predict.c (edge_predicted_by_p): New function.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "emit-rtl.h"
41 #include "cgraph.h"
42 #include "coverage.h"
43 #include "diagnostic-core.h"
44 #include "gimple-predict.h"
45 #include "fold-const.h"
46 #include "calls.h"
47 #include "cfganal.h"
48 #include "profile.h"
49 #include "sreal.h"
50 #include "params.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57
58 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
59 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
60 static sreal real_almost_one, real_br_prob_base,
61 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
62
63 static void combine_predictions_for_insn (rtx_insn *, basic_block);
64 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
65 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
66 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
67 static bool can_predict_insn_p (const rtx_insn *);
68
69 /* Information we hold about each branch predictor.
70 Filled using information from predict.def. */
71
72 struct predictor_info
73 {
74 const char *const name; /* Name used in the debugging dumps. */
75 const int hitrate; /* Expected hitrate used by
76 predict_insn_def call. */
77 const int flags;
78 };
79
80 /* Use given predictor without Dempster-Shaffer theory if it matches
81 using first_match heuristics. */
82 #define PRED_FLAG_FIRST_MATCH 1
83
84 /* Recompute hitrate in percent to our representation. */
85
86 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
87
88 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
89 static const struct predictor_info predictor_info[]= {
90 #include "predict.def"
91
92 /* Upper bound on predictors. */
93 {NULL, 0, 0}
94 };
95 #undef DEF_PREDICTOR
96
97 /* Return TRUE if frequency FREQ is considered to be hot. */
98
99 static inline bool
100 maybe_hot_frequency_p (struct function *fun, int freq)
101 {
102 struct cgraph_node *node = cgraph_node::get (fun->decl);
103 if (!profile_info
104 || !opt_for_fn (fun->decl, flag_branch_probabilities))
105 {
106 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
107 return false;
108 if (node->frequency == NODE_FREQUENCY_HOT)
109 return true;
110 }
111 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
112 return true;
113 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
114 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
115 return false;
116 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
117 return false;
118 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
119 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
120 return false;
121 return true;
122 }
123
124 static gcov_type min_count = -1;
125
126 /* Determine the threshold for hot BB counts. */
127
128 gcov_type
129 get_hot_bb_threshold ()
130 {
131 gcov_working_set_t *ws;
132 if (min_count == -1)
133 {
134 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
135 gcc_assert (ws);
136 min_count = ws->min_counter;
137 }
138 return min_count;
139 }
140
141 /* Set the threshold for hot BB counts. */
142
143 void
144 set_hot_bb_threshold (gcov_type min)
145 {
146 min_count = min;
147 }
148
149 /* Return TRUE if frequency FREQ is considered to be hot. */
150
151 bool
152 maybe_hot_count_p (struct function *fun, gcov_type count)
153 {
154 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
155 return true;
156 /* Code executed at most once is not hot. */
157 if (profile_info->runs >= count)
158 return false;
159 return (count >= get_hot_bb_threshold ());
160 }
161
162 /* Return true in case BB can be CPU intensive and should be optimized
163 for maximal performance. */
164
165 bool
166 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
167 {
168 gcc_checking_assert (fun);
169 if (profile_status_for_fn (fun) == PROFILE_READ)
170 return maybe_hot_count_p (fun, bb->count);
171 return maybe_hot_frequency_p (fun, bb->frequency);
172 }
173
174 /* Return true in case BB can be CPU intensive and should be optimized
175 for maximal performance. */
176
177 bool
178 maybe_hot_edge_p (edge e)
179 {
180 if (profile_status_for_fn (cfun) == PROFILE_READ)
181 return maybe_hot_count_p (cfun, e->count);
182 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
183 }
184
185 /* Return true if profile COUNT and FREQUENCY, or function FUN static
186 node frequency reflects never being executed. */
187
188 static bool
189 probably_never_executed (struct function *fun,
190 gcov_type count, int frequency)
191 {
192 gcc_checking_assert (fun);
193 if (profile_status_for_fn (fun) == PROFILE_READ)
194 {
195 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
196 if (count * unlikely_count_fraction >= profile_info->runs)
197 return false;
198 if (!frequency)
199 return true;
200 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
201 return false;
202 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
203 {
204 gcov_type computed_count;
205 /* Check for possibility of overflow, in which case entry bb count
206 is large enough to do the division first without losing much
207 precision. */
208 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
209 REG_BR_PROB_BASE)
210 {
211 gcov_type scaled_count
212 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
213 unlikely_count_fraction;
214 computed_count = RDIV (scaled_count,
215 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
216 }
217 else
218 {
219 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
220 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
221 computed_count *= frequency * unlikely_count_fraction;
222 }
223 if (computed_count >= profile_info->runs)
224 return false;
225 }
226 return true;
227 }
228 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
229 && (cgraph_node::get (fun->decl)->frequency
230 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
231 return true;
232 return false;
233 }
234
235
236 /* Return true in case BB is probably never executed. */
237
238 bool
239 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
240 {
241 return probably_never_executed (fun, bb->count, bb->frequency);
242 }
243
244
245 /* Return true in case edge E is probably never executed. */
246
247 bool
248 probably_never_executed_edge_p (struct function *fun, edge e)
249 {
250 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
251 }
252
253 /* Return true when current function should always be optimized for size. */
254
255 bool
256 optimize_function_for_size_p (struct function *fun)
257 {
258 if (!fun || !fun->decl)
259 return optimize_size;
260 cgraph_node *n = cgraph_node::get (fun->decl);
261 return n && n->optimize_for_size_p ();
262 }
263
264 /* Return true when current function should always be optimized for speed. */
265
266 bool
267 optimize_function_for_speed_p (struct function *fun)
268 {
269 return !optimize_function_for_size_p (fun);
270 }
271
272 /* Return the optimization type that should be used for the function FUN. */
273
274 optimization_type
275 function_optimization_type (struct function *fun)
276 {
277 return (optimize_function_for_speed_p (fun)
278 ? OPTIMIZE_FOR_SPEED
279 : OPTIMIZE_FOR_SIZE);
280 }
281
282 /* Return TRUE when BB should be optimized for size. */
283
284 bool
285 optimize_bb_for_size_p (const_basic_block bb)
286 {
287 return (optimize_function_for_size_p (cfun)
288 || (bb && !maybe_hot_bb_p (cfun, bb)));
289 }
290
291 /* Return TRUE when BB should be optimized for speed. */
292
293 bool
294 optimize_bb_for_speed_p (const_basic_block bb)
295 {
296 return !optimize_bb_for_size_p (bb);
297 }
298
299 /* Return the optimization type that should be used for block BB. */
300
301 optimization_type
302 bb_optimization_type (const_basic_block bb)
303 {
304 return (optimize_bb_for_speed_p (bb)
305 ? OPTIMIZE_FOR_SPEED
306 : OPTIMIZE_FOR_SIZE);
307 }
308
309 /* Return TRUE when BB should be optimized for size. */
310
311 bool
312 optimize_edge_for_size_p (edge e)
313 {
314 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
315 }
316
317 /* Return TRUE when BB should be optimized for speed. */
318
319 bool
320 optimize_edge_for_speed_p (edge e)
321 {
322 return !optimize_edge_for_size_p (e);
323 }
324
325 /* Return TRUE when BB should be optimized for size. */
326
327 bool
328 optimize_insn_for_size_p (void)
329 {
330 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
331 }
332
333 /* Return TRUE when BB should be optimized for speed. */
334
335 bool
336 optimize_insn_for_speed_p (void)
337 {
338 return !optimize_insn_for_size_p ();
339 }
340
341 /* Return TRUE when LOOP should be optimized for size. */
342
343 bool
344 optimize_loop_for_size_p (struct loop *loop)
345 {
346 return optimize_bb_for_size_p (loop->header);
347 }
348
349 /* Return TRUE when LOOP should be optimized for speed. */
350
351 bool
352 optimize_loop_for_speed_p (struct loop *loop)
353 {
354 return optimize_bb_for_speed_p (loop->header);
355 }
356
357 /* Return TRUE when LOOP nest should be optimized for speed. */
358
359 bool
360 optimize_loop_nest_for_speed_p (struct loop *loop)
361 {
362 struct loop *l = loop;
363 if (optimize_loop_for_speed_p (loop))
364 return true;
365 l = loop->inner;
366 while (l && l != loop)
367 {
368 if (optimize_loop_for_speed_p (l))
369 return true;
370 if (l->inner)
371 l = l->inner;
372 else if (l->next)
373 l = l->next;
374 else
375 {
376 while (l != loop && !l->next)
377 l = loop_outer (l);
378 if (l != loop)
379 l = l->next;
380 }
381 }
382 return false;
383 }
384
385 /* Return TRUE when LOOP nest should be optimized for size. */
386
387 bool
388 optimize_loop_nest_for_size_p (struct loop *loop)
389 {
390 return !optimize_loop_nest_for_speed_p (loop);
391 }
392
393 /* Return true when edge E is likely to be well predictable by branch
394 predictor. */
395
396 bool
397 predictable_edge_p (edge e)
398 {
399 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
400 return false;
401 if ((e->probability
402 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
403 || (REG_BR_PROB_BASE - e->probability
404 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
405 return true;
406 return false;
407 }
408
409
410 /* Set RTL expansion for BB profile. */
411
412 void
413 rtl_profile_for_bb (basic_block bb)
414 {
415 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
416 }
417
418 /* Set RTL expansion for edge profile. */
419
420 void
421 rtl_profile_for_edge (edge e)
422 {
423 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
424 }
425
426 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
427 void
428 default_rtl_profile (void)
429 {
430 crtl->maybe_hot_insn_p = true;
431 }
432
433 /* Return true if the one of outgoing edges is already predicted by
434 PREDICTOR. */
435
436 bool
437 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
438 {
439 rtx note;
440 if (!INSN_P (BB_END (bb)))
441 return false;
442 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
443 if (REG_NOTE_KIND (note) == REG_BR_PRED
444 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
445 return true;
446 return false;
447 }
448
449 /* Structure representing predictions in tree level. */
450
451 struct edge_prediction {
452 struct edge_prediction *ep_next;
453 edge ep_edge;
454 enum br_predictor ep_predictor;
455 int ep_probability;
456 };
457
458 /* This map contains for a basic block the list of predictions for the
459 outgoing edges. */
460
461 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
462
463 /* Return true if the one of outgoing edges is already predicted by
464 PREDICTOR. */
465
466 bool
467 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
468 {
469 struct edge_prediction *i;
470 edge_prediction **preds = bb_predictions->get (bb);
471
472 if (!preds)
473 return false;
474
475 for (i = *preds; i; i = i->ep_next)
476 if (i->ep_predictor == predictor)
477 return true;
478 return false;
479 }
480
481 /* Return true if the one of outgoing edges is already predicted by
482 PREDICTOR for edge E predicted as TAKEN. */
483
484 bool
485 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
486 {
487 struct edge_prediction *i;
488 basic_block bb = e->src;
489 edge_prediction **preds = bb_predictions->get (bb);
490 if (!preds)
491 return false;
492
493 int probability = predictor_info[(int) predictor].hitrate;
494
495 if (taken != TAKEN)
496 probability = REG_BR_PROB_BASE - probability;
497
498 for (i = *preds; i; i = i->ep_next)
499 if (i->ep_predictor == predictor
500 && i->ep_edge == e
501 && i->ep_probability == probability)
502 return true;
503 return false;
504 }
505
506 /* Return true when the probability of edge is reliable.
