cp-gimplify.c (cp_gimplify_expr): Add PRED_CONTINUE heuristic.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
78 static void compute_function_frequency (void);
79 static void choose_function_section (void);
80 static bool can_predict_insn_p (const_rtx);
81
82 /* Information we hold about each branch predictor.
83 Filled using information from predict.def. */
84
85 struct predictor_info
86 {
87 const char *const name; /* Name used in the debugging dumps. */
88 const int hitrate; /* Expected hitrate used by
89 predict_insn_def call. */
90 const int flags;
91 };
92
93 /* Use given predictor without Dempster-Shaffer theory if it matches
94 using first_match heuristics. */
95 #define PRED_FLAG_FIRST_MATCH 1
96
97 /* Recompute hitrate in percent to our representation. */
98
99 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
100
101 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
102 static const struct predictor_info predictor_info[]= {
103 #include "predict.def"
104
105 /* Upper bound on predictors. */
106 {NULL, 0, 0}
107 };
108 #undef DEF_PREDICTOR
109
110 /* Return TRUE if frequency FREQ is considered to be hot. */
111 static bool
112 maybe_hot_frequency_p (int freq)
113 {
114 if (!profile_info || !flag_branch_probabilities)
115 {
116 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
117 return false;
118 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
119 return true;
120 }
121 if (profile_status == PROFILE_ABSENT)
122 return true;
123 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
124 return false;
125 return true;
126 }
127
128 /* Return true in case BB can be CPU intensive and should be optimized
129 for maximal performance. */
130
131 bool
132 maybe_hot_bb_p (const_basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return false;
138 return maybe_hot_frequency_p (bb->frequency);
139 }
140
141 /* Return true in case BB can be CPU intensive and should be optimized
142 for maximal performance. */
143
144 bool
145 maybe_hot_edge_p (edge e)
146 {
147 if (profile_info && flag_branch_probabilities
148 && (e->count
149 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
150 return false;
151 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
152 }
153
154 /* Return true in case BB is cold and should be optimized for size. */
155
156 bool
157 probably_cold_bb_p (const_basic_block bb)
158 {
159 if (profile_info && flag_branch_probabilities
160 && (bb->count
161 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
162 return true;
163 if ((!profile_info || !flag_branch_probabilities)
164 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
165 return true;
166 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
167 return true;
168 return false;
169 }
170
171 /* Return true in case BB is probably never executed. */
172 bool
173 probably_never_executed_bb_p (const_basic_block bb)
174 {
175 if (profile_info && flag_branch_probabilities)
176 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
177 if ((!profile_info || !flag_branch_probabilities)
178 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
179 return true;
180 return false;
181 }
182
183 /* Return true when current function should always be optimized for size. */
184
185 bool
186 optimize_function_for_size_p (struct function *fun)
187 {
188 return (optimize_size
189 || fun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED);
190 }
191
192 /* Return true when current function should always be optimized for speed. */
193
194 bool
195 optimize_function_for_speed_p (struct function *fun)
196 {
197 return !optimize_function_for_size_p (fun);
198 }
199
200 /* Return TRUE when BB should be optimized for size. */
201
202 bool
203 optimize_bb_for_size_p (basic_block bb)
204 {
205 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
206 }
207
208 /* Return TRUE when BB should be optimized for speed. */
209
210 bool
211 optimize_bb_for_speed_p (basic_block bb)
212 {
213 return !optimize_bb_for_size_p (bb);
214 }
215
216 /* Return TRUE when BB should be optimized for size. */
217
218 bool
219 optimize_edge_for_size_p (edge e)
220 {
221 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
222 }
223
224 /* Return TRUE when BB should be optimized for speed. */
225
226 bool
227 optimize_edge_for_speed_p (edge e)
228 {
229 return !optimize_edge_for_size_p (e);
230 }
231
232 /* Return TRUE when BB should be optimized for size. */
233
