 /* Never propagate across labels. */
1398 ev = NULL_RTX;
1399 continue;
1400
1401 case JUMP_INSN:
1402 /* Look for simple conditional branches. If we haven't got an
1403 expected value yet, no point going further. */
1404 if (!JUMP_P (insn) || ev == NULL_RTX
1405 || ! any_condjump_p (insn))
1406 continue;
1407 break;
1408
1409 default:
1410 /* Look for insns that clobber the EV register. */
1411 if (ev && reg_set_p (ev_reg, insn))
1412 ev = NULL_RTX;
1413 continue;
1414 }
1415
1416 /* Collect the branch condition, hopefully relative to EV_REG. */
1417 /* ??? At present we'll miss things like
1418 (expected_value (eq r70 0))
1419 (set r71 -1)
1420 (set r80 (lt r70 r71))
1421 (set pc (if_then_else (ne r80 0) ...))
1422 as canonicalize_condition will render this to us as
1423 (lt r70, r71)
1424 Could use cselib to try and reduce this further. */
1425 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1426 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1427 false, false);
1428 if (! cond || XEXP (cond, 0) != ev_reg
1429 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1430 continue;
1431
1432 /* Substitute and simplify. Given that the expression we're
1433 building involves two constants, we should wind up with either
1434 true or false. */
1435 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1436 XEXP (ev, 1), XEXP (cond, 1));
1437 cond = simplify_rtx (cond);
1438
1439 /* Turn the condition into a scaled branch probability. */
1440 if (cond != const_true_rtx && cond != const0_rtx)
1441 abort ();
1442 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1443 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1444 }
1445 }
1446 \f
1447 /* Check whether this is the last basic block of function. Commonly
1448 there is one extra common cleanup block. */
1449 static bool
1450 last_basic_block_p (basic_block bb)
1451 {
1452 if (bb == EXIT_BLOCK_PTR)
1453 return false;
1454
1455 return (bb->next_bb == EXIT_BLOCK_PTR
1456 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1457 && EDGE_COUNT (bb->succs) == 1
1458 && EDGE_SUCC (bb, 0)->dest->next_bb == EXIT_BLOCK_PTR));
1459 }
1460
1461 /* Sets branch probabilities according to PREDiction and
1462 FLAGS. HEADS[bb->index] should be index of basic block in that we
1463 need to alter branch predictions (i.e. the first of our dominators
1464 such that we do not post-dominate it) (but we fill this information
1465 on demand, so -1 may be there in case this was not needed yet). */
1466
1467 static void
1468 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1469 enum prediction taken)
1470 {
1471 edge e;
1472 edge_iterator ei;
1473 int y;
1474
1475 if (heads[bb->index] < 0)
1476 {
1477 /* This is first time we need this field in heads array; so
1478 find first dominator that we do not post-dominate (we are
1479 using already known members of heads array). */
1480 basic_block ai = bb;
1481 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1482 int head;
1483
1484 while (heads[next_ai->index] < 0)
1485 {
1486 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1487 break;
1488 heads[next_ai->index] = ai->index;
1489 ai = next_ai;
1490 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1491 }
1492 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1493 head = next_ai->index;
1494 else
1495 head = heads[next_ai->index];
1496 while (next_ai != bb)
1497 {
1498 next_ai = ai;
1499 if (heads[ai->index] == ENTRY_BLOCK)
1500 ai = ENTRY_BLOCK_PTR;
1501 else
1502 ai = BASIC_BLOCK (heads[ai->index]);
1503 heads[next_ai->index] = head;
1504 }
1505 }
1506 y = heads[bb->index];
1507
1508 /* Now find the edge that leads to our branch and aply the prediction. */
1509
1510 if (y == last_basic_block)
1511 return;
1512 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1513 if (e->dest->index >= 0
1514 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1515 predict_edge_def (e, pred, taken);
1516 }
1517 \f
1518 /* This is used to carry information about basic blocks. It is
1519 attached to the AUX field of the standard CFG block. */
1520
1521 typedef struct block_info_def
1522 {
1523 /* Estimated frequency of execution of basic_block. */
1524 sreal frequency;
1525
1526 /* To keep queue of basic blocks to process. */
1527 basic_block next;
1528
1529 /* Number of predecessors we need to visit first. */
1530 int npredecessors;
1531 } *block_info;
1532
1533 /* Similar information for edges. */
1534 typedef struct edge_info_def
1535 {
1536 /* In case edge is an loopback edge, the probability edge will be reached
1537 in case header is. Estimated number of iterations of the loop can be
1538 then computed as 1 / (1 - back_edge_prob). */
1539 sreal back_edge_prob;
1540 /* True if the edge is an loopback edge in the natural loop. */
1541 unsigned int back_edge:1;
1542 } *edge_info;
1543
1544 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1545 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1546
1547 /* Helper function for estimate_bb_frequencies.