507
508 The profile guessing code is good at predicting branch outcome (ie.
509 taken/not taken), that is predicted right slightly over 75% of time.
510 It is however notoriously poor on predicting the probability itself.
511 In general the profile appear a lot flatter (with probabilities closer
512 to 50%) than the reality so it is bad idea to use it to drive optimization
513 such as those disabling dynamic branch prediction for well predictable
514 branches.
515
516 There are two exceptions - edges leading to noreturn edges and edges
517 predicted by number of iterations heuristics are predicted well. This macro
518 should be able to distinguish those, but at the moment it simply check for
519 noreturn heuristic that is only one giving probability over 99% or bellow
520 1%. In future we might want to propagate reliability information across the
521 CFG if we find this information useful on multiple places. */
522 static bool
523 probability_reliable_p (int prob)
524 {
525 return (profile_status_for_fn (cfun) == PROFILE_READ
526 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
527 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
528 }
529
530 /* Same predicate as above, working on edges. */
531 bool
532 edge_probability_reliable_p (const_edge e)
533 {
534 return probability_reliable_p (e->probability);
535 }
536
537 /* Same predicate as edge_probability_reliable_p, working on notes. */
538 bool
539 br_prob_note_reliable_p (const_rtx note)
540 {
541 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
542 return probability_reliable_p (XINT (note, 0));
543 }
544
545 static void
546 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
547 {
548 gcc_assert (any_condjump_p (insn));
549 if (!flag_guess_branch_prob)
550 return;
551
552 add_reg_note (insn, REG_BR_PRED,
553 gen_rtx_CONCAT (VOIDmode,
554 GEN_INT ((int) predictor),
555 GEN_INT ((int) probability)));
556 }
557
558 /* Predict insn by given predictor. */
559
560 void
561 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
562 enum prediction taken)
563 {
564 int probability = predictor_info[(int) predictor].hitrate;
565
566 if (taken != TAKEN)
567 probability = REG_BR_PROB_BASE - probability;
568
569 predict_insn (insn, predictor, probability);
570 }
571
572 /* Predict edge E with given probability if possible. */
573
574 void
575 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
576 {
577 rtx_insn *last_insn;
578 last_insn = BB_END (e->src);
579
580 /* We can store the branch prediction information only about
581 conditional jumps. */
582 if (!any_condjump_p (last_insn))
583 return;
584
585 /* We always store probability of branching. */
586 if (e->flags & EDGE_FALLTHRU)
587 probability = REG_BR_PROB_BASE - probability;
588
589 predict_insn (last_insn, predictor, probability);
590 }
591
592 /* Predict edge E with the given PROBABILITY. */
593 void
594 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
595 {
596 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
597 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
598 1)
599 && flag_guess_branch_prob && optimize)
600 {
601 struct edge_prediction *i = XNEW (struct edge_prediction);
602 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
603
604 i->ep_next = preds;
605 preds = i;
606 i->ep_probability = probability;
607 i->ep_predictor = predictor;
608 i->ep_edge = e;
609 }
610 }
611
612 /* Remove all predictions on given basic block that are attached
613 to edge E. */
614 void
615 remove_predictions_associated_with_edge (edge e)
616 {
617 if (!bb_predictions)
618 return;
619
620 edge_prediction **preds = bb_predictions->get (e->src);
621
622 if (preds)
623 {
624 struct edge_prediction **prediction = preds;
625 struct edge_prediction *next;
626
627 while (*prediction)
628 {
629 if ((*prediction)->ep_edge == e)
630 {
631 next = (*prediction)->ep_next;
632 free (*prediction);
633 *prediction = next;
634 }
635 else
636 prediction = &((*prediction)->ep_next);
637 }
638 }
639 }
640
641 /* Clears the list of predictions stored for BB. */
642
643 static void
644 clear_bb_predictions (basic_block bb)
645 {
646 edge_prediction **preds = bb_predictions->get (bb);
647 struct edge_prediction *pred, *next;
648
649 if (!preds)
650 return;
651
652 for (pred = *preds; pred; pred = next)
653 {
654 next = pred->ep_next;
655 free (pred);
656 }
657 *preds = NULL;
658 }
659
660 /* Return true when we can store prediction on insn INSN.
661 At the moment we represent predictions only on conditional
662 jumps, not at computed jump or other complicated cases. */
663 static bool
664 can_predict_insn_p (const rtx_insn *insn)
665 {
666 return (JUMP_P (insn)
667 && any_condjump_p (insn)
668 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
669 }
670
671 /* Predict edge E by given predictor if possible. */
672
673 void
674 predict_edge_def (edge e, enum br_predictor predictor,
675 enum prediction taken)
676 {
677 int probability = predictor_info[(int) predictor].hitrate;
678
679 if (taken != TAKEN)
680 probability = REG_BR_PROB_BASE - probability;
681
682 predict_edge (e, predictor, probability);
683 }
684
685 /* Invert all branch predictions or probability notes in the INSN. This needs
686 to be done each time we invert the condition used by the jump. */
687
688 void
689 invert_br_probabilities (rtx insn)
690 {
691 rtx note;
692
693 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
694 if (REG_NOTE_KIND (note) == REG_BR_PROB)
695 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
696 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
697 XEXP (XEXP (note, 0), 1)
698 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
699 }
700
701 /* Dump information about the branch prediction to the output file. */
702
703 static void
704 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
705 basic_block bb, int used)
706 {
707 edge e;
708 edge_iterator ei;
709
710 if (!file)
711 return;
712
713 FOR_EACH_EDGE (e, ei, bb->succs)
714 if (! (e->flags & EDGE_FALLTHRU))
715 break;
716
717 fprintf (file, " %s heuristics%s: %.1f%%",
718 predictor_info[predictor].name,
719 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
720
721 if (bb->count)
722 {
723 fprintf (file, " exec %" PRId64, bb->count);
724 if (e)
725 {
726 fprintf (file, " hit %" PRId64, e->count);
727 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
728 }
729 }
730
731 fprintf (file, "\n");
732 }
733
734 /* We can not predict the probabilities of outgoing edges of bb. Set them
735 evenly and hope for the best. */
736 static void
737 set_even_probabilities (basic_block bb)
738 {
739 int nedges = 0;
740 edge e;
741 edge_iterator ei;
742
743 FOR_EACH_EDGE (e, ei, bb->succs)
744 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
745 nedges ++;
746 FOR_EACH_EDGE (e, ei, bb->succs)
747 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
748 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
749 else
750 e->probability = 0;
751 }
752
753 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
754 note if not already present. Remove now useless REG_BR_PRED notes. */
755
756 static void
757 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
758 {
759 rtx prob_note;
760 rtx *pnote;
761 rtx note;
762 int best_probability = PROB_EVEN;
763 enum br_predictor best_predictor = END_PREDICTORS;
764 int combined_probability = REG_BR_PROB_BASE / 2;
765 int d;
766 bool first_match = false;
767 bool found = false;
768
769 if (!can_predict_insn_p (insn))
770 {
771 set_even_probabilities (bb);
772 return;
773 }
774
775 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
776 pnote = &REG_NOTES (insn);
777 if (dump_file)
778 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
779 bb->index);
780
781 /* We implement "first match" heuristics and use probability guessed
782 by predictor with smallest index. */
783 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
784 if (REG_NOTE_KIND (note) == REG_BR_PRED)
785 {
786 enum br_predictor predictor = ((enum br_predictor)
787 INTVAL (XEXP (XEXP (note, 0), 0)));
788 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
789
790 found = true;
791 if (best_predictor > predictor)
792 best_probability = probability, best_predictor = predictor;
793
794 d = (combined_probability * probability
795 + (REG_BR_PROB_BASE - combined_probability)
796 * (REG_BR_PROB_BASE - probability));
797
798 /* Use FP math to avoid overflows of 32bit integers. */
799 if (d == 0)
800 /* If one probability is 0% and one 100%, avoid division by zero. */
801 combined_probability = REG_BR_PROB_BASE / 2;
802 else
803 combined_probability = (((double) combined_probability) * probability
804 * REG_BR_PROB_BASE / d + 0.5);
805 }
806
807 /* Decide which heuristic to use. In case we didn't match anything,
808 use no_prediction heuristic, in case we did match, use either
809 first match or Dempster-Shaffer theory depending on the flags. */
810
811 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
812 first_match = true;
813
814 if (!found)
815 dump_prediction (dump_file, PRED_NO_PREDICTION,
816 combined_probability, bb, true);
817 else
818 {
819 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
820 bb, !first_match);
821 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
822 bb, first_match);
823 }
824
825 if (first_match)
826 combined_probability = best_probability;
827 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
828
829 while (*pnote)
830 {
831 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
832 {
833 enum br_predictor predictor = ((enum br_predictor)
834 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
835 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
836
837 dump_prediction (dump_file, predictor, probability, bb,
838 !first_match || best_predictor == predictor);
839 *pnote = XEXP (*pnote, 1);
840 }
841 else
842 pnote = &XEXP (*pnote, 1);
843 }
844
845 if (!prob_note)
846 {
847 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
848
849 /* Save the prediction into CFG in case we are seeing non-degenerated
850 conditional jump. */
851 if (!single_succ_p (bb))
852 {
853 BRANCH_EDGE (bb)->probability = combined_probability;
854 FALLTHRU_EDGE (bb)->probability
855 = REG_BR_PROB_BASE - combined_probability;
856 }
857 }
858 else if (!single_succ_p (bb))
859 {
860 int prob = XINT (prob_note, 0);
861
862 BRANCH_EDGE (bb)->probability = prob;
863 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
864 }
865 else
866 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
867 }
868
869 /* Combine predictions into single probability and store them into CFG.
870 Remove now useless prediction entries.
871 If DRY_RUN is set, only produce dumps and do not modify profile. */
872
873 static void
874 combine_predictions_for_bb (basic_block bb, bool dry_run)
875 {
876 int best_probability = PROB_EVEN;
877 enum br_predictor best_predictor = END_PREDICTORS;
878 int combined_probability = REG_BR_PROB_BASE / 2;
879 int d;
880 bool first_match = false;
881 bool found = false;
882 struct edge_prediction *pred;
883 int nedges = 0;
884 edge e, first = NULL, second = NULL;
885 edge_iterator ei;
886
887 FOR_EACH_EDGE (e, ei, bb->succs)
888 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
889 {
890 nedges ++;
891 if (first && !second)
892 second = e;
893 if (!first)
894 first = e;
895 }
896
897 /* When there is no successor or only one choice, prediction is easy.