234 bool
235 optimize_insn_for_size_p (void)
236 {
237 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
238 }
239
240 /* Return TRUE when BB should be optimized for speed. */
241
242 bool
243 optimize_insn_for_speed_p (void)
244 {
245 return !optimize_insn_for_size_p ();
246 }
247
248 /* Set RTL expansion for BB profile. */
249
250 void
251 rtl_profile_for_bb (basic_block bb)
252 {
253 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
254 }
255
256 /* Set RTL expansion for edge profile. */
257
258 void
259 rtl_profile_for_edge (edge e)
260 {
261 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
262 }
263
264 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
265 void
266 default_rtl_profile (void)
267 {
268 crtl->maybe_hot_insn_p = true;
269 }
270
271 /* Return true if the one of outgoing edges is already predicted by
272 PREDICTOR. */
273
274 bool
275 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
276 {
277 rtx note;
278 if (!INSN_P (BB_END (bb)))
279 return false;
280 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
281 if (REG_NOTE_KIND (note) == REG_BR_PRED
282 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
283 return true;
284 return false;
285 }
286
287 /* This map contains for a basic block the list of predictions for the
288 outgoing edges. */
289
290 static struct pointer_map_t *bb_predictions;
291
292 /* Return true if the one of outgoing edges is already predicted by
293 PREDICTOR. */
294
295 bool
296 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
297 {
298 struct edge_prediction *i;
299 void **preds = pointer_map_contains (bb_predictions, bb);
300
301 if (!preds)
302 return false;
303
304 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
305 if (i->ep_predictor == predictor)
306 return true;
307 return false;
308 }
309
310 /* Return true when the probability of edge is reliable.
311
312 The profile guessing code is good at predicting branch outcome (ie.
313 taken/not taken), that is predicted right slightly over 75% of time.
314 It is however notoriously poor on predicting the probability itself.
315 In general the profile appear a lot flatter (with probabilities closer
316 to 50%) than the reality so it is bad idea to use it to drive optimization
317 such as those disabling dynamic branch prediction for well predictable
318 branches.
319
320 There are two exceptions - edges leading to noreturn edges and edges
321 predicted by number of iterations heuristics are predicted well. This macro
322 should be able to distinguish those, but at the moment it simply check for
323 noreturn heuristic that is only one giving probability over 99% or bellow
324 1%. In future we might want to propagate reliability information across the
325 CFG if we find this information useful on multiple places. */
326 static bool
327 probability_reliable_p (int prob)
328 {
329 return (profile_status == PROFILE_READ
330 || (profile_status == PROFILE_GUESSED
331 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
332 }
333
334 /* Same predicate as above, working on edges. */
335 bool
336 edge_probability_reliable_p (const_edge e)
337 {
338 return probability_reliable_p (e->probability);
339 }
340
341 /* Same predicate as edge_probability_reliable_p, working on notes. */
342 bool
343 br_prob_note_reliable_p (const_rtx note)
344 {
345 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
346 return probability_reliable_p (INTVAL (XEXP (note, 0)));
347 }
348
349 static void
350 predict_insn (rtx insn, enum br_predictor predictor, int probability)
351 {
352 gcc_assert (any_condjump_p (insn));
353 if (!flag_guess_branch_prob)
354 return;
355
356 add_reg_note (insn, REG_BR_PRED,
357 gen_rtx_CONCAT (VOIDmode,
358 GEN_INT ((int) predictor),
359 GEN_INT ((int) probability)));
360 }
361
362 /* Predict insn by given predictor. */
363
364 void
365 predict_insn_def (rtx insn, enum br_predictor predictor,
366 enum prediction taken)
367 {
368 int probability = predictor_info[(int) predictor].hitrate;
369
370 if (taken != TAKEN)
371 probability = REG_BR_PROB_BASE - probability;
372
373 predict_insn (insn, predictor, probability);
374 }
375
376 /* Predict edge E with given probability if possible. */
377
378 void
379 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
380 {
381 rtx last_insn;
382 last_insn = BB_END (e->src);
383
384 /* We can store the branch prediction information only about
385 conditional jumps. */
