Patch by Tomas Bily <tbily@suse.cz>
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
78 static bool last_basic_block_p (basic_block);
79 static void compute_function_frequency (void);
80 static void choose_function_section (void);
81 static bool can_predict_insn_p (rtx);
82 static void estimate_bb_frequencies (void);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return true in case BB can be CPU intensive and should be optimized
113 for maximal performance. */
114
115 bool
116 maybe_hot_bb_p (basic_block bb)
117 {
118 if (profile_info && flag_branch_probabilities
119 && (bb->count
120 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
121 return false;
122 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
123 return false;
124 return true;
125 }
126
127 /* Return true in case BB is cold and should be optimized for size. */
128
129 bool
130 probably_cold_bb_p (basic_block bb)
131 {
132 if (profile_info && flag_branch_probabilities
133 && (bb->count
134 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
135 return true;
136 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
137 return true;
138 return false;
139 }
140
141 /* Return true in case BB is probably never executed. */
142 bool
143 probably_never_executed_bb_p (basic_block bb)
144 {
145 if (profile_info && flag_branch_probabilities)
146 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
147 return false;
148 }
149
150 /* Return true if the one of outgoing edges is already predicted by
151 PREDICTOR. */
152
153 bool
154 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
155 {
156 rtx note;
157 if (!INSN_P (BB_END (bb)))
158 return false;
159 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
160 if (REG_NOTE_KIND (note) == REG_BR_PRED
161 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
162 return true;
163 return false;
164 }
165
166 /* Return true if the one of outgoing edges is already predicted by
167 PREDICTOR. */
168
169 bool
170 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
171 {
172 struct edge_prediction *i;
173 for (i = bb->predictions; i; i = i->ep_next)
174 if (i->ep_predictor == predictor)
175 return true;
176 return false;
177 }
178
179 /* Return true when the probability of edge is reliable.
180
181 The profile guessing code is good at predicting branch outcome (ie.
182 taken/not taken), that is predicted right slightly over 75% of time.
183 It is however notoriously poor on predicting the probability itself.
184 In general the profile appear a lot flatter (with probabilities closer
185 to 50%) than the reality so it is bad idea to use it to drive optimization
186 such as those disabling dynamic branch prediction for well predictable
187 branches.
188
189 There are two exceptions - edges leading to noreturn edges and edges
190 predicted by number of iterations heuristics are predicted well. This macro
191 should be able to distinguish those, but at the moment it simply check for
192 noreturn heuristic that is only one giving probability over 99% or bellow
193 1%. In future we might want to propagate reliability information across the
194 CFG if we find this information useful on multiple places. */
195 static bool
196 probability_reliable_p (int prob)
197 {
198 return (profile_status == PROFILE_READ
199 || (profile_status == PROFILE_GUESSED
200 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
201 }
202
203 /* Same predicate as above, working on edges. */
204 bool
205 edge_probability_reliable_p (edge e)
206 {
207 return probability_reliable_p (e->probability);
208 }
209
210 /* Same predicate as edge_probability_reliable_p, working on notes. */
211 bool
212 br_prob_note_reliable_p (rtx note)
213 {
214 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
215 return probability_reliable_p (INTVAL (XEXP (note, 0)));
216 }
217
218 static void
219 predict_insn (rtx insn, enum br_predictor predictor, int probability)
220 {
221 gcc_assert (any_condjump_p (insn));
222 if (!flag_guess_branch_prob)
223 return;
224
225 REG_NOTES (insn)
226 = gen_rtx_EXPR_LIST (REG_BR_PRED,
227 gen_rtx_CONCAT (VOIDmode,
228 GEN_INT ((int) predictor),
229 GEN_INT ((int) probability)),
230 REG_NOTES (insn));
231 }
232
233 /* Predict insn by given predictor. */
234
235 void
236 predict_insn_def (rtx insn, enum br_predictor predictor,
237 enum prediction taken)
238 {
239 int probability = predictor_info[(int) predictor].hitrate;
240
241 if (taken != TAKEN)
242 probability = REG_BR_PROB_BASE - probability;
243
244 predict_insn (insn, predictor, probability);
245 }
246
247 /* Predict edge E with given probability if possible. */
248
249 void
250 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
251 {
252 rtx last_insn;
253 last_insn = BB_END (e->src);
254
255 /* We can store the branch prediction information only about
256 conditional jumps. */
257 if (!any_condjump_p (last_insn))
258 return;
259
260 /* We always store probability of branching. */
261 if (e->flags & EDGE_FALLTHRU)
262 probability = REG_BR_PROB_BASE - probability;
263
264 predict_insn (last_insn, predictor, probability);
265 }
266
267 /* Predict edge E with the given PROBABILITY. */
268 void
269 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
270 {
271 gcc_assert (profile_status != PROFILE_GUESSED);
272 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
273 && flag_guess_branch_prob && optimize)
274 {
275 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
276
277 i->ep_next = e->src->predictions;
278 e->src->predictions = i;
279 i->ep_probability = probability;
280 i->ep_predictor = predictor;
281 i->ep_edge = e;
282 }
283 }
284
285 /* Remove all predictions on given basic block that are attached
286 to edge E. */
287 void
288 remove_predictions_associated_with_edge (edge e)
289 {
290 if (e->src->predictions)
291 {
292 struct edge_prediction **prediction = &e->src->predictions;
293 while (*prediction)
294 {
295 if ((*prediction)->ep_edge == e)
296 *prediction = (*prediction)->ep_next;
297 else
298 prediction = &((*prediction)->ep_next);
299 }
300 }
301 }
302
303 /* Return true when we can store prediction on insn INSN.
