cfgloop.c (flow_loop_entry_edges_find, [...]): Removed.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void estimate_loops_at_level (struct loop *, bitmap);
78 static void propagate_freq (struct loop *, bitmap);
79 static void estimate_bb_frequencies (struct loops *);
80 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
81 static bool last_basic_block_p (basic_block);
82 static void compute_function_frequency (void);
83 static void choose_function_section (void);
84 static bool can_predict_insn_p (rtx);
85
86 /* Information we hold about each branch predictor.
87 Filled using information from predict.def. */
88
89 struct predictor_info
90 {
91 const char *const name; /* Name used in the debugging dumps. */
92 const int hitrate; /* Expected hitrate used by
93 predict_insn_def call. */
94 const int flags;
95 };
96
97 /* Use given predictor without Dempster-Shaffer theory if it matches
98 using first_match heuristics. */
99 #define PRED_FLAG_FIRST_MATCH 1
100
101 /* Recompute hitrate in percent to our representation. */
102
103 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104
105 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
106 static const struct predictor_info predictor_info[]= {
107 #include "predict.def"
108
109 /* Upper bound on predictors. */
110 {NULL, 0, 0}
111 };
112 #undef DEF_PREDICTOR
113
114 /* Return true in case BB can be CPU intensive and should be optimized
115 for maximal performance. */
116
117 bool
118 maybe_hot_bb_p (basic_block bb)
119 {
120 if (profile_info && flag_branch_probabilities
121 && (bb->count
122 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
123 return false;
124 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
125 return false;
126 return true;
127 }
128
129 /* Return true in case BB is cold and should be optimized for size. */
130
131 bool
132 probably_cold_bb_p (basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return true;
138 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
139 return true;
140 return false;
141 }
142
143 /* Return true in case BB is probably never executed. */
144 bool
145 probably_never_executed_bb_p (basic_block bb)
146 {
147 if (profile_info && flag_branch_probabilities)
148 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
149 return false;
150 }
151
152 /* Return true if the one of outgoing edges is already predicted by
153 PREDICTOR. */
154
155 bool
156 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 {
158 rtx note;
159 if (!INSN_P (BB_END (bb)))
160 return false;
161 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
162 if (REG_NOTE_KIND (note) == REG_BR_PRED
163 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
164 return true;
165 return false;
166 }
167
168 /* Return true if the one of outgoing edges is already predicted by
169 PREDICTOR. */
170
171 bool
172 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 {
174 struct edge_prediction *i = bb_ann (bb)->predictions;
175 for (i = bb_ann (bb)->predictions; i; i = i->next)
176 if (i->predictor == predictor)
177 return true;
178 return false;
179 }
180
181 static void
182 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 {
184 if (!any_condjump_p (insn))
185 abort ();
186 if (!flag_guess_branch_prob)
187 return;
188
189 REG_NOTES (insn)
190 = gen_rtx_EXPR_LIST (REG_BR_PRED,
191 gen_rtx_CONCAT (VOIDmode,
192 GEN_INT ((int) predictor),
193 GEN_INT ((int) probability)),
194 REG_NOTES (insn));
195 }
196
197 /* Predict insn by given predictor. */
198
199 void
200 predict_insn_def (rtx insn, enum br_predictor predictor,
201 enum prediction taken)
202 {
203 int probability = predictor_info[(int) predictor].hitrate;
204
205 if (taken != TAKEN)
206 probability = REG_BR_PROB_BASE - probability;
207
208 predict_insn (insn, predictor, probability);
209 }
210
211 /* Predict edge E with given probability if possible. */
212
213 void
214 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
215 {
216 rtx last_insn;
217 last_insn = BB_END (e->src);
218
219 /* We can store the branch prediction information only about
220 conditional jumps. */
221 if (!any_condjump_p (last_insn))
222 return;
223
224 /* We always store probability of branching. */
225 if (e->flags & EDGE_FALLTHRU)
226 probability = REG_BR_PROB_BASE - probability;
227
228 predict_insn (last_insn, predictor, probability);
229 }
230
231 /* Predict edge E with the given PROBABILITY. */
232 void
233 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
234 {
235 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
236
237 i->next = bb_ann (e->src)->predictions;
238 bb_ann (e->src)->predictions = i;
239 i->probability = probability;
240 i->predictor = predictor;
241 i->edge = e;
242 }
243
244 /* Return true when we can store prediction on insn INSN.
245 At the moment we represent predictions only on conditional
246 jumps, not at computed jump or other complicated cases. */
247 static bool
248 can_predict_insn_p (rtx insn)
249 {
250 return (JUMP_P (insn)
251 && any_condjump_p (insn)
252 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
253 }
254
255 /* Predict edge E by given predictor if possible. */
256
257 void
258 predict_edge_def (edge e, enum br_predictor predictor,
259 enum prediction taken)
260 {
261 int probability = predictor_info[(int) predictor].hitrate;
262
263 if (taken != TAKEN)
264 probability = REG_BR_PROB_BASE - probability;
265
266 predict_edge (e, predictor, probability);
267 }
268
269 /* Invert all branch predictions or probability notes in the INSN. This needs
270 to be done each time we invert the condition used by the jump. */
271
272 void
273 invert_br_probabilities (rtx insn)
274 {
275 rtx note;
276
277 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
278 if (REG_NOTE_KIND (note) == REG_BR_PROB)
279 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
280 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
281 XEXP (XEXP (note, 0), 1)
282 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
283 }
284
285 /* Dump information about the branch prediction to the output file. */
286
287 static void
288 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
289 basic_block bb, int used)
290 {
291 edge e;
292 edge_iterator ei;
293
294 if (!file)
295 return;
296
297 FOR_EACH_EDGE (e, ei, bb->succs)
298 if (! (e->flags & EDGE_FALLTHRU))
299 break;
300
301 fprintf (file, " %s heuristics%s: %.1f%%",
302 predictor_info[predictor].name,
303 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
304
305 if (bb->count)
306 {
307 fprintf (file, " exec ");
308 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
309 if (e)
310 {
311 fprintf (file, " hit ");
312 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
313 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
314 }
315 }
316
317 fprintf (file, "\n");
318 }
319
320 /* We can not predict the probabilities of outgoing edges of bb. Set them
321 evenly and hope for the best. */
322 static void
323 set_even_probabilities (basic_block bb)
324 {
325 int nedges = 0;
326 edge e;
327 edge_iterator ei;
328
329 FOR_EACH_EDGE (e, ei, bb->succs)
330 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
331 nedges ++;
332 FOR_EACH_EDGE (e, ei, bb->succs)
333 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