898
899 We are lazy for now and predict only basic blocks with two outgoing
900 edges. It is possible to predict generic case too, but we have to
901 ignore first match heuristics and do more involved combining. Implement
902 this later. */
903 if (nedges != 2)
904 {
905 if (!bb->count && !dry_run)
906 set_even_probabilities (bb);
907 clear_bb_predictions (bb);
908 if (dump_file)
909 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
910 nedges, bb->index);
911 return;
912 }
913
914 if (dump_file)
915 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
916
917 edge_prediction **preds = bb_predictions->get (bb);
918 if (preds)
919 {
920 /* We implement "first match" heuristics and use probability guessed
921 by predictor with smallest index. */
922 for (pred = *preds; pred; pred = pred->ep_next)
923 {
924 enum br_predictor predictor = pred->ep_predictor;
925 int probability = pred->ep_probability;
926
927 if (pred->ep_edge != first)
928 probability = REG_BR_PROB_BASE - probability;
929
930 found = true;
931 /* First match heuristics would be widly confused if we predicted
932 both directions. */
933 if (best_predictor > predictor)
934 {
935 struct edge_prediction *pred2;
936 int prob = probability;
937
938 for (pred2 = (struct edge_prediction *) *preds;
939 pred2; pred2 = pred2->ep_next)
940 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
941 {
942 int probability2 = pred->ep_probability;
943
944 if (pred2->ep_edge != first)
945 probability2 = REG_BR_PROB_BASE - probability2;
946
947 if ((probability < REG_BR_PROB_BASE / 2) !=
948 (probability2 < REG_BR_PROB_BASE / 2))
949 break;
950
951 /* If the same predictor later gave better result, go for it! */
952 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
953 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
954 prob = probability2;
955 }
956 if (!pred2)
957 best_probability = prob, best_predictor = predictor;
958 }
959
960 d = (combined_probability * probability
961 + (REG_BR_PROB_BASE - combined_probability)
962 * (REG_BR_PROB_BASE - probability));
963
964 /* Use FP math to avoid overflows of 32bit integers. */
965 if (d == 0)
966 /* If one probability is 0% and one 100%, avoid division by zero. */
967 combined_probability = REG_BR_PROB_BASE / 2;
968 else
969 combined_probability = (((double) combined_probability)
970 * probability
971 * REG_BR_PROB_BASE / d + 0.5);
972 }
973 }
974
975 /* Decide which heuristic to use. In case we didn't match anything,
976 use no_prediction heuristic, in case we did match, use either
977 first match or Dempster-Shaffer theory depending on the flags. */
978
979 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
980 first_match = true;
981
982 if (!found)
983 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
984 else
985 {
986 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
987 !first_match);
988 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
989 first_match);
990 }
991
992 if (first_match)
993 combined_probability = best_probability;
994 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
995
996 if (preds)
997 {
998 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
999 {
1000 enum br_predictor predictor = pred->ep_predictor;
1001 int probability = pred->ep_probability;
1002
1003 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1004 probability = REG_BR_PROB_BASE - probability;
1005 dump_prediction (dump_file, predictor, probability, bb,
1006 !first_match || best_predictor == predictor);
1007 }
1008 }
1009 clear_bb_predictions (bb);
1010
1011 if (!bb->count && !dry_run)
1012 {
1013 first->probability = combined_probability;
1014 second->probability = REG_BR_PROB_BASE - combined_probability;
1015 }
1016 }
1017
1018 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1019 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1020
1021 T1 and T2 should be one of the following cases:
1022 1. T1 is SSA_NAME, T2 is NULL
1023 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1024 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1025
1026 static tree
1027 strips_small_constant (tree t1, tree t2)
1028 {
1029 tree ret = NULL;
1030 int value = 0;
1031
1032 if (!t1)
1033 return NULL;
1034 else if (TREE_CODE (t1) == SSA_NAME)
1035 ret = t1;
1036 else if (tree_fits_shwi_p (t1))
1037 value = tree_to_shwi (t1);
1038 else
1039 return NULL;
1040
1041 if (!t2)
1042 return ret;
1043 else if (tree_fits_shwi_p (t2))
1044 value = tree_to_shwi (t2);
1045 else if (TREE_CODE (t2) == SSA_NAME)
1046 {
1047 if (ret)
1048 return NULL;
1049 else
1050 ret = t2;
1051 }
1052
1053 if (value <= 4 && value >= -4)
1054 return ret;
1055 else
1056 return NULL;
1057 }
1058
1059 /* Return the SSA_NAME in T or T's operands.
1060 Return NULL if SSA_NAME cannot be found. */
1061
1062 static tree
1063 get_base_value (tree t)
1064 {
1065 if (TREE_CODE (t) == SSA_NAME)
1066 return t;
1067
1068 if (!BINARY_CLASS_P (t))
1069 return NULL;
1070
1071 switch (TREE_OPERAND_LENGTH (t))
1072 {
1073 case 1:
1074 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1075 case 2:
1076 return strips_small_constant (TREE_OPERAND (t, 0),
1077 TREE_OPERAND (t, 1));
1078 default:
1079 return NULL;
1080 }
1081 }
1082
1083 /* Check the compare STMT in LOOP. If it compares an induction
1084 variable to a loop invariant, return true, and save
1085 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1086 Otherwise return false and set LOOP_INVAIANT to NULL. */
1087
1088 static bool
1089 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1090 tree *loop_invariant,
1091 enum tree_code *compare_code,
1092 tree *loop_step,
1093 tree *loop_iv_base)
1094 {
1095 tree op0, op1, bound, base;
1096 affine_iv iv0, iv1;
1097 enum tree_code code;
1098 tree step;
1099
1100 code = gimple_cond_code (stmt);
1101 *loop_invariant = NULL;
1102
1103 switch (code)
1104 {
1105 case GT_EXPR:
1106 case GE_EXPR:
1107 case NE_EXPR:
1108 case LT_EXPR:
1109 case LE_EXPR:
1110 case EQ_EXPR:
1111 break;
1112
1113 default:
1114 return false;
1115 }
1116
1117 op0 = gimple_cond_lhs (stmt);
1118 op1 = gimple_cond_rhs (stmt);
1119
1120 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1121 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1122 return false;
1123 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1124 return false;
1125 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1126 return false;
1127 if (TREE_CODE (iv0.step) != INTEGER_CST
1128 || TREE_CODE (iv1.step) != INTEGER_CST)
1129 return false;
1130 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1131 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1132 return false;
1133
1134 if (integer_zerop (iv0.step))
1135 {
1136 if (code != NE_EXPR && code != EQ_EXPR)
1137 code = invert_tree_comparison (code, false);
1138 bound = iv0.base;
1139 base = iv1.base;
1140 if (tree_fits_shwi_p (iv1.step))
1141 step = iv1.step;
1142 else
1143 return false;
1144 }
1145 else
1146 {
1147 bound = iv1.base;
1148 base = iv0.base;
1149 if (tree_fits_shwi_p (iv0.step))
1150 step = iv0.step;
1151 else
1152 return false;
1153 }
1154
1155 if (TREE_CODE (bound) != INTEGER_CST)
1156 bound = get_base_value (bound);
1157 if (!bound)
1158 return false;
1159 if (TREE_CODE (base) != INTEGER_CST)
1160 base = get_base_value (base);
1161 if (!base)
1162 return false;
1163
1164 *loop_invariant = bound;
1165 *compare_code = code;
1166 *loop_step = step;
1167 *loop_iv_base = base;
1168 return true;
1169 }
1170
1171 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1172
1173 static bool
1174 expr_coherent_p (tree t1, tree t2)
1175 {
1176 gimple *stmt;
1177 tree ssa_name_1 = NULL;
1178 tree ssa_name_2 = NULL;
1179
1180 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1181 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1182
1183 if (t1 == t2)
1184 return true;
1185
1186 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1187 return true;
1188 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1189 return false;
1190
1191 /* Check to see if t1 is expressed/defined with t2. */
1192 stmt = SSA_NAME_DEF_STMT (t1);
1193 gcc_assert (stmt != NULL);
1194 if (is_gimple_assign (stmt))
1195 {
1196 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1197 if (ssa_name_1 && ssa_name_1 == t2)
1198 return true;
1199 }
1200
1201 /* Check to see if t2 is expressed/defined with t1. */
1202 stmt = SSA_NAME_DEF_STMT (t2);
1203 gcc_assert (stmt != NULL);
1204 if (is_gimple_assign (stmt))
1205 {
1206 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1207 if (ssa_name_2 && ssa_name_2 == t1)
1208 return true;
1209 }
1210
1211 /* Compare if t1 and t2's def_stmts are identical. */
1212 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1213 return true;
1214 else
1215 return false;
1216 }
1217
1218 /* Predict branch probability of BB when BB contains a branch that compares
1219 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1220 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1221
1222 E.g.
1223 for (int i = 0; i < bound; i++) {
1224 if (i < bound - 2)
1225 computation_1();
1226 else
1227 computation_2();
1228 }
1229
1230 In this loop, we will predict the branch inside the loop to be taken. */
1231
1232 static void
1233 predict_iv_comparison (struct loop *loop, basic_block bb,
1234 tree loop_bound_var,
1235 tree loop_iv_base_var,
1236 enum tree_code loop_bound_code,
1237 int loop_bound_step)
1238 {
1239 gimple *stmt;
1240 tree compare_var, compare_base;
1241 enum tree_code compare_code;
1242 tree compare_step_var;
1243 edge then_edge;
1244 edge_iterator ei;
1245
1246 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1247 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1248 || predicted_by_p (bb, PRED_LOOP_EXIT))
1249 return;
1250
1251 stmt = last_stmt (bb);
1252 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1253 return;
1254 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1255 loop, &compare_var,
1256 &compare_code,
1257 &compare_step_var,
1258 &compare_base))
1259 return;
1260
1261 /* Find the taken edge. */
1262 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1263 if (then_edge->flags & EDGE_TRUE_VALUE)
1264 break;
1265
1266 /* When comparing an IV to a loop invariant, NE is more likely to be
1267 taken while EQ is more likely to be not-taken. */
1268 if (compare_code == NE_EXPR)
1269 {
1270 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1271 return;
1272 }
1273 else if (compare_code == EQ_EXPR)
1274 {
1275 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1276 return;
1277 }
1278
1279 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1280 return;
1281
1282 /* If loop bound, base and compare bound are all constants, we can
1283 calculate the probability directly. */
1284 if (tree_fits_shwi_p (loop_bound_var)
1285 && tree_fits_shwi_p (compare_var)
1286 && tree_fits_shwi_p (compare_base))
1287 {
1288 int probability;
1289 bool overflow, overall_overflow = false;
1290 widest_int compare_count, tem;
1291
1292 /* (loop_bound - base) / compare_step */
1293 tem = wi::sub (wi::to_widest (loop_bound_var),
1294 wi::to_widest (compare_base), SIGNED, &overflow);
1295 overall_overflow |= overflow;
1296 widest_int loop_count = wi::div_trunc (tem,
1297 wi::to_widest (compare_step_var),
1298 SIGNED, &overflow);
1299 overall_overflow |= overflow;
1300
1301 if (!wi::neg_p (wi::to_widest (compare_step_var))
1302 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1303 {
1304 /* (loop_bound - compare_bound) / compare_step */
1305 tem = wi::sub (wi::to_widest (loop_bound_var),
1306 wi::to_widest (compare_var), SIGNED, &overflow);
1307 overall_overflow |= overflow;
1308 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1309 SIGNED, &overflow);
1310 overall_overflow |= overflow;
1311 }
1312 else
1313 {
1314 /* (compare_bound - base) / compare_step */
1315 tem = wi::sub (wi::to_widest (compare_var),
1316 wi::to_widest (compare_base), SIGNED, &overflow);
1317 overall_overflow |= overflow;
1318 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1319 SIGNED, &overflow);
1320 overall_overflow |= overflow;
1321 }
1322 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1323 ++compare_count;
1324 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1325 ++loop_count;
1326 if (wi::neg_p (compare_count))
1327 compare_count = 0;
1328 if (wi::neg_p (loop_count))
1329 loop_count = 0;
1330 if (loop_count == 0)
1331 probability = 0;
1332 else if (wi::cmps (compare_count, loop_count) == 1)
1333 probability = REG_BR_PROB_BASE;
1334 else
1335 {
1336 tem = compare_count * REG_BR_PROB_BASE;
1337 tem = wi::udiv_trunc (tem, loop_count);
1338 probability = tem.to_uhwi ();
1339 }
1340
1341 if (!overall_overflow)
1342 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1343
1344 return;
1345 }
1346
1347 if (expr_coherent_p (loop_bound_var, compare_var))
1348 {
1349 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1350 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1351 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1352 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1353 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1354 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1355 else if (loop_bound_code == NE_EXPR)
1356 {
1357 /* If the loop backedge condition is "(i != bound)", we do
1358 the comparison based on the step of IV:
1359 * step < 0 : backedge condition is like (i > bound)
1360 * step > 0 : backedge condition is like (i < bound) */
1361 gcc_assert (loop_bound_step != 0);
1362 if (loop_bound_step > 0
1363 && (compare_code == LT_EXPR
1364 || compare_code == LE_EXPR))
1365 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1366 else if (loop_bound_step < 0
1367 && (compare_code == GT_EXPR
1368 || compare_code == GE_EXPR))
1369 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1370 else
1371 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1372 }
1373 else
1374 /* The branch is predicted not-taken if loop_bound_code is
1375 opposite with compare_code. */
1376 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1377 }
1378 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1379 {
1380 /* For cases like:
1381 for (i = s; i < h; i++)
1382 if (i > s + 2) ....