304 At the moment we represent predictions only on conditional
305 jumps, not at computed jump or other complicated cases. */
306 static bool
307 can_predict_insn_p (rtx insn)
308 {
309 return (JUMP_P (insn)
310 && any_condjump_p (insn)
311 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
312 }
313
314 /* Predict edge E by given predictor if possible. */
315
316 void
317 predict_edge_def (edge e, enum br_predictor predictor,
318 enum prediction taken)
319 {
320 int probability = predictor_info[(int) predictor].hitrate;
321
322 if (taken != TAKEN)
323 probability = REG_BR_PROB_BASE - probability;
324
325 predict_edge (e, predictor, probability);
326 }
327
328 /* Invert all branch predictions or probability notes in the INSN. This needs
329 to be done each time we invert the condition used by the jump. */
330
331 void
332 invert_br_probabilities (rtx insn)
333 {
334 rtx note;
335
336 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
337 if (REG_NOTE_KIND (note) == REG_BR_PROB)
338 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
339 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
340 XEXP (XEXP (note, 0), 1)
341 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
342 }
343
344 /* Dump information about the branch prediction to the output file. */
345
346 static void
347 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
348 basic_block bb, int used)
349 {
350 edge e;
351 edge_iterator ei;
352
353 if (!file)
354 return;
355
356 FOR_EACH_EDGE (e, ei, bb->succs)
357 if (! (e->flags & EDGE_FALLTHRU))
358 break;
359
360 fprintf (file, " %s heuristics%s: %.1f%%",
361 predictor_info[predictor].name,
362 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
363
364 if (bb->count)
365 {
366 fprintf (file, " exec ");
367 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
368 if (e)
369 {
370 fprintf (file, " hit ");
371 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
372 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
373 }
374 }
375
376 fprintf (file, "\n");
377 }
378
379 /* We can not predict the probabilities of outgoing edges of bb. Set them
380 evenly and hope for the best. */
381 static void
382 set_even_probabilities (basic_block bb)
383 {
384 int nedges = 0;
385 edge e;
386 edge_iterator ei;
387
388 FOR_EACH_EDGE (e, ei, bb->succs)
389 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
390 nedges ++;
391 FOR_EACH_EDGE (e, ei, bb->succs)
392 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
393 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
394 else
395 e->probability = 0;
396 }
397
398 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
399 note if not already present. Remove now useless REG_BR_PRED notes. */
400
401 static void
402 combine_predictions_for_insn (rtx insn, basic_block bb)
403 {
404 rtx prob_note;
405 rtx *pnote;
406 rtx note;
407 int best_probability = PROB_EVEN;
408 int best_predictor = END_PREDICTORS;
409 int combined_probability = REG_BR_PROB_BASE / 2;
410 int d;
411 bool first_match = false;
412 bool found = false;
413
414 if (!can_predict_insn_p (insn))
415 {
416 set_even_probabilities (bb);
417 return;
418 }
419
420 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
421 pnote = &REG_NOTES (insn);
422 if (dump_file)
423 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
424 bb->index);
425
426 /* We implement "first match" heuristics and use probability guessed
427 by predictor with smallest index. */
428 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
429 if (REG_NOTE_KIND (note) == REG_BR_PRED)
430 {
431 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
432 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
433
434 found = true;
435 if (best_predictor > predictor)
436 best_probability = probability, best_predictor = predictor;
437
438 d = (combined_probability * probability
439 + (REG_BR_PROB_BASE - combined_probability)
440 * (REG_BR_PROB_BASE - probability));
441
442 /* Use FP math to avoid overflows of 32bit integers. */
443 if (d == 0)
444 /* If one probability is 0% and one 100%, avoid division by zero. */
445 combined_probability = REG_BR_PROB_BASE / 2;
446 else
447 combined_probability = (((double) combined_probability) * probability
448 * REG_BR_PROB_BASE / d + 0.5);
449 }
450
451 /* Decide which heuristic to use. In case we didn't match anything,
452 use no_prediction heuristic, in case we did match, use either
453 first match or Dempster-Shaffer theory depending on the flags. */
454
455 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
456 first_match = true;
457
458 if (!found)
459 dump_prediction (dump_file, PRED_NO_PREDICTION,
460 combined_probability, bb, true);
461 else
462 {
463 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
464 bb, !first_match);
465 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
466 bb, first_match);
467 }
468
469 if (first_match)
470 combined_probability = best_probability;
471 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
472
473 while (*pnote)
474 {
475 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
476 {
477 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
478 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
479
480 dump_prediction (dump_file, predictor, probability, bb,
481 !first_match || best_predictor == predictor);
482 *pnote = XEXP (*pnote, 1);
483 }
484 else
485 pnote = &XEXP (*pnote, 1);
486 }
487
488 if (!prob_note)
489 {
490 REG_NOTES (insn)
491 = gen_rtx_EXPR_LIST (REG_BR_PROB,
492 GEN_INT (combined_probability), REG_NOTES (insn));
493
494 /* Save the prediction into CFG in case we are seeing non-degenerated
495 conditional jump. */
496 if (!single_succ_p (bb))
497 {
498 BRANCH_EDGE (bb)->probability = combined_probability;
499 FALLTHRU_EDGE (bb)->probability
500 = REG_BR_PROB_BASE - combined_probability;
501 }
502 }
503 else if (!single_succ_p (bb))
504 {
505 int prob = INTVAL (XEXP (prob_note, 0));
506
507 BRANCH_EDGE (bb)->probability = prob;
508 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
509 }
510 else
511 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
512 }
513
514 /* Combine predictions into single probability and store them into CFG.
515 Remove now useless prediction entries. */
516
517 static void
518 combine_predictions_for_bb (basic_block bb)
519 {
520 int best_probability = PROB_EVEN;
521 int best_predictor = END_PREDICTORS;
522 int combined_probability = REG_BR_PROB_BASE / 2;
523 int d;
524 bool first_match = false;
525 bool found = false;
526 struct edge_prediction *pred;
527 int nedges = 0;
528 edge e, first = NULL, second = NULL;
529 edge_iterator ei;
530
531 FOR_EACH_EDGE (e, ei, bb->succs)
532 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
533 {
534 nedges ++;
535 if (first && !second)
536 second = e;
537 if (!first)
538 first = e;
539 }
540
541 /* When there is no successor or only one choice, prediction is easy.