1548 Propagate the frequencies for LOOP. */
1549
1550 static void
1551 propagate_freq (struct loop *loop, bitmap tovisit)
1552 {
1553 basic_block head = loop->header;
1554 basic_block bb;
1555 basic_block last;
1556 unsigned i;
1557 edge e;
1558 basic_block nextbb;
1559 bitmap_iterator bi;
1560
1561 /* For each basic block we need to visit count number of his predecessors
1562 we need to visit first. */
1563 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1564 {
1565 edge_iterator ei;
1566 int count = 0;
1567
1568 /* The outermost "loop" includes the exit block, which we can not
1569 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1570 directly. Do the same for the entry block. */
1571 if (i == (unsigned)ENTRY_BLOCK)
1572 bb = ENTRY_BLOCK_PTR;
1573 else if (i == (unsigned)EXIT_BLOCK)
1574 bb = EXIT_BLOCK_PTR;
1575 else
1576 bb = BASIC_BLOCK (i);
1577
1578 FOR_EACH_EDGE (e, ei, bb->preds)
1579 {
1580 bool visit = bitmap_bit_p (tovisit, e->src->index);
1581
1582 if (visit && !(e->flags & EDGE_DFS_BACK))
1583 count++;
1584 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1585 fprintf (dump_file,
1586 "Irreducible region hit, ignoring edge to %i->%i\n",
1587 e->src->index, bb->index);
1588 }
1589 BLOCK_INFO (bb)->npredecessors = count;
1590 }
1591
1592 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1593 last = head;
1594 for (bb = head; bb; bb = nextbb)
1595 {
1596 edge_iterator ei;
1597 sreal cyclic_probability, frequency;
1598
1599 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1600 memcpy (&frequency, &real_zero, sizeof (real_zero));
1601
1602 nextbb = BLOCK_INFO (bb)->next;
1603 BLOCK_INFO (bb)->next = NULL;
1604
1605 /* Compute frequency of basic block. */
1606 if (bb != head)
1607 {
1608 #ifdef ENABLE_CHECKING
1609 FOR_EACH_EDGE (e, ei, bb->preds)
1610 if (bitmap_bit_p (tovisit, e->src->index)
1611 && !(e->flags & EDGE_DFS_BACK))
1612 abort ();
1613 #endif
1614
1615 FOR_EACH_EDGE (e, ei, bb->preds)
1616 if (EDGE_INFO (e)->back_edge)
1617 {
1618 sreal_add (&cyclic_probability, &cyclic_probability,
1619 &EDGE_INFO (e)->back_edge_prob);
1620 }
1621 else if (!(e->flags & EDGE_DFS_BACK))
1622 {
1623 sreal tmp;
1624
1625 /* frequency += (e->probability
1626 * BLOCK_INFO (e->src)->frequency /
1627 REG_BR_PROB_BASE); */
1628
1629 sreal_init (&tmp, e->probability, 0);
1630 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1631 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1632 sreal_add (&frequency, &frequency, &tmp);
1633 }
1634
1635 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1636 {
1637 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1638 sizeof (frequency));
1639 }
1640 else
1641 {
1642 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1643 {
1644 memcpy (&cyclic_probability, &real_almost_one,
1645 sizeof (real_almost_one));
1646 }
1647
1648 /* BLOCK_INFO (bb)->frequency = frequency
1649 / (1 - cyclic_probability) */
1650
1651 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1652 sreal_div (&BLOCK_INFO (bb)->frequency,
1653 &frequency, &cyclic_probability);
1654 }
1655 }
1656
1657 bitmap_clear_bit (tovisit, bb->index);
1658
1659 e = find_edge (bb, head);
1660 if (e)
1661 {
1662 sreal tmp;
1663
1664 /* EDGE_INFO (e)->back_edge_prob
1665 = ((e->probability * BLOCK_INFO (bb)->frequency)
1666 / REG_BR_PROB_BASE); */
1667
1668 sreal_init (&tmp, e->probability, 0);
1669 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1670 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1671 &tmp, &real_inv_br_prob_base);
1672 }
1673
1674 /* Propagate to successor blocks. */
1675 FOR_EACH_EDGE (e, ei, bb->succs)
1676 if (!(e->flags & EDGE_DFS_BACK)
1677 && BLOCK_INFO (e->dest)->npredecessors)
1678 {