334 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
335 else
336 e->probability = 0;
337 }
338
339 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
340 note if not already present. Remove now useless REG_BR_PRED notes. */
341
342 static void
343 combine_predictions_for_insn (rtx insn, basic_block bb)
344 {
345 rtx prob_note;
346 rtx *pnote;
347 rtx note;
348 int best_probability = PROB_EVEN;
349 int best_predictor = END_PREDICTORS;
350 int combined_probability = REG_BR_PROB_BASE / 2;
351 int d;
352 bool first_match = false;
353 bool found = false;
354
355 if (!can_predict_insn_p (insn))
356 {
357 set_even_probabilities (bb);
358 return;
359 }
360
361 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
362 pnote = &REG_NOTES (insn);
363 if (dump_file)
364 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
365 bb->index);
366
367 /* We implement "first match" heuristics and use probability guessed
368 by predictor with smallest index. */
369 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
370 if (REG_NOTE_KIND (note) == REG_BR_PRED)
371 {
372 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
373 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
374
375 found = true;
376 if (best_predictor > predictor)
377 best_probability = probability, best_predictor = predictor;
378
379 d = (combined_probability * probability
380 + (REG_BR_PROB_BASE - combined_probability)
381 * (REG_BR_PROB_BASE - probability));
382
383 /* Use FP math to avoid overflows of 32bit integers. */
384 if (d == 0)
385 /* If one probability is 0% and one 100%, avoid division by zero. */
386 combined_probability = REG_BR_PROB_BASE / 2;
387 else
388 combined_probability = (((double) combined_probability) * probability
389 * REG_BR_PROB_BASE / d + 0.5);
390 }
391
392 /* Decide which heuristic to use. In case we didn't match anything,
393 use no_prediction heuristic, in case we did match, use either
394 first match or Dempster-Shaffer theory depending on the flags. */
395
396 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
397 first_match = true;
398
399 if (!found)
400 dump_prediction (dump_file, PRED_NO_PREDICTION,
401 combined_probability, bb, true);
402 else
403 {
404 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
405 bb, !first_match);
406 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
407 bb, first_match);
408 }
409
410 if (first_match)
411 combined_probability = best_probability;
412 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
413
414 while (*pnote)
415 {
416 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
417 {
418 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
419 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
420
421 dump_prediction (dump_file, predictor, probability, bb,
422 !first_match || best_predictor == predictor);
423 *pnote = XEXP (*pnote, 1);
424 }
425 else
426 pnote = &XEXP (*pnote, 1);
427 }
428
429 if (!prob_note)
430 {
431 REG_NOTES (insn)
432 = gen_rtx_EXPR_LIST (REG_BR_PROB,
433 GEN_INT (combined_probability), REG_NOTES (insn));
434
435 /* Save the prediction into CFG in case we are seeing non-degenerated
436 conditional jump. */
437 if (EDGE_COUNT (bb->succs) > 1)
438 {
439 BRANCH_EDGE (bb)->probability = combined_probability;
440 FALLTHRU_EDGE (bb)->probability
441 = REG_BR_PROB_BASE - combined_probability;
442 }
443 }
444 else if (EDGE_COUNT (bb->succs) > 1)
445 {
446 int prob = INTVAL (XEXP (prob_note, 0));
447
448 BRANCH_EDGE (bb)->probability = prob;
449 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
450 }
451 else
452 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
453 }
454
455 /* Combine predictions into single probability and store them into CFG.
456 Remove now useless prediction entries. */
457
458 static void
459 combine_predictions_for_bb (FILE *file, basic_block bb)
460 {
461 int best_probability = PROB_EVEN;
462 int best_predictor = END_PREDICTORS;
463 int combined_probability = REG_BR_PROB_BASE / 2;
464 int d;
465 bool first_match = false;
466 bool found = false;
467 struct edge_prediction *pred;
468 int nedges = 0;
469 edge e, first = NULL, second = NULL;
470 edge_iterator ei;
471
472 FOR_EACH_EDGE (e, ei, bb->succs)
473 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
474 {
475 nedges ++;
476 if (first && !second)
477 second = e;
478 if (!first)
479 first = e;
480 }
481
482 /* When there is no successor or only one choice, prediction is easy.
483
484 We are lazy for now and predict only basic blocks with two outgoing
485 edges. It is possible to predict generic case too, but we have to
486 ignore first match heuristics and do more involved combining. Implement
487 this later. */
488 if (nedges != 2)
489 {
490 if (!bb->count)
491 set_even_probabilities (bb);
492 bb_ann (bb)->predictions = NULL;
493 if (file)
494 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
495 nedges, bb->index);
496 return;
497 }
498
499 if (file)
500 fprintf (file, "Predictions for bb %i\n", bb->index);
501
502 /* We implement "first match" heuristics and use probability guessed
503 by predictor with smallest index. */
504 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
505 {
506 int predictor = pred->predictor;
507 int probability = pred->probability;
508
509 if (pred->edge != first)
510 probability = REG_BR_PROB_BASE - probability;
511
512 found = true;
513 if (best_predictor > predictor)
514 best_probability = probability, best_predictor = predictor;
515
516 d = (combined_probability * probability
517 + (REG_BR_PROB_BASE - combined_probability)
518 * (REG_BR_PROB_BASE - probability));
519
520 /* Use FP math to avoid overflows of 32bit integers. */
521 if (d == 0)
522 /* If one probability is 0% and one 100%, avoid division by zero. */
523 combined_probability = REG_BR_PROB_BASE / 2;
524 else
525 combined_probability = (((double) combined_probability) * probability
526 * REG_BR_PROB_BASE / d + 0.5);
527 }
528
529 /* Decide which heuristic to use. In case we didn't match anything,
530 use no_prediction heuristic, in case we did match, use either
531 first match or Dempster-Shaffer theory depending on the flags. */
532
533 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
534 first_match = true;
535
536 if (!found)
537 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
538 else
539 {
540 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
541 !first_match);
542 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
543 first_match);
544 }
545
546 if (first_match)
547 combined_probability = best_probability;
548 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
549
550 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
551 {
552 int predictor = pred->predictor;
553 int probability = pred->probability;
554
555 if (pred->edge != EDGE_SUCC (bb, 0))
556 probability = REG_BR_PROB_BASE - probability;
557 dump_prediction (file, predictor, probability, bb,
558 !first_match || best_predictor == predictor);
559 }
560 bb_ann (bb)->predictions = NULL;
561
562 if (!bb->count)
563 {
564 first->probability = combined_probability;
565 second->probability = REG_BR_PROB_BASE - combined_probability;
566 }
567 }
568
569 /* Predict edge probabilities by exploiting loop structure.