386 if (!any_condjump_p (last_insn))
387 return;
388
389 /* We always store probability of branching. */
390 if (e->flags & EDGE_FALLTHRU)
391 probability = REG_BR_PROB_BASE - probability;
392
393 predict_insn (last_insn, predictor, probability);
394 }
395
396 /* Predict edge E with the given PROBABILITY. */
397 void
398 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
399 {
400 gcc_assert (profile_status != PROFILE_GUESSED);
401 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
402 && flag_guess_branch_prob && optimize)
403 {
404 struct edge_prediction *i = XNEW (struct edge_prediction);
405 void **preds = pointer_map_insert (bb_predictions, e->src);
406
407 i->ep_next = (struct edge_prediction *) *preds;
408 *preds = i;
409 i->ep_probability = probability;
410 i->ep_predictor = predictor;
411 i->ep_edge = e;
412 }
413 }
414
415 /* Remove all predictions on given basic block that are attached
416 to edge E. */
417 void
418 remove_predictions_associated_with_edge (edge e)
419 {
420 void **preds;
421
422 if (!bb_predictions)
423 return;
424
425 preds = pointer_map_contains (bb_predictions, e->src);
426
427 if (preds)
428 {
429 struct edge_prediction **prediction = (struct edge_prediction **) preds;
430 struct edge_prediction *next;
431
432 while (*prediction)
433 {
434 if ((*prediction)->ep_edge == e)
435 {
436 next = (*prediction)->ep_next;
437 free (*prediction);
438 *prediction = next;
439 }
440 else
441 prediction = &((*prediction)->ep_next);
442 }
443 }
444 }
445
446 /* Clears the list of predictions stored for BB. */
447
448 static void
449 clear_bb_predictions (basic_block bb)
450 {
451 void **preds = pointer_map_contains (bb_predictions, bb);
452 struct edge_prediction *pred, *next;
453
454 if (!preds)
455 return;
456
457 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
458 {
459 next = pred->ep_next;
460 free (pred);
461 }
462 *preds = NULL;
463 }
464
465 /* Return true when we can store prediction on insn INSN.
466 At the moment we represent predictions only on conditional
467 jumps, not at computed jump or other complicated cases. */
468 static bool
469 can_predict_insn_p (const_rtx insn)
470 {
471 return (JUMP_P (insn)
472 && any_condjump_p (insn)
473 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
474 }
475
476 /* Predict edge E by given predictor if possible. */
477
478 void
479 predict_edge_def (edge e, enum br_predictor predictor,
480 enum prediction taken)
481 {
482 int probability = predictor_info[(int) predictor].hitrate;
483
484 if (taken != TAKEN)
485 probability = REG_BR_PROB_BASE - probability;
486
487 predict_edge (e, predictor, probability);
488 }
489
490 /* Invert all branch predictions or probability notes in the INSN. This needs
491 to be done each time we invert the condition used by the jump. */
492
493 void
494 invert_br_probabilities (rtx insn)
495 {
496 rtx note;
497
498 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
499 if (REG_NOTE_KIND (note) == REG_BR_PROB)
500 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
501 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
502 XEXP (XEXP (note, 0), 1)
503 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
504 }
505
506 /* Dump information about the branch prediction to the output file. */
507
508 static void
509 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
510 basic_block bb, int used)
511 {
512 edge e;
513 edge_iterator ei;
514
515 if (!file)
516 return;
517
518 FOR_EACH_EDGE (e, ei, bb->succs)
519 if (! (e->flags & EDGE_FALLTHRU))
520 break;
521
522 fprintf (file, " %s heuristics%s: %.1f%%",
523 predictor_info[predictor].name,
524 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
525
526 if (bb->count)
527 {
528 fprintf (file, " exec ");
529 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
530 if (e)
531 {
532 fprintf (file, " hit ");
533 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
534 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
535 }
536 }
537
538 fprintf (file, "\n");
539 }
540
541 /* We can not predict the probabilities of outgoing edges of bb. Set them
542 evenly and hope for the best. */
543 static void
544 set_even_probabilities (basic_block bb)
545 {
546 int nedges = 0;
547 edge e;
548 edge_iterator ei;
549
550 FOR_EACH_EDGE (e, ei, bb->succs)
551 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
552 nedges ++;
553 FOR_EACH_EDGE (e, ei, bb->succs)