542
543 We are lazy for now and predict only basic blocks with two outgoing
544 edges. It is possible to predict generic case too, but we have to
545 ignore first match heuristics and do more involved combining. Implement
546 this later. */
547 if (nedges != 2)
548 {
549 if (!bb->count)
550 set_even_probabilities (bb);
551 bb->predictions = NULL;
552 if (dump_file)
553 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
554 nedges, bb->index);
555 return;
556 }
557
558 if (dump_file)
559 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
560
561 /* We implement "first match" heuristics and use probability guessed
562 by predictor with smallest index. */
563 for (pred = bb->predictions; pred; pred = pred->ep_next)
564 {
565 int predictor = pred->ep_predictor;
566 int probability = pred->ep_probability;
567
568 if (pred->ep_edge != first)
569 probability = REG_BR_PROB_BASE - probability;
570
571 found = true;
572 if (best_predictor > predictor)
573 best_probability = probability, best_predictor = predictor;
574
575 d = (combined_probability * probability
576 + (REG_BR_PROB_BASE - combined_probability)
577 * (REG_BR_PROB_BASE - probability));
578
579 /* Use FP math to avoid overflows of 32bit integers. */
580 if (d == 0)
581 /* If one probability is 0% and one 100%, avoid division by zero. */
582 combined_probability = REG_BR_PROB_BASE / 2;
583 else
584 combined_probability = (((double) combined_probability) * probability
585 * REG_BR_PROB_BASE / d + 0.5);
586 }
587
588 /* Decide which heuristic to use. In case we didn't match anything,
589 use no_prediction heuristic, in case we did match, use either
590 first match or Dempster-Shaffer theory depending on the flags. */
591
592 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
593 first_match = true;
594
595 if (!found)
596 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
597 else
598 {
599 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
600 !first_match);
601 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
602 first_match);
603 }
604
605 if (first_match)
606 combined_probability = best_probability;
607 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
608
609 for (pred = bb->predictions; pred; pred = pred->ep_next)
610 {
611 int predictor = pred->ep_predictor;
612 int probability = pred->ep_probability;
613
614 if (pred->ep_edge != EDGE_SUCC (bb, 0))
615 probability = REG_BR_PROB_BASE - probability;
616 dump_prediction (dump_file, predictor, probability, bb,
617 !first_match || best_predictor == predictor);
618 }
619 bb->predictions = NULL;
620
621 if (!bb->count)
622 {
623 first->probability = combined_probability;
624 second->probability = REG_BR_PROB_BASE - combined_probability;
625 }
626 }
627
628 /* Predict edge probabilities by exploiting loop structure. */
629
630 static void
631 predict_loops (void)
632 {
633 loop_iterator li;
634 struct loop *loop;
635
636 scev_initialize ();
637
638 /* Try to predict out blocks in a loop that are not part of a
639 natural loop. */
640 FOR_EACH_LOOP (li, loop, 0)
641 {
642 basic_block bb, *bbs;
643 unsigned j, n_exits;
644 VEC (edge, heap) *exits;
645 struct tree_niter_desc niter_desc;
646 edge ex;
647
648 exits = get_loop_exit_edges (loop);
649 n_exits = VEC_length (edge, exits);
650
651 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
652 {
653 tree niter = NULL;
654
655 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
656 niter = niter_desc.niter;
657 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
658 niter = loop_niter_by_eval (loop, ex);
659
660 if (TREE_CODE (niter) == INTEGER_CST)
661 {
662 int probability;
663 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
664 if (host_integerp (niter, 1)
665 && compare_tree_int (niter, max-1) == -1)
666 {
667 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
668 probability = ((REG_BR_PROB_BASE + nitercst / 2)
669 / nitercst);
670 }
671 else
672 probability = ((REG_BR_PROB_BASE + max / 2) / max);
673
674 predict_edge (ex, PRED_LOOP_ITERATIONS, probability);
675 }
676 }
677 VEC_free (edge, heap, exits);
678
679 bbs = get_loop_body (loop);
680
681 for (j = 0; j < loop->num_nodes; j++)
682 {
683 int header_found = 0;
684 edge e;
685 edge_iterator ei;
686
687 bb = bbs[j];
688
689 /* Bypass loop heuristics on continue statement. These
690 statements construct loops via "non-loop" constructs
691 in the source language and are better to be handled
692 separately. */
693 if (predicted_by_p (bb, PRED_CONTINUE))
694 continue;
695
696 /* Loop branch heuristics - predict an edge back to a
697 loop's head as taken. */
698 if (bb == loop->latch)
699 {
700 e = find_edge (loop->latch, loop->header);
701 if (e)
702 {
703 header_found = 1;
704 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
705 }
706 }
707
708 /* Loop exit heuristics - predict an edge exiting the loop if the
709 conditional has no loop header successors as not taken. */
710 if (!header_found)
711 {
712 /* For loop with many exits we don't want to predict all exits
713 with the pretty large probability, because if all exits are
714 considered in row, the loop would be predicted to iterate
715 almost never. The code to divide probability by number of
716 exits is very rough. It should compute the number of exits
717 taken in each patch through function (not the overall number
718 of exits that might be a lot higher for loops with wide switch
719 statements in them) and compute n-th square root.
720
721 We limit the minimal probability by 2% to avoid
722 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
723 as this was causing regression in perl benchmark containing such
724 a wide loop. */
725
726 int probability = ((REG_BR_PROB_BASE
727 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
728 / n_exits);
729 if (probability < HITRATE (2))
730 probability = HITRATE (2);
731 FOR_EACH_EDGE (e, ei, bb->succs)
732 if (e->dest->index < NUM_FIXED_BLOCKS
733 || !flow_bb_inside_loop_p (loop, e->dest))
734 predict_edge (e, PRED_LOOP_EXIT, probability);
735 }
736 }
737
738 /* Free basic blocks from get_loop_body. */
739 free (bbs);
740 }
741
742 scev_finalize ();
743 }
744
745 /* Attempt to predict probabilities of BB outgoing edges using local
746 properties. */
747 static void
748 bb_estimate_probability_locally (basic_block bb)
749 {
750 rtx last_insn = BB_END (bb);
751 rtx cond;
752
753 if (! can_predict_insn_p (last_insn))
754 return;
755 cond = get_condition (last_insn, NULL, false, false);
756 if (! cond)
757 return;
758
759 /* Try "pointer heuristic."
760 A comparison ptr == 0 is predicted as false.
761 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
762 if (COMPARISON_P (cond)
763 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
764 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
765 {
766 if (GET_CODE (cond) == EQ)
767 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
768 else if (GET_CODE (cond) == NE)
769 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
770 }
771 else
772
773 /* Try "opcode heuristic."