570 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
571 RTL otherwise use tree based approach. */
572 static void
573 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
574 {
575 unsigned i;
576
577 if (!rtlsimpleloops)
578 scev_initialize (loops_info);
579
580 /* Try to predict out blocks in a loop that are not part of a
581 natural loop. */
582 for (i = 1; i < loops_info->num; i++)
583 {
584 basic_block bb, *bbs;
585 unsigned j;
586 unsigned n_exits;
587 struct loop *loop = loops_info->parray[i];
588 struct niter_desc desc;
589 unsigned HOST_WIDE_INT niter;
590 edge *exits;
591
592 exits = get_loop_exit_edges (loop, &n_exits);
593
594 if (rtlsimpleloops)
595 {
596 iv_analysis_loop_init (loop);
597 find_simple_exit (loop, &desc);
598
599 if (desc.simple_p && desc.const_iter)
600 {
601 int prob;
602 niter = desc.niter + 1;
603 if (niter == 0) /* We might overflow here. */
604 niter = desc.niter;
605
606 prob = (REG_BR_PROB_BASE
607 - (REG_BR_PROB_BASE + niter /2) / niter);
608 /* Branch prediction algorithm gives 0 frequency for everything
609 after the end of loop for loop having 0 probability to finish. */
610 if (prob == REG_BR_PROB_BASE)
611 prob = REG_BR_PROB_BASE - 1;
612 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
613 prob);
614 }
615 }
616 else
617 {
618 struct tree_niter_desc niter_desc;
619
620 for (j = 0; j < n_exits; j++)
621 {
622 tree niter = NULL;
623
624 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
625 niter = niter_desc.niter;
626 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
627 niter = loop_niter_by_eval (loop, exits[j]);
628
629 if (TREE_CODE (niter) == INTEGER_CST)
630 {
631 int probability;
632 if (host_integerp (niter, 1)
633 && tree_int_cst_lt (niter,
634 build_int_cstu (NULL_TREE,
635 REG_BR_PROB_BASE - 1)))
636 {
637 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
638 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
639 }
640 else
641 probability = 1;
642
643 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
644 }
645 }
646
647 }
648 free (exits);
649
650 bbs = get_loop_body (loop);
651
652 for (j = 0; j < loop->num_nodes; j++)
653 {
654 int header_found = 0;
655 edge e;
656 edge_iterator ei;
657
658 bb = bbs[j];
659
660 /* Bypass loop heuristics on continue statement. These
661 statements construct loops via "non-loop" constructs
662 in the source language and are better to be handled
663 separately. */
664 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
665 || predicted_by_p (bb, PRED_CONTINUE))
666 continue;
667
668 /* Loop branch heuristics - predict an edge back to a
669 loop's head as taken. */
670 if (bb == loop->latch)
671 {
672 e = find_edge (loop->latch, loop->header);
673 if (e)
674 {
675 header_found = 1;
676 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
677 }
678 }
679
680 /* Loop exit heuristics - predict an edge exiting the loop if the
681 conditional has no loop header successors as not taken. */
682 if (!header_found)
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (e->dest->index < 0
685 || !flow_bb_inside_loop_p (loop, e->dest))
686 predict_edge
687 (e, PRED_LOOP_EXIT,
688 (REG_BR_PROB_BASE
689 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
690 / n_exits);
691 }
692
693 /* Free basic blocks from get_loop_body. */
694 free (bbs);
695 }
696
697 if (!rtlsimpleloops)
698 scev_finalize ();
699 }
700
701 /* Attempt to predict probabilities of BB outgoing edges using local
702 properties. */
703 static void
704 bb_estimate_probability_locally (basic_block bb)
705 {
706 rtx last_insn = BB_END (bb);
707 rtx cond;
708
709 if (! can_predict_insn_p (last_insn))
710 return;
711 cond = get_condition (last_insn, NULL, false, false);
712 if (! cond)
713 return;
714
715 /* Try "pointer heuristic."
716 A comparison ptr == 0 is predicted as false.
717 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
718 if (COMPARISON_P (cond)
719 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
720 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
721 {
722 if (GET_CODE (cond) == EQ)
723 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
724 else if (GET_CODE (cond) == NE)
725 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
726 }
727 else
728
729 /* Try "opcode heuristic."
730 EQ tests are usually false and NE tests are usually true. Also,
731 most quantities are positive, so we can make the appropriate guesses
732 about signed comparisons against zero. */
733 switch (GET_CODE (cond))
734 {
735 case CONST_INT:
736 /* Unconditional branch. */
737 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
738 cond == const0_rtx ? NOT_TAKEN : TAKEN);
739 break;
740
741 case EQ:
742 case UNEQ:
743 /* Floating point comparisons appears to behave in a very
744 unpredictable way because of special role of = tests in
745 FP code. */
746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
747 ;
748 /* Comparisons with 0 are often used for booleans and there is
749 nothing useful to predict about them. */
750 else if (XEXP (cond, 1) == const0_rtx
751 || XEXP (cond, 0) == const0_rtx)
752 ;
753 else
754 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
755 break;
756
757 case NE:
758 case LTGT:
759 /* Floating point comparisons appears to behave in a very
760 unpredictable way because of special role of = tests in
761 FP code. */
762 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
763 ;
764 /* Comparisons with 0 are often used for booleans and there is
765 nothing useful to predict about them. */
766 else if (XEXP (cond, 1) == const0_rtx
767 || XEXP (cond, 0) == const0_rtx)
768 ;
769 else
770 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
771 break;
772
773 case ORDERED:
774 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
775 break;
776
777 case UNORDERED:
778 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
779 break;
780
781 case LE:
782 case LT:
783 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
784 || XEXP (cond, 1) == constm1_rtx)
785 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
786 break;
787
788 case GE:
789 case GT:
790 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
791 || XEXP (cond, 1) == constm1_rtx)
792 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
793 break;
794
795 default:
796 break;
797 }
798 }
799
800 /* Statically estimate the probability that a branch will be taken and produce
801 estimated profile. When profile feedback is present never executed portions
802 of function gets estimated. */
803
804 void
805 estimate_probability (struct loops *loops_info)
806 {
807 basic_block bb;
808
809 connect_infinite_loops_to_exit ();
810 calculate_dominance_info (CDI_DOMINATORS);
811 calculate_dominance_info (CDI_POST_DOMINATORS);
812
813 predict_loops (loops_info, true);
814
815 iv_analysis_done ();
816
817 /* Attempt to predict conditional jumps using a number of heuristics. */
818 FOR_EACH_BB (bb)
819 {
820 rtx last_insn = BB_END (bb);
821 edge e;
822 edge_iterator ei;
823
824 if (! can_predict_insn_p (last_insn))
825 continue;
826
827 FOR_EACH_EDGE (e, ei, bb->succs)
828 {
829 /* Predict early returns to be probable, as we've already taken
830 care for error returns and other are often used for fast paths
831 trought function. */
832 if ((e->dest == EXIT_BLOCK_PTR
833 || (EDGE_COUNT (e->dest->succs) == 1
834 && EDGE_SUCC (e->dest, 0)->dest == EXIT_BLOCK_PTR))
835 && !predicted_by_p (bb, PRED_NULL_RETURN)
836 && !predicted_by_p (bb, PRED_CONST_RETURN)
837 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
838 && !last_basic_block_p (e->dest))
839 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
840
841 /* Look for block we are guarding (i.e. we dominate it,
842 but it doesn't postdominate us). */
843 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
844 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
845 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
846 {
847 rtx insn;
848
849 /* The call heuristic claims that a guarded function call
850 is improbable. This is because such calls are often used
851 to signal exceptional situations such as printing error
852 messages. */
853 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
854 insn = NEXT_INSN (insn))
855 if (CALL_P (insn)
856 /* Constant and pure calls are hardly used to signalize
857 something exceptional. */
858 && ! CONST_OR_PURE_CALL_P (insn))
859 {
860 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
861 break;
862 }
863 }
864 }
865 bb_estimate_probability_locally (bb);
866 }
867
868 /* Attach the combined probability to each conditional jump. */
869 FOR_EACH_BB (bb)
870 combine_predictions_for_insn (BB_END (bb), bb);
871
872 remove_fake_edges ();
873 estimate_bb_frequencies (loops_info);
874 free_dominance_info (CDI_POST_DOMINATORS);
875 if (profile_status == PROFILE_ABSENT)
876 profile_status = PROFILE_GUESSED;
877 }
878
879 /* Set edge->probability for each successor edge of BB. */
880 void
881 guess_outgoing_edge_probabilities (basic_block bb)
882 {
883 bb_estimate_probability_locally (bb);
884 combine_predictions_for_insn (BB_END (bb), bb);
885 }
886 \f
887 /* Return constant EXPR will likely have at execution time, NULL if unknown.