554 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
555 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
556 else
557 e->probability = 0;
558 }
559
560 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
561 note if not already present. Remove now useless REG_BR_PRED notes. */
562
563 static void
564 combine_predictions_for_insn (rtx insn, basic_block bb)
565 {
566 rtx prob_note;
567 rtx *pnote;
568 rtx note;
569 int best_probability = PROB_EVEN;
570 int best_predictor = END_PREDICTORS;
571 int combined_probability = REG_BR_PROB_BASE / 2;
572 int d;
573 bool first_match = false;
574 bool found = false;
575
576 if (!can_predict_insn_p (insn))
577 {
578 set_even_probabilities (bb);
579 return;
580 }
581
582 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
583 pnote = &REG_NOTES (insn);
584 if (dump_file)
585 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
586 bb->index);
587
588 /* We implement "first match" heuristics and use probability guessed
589 by predictor with smallest index. */
590 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
591 if (REG_NOTE_KIND (note) == REG_BR_PRED)
592 {
593 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
594 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
595
596 found = true;
597 if (best_predictor > predictor)
598 best_probability = probability, best_predictor = predictor;
599
600 d = (combined_probability * probability
601 + (REG_BR_PROB_BASE - combined_probability)
602 * (REG_BR_PROB_BASE - probability));
603
604 /* Use FP math to avoid overflows of 32bit integers. */
605 if (d == 0)
606 /* If one probability is 0% and one 100%, avoid division by zero. */
607 combined_probability = REG_BR_PROB_BASE / 2;
608 else
609 combined_probability = (((double) combined_probability) * probability
610 * REG_BR_PROB_BASE / d + 0.5);
611 }
612
613 /* Decide which heuristic to use. In case we didn't match anything,
614 use no_prediction heuristic, in case we did match, use either
615 first match or Dempster-Shaffer theory depending on the flags. */
616
617 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
618 first_match = true;
619
620 if (!found)
621 dump_prediction (dump_file, PRED_NO_PREDICTION,
622 combined_probability, bb, true);
623 else
624 {
625 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
626 bb, !first_match);
627 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
628 bb, first_match);
629 }
630
631 if (first_match)
632 combined_probability = best_probability;
633 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
634
635 while (*pnote)
636 {
637 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
638 {
639 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
640 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
641
642 dump_prediction (dump_file, predictor, probability, bb,
643 !first_match || best_predictor == predictor);
644 *pnote = XEXP (*pnote, 1);
645 }
646 else
647 pnote = &XEXP (*pnote, 1);
648 }
649
650 if (!prob_note)
651 {
652 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
653
654 /* Save the prediction into CFG in case we are seeing non-degenerated
655 conditional jump. */
656 if (!single_succ_p (bb))
657 {
658 BRANCH_EDGE (bb)->probability = combined_probability;
659 FALLTHRU_EDGE (bb)->probability
660 = REG_BR_PROB_BASE - combined_probability;
661 }
662 }
663 else if (!single_succ_p (bb))
664 {
665 int prob = INTVAL (XEXP (prob_note, 0));
666
667 BRANCH_EDGE (bb)->probability = prob;
668 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
669 }
670 else
671 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
672 }
673
674 /* Combine predictions into single probability and store them into CFG.
675 Remove now useless prediction entries. */
676
677 static void
678 combine_predictions_for_bb (basic_block bb)
679 {
680 int best_probability = PROB_EVEN;
681 int best_predictor = END_PREDICTORS;
682 int combined_probability = REG_BR_PROB_BASE / 2;
683 int d;
684 bool first_match = false;
685 bool found = false;
686 struct edge_prediction *pred;
687 int nedges = 0;
688 edge e, first = NULL, second = NULL;
689 edge_iterator ei;
690 void **preds;
691
692 FOR_EACH_EDGE (e, ei, bb->succs)
693 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
694 {
695 nedges ++;
696 if (first && !second)
697 second = e;
698 if (!first)
699 first = e;
700 }
701
702 /* When there is no successor or only one choice, prediction is easy.