774 EQ tests are usually false and NE tests are usually true. Also,
775 most quantities are positive, so we can make the appropriate guesses
776 about signed comparisons against zero. */
777 switch (GET_CODE (cond))
778 {
779 case CONST_INT:
780 /* Unconditional branch. */
781 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
782 cond == const0_rtx ? NOT_TAKEN : TAKEN);
783 break;
784
785 case EQ:
786 case UNEQ:
787 /* Floating point comparisons appears to behave in a very
788 unpredictable way because of special role of = tests in
789 FP code. */
790 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
791 ;
792 /* Comparisons with 0 are often used for booleans and there is
793 nothing useful to predict about them. */
794 else if (XEXP (cond, 1) == const0_rtx
795 || XEXP (cond, 0) == const0_rtx)
796 ;
797 else
798 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
799 break;
800
801 case NE:
802 case LTGT:
803 /* Floating point comparisons appears to behave in a very
804 unpredictable way because of special role of = tests in
805 FP code. */
806 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
807 ;
808 /* Comparisons with 0 are often used for booleans and there is
809 nothing useful to predict about them. */
810 else if (XEXP (cond, 1) == const0_rtx
811 || XEXP (cond, 0) == const0_rtx)
812 ;
813 else
814 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
815 break;
816
817 case ORDERED:
818 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
819 break;
820
821 case UNORDERED:
822 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
823 break;
824
825 case LE:
826 case LT:
827 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
828 || XEXP (cond, 1) == constm1_rtx)
829 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
830 break;
831
832 case GE:
833 case GT:
834 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
835 || XEXP (cond, 1) == constm1_rtx)
836 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
837 break;
838
839 default:
840 break;
841 }
842 }
843
844 /* Set edge->probability for each successor edge of BB. */
845 void
846 guess_outgoing_edge_probabilities (basic_block bb)
847 {
848 bb_estimate_probability_locally (bb);
849 combine_predictions_for_insn (BB_END (bb), bb);
850 }
851 \f
852 /* Return constant EXPR will likely have at execution time, NULL if unknown.
853 The function is used by builtin_expect branch predictor so the evidence
854 must come from this construct and additional possible constant folding.
855
856 We may want to implement more involved value guess (such as value range
857 propagation based prediction), but such tricks shall go to new
858 implementation. */
859
860 static tree
861 expr_expected_value (tree expr, bitmap visited)
862 {
863 if (TREE_CONSTANT (expr))
864 return expr;
865 else if (TREE_CODE (expr) == SSA_NAME)
866 {
867 tree def = SSA_NAME_DEF_STMT (expr);
868
869 /* If we were already here, break the infinite cycle. */
870 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
871 return NULL;
872 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
873
874 if (TREE_CODE (def) == PHI_NODE)
875 {
876 /* All the arguments of the PHI node must have the same constant
877 length. */
878 int i;
879 tree val = NULL, new_val;
880
881 for (i = 0; i < PHI_NUM_ARGS (def); i++)
882 {
883 tree arg = PHI_ARG_DEF (def, i);
884
885 /* If this PHI has itself as an argument, we cannot
886 determine the string length of this argument. However,
887 if we can find an expected constant value for the other
888 PHI args then we can still be sure that this is
889 likely a constant. So be optimistic and just
890 continue with the next argument. */
891 if (arg == PHI_RESULT (def))
892 continue;
893
894 new_val = expr_expected_value (arg, visited);
895 if (!new_val)
896 return NULL;
897 if (!val)
898 val = new_val;
899 else if (!operand_equal_p (val, new_val, false))
900 return NULL;
901 }
902 return val;
903 }
904 if (TREE_CODE (def) != GIMPLE_MODIFY_STMT
905 || GIMPLE_STMT_OPERAND (def, 0) != expr)
906 return NULL;
907 return expr_expected_value (GIMPLE_STMT_OPERAND (def, 1), visited);
908 }
909 else if (TREE_CODE (expr) == CALL_EXPR)
910 {
911 tree decl = get_callee_fndecl (expr);
912 if (!decl)
913 return NULL;
914 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
915 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
916 {
917 tree arglist = TREE_OPERAND (expr, 1);
918 tree val;
919
920 if (arglist == NULL_TREE
921 || TREE_CHAIN (arglist) == NULL_TREE)
922 return NULL;
923 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
924 if (TREE_CONSTANT (val))
925 return val;
926 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
927 }
928 }
929 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
930 {
931 tree op0, op1, res;
932 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
933 if (!op0)
934 return NULL;
935 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
936 if (!op1)
937 return NULL;
938 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
939 if (TREE_CONSTANT (res))
940 return res;
941 return NULL;
942 }
943 if (UNARY_CLASS_P (expr))
944 {
945 tree op0, res;
946 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
947 if (!op0)
948 return NULL;
949 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
950 if (TREE_CONSTANT (res))
951 return res;
952 return NULL;
953 }
954 return NULL;
955 }
956 \f
957 /* Get rid of all builtin_expect calls we no longer need. */
958 static void
959 strip_builtin_expect (void)
960 {
961 basic_block bb;
962 FOR_EACH_BB (bb)
963 {
964 block_stmt_iterator bi;
965 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
966 {
967 tree stmt = bsi_stmt (bi);
968 tree fndecl;
969 tree arglist;
970
971 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
972 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR
973 && (fndecl = get_callee_fndecl (GIMPLE_STMT_OPERAND (stmt, 1)))
974 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
975 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
976 && (arglist = TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt, 1), 1))
977 && TREE_CHAIN (arglist))
978 {
979 GIMPLE_STMT_OPERAND (stmt, 1) = TREE_VALUE (arglist);
980 update_stmt (stmt);
981 }
982 }
983 }
984 }
985 \f
986 /* Predict using opcode of the last statement in basic block. */
987 static void
988 tree_predict_by_opcode (basic_block bb)
989 {
990 tree stmt = last_stmt (bb);
991 edge then_edge;
992 tree cond;
993 tree op0;
994 tree type;
995 tree val;
996 bitmap visited;
997 edge_iterator ei;
998
999 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1000 return;
1001 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1002 if (then_edge->flags & EDGE_TRUE_VALUE)
1003 break;
1004 cond = TREE_OPERAND (stmt, 0);
1005 if (!COMPARISON_CLASS_P (cond))
1006 return;
1007 op0 = TREE_OPERAND (cond, 0);
1008 type = TREE_TYPE (op0);
1009 visited = BITMAP_ALLOC (NULL);
1010 val = expr_expected_value (cond, visited);
1011 BITMAP_FREE (visited);
1012 if (val)
1013 {
1014 if (integer_zerop (val))
1015 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1016 else
1017 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1018 return;
1019 }
1020 /* Try "pointer heuristic."