888 The function is used by builtin_expect branch predictor so the evidence
889 must come from this construct and additional possible constant folding.
890
891 We may want to implement more involved value guess (such as value range
892 propagation based prediction), but such tricks shall go to new
893 implementation. */
894
895 static tree
896 expr_expected_value (tree expr, bitmap visited)
897 {
898 if (TREE_CONSTANT (expr))
899 return expr;
900 else if (TREE_CODE (expr) == SSA_NAME)
901 {
902 tree def = SSA_NAME_DEF_STMT (expr);
903
904 /* If we were already here, break the infinite cycle. */
905 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
906 return NULL;
907 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
908
909 if (TREE_CODE (def) == PHI_NODE)
910 {
911 /* All the arguments of the PHI node must have the same constant
912 length. */
913 int i;
914 tree val = NULL, new_val;
915
916 for (i = 0; i < PHI_NUM_ARGS (def); i++)
917 {
918 tree arg = PHI_ARG_DEF (def, i);
919
920 /* If this PHI has itself as an argument, we cannot
921 determine the string length of this argument. However,
922 if we can find an expected constant value for the other
923 PHI args then we can still be sure that this is
924 likely a constant. So be optimistic and just
925 continue with the next argument. */
926 if (arg == PHI_RESULT (def))
927 continue;
928
929 new_val = expr_expected_value (arg, visited);
930 if (!new_val)
931 return NULL;
932 if (!val)
933 val = new_val;
934 else if (!operand_equal_p (val, new_val, false))
935 return NULL;
936 }
937 return val;
938 }
939 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
940 return NULL;
941 return expr_expected_value (TREE_OPERAND (def, 1), visited);
942 }
943 else if (TREE_CODE (expr) == CALL_EXPR)
944 {
945 tree decl = get_callee_fndecl (expr);
946 if (!decl)
947 return NULL;
948 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
949 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
950 {
951 tree arglist = TREE_OPERAND (expr, 1);
952 tree val;
953
954 if (arglist == NULL_TREE
955 || TREE_CHAIN (arglist) == NULL_TREE)
956 return NULL;
957 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
958 if (TREE_CONSTANT (val))
959 return val;
960 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
961 }
962 }
963 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
964 {
965 tree op0, op1, res;
966 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
967 if (!op0)
968 return NULL;
969 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
970 if (!op1)
971 return NULL;
972 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
973 if (TREE_CONSTANT (res))
974 return res;
975 return NULL;
976 }
977 if (UNARY_CLASS_P (expr))
978 {
979 tree op0, res;
980 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
981 if (!op0)
982 return NULL;
983 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
984 if (TREE_CONSTANT (res))
985 return res;
986 return NULL;
987 }
988 return NULL;
989 }
990 \f
991 /* Get rid of all builtin_expect calls we no longer need. */
992 static void
993 strip_builtin_expect (void)
994 {
995 basic_block bb;
996 FOR_EACH_BB (bb)
997 {
998 block_stmt_iterator bi;
999 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1000 {
1001 tree stmt = bsi_stmt (bi);
1002 tree fndecl;
1003 tree arglist;
1004
1005 if (TREE_CODE (stmt) == MODIFY_EXPR
1006 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1007 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1008 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1009 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1010 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1011 && TREE_CHAIN (arglist))
1012 {
1013 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1014 modify_stmt (stmt);
1015 }
1016 }
1017 }
1018 }
1019 \f
1020 /* Predict using opcode of the last statement in basic block. */
1021 static void
1022 tree_predict_by_opcode (basic_block bb)
1023 {
1024 tree stmt = last_stmt (bb);
1025 edge then_edge;
1026 tree cond;
1027 tree op0;
1028 tree type;
1029 tree val;
1030 bitmap visited;
1031 edge_iterator ei;
1032
1033 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1034 return;
1035 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1036 if (then_edge->flags & EDGE_TRUE_VALUE)
1037 break;
1038 cond = TREE_OPERAND (stmt, 0);
1039 if (!COMPARISON_CLASS_P (cond))
1040 return;
1041 op0 = TREE_OPERAND (cond, 0);
1042 type = TREE_TYPE (op0);
1043 visited = BITMAP_ALLOC (NULL);
1044 val = expr_expected_value (cond, visited);
1045 BITMAP_FREE (visited);
1046 if (val)
1047 {
1048 if (integer_zerop (val))
1049 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1050 else
1051 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1052 return;
1053 }
1054 /* Try "pointer heuristic."
1055 A comparison ptr == 0 is predicted as false.
1056 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1057 if (POINTER_TYPE_P (type))
1058 {
1059 if (TREE_CODE (cond) == EQ_EXPR)
1060 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1061 else if (TREE_CODE (cond) == NE_EXPR)
1062 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1063 }
1064 else
1065
1066 /* Try "opcode heuristic."