703
704 We are lazy for now and predict only basic blocks with two outgoing
705 edges. It is possible to predict generic case too, but we have to
706 ignore first match heuristics and do more involved combining. Implement
707 this later. */
708 if (nedges != 2)
709 {
710 if (!bb->count)
711 set_even_probabilities (bb);
712 clear_bb_predictions (bb);
713 if (dump_file)
714 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
715 nedges, bb->index);
716 return;
717 }
718
719 if (dump_file)
720 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
721
722 preds = pointer_map_contains (bb_predictions, bb);
723 if (preds)
724 {
725 /* We implement "first match" heuristics and use probability guessed
726 by predictor with smallest index. */
727 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
728 {
729 int predictor = pred->ep_predictor;
730 int probability = pred->ep_probability;
731
732 if (pred->ep_edge != first)
733 probability = REG_BR_PROB_BASE - probability;
734
735 found = true;
736 if (best_predictor > predictor)
737 best_probability = probability, best_predictor = predictor;
738
739 d = (combined_probability * probability
740 + (REG_BR_PROB_BASE - combined_probability)
741 * (REG_BR_PROB_BASE - probability));
742
743 /* Use FP math to avoid overflows of 32bit integers. */
744 if (d == 0)
745 /* If one probability is 0% and one 100%, avoid division by zero. */
746 combined_probability = REG_BR_PROB_BASE / 2;
747 else
748 combined_probability = (((double) combined_probability)
749 * probability
750 * REG_BR_PROB_BASE / d + 0.5);
751 }
752 }
753
754 /* Decide which heuristic to use. In case we didn't match anything,
755 use no_prediction heuristic, in case we did match, use either
756 first match or Dempster-Shaffer theory depending on the flags. */
757
758 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
759 first_match = true;
760
761 if (!found)
762 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
763 else
764 {
765 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
766 !first_match);
767 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
768 first_match);
769 }
770
771 if (first_match)
772 combined_probability = best_probability;
773 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
774
775 if (preds)
776 {
777 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
778 {
779 int predictor = pred->ep_predictor;
780 int probability = pred->ep_probability;
781
782 if (pred->ep_edge != EDGE_SUCC (bb, 0))
783 probability = REG_BR_PROB_BASE - probability;
784 dump_prediction (dump_file, predictor, probability, bb,
785 !first_match || best_predictor == predictor);
786 }
787 }
788 clear_bb_predictions (bb);
789
790 if (!bb->count)
791 {
792 first->probability = combined_probability;
793 second->probability = REG_BR_PROB_BASE - combined_probability;
794 }
795 }
796
797 /* Predict edge probabilities by exploiting loop structure. */
798
799 static void
800 predict_loops (void)
801 {
802 loop_iterator li;
803 struct loop *loop;
804
805 scev_initialize ();
806
807 /* Try to predict out blocks in a loop that are not part of a
808 natural loop. */
809 FOR_EACH_LOOP (li, loop, 0)
810 {
811 basic_block bb, *bbs;
812 unsigned j, n_exits;
813 VEC (edge, heap) *exits;
814 struct tree_niter_desc niter_desc;
815 edge ex;
816
817 exits = get_loop_exit_edges (loop);
818 n_exits = VEC_length (edge, exits);
819
820 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
821 {
822 tree niter = NULL;
823 HOST_WIDE_INT nitercst;
824 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
825 int probability;
826 enum br_predictor predictor;
827
828 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
829 niter = niter_desc.niter;
830 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
831 niter = loop_niter_by_eval (loop, ex);
832
833 if (TREE_CODE (niter) == INTEGER_CST)
834 {
835 if (host_integerp (niter, 1)