1383 The branch should be predicted taken. */
1384 if (loop_bound_step > 0
1385 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1386 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1387 else if (loop_bound_step < 0
1388 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1389 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1390 else
1391 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1392 }
1393 }
1394
1395 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1396 exits are resulted from short-circuit conditions that will generate an
1397 if_tmp. E.g.:
1398
1399 if (foo() || global > 10)
1400 break;
1401
1402 This will be translated into:
1403
1404 BB3:
1405 loop header...
1406 BB4:
1407 if foo() goto BB6 else goto BB5
1408 BB5:
1409 if global > 10 goto BB6 else goto BB7
1410 BB6:
1411 goto BB7
1412 BB7:
1413 iftmp = (PHI 0(BB5), 1(BB6))
1414 if iftmp == 1 goto BB8 else goto BB3
1415 BB8:
1416 outside of the loop...
1417
1418 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1419 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1420 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1421 exits to predict them using PRED_LOOP_EXIT. */
1422
1423 static void
1424 predict_extra_loop_exits (edge exit_edge)
1425 {
1426 unsigned i;
1427 bool check_value_one;
1428 gimple *lhs_def_stmt;
1429 gphi *phi_stmt;
1430 tree cmp_rhs, cmp_lhs;
1431 gimple *last;
1432 gcond *cmp_stmt;
1433
1434 last = last_stmt (exit_edge->src);
1435 if (!last)
1436 return;
1437 cmp_stmt = dyn_cast <gcond *> (last);
1438 if (!cmp_stmt)
1439 return;
1440
1441 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1442 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1443 if (!TREE_CONSTANT (cmp_rhs)
1444 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1445 return;
1446 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1447 return;
1448
1449 /* If check_value_one is true, only the phi_args with value '1' will lead
1450 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1451 loop exit. */
1452 check_value_one = (((integer_onep (cmp_rhs))
1453 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1454 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1455
1456 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1457 if (!lhs_def_stmt)
1458 return;
1459
1460 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1461 if (!phi_stmt)
1462 return;
1463
1464 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1465 {
1466 edge e1;
1467 edge_iterator ei;
1468 tree val = gimple_phi_arg_def (phi_stmt, i);
1469 edge e = gimple_phi_arg_edge (phi_stmt, i);
1470
1471 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1472 continue;
1473 if ((check_value_one ^ integer_onep (val)) == 1)
1474 continue;
1475 if (EDGE_COUNT (e->src->succs) != 1)
1476 {
1477 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1478 continue;
1479 }
1480
1481 FOR_EACH_EDGE (e1, ei, e->src->preds)
1482 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1483 }
1484 }
1485
1486 /* Predict edge probabilities by exploiting loop structure. */
1487
1488 static void
1489 predict_loops (void)
1490 {
1491 struct loop *loop;
1492
1493 /* Try to predict out blocks in a loop that are not part of a
1494 natural loop. */
1495 FOR_EACH_LOOP (loop, 0)
1496 {
1497 basic_block bb, *bbs;
1498 unsigned j, n_exits;
1499 vec<edge> exits;
1500 struct tree_niter_desc niter_desc;
1501 edge ex;
1502 struct nb_iter_bound *nb_iter;
1503 enum tree_code loop_bound_code = ERROR_MARK;
1504 tree loop_bound_step = NULL;
1505 tree loop_bound_var = NULL;
1506 tree loop_iv_base = NULL;
1507 gcond *stmt = NULL;
1508
1509 exits = get_loop_exit_edges (loop);
1510 n_exits = exits.length ();
1511 if (!n_exits)
1512 {
1513 exits.release ();
1514 continue;
1515 }
1516
1517 FOR_EACH_VEC_ELT (exits, j, ex)
1518 {
1519 tree niter = NULL;
1520 HOST_WIDE_INT nitercst;
1521 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1522 int probability;
1523 enum br_predictor predictor;
1524
1525 predict_extra_loop_exits (ex);
1526
1527 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1528 niter = niter_desc.niter;
1529 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1530 niter = loop_niter_by_eval (loop, ex);
1531
1532 if (TREE_CODE (niter) == INTEGER_CST)
1533 {
1534 if (tree_fits_uhwi_p (niter)
1535 && max
1536 && compare_tree_int (niter, max - 1) == -1)
1537 nitercst = tree_to_uhwi (niter) + 1;
1538 else
1539 nitercst = max;
1540 predictor = PRED_LOOP_ITERATIONS;
1541 }
1542 /* If we have just one exit and we can derive some information about
1543 the number of iterations of the loop from the statements inside
1544 the loop, use it to predict this exit. */
1545 else if (n_exits == 1)
1546 {
1547 nitercst = estimated_stmt_executions_int (loop);
1548 if (nitercst < 0)
1549 continue;
1550 if (nitercst > max)
1551 nitercst = max;
1552
1553 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1554 }
1555 else
1556 continue;
1557
1558 /* If the prediction for number of iterations is zero, do not
1559 predict the exit edges. */
1560 if (nitercst == 0)
1561 continue;
1562
1563 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1564 predict_edge (ex, predictor, probability);
1565 }
1566 exits.release ();
1567
1568 /* Find information about loop bound variables. */
1569 for (nb_iter = loop->bounds; nb_iter;
1570 nb_iter = nb_iter->next)
1571 if (nb_iter->stmt
1572 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1573 {
1574 stmt = as_a <gcond *> (nb_iter->stmt);
1575 break;
1576 }
1577 if (!stmt && last_stmt (loop->header)
1578 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1579 stmt = as_a <gcond *> (last_stmt (loop->header));
1580 if (stmt)
1581 is_comparison_with_loop_invariant_p (stmt, loop,
1582 &loop_bound_var,
1583 &loop_bound_code,
1584 &loop_bound_step,
1585 &loop_iv_base);
1586
1587 bbs = get_loop_body (loop);
1588
1589 for (j = 0; j < loop->num_nodes; j++)
1590 {
1591 int header_found = 0;
1592 edge e;
1593 edge_iterator ei;
1594
1595 bb = bbs[j];
1596
1597 /* Bypass loop heuristics on continue statement. These
1598 statements construct loops via "non-loop" constructs
1599 in the source language and are better to be handled
1600 separately. */
1601 if (predicted_by_p (bb, PRED_CONTINUE))
1602 continue;
1603
1604 /* Loop branch heuristics - predict an edge back to a
1605 loop's head as taken. */
1606 if (bb == loop->latch)
1607 {
1608 e = find_edge (loop->latch, loop->header);
1609 if (e)
1610 {
1611 header_found = 1;
1612 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1613 }
1614 }
1615
1616 /* Loop exit heuristics - predict an edge exiting the loop if the
1617 conditional has no loop header successors as not taken. */
1618 if (!header_found
1619 /* If we already used more reliable loop exit predictors, do not
1620 bother with PRED_LOOP_EXIT. */
1621 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1622 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1623 {
1624 /* For loop with many exits we don't want to predict all exits
1625 with the pretty large probability, because if all exits are
1626 considered in row, the loop would be predicted to iterate
1627 almost never. The code to divide probability by number of
1628 exits is very rough. It should compute the number of exits
1629 taken in each patch through function (not the overall number
1630 of exits that might be a lot higher for loops with wide switch
1631 statements in them) and compute n-th square root.
1632
1633 We limit the minimal probability by 2% to avoid
1634 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1635 as this was causing regression in perl benchmark containing such
1636 a wide loop. */
1637
1638 int probability = ((REG_BR_PROB_BASE
1639 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1640 / n_exits);
1641 if (probability < HITRATE (2))
1642 probability = HITRATE (2);
1643 FOR_EACH_EDGE (e, ei, bb->succs)
1644 if (e->dest->index < NUM_FIXED_BLOCKS
1645 || !flow_bb_inside_loop_p (loop, e->dest))
1646 predict_edge (e, PRED_LOOP_EXIT, probability);
1647 }
1648 if (loop_bound_var)
1649 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1650 loop_bound_code,
1651 tree_to_shwi (loop_bound_step));
1652 }
1653
1654 /* Free basic blocks from get_loop_body. */
1655 free (bbs);
1656 }
1657 }
1658
1659 /* Attempt to predict probabilities of BB outgoing edges using local
1660 properties. */
1661 static void
1662 bb_estimate_probability_locally (basic_block bb)
1663 {
1664 rtx_insn *last_insn = BB_END (bb);
1665 rtx cond;
1666
1667 if (! can_predict_insn_p (last_insn))
1668 return;
1669 cond = get_condition (last_insn, NULL, false, false);
1670 if (! cond)
1671 return;
1672
1673 /* Try "pointer heuristic."
1674 A comparison ptr == 0 is predicted as false.
1675 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1676 if (COMPARISON_P (cond)
1677 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1678 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1679 {
1680 if (GET_CODE (cond) == EQ)
1681 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1682 else if (GET_CODE (cond) == NE)
1683 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1684 }
1685 else
1686
1687 /* Try "opcode heuristic."