1067 EQ tests are usually false and NE tests are usually true. Also,
1068 most quantities are positive, so we can make the appropriate guesses
1069 about signed comparisons against zero. */
1070 switch (TREE_CODE (cond))
1071 {
1072 case EQ_EXPR:
1073 case UNEQ_EXPR:
1074 /* Floating point comparisons appears to behave in a very
1075 unpredictable way because of special role of = tests in
1076 FP code. */
1077 if (FLOAT_TYPE_P (type))
1078 ;
1079 /* Comparisons with 0 are often used for booleans and there is
1080 nothing useful to predict about them. */
1081 else if (integer_zerop (op0)
1082 || integer_zerop (TREE_OPERAND (cond, 1)))
1083 ;
1084 else
1085 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1086 break;
1087
1088 case NE_EXPR:
1089 case LTGT_EXPR:
1090 /* Floating point comparisons appears to behave in a very
1091 unpredictable way because of special role of = tests in
1092 FP code. */
1093 if (FLOAT_TYPE_P (type))
1094 ;
1095 /* Comparisons with 0 are often used for booleans and there is
1096 nothing useful to predict about them. */
1097 else if (integer_zerop (op0)
1098 || integer_zerop (TREE_OPERAND (cond, 1)))
1099 ;
1100 else
1101 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1102 break;
1103
1104 case ORDERED_EXPR:
1105 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1106 break;
1107
1108 case UNORDERED_EXPR:
1109 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1110 break;
1111
1112 case LE_EXPR:
1113 case LT_EXPR:
1114 if (integer_zerop (TREE_OPERAND (cond, 1))
1115 || integer_onep (TREE_OPERAND (cond, 1))
1116 || integer_all_onesp (TREE_OPERAND (cond, 1))
1117 || real_zerop (TREE_OPERAND (cond, 1))
1118 || real_onep (TREE_OPERAND (cond, 1))
1119 || real_minus_onep (TREE_OPERAND (cond, 1)))
1120 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1121 break;
1122
1123 case GE_EXPR:
1124 case GT_EXPR:
1125 if (integer_zerop (TREE_OPERAND (cond, 1))
1126 || integer_onep (TREE_OPERAND (cond, 1))
1127 || integer_all_onesp (TREE_OPERAND (cond, 1))
1128 || real_zerop (TREE_OPERAND (cond, 1))
1129 || real_onep (TREE_OPERAND (cond, 1))
1130 || real_minus_onep (TREE_OPERAND (cond, 1)))
1131 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1132 break;
1133
1134 default:
1135 break;
1136 }
1137 }
1138
1139 /* Try to guess whether the value of return means error code. */
1140 static enum br_predictor
1141 return_prediction (tree val, enum prediction *prediction)
1142 {
1143 /* VOID. */
1144 if (!val)
1145 return PRED_NO_PREDICTION;
1146 /* Different heuristics for pointers and scalars. */
1147 if (POINTER_TYPE_P (TREE_TYPE (val)))
1148 {
1149 /* NULL is usually not returned. */
1150 if (integer_zerop (val))
1151 {
1152 *prediction = NOT_TAKEN;
1153 return PRED_NULL_RETURN;
1154 }
1155 }
1156 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1157 {
1158 /* Negative return values are often used to indicate
1159 errors. */
1160 if (TREE_CODE (val) == INTEGER_CST
1161 && tree_int_cst_sgn (val) < 0)
1162 {
1163 *prediction = NOT_TAKEN;
1164 return PRED_NEGATIVE_RETURN;
1165 }
1166 /* Constant return values seems to be commonly taken.
1167 Zero/one often represent booleans so exclude them from the
1168 heuristics. */
1169 if (TREE_CONSTANT (val)
1170 && (!integer_zerop (val) && !integer_onep (val)))
1171 {
1172 *prediction = TAKEN;
1173 return PRED_NEGATIVE_RETURN;
1174 }
1175 }
1176 return PRED_NO_PREDICTION;
1177 }
1178
1179 /* Find the basic block with return expression and look up for possible
1180 return value trying to apply RETURN_PREDICTION heuristics. */
1181 static void
1182 apply_return_prediction (int *heads)
1183 {
1184 tree return_stmt;
1185 tree return_val;
1186 edge e;
1187 tree phi;
1188 int phi_num_args, i;
1189 enum br_predictor pred;
1190 enum prediction direction;
1191 edge_iterator ei;
1192
1193 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1194 {
1195 return_stmt = last_stmt (e->src);
1196 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1197 break;
1198 }
1199 if (!e)
1200 return;
1201 return_val = TREE_OPERAND (return_stmt, 0);
1202 if (!return_val)
1203 return;
1204 if (TREE_CODE (return_val) == MODIFY_EXPR)
1205 return_val = TREE_OPERAND (return_val, 1);
1206 if (TREE_CODE (return_val) != SSA_NAME
1207 || !SSA_NAME_DEF_STMT (return_val)
1208 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1209 return;
1210 phi = SSA_NAME_DEF_STMT (return_val);
1211 while (phi)
1212 {
1213 tree next = PHI_CHAIN (phi);
1214 if (PHI_RESULT (phi) == return_val)
1215 break;
1216 phi = next;
1217 }
1218 if (!phi)
1219 return;
1220 phi_num_args = PHI_NUM_ARGS (phi);
1221 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1222
1223 /* Avoid the degenerate case where all return values form the function
1224 belongs to same category (ie they are all positive constants)
1225 so we can hardly say something about them. */
1226 for (i = 1; i < phi_num_args; i++)
1227 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1228 break;
1229 if (i != phi_num_args)
1230 for (i = 0; i < phi_num_args; i++)
1231 {
1232 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1233 if (pred != PRED_NO_PREDICTION)
1234 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1235 direction);
1236 }
1237 }
1238
1239 /* Look for basic block that contains unlikely to happen events
1240 (such as noreturn calls) and mark all paths leading to execution
1241 of this basic blocks as unlikely. */
1242
1243 static void
1244 tree_bb_level_predictions (void)
1245 {
1246 basic_block bb;
1247 int *heads;
1248
1249 heads = xmalloc (sizeof (int) * last_basic_block);
1250 memset (heads, -1, sizeof (int) * last_basic_block);
1251 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1252
1253 apply_return_prediction (heads);
1254
1255 FOR_EACH_BB (bb)
1256 {
1257 block_stmt_iterator bsi = bsi_last (bb);
1258
1259 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1260 {
1261 tree stmt = bsi_stmt (bsi);
1262 switch (TREE_CODE (stmt))
1263 {
1264 case MODIFY_EXPR:
1265 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1266 {
1267 stmt = TREE_OPERAND (stmt, 1);
1268 goto call_expr;
1269 }
1270 break;
1271 case CALL_EXPR:
1272 call_expr:;
1273 if (call_expr_flags (stmt) & ECF_NORETURN)
1274 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1275 NOT_TAKEN);
1276 break;
1277 default:
1278 break;
1279 }
1280 }
1281 }
1282
1283 free (heads);
1284 }
1285
1286 /* Predict branch probabilities and estimate profile of the tree CFG. */
1287 static void
1288 tree_estimate_probability (void)
1289 {
1290 basic_block bb;
1291 struct loops loops_info;
1292
1293 flow_loops_find (&loops_info);
1294 if (dump_file && (dump_flags & TDF_DETAILS))
1295 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1296
1297 add_noreturn_fake_exit_edges ();
1298 connect_infinite_loops_to_exit ();
1299 calculate_dominance_info (CDI_DOMINATORS);
1300 calculate_dominance_info (CDI_POST_DOMINATORS);
1301
1302 tree_bb_level_predictions ();
1303
1304 mark_irreducible_loops (&loops_info);
1305 predict_loops (&loops_info, false);
1306
1307 FOR_EACH_BB (bb)
1308 {
1309 edge e;
1310 edge_iterator ei;
1311
1312 FOR_EACH_EDGE (e, ei, bb->succs)
1313 {
1314 /* Predict early returns to be probable, as we've already taken
1315 care for error returns and other cases are often used for
1316 fast paths trought function. */
1317 if (e->dest == EXIT_BLOCK_PTR
1318 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1319 && EDGE_COUNT (bb->preds) > 1)
1320 {
1321 edge e1;
1322 edge_iterator ei1;
1323