836 && compare_tree_int (niter, max-1) == -1)
837 nitercst = tree_low_cst (niter, 1) + 1;
838 else
839 nitercst = max;
840 predictor = PRED_LOOP_ITERATIONS;
841 }
842 /* If we have just one exit and we can derive some information about
843 the number of iterations of the loop from the statements inside
844 the loop, use it to predict this exit. */
845 else if (n_exits == 1)
846 {
847 nitercst = estimated_loop_iterations_int (loop, false);
848 if (nitercst < 0)
849 continue;
850 if (nitercst > max)
851 nitercst = max;
852
853 predictor = PRED_LOOP_ITERATIONS_GUESSED;
854 }
855 else
856 continue;
857
858 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
859 predict_edge (ex, predictor, probability);
860 }
861 VEC_free (edge, heap, exits);
862
863 bbs = get_loop_body (loop);
864
865 for (j = 0; j < loop->num_nodes; j++)
866 {
867 int header_found = 0;
868 edge e;
869 edge_iterator ei;
870
871 bb = bbs[j];
872
873 /* Bypass loop heuristics on continue statement. These
874 statements construct loops via "non-loop" constructs
875 in the source language and are better to be handled
876 separately. */
877 if (predicted_by_p (bb, PRED_CONTINUE))
878 continue;
879
880 /* Loop branch heuristics - predict an edge back to a
881 loop's head as taken. */
882 if (bb == loop->latch)
883 {
884 e = find_edge (loop->latch, loop->header);
885 if (e)
886 {
887 header_found = 1;
888 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
889 }
890 }
891
892 /* Loop exit heuristics - predict an edge exiting the loop if the
893 conditional has no loop header successors as not taken. */
894 if (!header_found
895 /* If we already used more reliable loop exit predictors, do not
896 bother with PRED_LOOP_EXIT. */
897 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
898 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
899 {
900 /* For loop with many exits we don't want to predict all exits
901 with the pretty large probability, because if all exits are
902 considered in row, the loop would be predicted to iterate
903 almost never. The code to divide probability by number of
904 exits is very rough. It should compute the number of exits
905 taken in each patch through function (not the overall number
906 of exits that might be a lot higher for loops with wide switch
907 statements in them) and compute n-th square root.
908
909 We limit the minimal probability by 2% to avoid
910 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
911 as this was causing regression in perl benchmark containing such
912 a wide loop. */
913
914 int probability = ((REG_BR_PROB_BASE
915 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
916 / n_exits);
917 if (probability < HITRATE (2))
918 probability = HITRATE (2);
919 FOR_EACH_EDGE (e, ei, bb->succs)
920 if (e->dest->index < NUM_FIXED_BLOCKS
921 || !flow_bb_inside_loop_p (loop, e->dest))
922 predict_edge (e, PRED_LOOP_EXIT, probability);
923 }
924 }
925
926 /* Free basic blocks from get_loop_body. */
927 free (bbs);
928 }
929
930 scev_finalize ();
931 }
932
933 /* Attempt to predict probabilities of BB outgoing edges using local
934 properties. */
935 static void
936 bb_estimate_probability_locally (basic_block bb)
937 {
938 rtx last_insn = BB_END (bb);
939 rtx cond;
940
941 if (! can_predict_insn_p (last_insn))
942 return;
943 cond = get_condition (last_insn, NULL, false, false);
944 if (! cond)
945 return;
946
947 /* Try "pointer heuristic."
948 A comparison ptr == 0 is predicted as false.
949 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
950 if (COMPARISON_P (cond)
951 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
952 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
953 {
954 if (GET_CODE (cond) == EQ)
955 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
956 else if (GET_CODE (cond) == NE)
957 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
958 }
959 else
960
961 /* Try "opcode heuristic."