1688 EQ tests are usually false and NE tests are usually true. Also,
1689 most quantities are positive, so we can make the appropriate guesses
1690 about signed comparisons against zero. */
1691 switch (GET_CODE (cond))
1692 {
1693 case CONST_INT:
1694 /* Unconditional branch. */
1695 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1696 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1697 break;
1698
1699 case EQ:
1700 case UNEQ:
1701 /* Floating point comparisons appears to behave in a very
1702 unpredictable way because of special role of = tests in
1703 FP code. */
1704 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1705 ;
1706 /* Comparisons with 0 are often used for booleans and there is
1707 nothing useful to predict about them. */
1708 else if (XEXP (cond, 1) == const0_rtx
1709 || XEXP (cond, 0) == const0_rtx)
1710 ;
1711 else
1712 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1713 break;
1714
1715 case NE:
1716 case LTGT:
1717 /* Floating point comparisons appears to behave in a very
1718 unpredictable way because of special role of = tests in
1719 FP code. */
1720 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1721 ;
1722 /* Comparisons with 0 are often used for booleans and there is
1723 nothing useful to predict about them. */
1724 else if (XEXP (cond, 1) == const0_rtx
1725 || XEXP (cond, 0) == const0_rtx)
1726 ;
1727 else
1728 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1729 break;
1730
1731 case ORDERED:
1732 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1733 break;
1734
1735 case UNORDERED:
1736 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1737 break;
1738
1739 case LE:
1740 case LT:
1741 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1742 || XEXP (cond, 1) == constm1_rtx)
1743 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1744 break;
1745
1746 case GE:
1747 case GT:
1748 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1749 || XEXP (cond, 1) == constm1_rtx)
1750 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1751 break;
1752
1753 default:
1754 break;
1755 }
1756 }
1757
1758 /* Set edge->probability for each successor edge of BB. */
1759 void
1760 guess_outgoing_edge_probabilities (basic_block bb)
1761 {
1762 bb_estimate_probability_locally (bb);
1763 combine_predictions_for_insn (BB_END (bb), bb);
1764 }
1765 \f
1766 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1767
1768 /* Helper function for expr_expected_value. */
1769
1770 static tree
1771 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1772 tree op1, bitmap visited, enum br_predictor *predictor)
1773 {
1774 gimple *def;
1775
1776 if (predictor)
1777 *predictor = PRED_UNCONDITIONAL;
1778
1779 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1780 {
1781 if (TREE_CONSTANT (op0))
1782 return op0;
1783
1784 if (code != SSA_NAME)
1785 return NULL_TREE;
1786
1787 def = SSA_NAME_DEF_STMT (op0);
1788
1789 /* If we were already here, break the infinite cycle. */
1790 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1791 return NULL;
1792
1793 if (gimple_code (def) == GIMPLE_PHI)
1794 {
1795 /* All the arguments of the PHI node must have the same constant
1796 length. */
1797 int i, n = gimple_phi_num_args (def);
1798 tree val = NULL, new_val;
1799
1800 for (i = 0; i < n; i++)
1801 {
1802 tree arg = PHI_ARG_DEF (def, i);
1803 enum br_predictor predictor2;
1804
1805 /* If this PHI has itself as an argument, we cannot
1806 determine the string length of this argument. However,
1807 if we can find an expected constant value for the other
1808 PHI args then we can still be sure that this is
1809 likely a constant. So be optimistic and just
1810 continue with the next argument. */
1811 if (arg == PHI_RESULT (def))
1812 continue;
1813
1814 new_val = expr_expected_value (arg, visited, &predictor2);
1815
1816 /* It is difficult to combine value predictors. Simply assume
1817 that later predictor is weaker and take its prediction. */
1818 if (predictor && *predictor < predictor2)
1819 *predictor = predictor2;
1820 if (!new_val)
1821 return NULL;
1822 if (!val)
1823 val = new_val;
1824 else if (!operand_equal_p (val, new_val, false))
1825 return NULL;
1826 }
1827 return val;
1828 }
1829 if (is_gimple_assign (def))
1830 {
1831 if (gimple_assign_lhs (def) != op0)
1832 return NULL;
1833
1834 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1835 gimple_assign_rhs1 (def),
1836 gimple_assign_rhs_code (def),
1837 gimple_assign_rhs2 (def),
1838 visited, predictor);
1839 }
1840
1841 if (is_gimple_call (def))
1842 {
1843 tree decl = gimple_call_fndecl (def);
1844 if (!decl)
1845 {
1846 if (gimple_call_internal_p (def)
1847 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1848 {
1849 gcc_assert (gimple_call_num_args (def) == 3);
1850 tree val = gimple_call_arg (def, 0);
1851 if (TREE_CONSTANT (val))
1852 return val;
1853 if (predictor)
1854 {
1855 tree val2 = gimple_call_arg (def, 2);
1856 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1857 && tree_fits_uhwi_p (val2)
1858 && tree_to_uhwi (val2) < END_PREDICTORS);
1859 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1860 }
1861 return gimple_call_arg (def, 1);
1862 }
1863 return NULL;
1864 }
1865 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1866 switch (DECL_FUNCTION_CODE (decl))
1867 {
1868 case BUILT_IN_EXPECT:
1869 {
1870 tree val;
1871 if (gimple_call_num_args (def) != 2)
1872 return NULL;
1873 val = gimple_call_arg (def, 0);
1874 if (TREE_CONSTANT (val))
1875 return val;
1876 if (predictor)
1877 *predictor = PRED_BUILTIN_EXPECT;
1878 return gimple_call_arg (def, 1);
1879 }
1880
1881 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1882 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1883 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1884 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1885 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1886 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1887 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1888 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1889 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1890 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1891 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1892 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1893 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1894 /* Assume that any given atomic operation has low contention,
1895 and thus the compare-and-swap operation succeeds. */
1896 if (predictor)
1897 *predictor = PRED_COMPARE_AND_SWAP;
1898 return boolean_true_node;
1899 default:
1900 break;
1901 }
1902 }
1903
1904 return NULL;
1905 }
1906
1907 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1908 {
1909 tree res;
1910 enum br_predictor predictor2;
1911 op0 = expr_expected_value (op0, visited, predictor);
1912 if (!op0)
1913 return NULL;
1914 op1 = expr_expected_value (op1, visited, &predictor2);
1915 if (predictor && *predictor < predictor2)
1916 *predictor = predictor2;
1917 if (!op1)
1918 return NULL;
1919 res = fold_build2 (code, type, op0, op1);
1920 if (TREE_CONSTANT (res))
1921 return res;
1922 return NULL;
1923 }
1924 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1925 {
1926 tree res;
1927 op0 = expr_expected_value (op0, visited, predictor);
1928 if (!op0)
1929 return NULL;
1930 res = fold_build1 (code, type, op0);
1931 if (TREE_CONSTANT (res))
1932 return res;
1933 return NULL;
1934 }
1935 return NULL;
1936 }
1937
1938 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1939 The function is used by builtin_expect branch predictor so the evidence
1940 must come from this construct and additional possible constant folding.
1941
1942 We may want to implement more involved value guess (such as value range
1943 propagation based prediction), but such tricks shall go to new
1944 implementation. */
1945
1946 static tree
1947 expr_expected_value (tree expr, bitmap visited,
1948 enum br_predictor *predictor)
1949 {
1950 enum tree_code code;
1951 tree op0, op1;
1952
1953 if (TREE_CONSTANT (expr))
1954 {
1955 if (predictor)
1956 *predictor = PRED_UNCONDITIONAL;
1957 return expr;
1958 }
1959
1960 extract_ops_from_tree (expr, &code, &op0, &op1);
1961 return expr_expected_value_1 (TREE_TYPE (expr),
1962 op0, code, op1, visited, predictor);
1963 }
1964 \f
1965 /* Predict using opcode of the last statement in basic block. */
1966 static void
1967 tree_predict_by_opcode (basic_block bb)
1968 {
1969 gimple *stmt = last_stmt (bb);
1970 edge then_edge;
1971 tree op0, op1;
1972 tree type;
1973 tree val;
1974 enum tree_code cmp;
1975 bitmap visited;
1976 edge_iterator ei;
1977 enum br_predictor predictor;
1978
1979 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1980 return;
1981 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1982 if (then_edge->flags & EDGE_TRUE_VALUE)
1983 break;
1984 op0 = gimple_cond_lhs (stmt);
1985 op1 = gimple_cond_rhs (stmt);
1986 cmp = gimple_cond_code (stmt);
1987 type = TREE_TYPE (op0);
1988 visited = BITMAP_ALLOC (NULL);
1989 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1990 &predictor);
1991 BITMAP_FREE (visited);
1992 if (val && TREE_CODE (val) == INTEGER_CST)
1993 {
1994 if (predictor == PRED_BUILTIN_EXPECT)
1995 {
1996 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
1997
1998 gcc_assert (percent >= 0 && percent <= 100);
1999 if (integer_zerop (val))
2000 percent = 100 - percent;
2001 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2002 }
2003 else
2004 predict_edge (then_edge, predictor,
2005 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2006 }
2007 /* Try "pointer heuristic."
2008 A comparison ptr == 0 is predicted as false.
2009 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2010 if (POINTER_TYPE_P (type))
2011 {
2012 if (cmp == EQ_EXPR)
2013 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2014 else if (cmp == NE_EXPR)
2015 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2016 }
2017 else
2018
2019 /* Try "opcode heuristic."
2020 EQ tests are usually false and NE tests are usually true. Also,
2021 most quantities are positive, so we can make the appropriate guesses
2022 about signed comparisons against zero. */
2023 switch (cmp)
2024 {
2025 case EQ_EXPR:
2026 case UNEQ_EXPR:
2027 /* Floating point comparisons appears to behave in a very
2028 unpredictable way because of special role of = tests in
2029 FP code. */
2030 if (FLOAT_TYPE_P (type))
2031 ;
2032 /* Comparisons with 0 are often used for booleans and there is
2033 nothing useful to predict about them. */
2034 else if (integer_zerop (op0) || integer_zerop (op1))
2035 ;
2036 else
2037 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2038 break;
2039
2040 case NE_EXPR:
2041 case LTGT_EXPR:
2042 /* Floating point comparisons appears to behave in a very
2043 unpredictable way because of special role of = tests in
2044 FP code. */
2045 if (FLOAT_TYPE_P (type))
2046 ;
2047 /* Comparisons with 0 are often used for booleans and there is
2048 nothing useful to predict about them. */
2049 else if (integer_zerop (op0)
2050 || integer_zerop (op1))
2051 ;
2052 else
2053 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2054 break;
2055
2056 case ORDERED_EXPR:
2057 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2058 break;
2059
2060 case UNORDERED_EXPR:
2061 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2062 break;
2063
2064 case LE_EXPR:
2065 case LT_EXPR:
2066 if (integer_zerop (op1)
2067 || integer_onep (op1)
2068 || integer_all_onesp (op1)
2069 || real_zerop (op1)
2070 || real_onep (op1)
2071 || real_minus_onep (op1))
2072 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2073 break;
2074
2075 case GE_EXPR:
2076 case GT_EXPR:
2077 if (integer_zerop (op1)
2078 || integer_onep (op1)
2079 || integer_all_onesp (op1)
2080 || real_zerop (op1)
2081 || real_onep (op1)
2082 || real_minus_onep (op1))
2083 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2084 break;
2085
2086 default:
2087 break;
2088 }
2089 }
2090
2091 /* Try to guess whether the value of return means error code. */
2092
2093 static enum br_predictor
2094 return_prediction (tree val, enum prediction *prediction)
2095 {
2096 /* VOID. */
2097 if (!val)
2098 return PRED_NO_PREDICTION;
2099 /* Different heuristics for pointers and scalars. */
2100 if (POINTER_TYPE_P (TREE_TYPE (val)))
2101 {
2102 /* NULL is usually not returned. */
2103 if (integer_zerop (val))
2104 {
2105 *prediction = NOT_TAKEN;
2106 return PRED_NULL_RETURN;
2107 }
2108 }
2109 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2110 {
2111 /* Negative return values are often used to indicate
2112 errors. */
2113 if (TREE_CODE (val) == INTEGER_CST
2114 && tree_int_cst_sgn (val) < 0)
2115 {
2116 *prediction = NOT_TAKEN;
2117 return PRED_NEGATIVE_RETURN;
2118 }
2119 /* Constant return values seems to be commonly taken.