1021 A comparison ptr == 0 is predicted as false.
1022 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1023 if (POINTER_TYPE_P (type))
1024 {
1025 if (TREE_CODE (cond) == EQ_EXPR)
1026 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1027 else if (TREE_CODE (cond) == NE_EXPR)
1028 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1029 }
1030 else
1031
1032 /* Try "opcode heuristic."
1033 EQ tests are usually false and NE tests are usually true. Also,
1034 most quantities are positive, so we can make the appropriate guesses
1035 about signed comparisons against zero. */
1036 switch (TREE_CODE (cond))
1037 {
1038 case EQ_EXPR:
1039 case UNEQ_EXPR:
1040 /* Floating point comparisons appears to behave in a very
1041 unpredictable way because of special role of = tests in
1042 FP code. */
1043 if (FLOAT_TYPE_P (type))
1044 ;
1045 /* Comparisons with 0 are often used for booleans and there is
1046 nothing useful to predict about them. */
1047 else if (integer_zerop (op0)
1048 || integer_zerop (TREE_OPERAND (cond, 1)))
1049 ;
1050 else
1051 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1052 break;
1053
1054 case NE_EXPR:
1055 case LTGT_EXPR:
1056 /* Floating point comparisons appears to behave in a very
1057 unpredictable way because of special role of = tests in
1058 FP code. */
1059 if (FLOAT_TYPE_P (type))
1060 ;
1061 /* Comparisons with 0 are often used for booleans and there is
1062 nothing useful to predict about them. */
1063 else if (integer_zerop (op0)
1064 || integer_zerop (TREE_OPERAND (cond, 1)))
1065 ;
1066 else
1067 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1068 break;
1069
1070 case ORDERED_EXPR:
1071 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1072 break;
1073
1074 case UNORDERED_EXPR:
1075 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1076 break;
1077
1078 case LE_EXPR:
1079 case LT_EXPR:
1080 if (integer_zerop (TREE_OPERAND (cond, 1))
1081 || integer_onep (TREE_OPERAND (cond, 1))
1082 || integer_all_onesp (TREE_OPERAND (cond, 1))
1083 || real_zerop (TREE_OPERAND (cond, 1))
1084 || real_onep (TREE_OPERAND (cond, 1))
1085 || real_minus_onep (TREE_OPERAND (cond, 1)))
1086 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1087 break;
1088
1089 case GE_EXPR:
1090 case GT_EXPR:
1091 if (integer_zerop (TREE_OPERAND (cond, 1))
1092 || integer_onep (TREE_OPERAND (cond, 1))
1093 || integer_all_onesp (TREE_OPERAND (cond, 1))
1094 || real_zerop (TREE_OPERAND (cond, 1))
1095 || real_onep (TREE_OPERAND (cond, 1))
1096 || real_minus_onep (TREE_OPERAND (cond, 1)))
1097 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1098 break;
1099
1100 default:
1101 break;
1102 }
1103 }
1104
1105 /* Try to guess whether the value of return means error code. */
1106 static enum br_predictor
1107 return_prediction (tree val, enum prediction *prediction)
1108 {
1109 /* VOID. */
1110 if (!val)
1111 return PRED_NO_PREDICTION;
1112 /* Different heuristics for pointers and scalars. */
1113 if (POINTER_TYPE_P (TREE_TYPE (val)))
1114 {
1115 /* NULL is usually not returned. */
1116 if (integer_zerop (val))
1117 {
1118 *prediction = NOT_TAKEN;
1119 return PRED_NULL_RETURN;
1120 }
1121 }
1122 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1123 {
1124 /* Negative return values are often used to indicate
1125 errors. */
1126 if (TREE_CODE (val) == INTEGER_CST
1127 && tree_int_cst_sgn (val) < 0)
1128 {
1129 *prediction = NOT_TAKEN;
1130 return PRED_NEGATIVE_RETURN;
1131 }
1132 /* Constant return values seems to be commonly taken.
1133 Zero/one often represent booleans so exclude them from the
1134 heuristics. */
1135 if (TREE_CONSTANT (val)
1136 && (!integer_zerop (val) && !integer_onep (val)))
1137 {
1138 *prediction = TAKEN;
1139 return PRED_NEGATIVE_RETURN;
1140 }
1141 }
1142 return PRED_NO_PREDICTION;
1143 }
1144
1145 /* Find the basic block with return expression and look up for possible
1146 return value trying to apply RETURN_PREDICTION heuristics. */
1147 static void
1148 apply_return_prediction (int *heads)
1149 {
1150 tree return_stmt = NULL;
1151 tree return_val;
1152 edge e;
1153 tree phi;
1154 int phi_num_args, i;
1155 enum br_predictor pred;
1156 enum prediction direction;
1157 edge_iterator ei;
1158
1159 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1160 {
1161 return_stmt = last_stmt (e->src);
1162 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1163 break;
1164 }
1165 if (!e)
1166 return;
1167 return_val = TREE_OPERAND (return_stmt, 0);
1168 if (!return_val)
1169 return;
1170 if (TREE_CODE (return_val) == GIMPLE_MODIFY_STMT)
1171 return_val = GIMPLE_STMT_OPERAND (return_val, 1);
1172 if (TREE_CODE (return_val) != SSA_NAME
1173 || !SSA_NAME_DEF_STMT (return_val)
1174 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1175 return;
1176 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1177 if (PHI_RESULT (phi) == return_val)
1178 break;
1179 if (!phi)
1180 return;
1181 phi_num_args = PHI_NUM_ARGS (phi);
1182 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1183
1184 /* Avoid the degenerate case where all return values form the function
1185 belongs to same category (ie they are all positive constants)
1186 so we can hardly say something about them. */
1187 for (i = 1; i < phi_num_args; i++)
1188 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1189 break;
1190 if (i != phi_num_args)
1191 for (i = 0; i < phi_num_args; i++)
1192 {
1193 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1194 if (pred != PRED_NO_PREDICTION)
1195 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1196 direction);
1197 }
1198 }
1199
1200 /* Look for basic block that contains unlikely to happen events
1201 (such as noreturn calls) and mark all paths leading to execution
1202 of this basic blocks as unlikely. */
1203
1204 static void
1205 tree_bb_level_predictions (void)
1206 {
1207 basic_block bb;
1208 int *heads;
1209
1210 heads = XCNEWVEC (int, last_basic_block);
1211 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1212
1213 apply_return_prediction (heads);
1214
1215 FOR_EACH_BB (bb)
1216 {
1217 block_stmt_iterator bsi = bsi_last (bb);
1218
1219 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1220 {
1221 tree stmt = bsi_stmt (bsi);
1222 switch (TREE_CODE (stmt))
1223 {
1224 case GIMPLE_MODIFY_STMT:
1225 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR)
1226 {
1227 stmt = GIMPLE_STMT_OPERAND (stmt, 1);
1228 goto call_expr;
1229 }
1230 break;
1231 case CALL_EXPR:
1232 call_expr:;
1233 if (call_expr_flags (stmt) & ECF_NORETURN)
1234 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1235 NOT_TAKEN);
1236 break;
1237 default:
1238 break;
1239 }
1240 }
1241 }
1242
1243 free (heads);
1244 }
1245
1246 /* Predict branch probabilities and estimate profile of the tree CFG. */
1247 static unsigned int
1248 tree_estimate_probability (void)
1249 {
1250 basic_block bb;
1251
1252 loop_optimizer_init (0);
1253 if (current_loops && dump_file && (dump_flags & TDF_DETAILS))
1254 flow_loops_dump (dump_file, NULL, 0);
1255
1256 add_noreturn_fake_exit_edges ();
1257 connect_infinite_loops_to_exit ();
1258 calculate_dominance_info (CDI_DOMINATORS);
1259 calculate_dominance_info (CDI_POST_DOMINATORS);
1260
1261 tree_bb_level_predictions ();
1262
1263 mark_irreducible_loops ();
1264 if (current_loops)
1265 predict_loops ();
1266
1267 FOR_EACH_BB (bb)
1268 {
1269 edge e;
1270 edge_iterator ei;
1271
1272 FOR_EACH_EDGE (e, ei, bb->succs)
1273 {
1274 /* Predict early returns to be probable, as we've already taken
1275 care for error returns and other cases are often used for
1276 fast paths through function. */
1277 if (e->dest == EXIT_BLOCK_PTR
1278 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1279 && !single_pred_p (bb))
1280 {
1281 edge e1;
1282 edge_iterator ei1;
1283
1284 FOR_EACH_EDGE (e1, ei1, bb->preds)
1285 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1286 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1287 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1288 && !last_basic_block_p (e1->src))
1289 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1290 }
1291
1292 /* Look for block we are guarding (ie we dominate it,
1293 but it doesn't postdominate us). */
1294 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1295 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1296 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1297 {
1298 block_stmt_iterator bi;
1299
1300 /* The call heuristic claims that a guarded function call
1301 is improbable. This is because such calls are often used
1302 to signal exceptional situations such as printing error
1303 messages. */
1304 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1305 bsi_next (&bi))
1306 {
1307 tree stmt = bsi_stmt (bi);
1308 if ((TREE_CODE (stmt) == CALL_EXPR
1309 || (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1310 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1))
1311 == CALL_EXPR))
1312 /* Constant and pure calls are hardly used to signalize
1313 something exceptional. */
1314 && TREE_SIDE_EFFECTS (stmt))
1315 {
1316 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1317 break;
1318 }
1319 }
1320 }
1321 }
1322 tree_predict_by_opcode (bb);
1323 }
1324 FOR_EACH_BB (bb)
1325 combine_predictions_for_bb (bb);
1326
1327 strip_builtin_expect ();
1328 estimate_bb_frequencies ();
1329 free_dominance_info (CDI_POST_DOMINATORS);
1330 remove_fake_exit_edges ();
1331 loop_optimizer_finalize ();
1332 if (dump_file && (dump_flags & TDF_DETAILS))
1333 dump_tree_cfg (dump_file, dump_flags);
1334 if (profile_status == PROFILE_ABSENT)
1335 profile_status = PROFILE_GUESSED;
1336 return 0;
1337 }
1338 \f
1339 /* Check whether this is the last basic block of function. Commonly
1340 there is one extra common cleanup block. */
1341 static bool
1342 last_basic_block_p (basic_block bb)
1343 {
1344 if (bb == EXIT_BLOCK_PTR)
1345 return false;
1346
1347 return (bb->next_bb == EXIT_BLOCK_PTR
1348 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1349 && single_succ_p (bb)
1350 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1351 }
1352
1353 /* Sets branch probabilities according to PREDiction and
1354 FLAGS. HEADS[bb->index] should be index of basic block in that we
1355 need to alter branch predictions (i.e. the first of our dominators
1356 such that we do not post-dominate it) (but we fill this information
1357 on demand, so -1 may be there in case this was not needed yet). */
1358
1359 static void
1360 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1361 enum prediction taken)
1362 {
1363 edge e;
1364 edge_iterator ei;
1365 int y;
1366
1367 if (heads[bb->index] == ENTRY_BLOCK)
1368 {
1369 /* This is first time we need this field in heads array; so
1370 find first dominator that we do not post-dominate (we are
1371 using already known members of heads array). */
1372 basic_block ai = bb;
1373 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1374 int head;
1375
1376 while (heads[next_ai->index] == ENTRY_BLOCK)
1377 {
1378 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1379 break;
1380 heads[next_ai->index] = ai->index;
1381 ai = next_ai;
1382 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1383 }
1384 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1385 head = next_ai->index;
1386 else
1387 head = heads[next_ai->index];
1388 while (next_ai != bb)
1389 {
1390 next_ai = ai;
1391 ai = BASIC_BLOCK (heads[ai->index]);
1392 heads[next_ai->index] = head;
1393 }
1394 }
1395 y = heads[bb->index];
1396
1397 /* Now find the edge that leads to our branch and aply the prediction. */
1398
1399 if (y == last_basic_block)
1400 return;
1401 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1402 if (e->dest->index >= NUM_FIXED_BLOCKS
1403 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1404 predict_edge_def (e, pred, taken);
1405 }
1406 \f
1407 /* This is used to carry information about basic blocks. It is
1408 attached to the AUX field of the standard CFG block. */
1409
1410 typedef struct block_info_def
1411 {
1412 /* Estimated frequency of execution of basic_block. */
1413 sreal frequency;
1414
1415 /* To keep queue of basic blocks to process. */
1416 basic_block next;
1417
1418 /* Number of predecessors we need to visit first. */
1419 int npredecessors;
1420 } *block_info;
1421
1422 /* Similar information for edges. */
1423 typedef struct edge_info_def
1424 {
1425 /* In case edge is a loopback edge, the probability edge will be reached
1426 in case header is. Estimated number of iterations of the loop can be
1427 then computed as 1 / (1 - back_edge_prob). */
1428 sreal back_edge_prob;
1429 /* True if the edge is a loopback edge in the natural loop. */
1430 unsigned int back_edge:1;
1431 } *edge_info;
1432
1433 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1434 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1435
1436 /* Helper function for estimate_bb_frequencies.