962 EQ tests are usually false and NE tests are usually true. Also,
963 most quantities are positive, so we can make the appropriate guesses
964 about signed comparisons against zero. */
965 switch (GET_CODE (cond))
966 {
967 case CONST_INT:
968 /* Unconditional branch. */
969 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
970 cond == const0_rtx ? NOT_TAKEN : TAKEN);
971 break;
972
973 case EQ:
974 case UNEQ:
975 /* Floating point comparisons appears to behave in a very
976 unpredictable way because of special role of = tests in
977 FP code. */
978 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
979 ;
980 /* Comparisons with 0 are often used for booleans and there is
981 nothing useful to predict about them. */
982 else if (XEXP (cond, 1) == const0_rtx
983 || XEXP (cond, 0) == const0_rtx)
984 ;
985 else
986 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
987 break;
988
989 case NE:
990 case LTGT:
991 /* Floating point comparisons appears to behave in a very
992 unpredictable way because of special role of = tests in
993 FP code. */
994 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
995 ;
996 /* Comparisons with 0 are often used for booleans and there is
997 nothing useful to predict about them. */
998 else if (XEXP (cond, 1) == const0_rtx
999 || XEXP (cond, 0) == const0_rtx)
1000 ;
1001 else
1002 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1003 break;
1004
1005 case ORDERED:
1006 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1007 break;
1008
1009 case UNORDERED:
1010 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1011 break;
1012
1013 case LE:
1014 case LT:
1015 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1016 || XEXP (cond, 1) == constm1_rtx)
1017 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1018 break;
1019
1020 case GE:
1021 case GT:
1022 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1023 || XEXP (cond, 1) == constm1_rtx)
1024 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1025 break;
1026
1027 default:
1028 break;
1029 }
1030 }
1031
1032 /* Set edge->probability for each successor edge of BB. */
1033 void
1034 guess_outgoing_edge_probabilities (basic_block bb)
1035 {
1036 bb_estimate_probability_locally (bb);
1037 combine_predictions_for_insn (BB_END (bb), bb);
1038 }
1039 \f
1040 static tree expr_expected_value (tree, bitmap);
1041
1042 /* Helper function for expr_expected_value. */
1043
1044 static tree
1045 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1046 {
1047 gimple def;
1048
1049 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1050 {
1051 if (TREE_CONSTANT (op0))
1052 return op0;
1053
1054 if (code != SSA_NAME)
1055 return NULL_TREE;
1056
1057 def = SSA_NAME_DEF_STMT (op0);
1058
1059 /* If we were already here, break the infinite cycle. */
1060 if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
1061 return NULL;
1062 bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
1063
1064 if (gimple_code (def) == GIMPLE_PHI)
1065 {
1066 /* All the arguments of the PHI node must have the same constant
1067 length. */
1068 int i, n = gimple_phi_num_args (def);
1069 tree val = NULL, new_val;
1070
1071 for (i = 0; i < n; i++)
1072 {
1073 tree arg = PHI_ARG_DEF (def, i);
1074
1075 /* If this PHI has itself as an argument, we cannot
1076 determine the string length of this argument. However,
1077 if we can find an expected constant value for the other
1078 PHI args then we can still be sure that this is
1079 likely a constant. So be optimistic and just
1080 continue with the next argument. */
1081 if (arg == PHI_RESULT (def))
1082 continue;
1083
1084 new_val = expr_expected_value (arg, visited);
1085 if (!new_val)
1086 return NULL;
1087 if (!val)
1088 val = new_val;
1089 else if (!operand_equal_p (val, new_val, false))
1090 return NULL;
1091 }
1092 return val;
1093 }
1094 if (is_gimple_assign (def))
1095 {
1096 if (gimple_assign_lhs (def) != op0)
1097 return NULL;
1098
1099 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1100 gimple_assign_rhs1 (def),
1101 gimple_assign_rhs_code (def),
1102 gimple_assign_rhs2 (def),
1103 visited);
1104 }
1105
1106 if (is_gimple_call (def))
1107 {
1108 tree decl = gimple_call_fndecl (def);
1109 if (!decl)
1110 return NULL;
1111 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1112 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1113 {
1114 tree val;
1115
1116 if (gimple_call_num_args (def) != 2)
1117 return NULL;
1118 val = gimple_call_arg (def, 0);
1119 if (TREE_CONSTANT (val))
1120 return val;
1121 return gimple_call_arg (def, 1);
1122 }
1123 }
1124
1125 return NULL;
1126 }
1127
1128 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1129 {
1130 tree res;
1131 op0 = expr_expected_value (op0, visited);
1132 if (!op0)
1133 return NULL;
1134 op1 = expr_expected_value (op1, visited);
1135 if (!op1)
1136 return NULL;
1137 res = fold_build2 (code, type, op0, op1);
1138 if (TREE_CONSTANT (res))
1139 return res;
1140 return NULL;
1141 }
1142 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1143 {
1144 tree res;
1145 op0 = expr_expected_value (op0, visited);
1146 if (!op0)
1147 return NULL;
1148 res = fold_build1 (code, type, op0);
1149 if (TREE_CONSTANT (res))
1150 return res;
1151 return NULL;
1152 }
1153 return NULL;
1154 }
1155
1156 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1157 The function is used by builtin_expect branch predictor so the evidence
1158 must come from this construct and additional possible constant folding.