2120 Zero/one often represent booleans so exclude them from the
2121 heuristics. */
2122 if (TREE_CONSTANT (val)
2123 && (!integer_zerop (val) && !integer_onep (val)))
2124 {
2125 *prediction = TAKEN;
2126 return PRED_CONST_RETURN;
2127 }
2128 }
2129 return PRED_NO_PREDICTION;
2130 }
2131
2132 /* Find the basic block with return expression and look up for possible
2133 return value trying to apply RETURN_PREDICTION heuristics. */
2134 static void
2135 apply_return_prediction (void)
2136 {
2137 greturn *return_stmt = NULL;
2138 tree return_val;
2139 edge e;
2140 gphi *phi;
2141 int phi_num_args, i;
2142 enum br_predictor pred;
2143 enum prediction direction;
2144 edge_iterator ei;
2145
2146 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2147 {
2148 gimple *last = last_stmt (e->src);
2149 if (last
2150 && gimple_code (last) == GIMPLE_RETURN)
2151 {
2152 return_stmt = as_a <greturn *> (last);
2153 break;
2154 }
2155 }
2156 if (!e)
2157 return;
2158 return_val = gimple_return_retval (return_stmt);
2159 if (!return_val)
2160 return;
2161 if (TREE_CODE (return_val) != SSA_NAME
2162 || !SSA_NAME_DEF_STMT (return_val)
2163 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2164 return;
2165 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2166 phi_num_args = gimple_phi_num_args (phi);
2167 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2168
2169 /* Avoid the degenerate case where all return values form the function
2170 belongs to same category (ie they are all positive constants)
2171 so we can hardly say something about them. */
2172 for (i = 1; i < phi_num_args; i++)
2173 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2174 break;
2175 if (i != phi_num_args)
2176 for (i = 0; i < phi_num_args; i++)
2177 {
2178 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2179 if (pred != PRED_NO_PREDICTION)
2180 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2181 direction);
2182 }
2183 }
2184
2185 /* Look for basic block that contains unlikely to happen events
2186 (such as noreturn calls) and mark all paths leading to execution
2187 of this basic blocks as unlikely. */
2188
2189 static void
2190 tree_bb_level_predictions (void)
2191 {
2192 basic_block bb;
2193 bool has_return_edges = false;
2194 edge e;
2195 edge_iterator ei;
2196
2197 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2198 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2199 {
2200 has_return_edges = true;
2201 break;
2202 }
2203
2204 apply_return_prediction ();
2205
2206 FOR_EACH_BB_FN (bb, cfun)
2207 {
2208 gimple_stmt_iterator gsi;
2209
2210 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2211 {
2212 gimple *stmt = gsi_stmt (gsi);
2213 tree decl;
2214
2215 if (is_gimple_call (stmt))
2216 {
2217 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2218 && has_return_edges)
2219 predict_paths_leading_to (bb, PRED_NORETURN,
2220 NOT_TAKEN);
2221 decl = gimple_call_fndecl (stmt);
2222 if (decl
2223 && lookup_attribute ("cold",
2224 DECL_ATTRIBUTES (decl)))
2225 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2226 NOT_TAKEN);
2227 }
2228 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2229 {
2230 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2231 gimple_predict_outcome (stmt));
2232 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2233 hints to callers. */
2234 }
2235 }
2236 }
2237 }
2238
2239 /* Callback for hash_map::traverse, asserts that the pointer map is
2240 empty. */
2241
2242 bool
2243 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2244 void *)
2245 {
2246 gcc_assert (!value);
2247 return false;
2248 }
2249
2250 /* Predict branch probabilities and estimate profile for basic block BB. */
2251
2252 static void
2253 tree_estimate_probability_bb (basic_block bb)
2254 {
2255 edge e;
2256 edge_iterator ei;
2257 gimple *last;
2258
2259 FOR_EACH_EDGE (e, ei, bb->succs)
2260 {
2261 /* Predict edges to user labels with attributes. */
2262 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2263 {
2264 gimple_stmt_iterator gi;
2265 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2266 {
2267 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2268 tree decl;
2269
2270 if (!label_stmt)
2271 break;
2272 decl = gimple_label_label (label_stmt);
2273 if (DECL_ARTIFICIAL (decl))
2274 continue;
2275
2276 /* Finally, we have a user-defined label. */
2277 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2278 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2279 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2280 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2281 }
2282 }
2283
2284 /* Predict early returns to be probable, as we've already taken
2285 care for error returns and other cases are often used for
2286 fast paths through function.
2287
2288 Since we've already removed the return statements, we are
2289 looking for CFG like:
2290
2291 if (conditional)
2292 {
2293 ..
2294 goto return_block
2295 }
2296 some other blocks
2297 return_block:
2298 return_stmt. */
2299 if (e->dest != bb->next_bb
2300 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2301 && single_succ_p (e->dest)
2302 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2303 && (last = last_stmt (e->dest)) != NULL
2304 && gimple_code (last) == GIMPLE_RETURN)
2305 {
2306 edge e1;
2307 edge_iterator ei1;
2308
2309 if (single_succ_p (bb))
2310 {
2311 FOR_EACH_EDGE (e1, ei1, bb->preds)
2312 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2313 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2314 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2315 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2316 }
2317 else
2318 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2319 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2320 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2321 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2322 }
2323
2324 /* Look for block we are guarding (ie we dominate it,
2325 but it doesn't postdominate us). */
2326 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2327 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2328 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2329 {
2330 gimple_stmt_iterator bi;
2331
2332 /* The call heuristic claims that a guarded function call
2333 is improbable. This is because such calls are often used
2334 to signal exceptional situations such as printing error
2335 messages. */
2336 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2337 gsi_next (&bi))
2338 {
2339 gimple *stmt = gsi_stmt (bi);
2340 if (is_gimple_call (stmt)
2341 /* Constant and pure calls are hardly used to signalize
2342 something exceptional. */
2343 && gimple_has_side_effects (stmt))
2344 {
2345 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2346 break;
2347 }
2348 }
2349 }
2350 }
2351 tree_predict_by_opcode (bb);
2352 }
2353
2354 /* Predict branch probabilities and estimate profile of the tree CFG.
2355 This function can be called from the loop optimizers to recompute
2356 the profile information.
2357 If DRY_RUN is set, do not modify CFG and only produce dump files. */
2358
2359 void
2360 tree_estimate_probability (bool dry_run)
2361 {
2362 basic_block bb;
2363
2364 add_noreturn_fake_exit_edges ();
2365 connect_infinite_loops_to_exit ();
2366 /* We use loop_niter_by_eval, which requires that the loops have
2367 preheaders. */
2368 create_preheaders (CP_SIMPLE_PREHEADERS);
2369 calculate_dominance_info (CDI_POST_DOMINATORS);
2370
2371 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2372 tree_bb_level_predictions ();
2373 record_loop_exits ();
2374
2375 if (number_of_loops (cfun) > 1)
2376 predict_loops ();
2377
2378 FOR_EACH_BB_FN (bb, cfun)
2379 tree_estimate_probability_bb (bb);
2380
2381 FOR_EACH_BB_FN (bb, cfun)
2382 combine_predictions_for_bb (bb, dry_run);
2383
2384 if (flag_checking)
2385 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2386
2387 delete bb_predictions;
2388 bb_predictions = NULL;
2389
2390 if (!dry_run)
2391 estimate_bb_frequencies (false);
2392 free_dominance_info (CDI_POST_DOMINATORS);
2393 remove_fake_exit_edges ();
2394 }
2395 \f
2396 /* Predict edges to successors of CUR whose sources are not postdominated by
2397 BB by PRED and recurse to all postdominators. */
2398
2399 static void
2400 predict_paths_for_bb (basic_block cur, basic_block bb,
2401 enum br_predictor pred,
2402 enum prediction taken,
2403 bitmap visited)
2404 {
2405 edge e;
2406 edge_iterator ei;
2407 basic_block son;
2408
2409 /* We are looking for all edges forming edge cut induced by
2410 set of all blocks postdominated by BB. */
2411 FOR_EACH_EDGE (e, ei, cur->preds)
2412 if (e->src->index >= NUM_FIXED_BLOCKS
2413 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2414 {
2415 edge e2;
2416 edge_iterator ei2;
2417 bool found = false;
2418
2419 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2420 if (e->flags & (EDGE_EH | EDGE_FAKE))
2421 continue;
2422 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2423
2424 /* See if there is an edge from e->src that is not abnormal
2425 and does not lead to BB. */
2426 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2427 if (e2 != e
2428 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2429 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2430 {
2431 found = true;
2432 break;
2433 }
2434
2435 /* If there is non-abnormal path leaving e->src, predict edge
2436 using predictor. Otherwise we need to look for paths
2437 leading to e->src.
2438
2439 The second may lead to infinite loop in the case we are predicitng
2440 regions that are only reachable by abnormal edges. We simply
2441 prevent visiting given BB twice. */
2442 if (found)
2443 {
2444 if (!edge_predicted_by_p (e, pred, taken))
2445 predict_edge_def (e, pred, taken);
2446 }
2447 else if (bitmap_set_bit (visited, e->src->index))
2448 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2449 }
2450 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2451 son;
2452 son = next_dom_son (CDI_POST_DOMINATORS, son))
2453 predict_paths_for_bb (son, bb, pred, taken, visited);
2454 }
2455
2456 /* Sets branch probabilities according to PREDiction and
2457 FLAGS. */
2458
2459 static void
2460 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2461 enum prediction taken)
2462 {
2463 bitmap visited = BITMAP_ALLOC (NULL);
2464 predict_paths_for_bb (bb, bb, pred, taken, visited);
2465 BITMAP_FREE (visited);
2466 }
2467
2468 /* Like predict_paths_leading_to but take edge instead of basic block. */
2469
2470 static void
2471 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2472 enum prediction taken)
2473 {
2474 bool has_nonloop_edge = false;
2475 edge_iterator ei;
2476 edge e2;
2477
2478 basic_block bb = e->src;
2479 FOR_EACH_EDGE (e2, ei, bb->succs)
2480 if (e2->dest != e->src && e2->dest != e->dest
2481 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2482 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2483 {
2484 has_nonloop_edge = true;
2485 break;
2486 }
2487 if (!has_nonloop_edge)
2488 {
2489 bitmap visited = BITMAP_ALLOC (NULL);
2490 predict_paths_for_bb (bb, bb, pred, taken, visited);
2491 BITMAP_FREE (visited);
2492 }
2493 else
2494 predict_edge_def (e, pred, taken);
2495 }
2496 \f
2497 /* This is used to carry information about basic blocks. It is
2498 attached to the AUX field of the standard CFG block. */
2499
2500 struct block_info
2501 {
2502 /* Estimated frequency of execution of basic_block. */
2503 sreal frequency;
2504
2505 /* To keep queue of basic blocks to process. */
2506 basic_block next;
2507
2508 /* Number of predecessors we need to visit first. */
2509 int npredecessors;
2510 };
2511
2512 /* Similar information for edges. */
2513 struct edge_prob_info
2514 {
2515 /* In case edge is a loopback edge, the probability edge will be reached
2516 in case header is. Estimated number of iterations of the loop can be
2517 then computed as 1 / (1 - back_edge_prob). */
2518 sreal back_edge_prob;
2519 /* True if the edge is a loopback edge in the natural loop. */
2520 unsigned int back_edge:1;
2521 };
2522
2523 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2524 #undef EDGE_INFO
2525 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2526
2527 /* Helper function for estimate_bb_frequencies.