1437 Propagate the frequencies in blocks marked in
1438 TOVISIT, starting in HEAD. */
1439
1440 static void
1441 propagate_freq (basic_block head, bitmap tovisit)
1442 {
1443 basic_block bb;
1444 basic_block last;
1445 unsigned i;
1446 edge e;
1447 basic_block nextbb;
1448 bitmap_iterator bi;
1449
1450 /* For each basic block we need to visit count number of his predecessors
1451 we need to visit first. */
1452 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1453 {
1454 edge_iterator ei;
1455 int count = 0;
1456
1457 /* The outermost "loop" includes the exit block, which we can not
1458 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1459 directly. Do the same for the entry block. */
1460 bb = BASIC_BLOCK (i);
1461
1462 FOR_EACH_EDGE (e, ei, bb->preds)
1463 {
1464 bool visit = bitmap_bit_p (tovisit, e->src->index);
1465
1466 if (visit && !(e->flags & EDGE_DFS_BACK))
1467 count++;
1468 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1469 fprintf (dump_file,
1470 "Irreducible region hit, ignoring edge to %i->%i\n",
1471 e->src->index, bb->index);
1472 }
1473 BLOCK_INFO (bb)->npredecessors = count;
1474 }
1475
1476 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1477 last = head;
1478 for (bb = head; bb; bb = nextbb)
1479 {
1480 edge_iterator ei;
1481 sreal cyclic_probability, frequency;
1482
1483 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1484 memcpy (&frequency, &real_zero, sizeof (real_zero));
1485
1486 nextbb = BLOCK_INFO (bb)->next;
1487 BLOCK_INFO (bb)->next = NULL;
1488
1489 /* Compute frequency of basic block. */
1490 if (bb != head)
1491 {
1492 #ifdef ENABLE_CHECKING
1493 FOR_EACH_EDGE (e, ei, bb->preds)
1494 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1495 || (e->flags & EDGE_DFS_BACK));
1496 #endif
1497
1498 FOR_EACH_EDGE (e, ei, bb->preds)
1499 if (EDGE_INFO (e)->back_edge)
1500 {
1501 sreal_add (&cyclic_probability, &cyclic_probability,
1502 &EDGE_INFO (e)->back_edge_prob);
1503 }
1504 else if (!(e->flags & EDGE_DFS_BACK))
1505 {
1506 sreal tmp;
1507
1508 /* frequency += (e->probability
1509 * BLOCK_INFO (e->src)->frequency /
1510 REG_BR_PROB_BASE); */
1511
1512 sreal_init (&tmp, e->probability, 0);
1513 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1514 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1515 sreal_add (&frequency, &frequency, &tmp);
1516 }
1517
1518 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1519 {
1520 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1521 sizeof (frequency));
1522 }
1523 else
1524 {
1525 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1526 {
1527 memcpy (&cyclic_probability, &real_almost_one,
1528 sizeof (real_almost_one));
1529 }
1530
1531 /* BLOCK_INFO (bb)->frequency = frequency
1532 / (1 - cyclic_probability) */
1533
1534 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1535 sreal_div (&BLOCK_INFO (bb)->frequency,
1536 &frequency, &cyclic_probability);
1537 }
1538 }
1539
1540 bitmap_clear_bit (tovisit, bb->index);
1541
1542 e = find_edge (bb, head);
1543 if (e)
1544 {
1545 sreal tmp;
1546
1547 /* EDGE_INFO (e)->back_edge_prob
1548 = ((e->probability * BLOCK_INFO (bb)->frequency)
1549 / REG_BR_PROB_BASE); */
1550
1551 sreal_init (&tmp, e->probability, 0);
1552 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1553 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1554 &tmp, &real_inv_br_prob_base);
1555 }
1556
1557 /* Propagate to successor blocks. */
1558 FOR_EACH_EDGE (e, ei, bb->succs)
1559 if (!(e->flags & EDGE_DFS_BACK)
1560 && BLOCK_INFO (e->dest)->npredecessors)
1561 {
1562 BLOCK_INFO (e->dest)->npredecessors--;
1563 if (!BLOCK_INFO (e->dest)->npredecessors)
1564 {
1565 if (!nextbb)
1566 nextbb = e->dest;
1567 else
1568 BLOCK_INFO (last)->next = e->dest;
1569
1570 last = e->dest;
1571 }
1572 }
1573 }
1574 }
1575
1576 /* Estimate probabilities of loopback edges in loops at same nest level. */
1577
1578 static void
1579 estimate_loops_at_level (struct loop *first_loop)
1580 {
1581 struct loop *loop;
1582
1583 for (loop = first_loop; loop; loop = loop->next)
1584 {
1585 edge e;
1586 basic_block *bbs;
1587 unsigned i;
1588 bitmap tovisit = BITMAP_ALLOC (NULL);
1589
1590 estimate_loops_at_level (loop->inner);
1591
1592 /* Find current loop back edge and mark it. */
1593 e = loop_latch_edge (loop);
1594 EDGE_INFO (e)->back_edge = 1;
1595
1596 bbs = get_loop_body (loop);
1597 for (i = 0; i < loop->num_nodes; i++)
1598 bitmap_set_bit (tovisit, bbs[i]->index);
1599 free (bbs);
1600 propagate_freq (loop->header, tovisit);
1601 BITMAP_FREE (tovisit);
1602 }
1603 }
1604
1605 /* Propagates frequencies through structure of loops. */
1606
1607 static void
1608 estimate_loops (void)
1609 {
1610 bitmap tovisit = BITMAP_ALLOC (NULL);
1611 basic_block bb;
1612
1613 /* Start by estimating the frequencies in the loops. */
1614 if (current_loops)
1615 estimate_loops_at_level (current_loops->tree_root->inner);
1616
1617 /* Now propagate the frequencies through all the blocks. */
1618 FOR_ALL_BB (bb)
1619 {
1620 bitmap_set_bit (tovisit, bb->index);
1621 }
1622 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1623 BITMAP_FREE (tovisit);
1624 }
1625
1626 /* Convert counts measured by profile driven feedback to frequencies.