1679 BLOCK_INFO (e->dest)->npredecessors--;
1680 if (!BLOCK_INFO (e->dest)->npredecessors)
1681 {
1682 if (!nextbb)
1683 nextbb = e->dest;
1684 else
1685 BLOCK_INFO (last)->next = e->dest;
1686
1687 last = e->dest;
1688 }
1689 }
1690 }
1691 }
1692
1693 /* Estimate probabilities of loopback edges in loops at same nest level. */
1694
1695 static void
1696 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1697 {
1698 struct loop *loop;
1699
1700 for (loop = first_loop; loop; loop = loop->next)
1701 {
1702 edge e;
1703 basic_block *bbs;
1704 unsigned i;
1705
1706 estimate_loops_at_level (loop->inner, tovisit);
1707
1708 /* Do not do this for dummy function loop. */
1709 if (EDGE_COUNT (loop->latch->succs) > 0)
1710 {
1711 /* Find current loop back edge and mark it. */
1712 e = loop_latch_edge (loop);
1713 EDGE_INFO (e)->back_edge = 1;
1714 }
1715
1716 bbs = get_loop_body (loop);
1717 for (i = 0; i < loop->num_nodes; i++)
1718 bitmap_set_bit (tovisit, bbs[i]->index);
1719 free (bbs);
1720 propagate_freq (loop, tovisit);
1721 }
1722 }
1723
1724 /* Convert counts measured by profile driven feedback to frequencies.
1725 Return nonzero iff there was any nonzero execution count. */
1726
1727 int
1728 counts_to_freqs (void)
1729 {
1730 gcov_type count_max, true_count_max = 0;
1731 basic_block bb;
1732
1733 FOR_EACH_BB (bb)
1734 true_count_max = MAX (bb->count, true_count_max);
1735
1736 count_max = MAX (true_count_max, 1);
1737 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1738 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1739 return true_count_max;
1740 }
1741
1742 /* Return true if function is likely to be expensive, so there is no point to
1743 optimize performance of prologue, epilogue or do inlining at the expense
1744 of code size growth. THRESHOLD is the limit of number of instructions
1745 function can execute at average to be still considered not expensive. */
1746
1747 bool
1748 expensive_function_p (int threshold)
1749 {
1750 unsigned int sum = 0;
1751 basic_block bb;
1752 unsigned int limit;
1753
1754 /* We can not compute accurately for large thresholds due to scaled
1755 frequencies. */
1756 if (threshold > BB_FREQ_MAX)
1757 abort ();
1758
1759 /* Frequencies are out of range. This either means that function contains
1760 internal loop executing more than BB_FREQ_MAX times or profile feedback
1761 is available and function has not been executed at all. */
1762 if (ENTRY_BLOCK_PTR->frequency == 0)
1763 return true;
1764
1765 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1766 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1767 FOR_EACH_BB (bb)
1768 {
1769 rtx insn;
1770
1771 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1772 insn = NEXT_INSN (insn))
1773 if (active_insn_p (insn))
1774 {
1775 sum += bb->frequency;
1776 if (sum > limit)
1777 return true;
1778 }
1779 }
1780
1781 return false;
1782 }
1783
1784 /* Estimate basic blocks frequency by given branch probabilities. */
1785
1786 static void
1787 estimate_bb_frequencies (struct loops *loops)
1788 {
1789 basic_block bb;
1790 sreal freq_max;
1791
1792 if (!flag_branch_probabilities || !counts_to_freqs ())
1793 {
1794 static int real_values_initialized = 0;
1795 bitmap tovisit;
1796
1797 if (!real_values_initialized)
1798 {
1799 real_values_initialized = 1;
1800 sreal_init (&real_zero, 0, 0);
1801 sreal_init (&real_one, 1, 0);
1802 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1803 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1804 sreal_init (&real_one_half, 1, -1);
1805 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1806 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1807 }
1808
1809 mark_dfs_back_edges ();
1810