2528 Propagate the frequencies in blocks marked in
2529 TOVISIT, starting in HEAD. */
2530
2531 static void
2532 propagate_freq (basic_block head, bitmap tovisit)
2533 {
2534 basic_block bb;
2535 basic_block last;
2536 unsigned i;
2537 edge e;
2538 basic_block nextbb;
2539 bitmap_iterator bi;
2540
2541 /* For each basic block we need to visit count number of his predecessors
2542 we need to visit first. */
2543 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2544 {
2545 edge_iterator ei;
2546 int count = 0;
2547
2548 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2549
2550 FOR_EACH_EDGE (e, ei, bb->preds)
2551 {
2552 bool visit = bitmap_bit_p (tovisit, e->src->index);
2553
2554 if (visit && !(e->flags & EDGE_DFS_BACK))
2555 count++;
2556 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2557 fprintf (dump_file,
2558 "Irreducible region hit, ignoring edge to %i->%i\n",
2559 e->src->index, bb->index);
2560 }
2561 BLOCK_INFO (bb)->npredecessors = count;
2562 /* When function never returns, we will never process exit block. */
2563 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2564 bb->count = bb->frequency = 0;
2565 }
2566
2567 BLOCK_INFO (head)->frequency = 1;
2568 last = head;
2569 for (bb = head; bb; bb = nextbb)
2570 {
2571 edge_iterator ei;
2572 sreal cyclic_probability = 0;
2573 sreal frequency = 0;
2574
2575 nextbb = BLOCK_INFO (bb)->next;
2576 BLOCK_INFO (bb)->next = NULL;
2577
2578 /* Compute frequency of basic block. */
2579 if (bb != head)
2580 {
2581 if (flag_checking)
2582 FOR_EACH_EDGE (e, ei, bb->preds)
2583 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2584 || (e->flags & EDGE_DFS_BACK));
2585
2586 FOR_EACH_EDGE (e, ei, bb->preds)
2587 if (EDGE_INFO (e)->back_edge)
2588 {
2589 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2590 }
2591 else if (!(e->flags & EDGE_DFS_BACK))
2592 {
2593 /* frequency += (e->probability
2594 * BLOCK_INFO (e->src)->frequency /
2595 REG_BR_PROB_BASE); */
2596
2597 sreal tmp = e->probability;
2598 tmp *= BLOCK_INFO (e->src)->frequency;
2599 tmp *= real_inv_br_prob_base;
2600 frequency += tmp;
2601 }
2602
2603 if (cyclic_probability == 0)
2604 {
2605 BLOCK_INFO (bb)->frequency = frequency;
2606 }
2607 else
2608 {
2609 if (cyclic_probability > real_almost_one)
2610 cyclic_probability = real_almost_one;
2611
2612 /* BLOCK_INFO (bb)->frequency = frequency
2613 / (1 - cyclic_probability) */
2614
2615 cyclic_probability = sreal (1) - cyclic_probability;
2616 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2617 }
2618 }
2619
2620 bitmap_clear_bit (tovisit, bb->index);
2621
2622 e = find_edge (bb, head);
2623 if (e)
2624 {
2625 /* EDGE_INFO (e)->back_edge_prob
2626 = ((e->probability * BLOCK_INFO (bb)->frequency)
2627 / REG_BR_PROB_BASE); */
2628
2629 sreal tmp = e->probability;
2630 tmp *= BLOCK_INFO (bb)->frequency;
2631 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2632 }
2633
2634 /* Propagate to successor blocks. */
2635 FOR_EACH_EDGE (e, ei, bb->succs)
2636 if (!(e->flags & EDGE_DFS_BACK)
2637 && BLOCK_INFO (e->dest)->npredecessors)
2638 {
2639 BLOCK_INFO (e->dest)->npredecessors--;
2640 if (!BLOCK_INFO (e->dest)->npredecessors)
2641 {
2642 if (!nextbb)
2643 nextbb = e->dest;
2644 else
2645 BLOCK_INFO (last)->next = e->dest;
2646
2647 last = e->dest;
2648 }
2649 }
2650 }
2651 }
2652
2653 /* Estimate frequencies in loops at same nest level. */
2654
2655 static void
2656 estimate_loops_at_level (struct loop *first_loop)
2657 {
2658 struct loop *loop;
2659
2660 for (loop = first_loop; loop; loop = loop->next)
2661 {
2662 edge e;
2663 basic_block *bbs;
2664 unsigned i;
2665 bitmap tovisit = BITMAP_ALLOC (NULL);
2666
2667 estimate_loops_at_level (loop->inner);
2668
2669 /* Find current loop back edge and mark it. */
2670 e = loop_latch_edge (loop);
2671 EDGE_INFO (e)->back_edge = 1;
2672
2673 bbs = get_loop_body (loop);
2674 for (i = 0; i < loop->num_nodes; i++)
2675 bitmap_set_bit (tovisit, bbs[i]->index);
2676 free (bbs);
2677 propagate_freq (loop->header, tovisit);
2678 BITMAP_FREE (tovisit);
2679 }
2680 }
2681
2682 /* Propagates frequencies through structure of loops. */
2683
2684 static void
2685 estimate_loops (void)
2686 {
2687 bitmap tovisit = BITMAP_ALLOC (NULL);
2688 basic_block bb;
2689
2690 /* Start by estimating the frequencies in the loops. */
2691 if (number_of_loops (cfun) > 1)
2692 estimate_loops_at_level (current_loops->tree_root->inner);
2693
2694 /* Now propagate the frequencies through all the blocks. */
2695 FOR_ALL_BB_FN (bb, cfun)
2696 {
2697 bitmap_set_bit (tovisit, bb->index);
2698 }
2699 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2700 BITMAP_FREE (tovisit);
2701 }
2702
2703 /* Drop the profile for NODE to guessed, and update its frequency based on
2704 whether it is expected to be hot given the CALL_COUNT. */
2705
2706 static void
2707 drop_profile (struct cgraph_node *node, gcov_type call_count)
2708 {
2709 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2710 /* In the case where this was called by another function with a
2711 dropped profile, call_count will be 0. Since there are no
2712 non-zero call counts to this function, we don't know for sure
2713 whether it is hot, and therefore it will be marked normal below. */
2714 bool hot = maybe_hot_count_p (NULL, call_count);
2715
2716 if (dump_file)
2717 fprintf (dump_file,
2718 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2719 node->name (), node->order,
2720 hot ? "Function is hot" : "Function is normal");
2721 /* We only expect to miss profiles for functions that are reached
2722 via non-zero call edges in cases where the function may have
2723 been linked from another module or library (COMDATs and extern
2724 templates). See the comments below for handle_missing_profiles.
2725 Also, only warn in cases where the missing counts exceed the
2726 number of training runs. In certain cases with an execv followed
2727 by a no-return call the profile for the no-return call is not
2728 dumped and there can be a mismatch. */
2729 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2730 && call_count > profile_info->runs)
2731 {
2732 if (flag_profile_correction)
2733 {
2734 if (dump_file)
2735 fprintf (dump_file,
2736 "Missing counts for called function %s/%i\n",
2737 node->name (), node->order);
2738 }
2739 else
2740 warning (0, "Missing counts for called function %s/%i",
2741 node->name (), node->order);
2742 }
2743
2744 profile_status_for_fn (fn)
2745 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2746 node->frequency
2747 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2748 }
2749
2750 /* In the case of COMDAT routines, multiple object files will contain the same
2751 function and the linker will select one for the binary. In that case
2752 all the other copies from the profile instrument binary will be missing
2753 profile counts. Look for cases where this happened, due to non-zero
2754 call counts going to 0-count functions, and drop the profile to guessed
2755 so that we can use the estimated probabilities and avoid optimizing only
2756 for size.
2757
2758 The other case where the profile may be missing is when the routine
2759 is not going to be emitted to the object file, e.g. for "extern template"
2760 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2761 all other cases of non-zero calls to 0-count functions. */
2762
2763 void
2764 handle_missing_profiles (void)
2765 {
2766 struct cgraph_node *node;
2767 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2768 vec<struct cgraph_node *> worklist;
2769 worklist.create (64);
2770
2771 /* See if 0 count function has non-0 count callers. In this case we
2772 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2773 FOR_EACH_DEFINED_FUNCTION (node)
2774 {
2775 struct cgraph_edge *e;
2776 gcov_type call_count = 0;
2777 gcov_type max_tp_first_run = 0;
2778 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2779
2780 if (node->count)
2781 continue;
2782 for (e = node->callers; e; e = e->next_caller)
2783 {
2784 call_count += e->count;
2785
2786 if (e->caller->tp_first_run > max_tp_first_run)
2787 max_tp_first_run = e->caller->tp_first_run;
2788 }
2789
2790 /* If time profile is missing, let assign the maximum that comes from
2791 caller functions. */
2792 if (!node->tp_first_run && max_tp_first_run)
2793 node->tp_first_run = max_tp_first_run + 1;
2794
2795 if (call_count
2796 && fn && fn->cfg
2797 && (call_count * unlikely_count_fraction >= profile_info->runs))
2798 {
2799 drop_profile (node, call_count);
2800 worklist.safe_push (node);
2801 }
2802 }
2803
2804 /* Propagate the profile dropping to other 0-count COMDATs that are
2805 potentially called by COMDATs we already dropped the profile on. */
2806 while (worklist.length () > 0)
2807 {
2808 struct cgraph_edge *e;
2809
2810 node = worklist.pop ();
2811 for (e = node->callees; e; e = e->next_caller)
2812 {
2813 struct cgraph_node *callee = e->callee;
2814 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2815
2816 if (callee->count > 0)
2817 continue;
2818 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2819 && profile_status_for_fn (fn) == PROFILE_READ)
2820 {
2821 drop_profile (node, 0);
2822 worklist.safe_push (callee);
2823 }
2824 }
2825 }
2826 worklist.release ();
2827 }
2828
2829 /* Convert counts measured by profile driven feedback to frequencies.