1627 Return nonzero iff there was any nonzero execution count. */
1628
1629 int
1630 counts_to_freqs (void)
1631 {
1632 gcov_type count_max, true_count_max = 0;
1633 basic_block bb;
1634
1635 FOR_EACH_BB (bb)
1636 true_count_max = MAX (bb->count, true_count_max);
1637
1638 count_max = MAX (true_count_max, 1);
1639 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1640 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1641
1642 return true_count_max;
1643 }
1644
1645 /* Return true if function is likely to be expensive, so there is no point to
1646 optimize performance of prologue, epilogue or do inlining at the expense
1647 of code size growth. THRESHOLD is the limit of number of instructions
1648 function can execute at average to be still considered not expensive. */
1649
1650 bool
1651 expensive_function_p (int threshold)
1652 {
1653 unsigned int sum = 0;
1654 basic_block bb;
1655 unsigned int limit;
1656
1657 /* We can not compute accurately for large thresholds due to scaled
1658 frequencies. */
1659 gcc_assert (threshold <= BB_FREQ_MAX);
1660
1661 /* Frequencies are out of range. This either means that function contains
1662 internal loop executing more than BB_FREQ_MAX times or profile feedback
1663 is available and function has not been executed at all. */
1664 if (ENTRY_BLOCK_PTR->frequency == 0)
1665 return true;
1666
1667 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1668 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1669 FOR_EACH_BB (bb)
1670 {
1671 rtx insn;
1672
1673 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1674 insn = NEXT_INSN (insn))
1675 if (active_insn_p (insn))
1676 {
1677 sum += bb->frequency;
1678 if (sum > limit)
1679 return true;
1680 }
1681 }
1682
1683 return false;
1684 }
1685
1686 /* Estimate basic blocks frequency by given branch probabilities. */
1687
1688 static void
1689 estimate_bb_frequencies (void)
1690 {
1691 basic_block bb;
1692 sreal freq_max;
1693
1694 if (!flag_branch_probabilities || !counts_to_freqs ())
1695 {
1696 static int real_values_initialized = 0;
1697
1698 if (!real_values_initialized)
1699 {
1700 real_values_initialized = 1;
1701 sreal_init (&real_zero, 0, 0);
1702 sreal_init (&real_one, 1, 0);
1703 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1704 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1705 sreal_init (&real_one_half, 1, -1);
1706 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1707 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1708 }
1709
1710 mark_dfs_back_edges ();
1711
1712 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1713
1714 /* Set up block info for each basic block. */
1715 alloc_aux_for_blocks (sizeof (struct block_info_def));
1716 alloc_aux_for_edges (sizeof (struct edge_info_def));
1717 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1718 {
1719 edge e;
1720 edge_iterator ei;
1721
1722 FOR_EACH_EDGE (e, ei, bb->succs)
1723 {
1724 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1725 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1726 &EDGE_INFO (e)->back_edge_prob,
1727 &real_inv_br_prob_base);
1728 }
1729 }
1730
1731 /* First compute probabilities locally for each loop from innermost
1732 to outermost to examine probabilities for back edges. */
1733 estimate_loops ();
1734
1735 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1736 FOR_EACH_BB (bb)
1737 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1738 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1739
1740 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1741 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1742 {
1743 sreal tmp;
1744
1745 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1746 sreal_add (&tmp, &tmp, &real_one_half);
1747 bb->frequency = sreal_to_int (&tmp);
1748 }
1749
1750 free_aux_for_blocks ();
1751 free_aux_for_edges ();
1752 }
1753 compute_function_frequency ();
1754 if (flag_reorder_functions)
1755 choose_function_section ();
1756 }
1757
1758 /* Decide whether function is hot, cold or unlikely executed. */
1759 static void
1760 compute_function_frequency (void)
1761 {
1762 basic_block bb;
1763
1764 if (!profile_info || !flag_branch_probabilities)
1765 return;
1766 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1767 FOR_EACH_BB (bb)
1768 {
1769 if (maybe_hot_bb_p (bb))
1770 {
1771 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1772 return;
1773 }
1774 if (!probably_never_executed_bb_p (bb))
1775 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1776 }
1777 }
1778
1779 /* Choose appropriate section for the function. */
1780 static void
1781 choose_function_section (void)
1782 {
1783 if (DECL_SECTION_NAME (current_function_decl)
1784 || !targetm.have_named_sections
1785 /* Theoretically we can split the gnu.linkonce text section too,
1786 but this requires more work as the frequency needs to match
1787 for all generated objects so we need to merge the frequency
1788 of all instances. For now just never set frequency for these. */
1789 || DECL_ONE_ONLY (current_function_decl))
1790 return;
1791
1792 /* If we are doing the partitioning optimization, let the optimization
1793 choose the correct section into which to put things. */
1794
1795 if (flag_reorder_blocks_and_partition)
1796 return;
1797
1798 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1799 DECL_SECTION_NAME (current_function_decl) =
1800 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1801 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1802 DECL_SECTION_NAME (current_function_decl) =
1803 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1804 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1805 }
1806
1807 static bool
1808 gate_estimate_probability (void)
1809 {
1810 return flag_guess_branch_prob;
1811 }
1812
1813 struct tree_opt_pass pass_profile =
1814 {
1815 "profile", /* name */
1816 gate_estimate_probability, /* gate */
1817 tree_estimate_probability, /* execute */
1818 NULL, /* sub */
1819 NULL, /* next */
1820 0, /* static_pass_number */
1821 TV_BRANCH_PROB, /* tv_id */
1822 PROP_cfg, /* properties_required */
1823 0, /* properties_provided */
1824 0, /* properties_destroyed */
1825 0, /* todo_flags_start */
1826 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1827 0 /* letter */
1828 };