1324 FOR_EACH_EDGE (e1, ei1, bb->preds)
1325 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1326 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1327 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1328 && !last_basic_block_p (e1->src))
1329 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1330 }
1331
1332 /* Look for block we are guarding (ie we dominate it,
1333 but it doesn't postdominate us). */
1334 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1335 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1336 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1337 {
1338 block_stmt_iterator bi;
1339
1340 /* The call heuristic claims that a guarded function call
1341 is improbable. This is because such calls are often used
1342 to signal exceptional situations such as printing error
1343 messages. */
1344 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1345 bsi_next (&bi))
1346 {
1347 tree stmt = bsi_stmt (bi);
1348 if ((TREE_CODE (stmt) == CALL_EXPR
1349 || (TREE_CODE (stmt) == MODIFY_EXPR
1350 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1351 /* Constant and pure calls are hardly used to signalize
1352 something exceptional. */
1353 && TREE_SIDE_EFFECTS (stmt))
1354 {
1355 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1356 break;
1357 }
1358 }
1359 }
1360 }
1361 tree_predict_by_opcode (bb);
1362 }
1363 FOR_EACH_BB (bb)
1364 combine_predictions_for_bb (dump_file, bb);
1365
1366 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1367 strip_builtin_expect ();
1368 estimate_bb_frequencies (&loops_info);
1369 free_dominance_info (CDI_POST_DOMINATORS);
1370 remove_fake_exit_edges ();
1371 flow_loops_free (&loops_info);
1372 if (dump_file && (dump_flags & TDF_DETAILS))
1373 dump_tree_cfg (dump_file, dump_flags);
1374 if (profile_status == PROFILE_ABSENT)
1375 profile_status = PROFILE_GUESSED;
1376 }
1377 \f
1378 /* __builtin_expect dropped tokens into the insn stream describing expected
1379 values of registers. Generate branch probabilities based off these
1380 values. */
1381
1382 void
1383 expected_value_to_br_prob (void)
1384 {
1385 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1386
1387 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1388 {
1389 switch (GET_CODE (insn))
1390 {
1391 case NOTE:
1392 /* Look for expected value notes. */
1393 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1394 {
1395 ev = NOTE_EXPECTED_VALUE (insn);
1396 ev_reg = XEXP (ev, 0);
1397 delete_insn (insn);
1398 }
1399 continue;
1400
1401 case CODE_LABEL:
1402 /* Never propagate across labels. */
1403 ev = NULL_RTX;
1404 continue;
1405
1406 case JUMP_INSN:
1407 /* Look for simple conditional branches. If we haven't got an
1408 expected value yet, no point going further. */
1409 if (!JUMP_P (insn) || ev == NULL_RTX
1410 || ! any_condjump_p (insn))
1411 continue;
1412 break;
1413
1414 default:
1415 /* Look for insns that clobber the EV register. */
1416 if (ev && reg_set_p (ev_reg, insn))
1417 ev = NULL_RTX;
1418 continue;
1419 }
1420
1421 /* Collect the branch condition, hopefully relative to EV_REG. */
1422 /* ??? At present we'll miss things like
1423 (expected_value (eq r70 0))
1424 (set r71 -1)
1425 (set r80 (lt r70 r71))
1426 (set pc (if_then_else (ne r80 0) ...))
1427 as canonicalize_condition will render this to us as
1428 (lt r70, r71)
1429 Could use cselib to try and reduce this further. */
1430 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1431 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1432 false, false);
1433 if (! cond || XEXP (cond, 0) != ev_reg
1434 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1435 continue;
1436
1437 /* Substitute and simplify. Given that the expression we're
1438 building involves two constants, we should wind up with either
1439 true or false. */
1440 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1441 XEXP (ev, 1), XEXP (cond, 1));
1442 cond = simplify_rtx (cond);
1443
1444 /* Turn the condition into a scaled branch probability. */
1445 if (cond != const_true_rtx && cond != const0_rtx)
1446 abort ();
1447 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1448 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1449 }
1450 }
1451 \f
1452 /* Check whether this is the last basic block of function. Commonly
1453 there is one extra common cleanup block. */
1454 static bool
1455 last_basic_block_p (basic_block bb)
1456 {
1457 if (bb == EXIT_BLOCK_PTR)
1458 return false;
1459
1460 return (bb->next_bb == EXIT_BLOCK_PTR
1461 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1462 && EDGE_COUNT (bb->succs) == 1
1463 && EDGE_SUCC (bb, 0)->dest->next_bb == EXIT_BLOCK_PTR));
1464 }
1465
1466 /* Sets branch probabilities according to PREDiction and
1467 FLAGS. HEADS[bb->index] should be index of basic block in that we
1468 need to alter branch predictions (i.e. the first of our dominators
1469 such that we do not post-dominate it) (but we fill this information
1470 on demand, so -1 may be there in case this was not needed yet). */
1471
1472 static void
1473 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1474 enum prediction taken)
1475 {
1476 edge e;
1477 edge_iterator ei;
1478 int y;
1479
1480 if (heads[bb->index] < 0)
1481 {
1482 /* This is first time we need this field in heads array; so
1483 find first dominator that we do not post-dominate (we are
1484 using already known members of heads array). */
1485 basic_block ai = bb;
1486 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1487 int head;
1488
1489 while (heads[next_ai->index] < 0)
1490 {
1491 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1492 break;
1493 heads[next_ai->index] = ai->index;
1494 ai = next_ai;
1495 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1496 }
1497 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1498 head = next_ai->index;
1499 else
1500 head = heads[next_ai->index];
1501 while (next_ai != bb)
1502 {
1503 next_ai = ai;
1504 if (heads[ai->index] == ENTRY_BLOCK)
1505 ai = ENTRY_BLOCK_PTR;
1506 else
1507 ai = BASIC_BLOCK (heads[ai->index]);
1508 heads[next_ai->index] = head;
1509 }
1510 }
1511 y = heads[bb->index];
1512
1513 /* Now find the edge that leads to our branch and aply the prediction. */
1514
1515 if (y == last_basic_block)
1516 return;
1517 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1518 if (e->dest->index >= 0
1519 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1520 predict_edge_def (e, pred, taken);
1521 }
1522 \f
1523 /* This is used to carry information about basic blocks. It is
1524 attached to the AUX field of the standard CFG block. */
1525
1526 typedef struct block_info_def
1527 {
1528 /* Estimated frequency of execution of basic_block. */
1529 sreal frequency;
1530
1531 /* To keep queue of basic blocks to process. */
1532 basic_block next;
1533
1534 /* Number of predecessors we need to visit first. */
1535 int npredecessors;
1536 } *block_info;
1537
1538 /* Similar information for edges. */
1539 typedef struct edge_info_def
1540 {
1541 /* In case edge is an loopback edge, the probability edge will be reached
1542 in case header is. Estimated number of iterations of the loop can be
1543 then computed as 1 / (1 - back_edge_prob). */
1544 sreal back_edge_prob;
1545 /* True if the edge is an loopback edge in the natural loop. */
1546 unsigned int back_edge:1;
1547 } *edge_info;
1548
1549 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1550 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1551
1552 /* Helper function for estimate_bb_frequencies.