2830 Return nonzero iff there was any nonzero execution count. */
2831
2832 int
2833 counts_to_freqs (void)
2834 {
2835 gcov_type count_max, true_count_max = 0;
2836 basic_block bb;
2837
2838 /* Don't overwrite the estimated frequencies when the profile for
2839 the function is missing. We may drop this function PROFILE_GUESSED
2840 later in drop_profile (). */
2841 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2842 return 0;
2843
2844 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2845 true_count_max = MAX (bb->count, true_count_max);
2846
2847 count_max = MAX (true_count_max, 1);
2848 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2849 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2850
2851 return true_count_max;
2852 }
2853
2854 /* Return true if function is likely to be expensive, so there is no point to
2855 optimize performance of prologue, epilogue or do inlining at the expense
2856 of code size growth. THRESHOLD is the limit of number of instructions
2857 function can execute at average to be still considered not expensive. */
2858
2859 bool
2860 expensive_function_p (int threshold)
2861 {
2862 unsigned int sum = 0;
2863 basic_block bb;
2864 unsigned int limit;
2865
2866 /* We can not compute accurately for large thresholds due to scaled
2867 frequencies. */
2868 gcc_assert (threshold <= BB_FREQ_MAX);
2869
2870 /* Frequencies are out of range. This either means that function contains
2871 internal loop executing more than BB_FREQ_MAX times or profile feedback
2872 is available and function has not been executed at all. */
2873 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2874 return true;
2875
2876 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2877 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2878 FOR_EACH_BB_FN (bb, cfun)
2879 {
2880 rtx_insn *insn;
2881
2882 FOR_BB_INSNS (bb, insn)
2883 if (active_insn_p (insn))
2884 {
2885 sum += bb->frequency;
2886 if (sum > limit)
2887 return true;
2888 }
2889 }
2890
2891 return false;
2892 }
2893
2894 /* Estimate and propagate basic block frequencies using the given branch
2895 probabilities. If FORCE is true, the frequencies are used to estimate
2896 the counts even when there are already non-zero profile counts. */
2897
2898 void
2899 estimate_bb_frequencies (bool force)
2900 {
2901 basic_block bb;
2902 sreal freq_max;
2903
2904 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2905 {
2906 static int real_values_initialized = 0;
2907
2908 if (!real_values_initialized)
2909 {
2910 real_values_initialized = 1;
2911 real_br_prob_base = REG_BR_PROB_BASE;
2912 real_bb_freq_max = BB_FREQ_MAX;
2913 real_one_half = sreal (1, -1);
2914 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
2915 real_almost_one = sreal (1) - real_inv_br_prob_base;
2916 }
2917
2918 mark_dfs_back_edges ();
2919
2920 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2921 REG_BR_PROB_BASE;
2922
2923 /* Set up block info for each basic block. */
2924 alloc_aux_for_blocks (sizeof (block_info));
2925 alloc_aux_for_edges (sizeof (edge_prob_info));
2926 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2927 {
2928 edge e;
2929 edge_iterator ei;
2930
2931 FOR_EACH_EDGE (e, ei, bb->succs)
2932 {
2933 EDGE_INFO (e)->back_edge_prob = e->probability;
2934 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2935 }
2936 }
2937
2938 /* First compute frequencies locally for each loop from innermost
2939 to outermost to examine frequencies for back edges. */
2940 estimate_loops ();
2941
2942 freq_max = 0;
2943 FOR_EACH_BB_FN (bb, cfun)
2944 if (freq_max < BLOCK_INFO (bb)->frequency)
2945 freq_max = BLOCK_INFO (bb)->frequency;
2946
2947 freq_max = real_bb_freq_max / freq_max;
2948 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2949 {
2950 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
2951 bb->frequency = tmp.to_int ();
2952 }
2953
2954 free_aux_for_blocks ();
2955 free_aux_for_edges ();
2956 }
2957 compute_function_frequency ();
2958 }
2959
2960 /* Decide whether function is hot, cold or unlikely executed. */
2961 void
2962 compute_function_frequency (void)
2963 {
2964 basic_block bb;
2965 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2966
2967 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2968 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2969 node->only_called_at_startup = true;
2970 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2971 node->only_called_at_exit = true;
2972
2973 if (profile_status_for_fn (cfun) != PROFILE_READ)
2974 {
2975 int flags = flags_from_decl_or_type (current_function_decl);
2976 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2977 != NULL)
2978 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2979 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2980 != NULL)
2981 node->frequency = NODE_FREQUENCY_HOT;
2982 else if (flags & ECF_NORETURN)
2983 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2984 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2985 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2986 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2987 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2988 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2989 return;
2990 }
2991
2992 /* Only first time try to drop function into unlikely executed.
2993 After inlining the roundoff errors may confuse us.
2994 Ipa-profile pass will drop functions only called from unlikely
2995 functions to unlikely and that is most of what we care about. */
2996 if (!cfun->after_inlining)
2997 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2998 FOR_EACH_BB_FN (bb, cfun)
2999 {
3000 if (maybe_hot_bb_p (cfun, bb))
3001 {
3002 node->frequency = NODE_FREQUENCY_HOT;
3003 return;
3004 }
3005 if (!probably_never_executed_bb_p (cfun, bb))
3006 node->frequency = NODE_FREQUENCY_NORMAL;
3007 }
3008 }
3009
3010 /* Build PREDICT_EXPR. */
3011 tree
3012 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3013 {
3014 tree t = build1 (PREDICT_EXPR, void_type_node,
3015 build_int_cst (integer_type_node, predictor));
3016 SET_PREDICT_EXPR_OUTCOME (t, taken);
3017 return t;
3018 }
3019
3020 const char *
3021 predictor_name (enum br_predictor predictor)
3022 {
3023 return predictor_info[predictor].name;
3024 }
3025
3026 /* Predict branch probabilities and estimate profile of the tree CFG. */
3027
3028 namespace {
3029
3030 const pass_data pass_data_profile =
3031 {
3032 GIMPLE_PASS, /* type */
3033 "profile_estimate", /* name */
3034 OPTGROUP_NONE, /* optinfo_flags */
3035 TV_BRANCH_PROB, /* tv_id */
3036 PROP_cfg, /* properties_required */
3037 0, /* properties_provided */
3038 0, /* properties_destroyed */
3039 0, /* todo_flags_start */
3040 0, /* todo_flags_finish */
3041 };
3042
3043 class pass_profile : public gimple_opt_pass
3044 {
3045 public:
3046 pass_profile (gcc::context *ctxt)
3047 : gimple_opt_pass (pass_data_profile, ctxt)
3048 {}
3049
3050 /* opt_pass methods: */
3051 virtual bool gate (function *) { return flag_guess_branch_prob; }
3052 virtual unsigned int execute (function *);
3053
3054 }; // class pass_profile
3055
3056 unsigned int
3057 pass_profile::execute (function *fun)
3058 {
3059 unsigned nb_loops;
3060
3061 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3062 return 0;
3063
3064 loop_optimizer_init (LOOPS_NORMAL);
3065 if (dump_file && (dump_flags & TDF_DETAILS))
3066 flow_loops_dump (dump_file, NULL, 0);
3067
3068 mark_irreducible_loops ();
3069
3070 nb_loops = number_of_loops (fun);
3071 if (nb_loops > 1)
3072 scev_initialize ();
3073
3074 tree_estimate_probability (false);
3075
3076 if (nb_loops > 1)
3077 scev_finalize ();
3078
3079 loop_optimizer_finalize ();
3080 if (dump_file && (dump_flags & TDF_DETAILS))
3081 gimple_dump_cfg (dump_file, dump_flags);
3082 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3083 profile_status_for_fn (fun) = PROFILE_GUESSED;
3084 return 0;
3085 }
3086
3087 } // anon namespace
3088
3089 gimple_opt_pass *
3090 make_pass_profile (gcc::context *ctxt)
3091 {
3092 return new pass_profile (ctxt);
3093 }
3094
3095 namespace {
3096
3097 const pass_data pass_data_strip_predict_hints =
3098 {
3099 GIMPLE_PASS, /* type */
3100 "*strip_predict_hints", /* name */
3101 OPTGROUP_NONE, /* optinfo_flags */
3102 TV_BRANCH_PROB, /* tv_id */
3103 PROP_cfg, /* properties_required */
3104 0, /* properties_provided */
3105 0, /* properties_destroyed */
3106 0, /* todo_flags_start */
3107 0, /* todo_flags_finish */
3108 };
3109
3110 class pass_strip_predict_hints : public gimple_opt_pass
3111 {
3112 public:
3113 pass_strip_predict_hints (gcc::context *ctxt)
3114 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3115 {}
3116
3117 /* opt_pass methods: */
3118 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3119 virtual unsigned int execute (function *);
3120
3121 }; // class pass_strip_predict_hints
3122
3123 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3124 we no longer need. */
3125 unsigned int
3126 pass_strip_predict_hints::execute (function *fun)
3127 {
3128 basic_block bb;
3129 gimple *ass_stmt;
3130 tree var;
3131
3132 FOR_EACH_BB_FN (bb, fun)
3133 {
3134 gimple_stmt_iterator bi;
3135 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3136 {
3137 gimple *stmt = gsi_stmt (bi);
3138
3139 if (gimple_code (stmt) == GIMPLE_PREDICT)
3140 {
3141 gsi_remove (&bi, true);
3142 continue;
3143 }
3144 else if (is_gimple_call (stmt))
3145 {
3146 tree fndecl = gimple_call_fndecl (stmt);
3147
3148 if ((fndecl
3149 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3150 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3151 && gimple_call_num_args (stmt) == 2)
3152 || (gimple_call_internal_p (stmt)
3153 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3154 {
3155 var = gimple_call_lhs (stmt);
3156 if (var)
3157 {
3158 ass_stmt
3159 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3160 gsi_replace (&bi, ass_stmt, true);
3161 }
3162 else
3163 {
3164 gsi_remove (&bi, true);
3165 continue;
3166 }
3167 }
3168 }
3169 gsi_next (&bi);
3170 }
3171 }
3172 return 0;
3173 }
3174
3175 } // anon namespace
3176
3177 gimple_opt_pass *
3178 make_pass_strip_predict_hints (gcc::context *ctxt)
3179 {
3180 return new pass_strip_predict_hints (ctxt);
3181 }
3182
3183 /* Rebuild function frequencies. Passes are in general expected to
3184 maintain profile by hand, however in some cases this is not possible:
3185 for example when inlining several functions with loops freuqencies might run
3186 out of scale and thus needs to be recomputed. */
3187
3188 void
3189 rebuild_frequencies (void)
3190 {
3191 timevar_push (TV_REBUILD_FREQUENCIES);
3192
3193 /* When the max bb count in the function is small, there is a higher
3194 chance that there were truncation errors in the integer scaling
3195 of counts by inlining and other optimizations. This could lead
3196 to incorrect classification of code as being cold when it isn't.
3197 In that case, force the estimation of bb counts/frequencies from the
3198 branch probabilities, rather than computing frequencies from counts,
3199 which may also lead to frequencies incorrectly reduced to 0. There
3200 is less precision in the probabilities, so we only do this for small
3201 max counts. */
3202 gcov_type count_max = 0;
3203 basic_block bb;
3204 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3205 count_max = MAX (bb->count, count_max);
3206
3207 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3208 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3209 && count_max < REG_BR_PROB_BASE/10))
3210 {
3211 loop_optimizer_init (0);
3212 add_noreturn_fake_exit_edges ();
3213 mark_irreducible_loops ();
3214 connect_infinite_loops_to_exit ();
3215 estimate_bb_frequencies (true);
3216 remove_fake_exit_edges ();
3217 loop_optimizer_finalize ();
3218 }
3219 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3220 counts_to_freqs ();
3221 else
3222 gcc_unreachable ();
3223 timevar_pop (TV_REBUILD_FREQUENCIES);
3224 }
3225
3226 /* Perform a dry run of the branch prediction pass and report comparsion of
3227 the predicted and real profile into the dump file. */
3228
3229 void
3230 report_predictor_hitrates (void)
3231 {
3232 unsigned nb_loops;
3233
3234 loop_optimizer_init (LOOPS_NORMAL);
3235 if (dump_file && (dump_flags & TDF_DETAILS))
3236 flow_loops_dump (dump_file, NULL, 0);
3237
3238 mark_irreducible_loops ();
3239
3240 nb_loops = number_of_loops (cfun);
3241 if (nb_loops > 1)
3242 scev_initialize ();
3243
3244 tree_estimate_probability (true);
3245
3246 if (nb_loops > 1)
3247 scev_finalize ();
3248
3249 loop_optimizer_finalize ();
3250 }
3251