1811 EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->probability = REG_BR_PROB_BASE;
1812
1813 /* Set up block info for each basic block. */
1814 tovisit = BITMAP_ALLOC (NULL);
1815 alloc_aux_for_blocks (sizeof (struct block_info_def));
1816 alloc_aux_for_edges (sizeof (struct edge_info_def));
1817 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1818 {
1819 edge e;
1820 edge_iterator ei;
1821
1822 FOR_EACH_EDGE (e, ei, bb->succs)
1823 {
1824 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1825 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1826 &EDGE_INFO (e)->back_edge_prob,
1827 &real_inv_br_prob_base);
1828 }
1829 }
1830
1831 /* First compute probabilities locally for each loop from innermost
1832 to outermost to examine probabilities for back edges. */
1833 estimate_loops_at_level (loops->tree_root, tovisit);
1834
1835 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1836 FOR_EACH_BB (bb)
1837 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1838 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1839
1840 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1841 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1842 {
1843 sreal tmp;
1844
1845 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1846 sreal_add (&tmp, &tmp, &real_one_half);
1847 bb->frequency = sreal_to_int (&tmp);
1848 }
1849
1850 free_aux_for_blocks ();
1851 free_aux_for_edges ();
1852 BITMAP_FREE (tovisit);
1853 }
1854 compute_function_frequency ();
1855 if (flag_reorder_functions)
1856 choose_function_section ();
1857 }
1858
1859 /* Decide whether function is hot, cold or unlikely executed. */
1860 static void
1861 compute_function_frequency (void)
1862 {
1863 basic_block bb;
1864
1865 if (!profile_info || !flag_branch_probabilities)
1866 return;
1867 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1868 FOR_EACH_BB (bb)
1869 {
1870 if (maybe_hot_bb_p (bb))
1871 {
1872 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1873 return;
1874 }
1875 if (!probably_never_executed_bb_p (bb))
1876 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1877 }
1878 }
1879
1880 /* Choose appropriate section for the function. */
1881 static void
1882 choose_function_section (void)
1883 {
1884 if (DECL_SECTION_NAME (current_function_decl)
1885 || !targetm.have_named_sections
1886 /* Theoretically we can split the gnu.linkonce text section too,
1887 but this requires more work as the frequency needs to match
1888 for all generated objects so we need to merge the frequency
1889 of all instances. For now just never set frequency for these. */
1890 || DECL_ONE_ONLY (current_function_decl))
1891 return;
1892
1893 /* If we are doing the partitioning optimization, let the optimization
1894 choose the correct section into which to put things. */
1895
1896 if (flag_reorder_blocks_and_partition)
1897 return;
1898
1899 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1900 DECL_SECTION_NAME (current_function_decl) =
1901 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1902 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1903 DECL_SECTION_NAME (current_function_decl) =
1904 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1905 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1906 }
1907
1908
1909 struct tree_opt_pass pass_profile =
1910 {
1911 "profile", /* name */
1912 NULL, /* gate */
1913 tree_estimate_probability, /* execute */
1914 NULL, /* sub */
1915 NULL, /* next */
1916 0, /* static_pass_number */
1917 TV_BRANCH_PROB, /* tv_id */
1918 PROP_cfg, /* properties_required */
1919 0, /* properties_provided */
1920 0, /* properties_destroyed */
1921 0, /* todo_flags_start */
1922 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1923 0 /* letter */
1924 };