1553 Propagate the frequencies for LOOP. */
1554
1555 static void
1556 propagate_freq (struct loop *loop, bitmap tovisit)
1557 {
1558 basic_block head = loop->header;
1559 basic_block bb;
1560 basic_block last;
1561 unsigned i;
1562 edge e;
1563 basic_block nextbb;
1564 bitmap_iterator bi;
1565
1566 /* For each basic block we need to visit count number of his predecessors
1567 we need to visit first. */
1568 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1569 {
1570 edge_iterator ei;
1571 int count = 0;
1572
1573 /* The outermost "loop" includes the exit block, which we can not
1574 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1575 directly. Do the same for the entry block. */
1576 if (i == (unsigned)ENTRY_BLOCK)
1577 bb = ENTRY_BLOCK_PTR;
1578 else if (i == (unsigned)EXIT_BLOCK)
1579 bb = EXIT_BLOCK_PTR;
1580 else
1581 bb = BASIC_BLOCK (i);
1582
1583 FOR_EACH_EDGE (e, ei, bb->preds)
1584 {
1585 bool visit = bitmap_bit_p (tovisit, e->src->index);
1586
1587 if (visit && !(e->flags & EDGE_DFS_BACK))
1588 count++;
1589 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1590 fprintf (dump_file,
1591 "Irreducible region hit, ignoring edge to %i->%i\n",
1592 e->src->index, bb->index);
1593 }
1594 BLOCK_INFO (bb)->npredecessors = count;
1595 }
1596
1597 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1598 last = head;
1599 for (bb = head; bb; bb = nextbb)
1600 {
1601 edge_iterator ei;
1602 sreal cyclic_probability, frequency;
1603
1604 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1605 memcpy (&frequency, &real_zero, sizeof (real_zero));
1606
1607 nextbb = BLOCK_INFO (bb)->next;
1608 BLOCK_INFO (bb)->next = NULL;
1609
1610 /* Compute frequency of basic block. */
1611 if (bb != head)
1612 {
1613 #ifdef ENABLE_CHECKING
1614 FOR_EACH_EDGE (e, ei, bb->preds)
1615 if (bitmap_bit_p (tovisit, e->src->index)
1616 && !(e->flags & EDGE_DFS_BACK))
1617 abort ();
1618 #endif
1619
1620 FOR_EACH_EDGE (e, ei, bb->preds)
1621 if (EDGE_INFO (e)->back_edge)
1622 {
1623 sreal_add (&cyclic_probability, &cyclic_probability,
1624 &EDGE_INFO (e)->back_edge_prob);
1625 }
1626 else if (!(e->flags & EDGE_DFS_BACK))
1627 {
1628 sreal tmp;
1629
1630 /* frequency += (e->probability
1631 * BLOCK_INFO (e->src)->frequency /
1632 REG_BR_PROB_BASE); */
1633
1634 sreal_init (&tmp, e->probability, 0);
1635 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1636 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1637 sreal_add (&frequency, &frequency, &tmp);
1638 }
1639
1640 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1641 {
1642 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1643 sizeof (frequency));
1644 }
1645 else
1646 {
1647 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1648 {
1649 memcpy (&cyclic_probability, &real_almost_one,
1650 sizeof (real_almost_one));
1651 }
1652
1653 /* BLOCK_INFO (bb)->frequency = frequency
1654 / (1 - cyclic_probability) */
1655
1656 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1657 sreal_div (&BLOCK_INFO (bb)->frequency,
1658 &frequency, &cyclic_probability);
1659 }
1660 }
1661
1662 bitmap_clear_bit (tovisit, bb->index);
1663
1664 e = find_edge (bb, head);
1665 if (e)
1666 {
1667 sreal tmp;
1668
1669 /* EDGE_INFO (e)->back_edge_prob
1670 = ((e->probability * BLOCK_INFO (bb)->frequency)
1671 / REG_BR_PROB_BASE); */
1672
1673 sreal_init (&tmp, e->probability, 0);
1674 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1675 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1676 &tmp, &real_inv_br_prob_base);
1677 }
1678
1679 /* Propagate to successor blocks. */
1680 FOR_EACH_EDGE (e, ei, bb->succs)
1681 if (!(e->flags & EDGE_DFS_BACK)
1682 && BLOCK_INFO (e->dest)->npredecessors)
1683 {
1684 BLOCK_INFO (e->dest)->npredecessors--;
1685 if (!BLOCK_INFO (e->dest)->npredecessors)
1686 {
1687 if (!nextbb)
1688 nextbb = e->dest;
1689 else
1690 BLOCK_INFO (last)->next = e->dest;
1691
1692 last = e->dest;
1693 }
1694 }
1695 }
1696 }
1697
1698 /* Estimate probabilities of loopback edges in loops at same nest level. */
1699
1700 static void
1701 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1702 {
1703 struct loop *loop;
1704
1705 for (loop = first_loop; loop; loop = loop->next)
1706 {
1707 edge e;
1708 basic_block *bbs;
1709 unsigned i;
1710
1711 estimate_loops_at_level (loop->inner, tovisit);
1712
1713 /* Do not do this for dummy function loop. */
1714 if (EDGE_COUNT (loop->latch->succs) > 0)
1715 {
1716 /* Find current loop back edge and mark it. */
1717 e = loop_latch_edge (loop);
1718 EDGE_INFO (e)->back_edge = 1;
1719 }
1720
1721 bbs = get_loop_body (loop);
1722 for (i = 0; i < loop->num_nodes; i++)
1723 bitmap_set_bit (tovisit, bbs[i]->index);
1724 free (bbs);
1725 propagate_freq (loop, tovisit);
1726 }
1727 }
1728
1729 /* Convert counts measured by profile driven feedback to frequencies.
1730 Return nonzero iff there was any nonzero execution count. */
1731
1732 int
1733 counts_to_freqs (void)
1734 {
1735 gcov_type count_max, true_count_max = 0;
1736 basic_block bb;
1737
1738 FOR_EACH_BB (bb)
1739 true_count_max = MAX (bb->count, true_count_max);
1740
1741 count_max = MAX (true_count_max, 1);
1742 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1743 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1744 return true_count_max;
1745 }
1746
1747 /* Return true if function is likely to be expensive, so there is no point to
1748 optimize performance of prologue, epilogue or do inlining at the expense
1749 of code size growth. THRESHOLD is the limit of number of instructions
1750 function can execute at average to be still considered not expensive. */
1751
1752 bool
1753 expensive_function_p (int threshold)
1754 {
1755 unsigned int sum = 0;
1756 basic_block bb;
1757 unsigned int limit;
1758
1759 /* We can not compute accurately for large thresholds due to scaled
1760 frequencies. */
1761 if (threshold > BB_FREQ_MAX)
1762 abort ();
1763
1764 /* Frequencies are out of range. This either means that function contains
1765 internal loop executing more than BB_FREQ_MAX times or profile feedback
1766 is available and function has not been executed at all. */
1767 if (ENTRY_BLOCK_PTR->frequency == 0)
1768 return true;
1769
1770 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1771 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1772 FOR_EACH_BB (bb)
1773 {
1774 rtx insn;
1775
1776 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1777 insn = NEXT_INSN (insn))
1778 if (active_insn_p (insn))
1779 {
1780 sum += bb->frequency;
1781 if (sum > limit)
1782 return true;
1783 }
1784 }
1785
1786 return false;
1787 }
1788
1789 /* Estimate basic blocks frequency by given branch probabilities. */
1790
1791 static void
1792 estimate_bb_frequencies (struct loops *loops)
1793 {
1794 basic_block bb;
1795 sreal freq_max;
1796
1797 if (!flag_branch_probabilities || !counts_to_freqs ())
1798 {
1799 static int real_values_initialized = 0;
1800 bitmap tovisit;
1801
1802 if (!real_values_initialized)
1803 {
1804 real_values_initialized = 1;
1805 sreal_init (&real_zero, 0, 0);
1806 sreal_init (&real_one, 1, 0);
1807 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1808 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1809 sreal_init (&real_one_half, 1, -1);
1810 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1811 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1812 }
1813
1814 mark_dfs_back_edges ();
1815
1816 EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->probability = REG_BR_PROB_BASE;
1817
1818 /* Set up block info for each basic block. */
1819 tovisit = BITMAP_ALLOC (NULL);
1820 alloc_aux_for_blocks (sizeof (struct block_info_def));
1821 alloc_aux_for_edges (sizeof (struct edge_info_def));
1822 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1823 {
1824 edge e;
1825 edge_iterator ei;
1826
1827 FOR_EACH_EDGE (e, ei, bb->succs)
1828 {
1829 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1830 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1831 &EDGE_INFO (e)->back_edge_prob,
1832 &real_inv_br_prob_base);
1833 }
1834 }
1835
1836 /* First compute probabilities locally for each loop from innermost
1837 to outermost to examine probabilities for back edges. */
1838 estimate_loops_at_level (loops->tree_root, tovisit);
1839
1840 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1841 FOR_EACH_BB (bb)
1842 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1843 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1844
1845 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1846 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1847 {
1848 sreal tmp;
1849
1850 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1851 sreal_add (&tmp, &tmp, &real_one_half);
1852 bb->frequency = sreal_to_int (&tmp);
1853 }
1854
1855 free_aux_for_blocks ();
1856 free_aux_for_edges ();
1857 BITMAP_FREE (tovisit);
1858 }
1859 compute_function_frequency ();
1860 if (flag_reorder_functions)
1861 choose_function_section ();
1862 }
1863
1864 /* Decide whether function is hot, cold or unlikely executed. */
1865 static void
1866 compute_function_frequency (void)
1867 {
1868 basic_block bb;
1869
1870 if (!profile_info || !flag_branch_probabilities)
1871 return;
1872 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1873 FOR_EACH_BB (bb)
1874 {
1875 if (maybe_hot_bb_p (bb))
1876 {
1877 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1878 return;
1879 }
1880 if (!probably_never_executed_bb_p (bb))
1881 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1882 }
1883 }
1884
1885 /* Choose appropriate section for the function. */
1886 static void
1887 choose_function_section (void)
1888 {
1889 if (DECL_SECTION_NAME (current_function_decl)
1890 || !targetm.have_named_sections
1891 /* Theoretically we can split the gnu.linkonce text section too,
1892 but this requires more work as the frequency needs to match
1893 for all generated objects so we need to merge the frequency
1894 of all instances. For now just never set frequency for these. */
1895 || DECL_ONE_ONLY (current_function_decl))
1896 return;
1897
1898 /* If we are doing the partitioning optimization, let the optimization
1899 choose the correct section into which to put things. */
1900
1901 if (flag_reorder_blocks_and_partition)
1902 return;
1903
1904 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1905 DECL_SECTION_NAME (current_function_decl) =
1906 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1907 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1908 DECL_SECTION_NAME (current_function_decl) =
1909 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1910 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1911 }
1912
1913
1914 struct tree_opt_pass pass_profile =
1915 {
1916 "profile", /* name */
1917 NULL, /* gate */
1918 tree_estimate_probability, /* execute */
1919 NULL, /* sub */
1920 NULL, /* next */
1921 0, /* static_pass_number */
1922 TV_BRANCH_PROB, /* tv_id */
1923 PROP_cfg, /* properties_required */
1924 0, /* properties_provided */
1925 0, /* properties_destroyed */
1926 0, /* todo_flags_start */
1927 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1928 0 /* letter */
1929 };