1159
1160 We may want to implement more involved value guess (such as value range
1161 propagation based prediction), but such tricks shall go to new
1162 implementation. */
1163
1164 static tree
1165 expr_expected_value (tree expr, bitmap visited)
1166 {
1167 enum tree_code code;
1168 tree op0, op1;
1169
1170 if (TREE_CONSTANT (expr))
1171 return expr;
1172
1173 extract_ops_from_tree (expr, &code, &op0, &op1);
1174 return expr_expected_value_1 (TREE_TYPE (expr),
1175 op0, code, op1, visited);
1176 }
1177
1178 \f
1179 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1180 we no longer need. */
1181 static unsigned int
1182 strip_predict_hints (void)
1183 {
1184 basic_block bb;
1185 gimple ass_stmt;
1186 tree var;
1187
1188 FOR_EACH_BB (bb)
1189 {
1190 gimple_stmt_iterator bi;
1191 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1192 {
1193 gimple stmt = gsi_stmt (bi);
1194
1195 if (gimple_code (stmt) == GIMPLE_PREDICT)
1196 {
1197 gsi_remove (&bi, true);
1198 continue;
1199 }
1200 else if (gimple_code (stmt) == GIMPLE_CALL)
1201 {
1202 tree fndecl = gimple_call_fndecl (stmt);
1203
1204 if (fndecl
1205 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1206 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1207 && gimple_call_num_args (stmt) == 2)
1208 {
1209 var = gimple_call_lhs (stmt);
1210 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1211
1212 gsi_replace (&bi, ass_stmt, true);
1213 }
1214 }
1215 gsi_next (&bi);
1216 }
1217 }
1218 return 0;
1219 }
1220 \f
1221 /* Predict using opcode of the last statement in basic block. */
1222 static void
1223 tree_predict_by_opcode (basic_block bb)
1224 {
1225 gimple stmt = last_stmt (bb);
1226 edge then_edge;
1227 tree op0, op1;
1228 tree type;
1229 tree val;
1230 enum tree_code cmp;
1231 bitmap visited;
1232 edge_iterator ei;
1233
1234 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1235 return;
1236 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1237 if (then_edge->flags & EDGE_TRUE_VALUE)
1238 break;
1239 op0 = gimple_cond_lhs (stmt);
1240 op1 = gimple_cond_rhs (stmt);
1241 cmp = gimple_cond_code (stmt);
1242 type = TREE_TYPE (op0);
1243 visited = BITMAP_ALLOC (NULL);
1244 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1245 BITMAP_FREE (visited);
1246 if (val)
1247 {
1248 if (integer_zerop (val))
1249 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1250 else
1251 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1252 return;
1253 }
1254 /* Try "pointer heuristic."
1255 A comparison ptr == 0 is predicted as false.
1256 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1257 if (POINTER_TYPE_P (type))
1258 {
1259 if (cmp == EQ_EXPR)
1260 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1261 else if (cmp == NE_EXPR)
1262 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1263 }
1264 else
1265
1266 /* Try "opcode heuristic."
1267 EQ tests are usually false and NE tests are usually true. Also,
1268 most quantities are positive, so we can make the appropriate guesses
1269 about signed comparisons against zero. */
1270 switch (cmp)
1271 {
1272 case EQ_EXPR:
1273 case UNEQ_EXPR:
1274 /* Floating point comparisons appears to behave in a very
1275 unpredictable way because of special role of = tests in
1276 FP code. */
1277 if (FLOAT_TYPE_P (type))
1278 ;
1279 /* Comparisons with 0 are often used for booleans and there is
1280 nothing useful to predict about them. */
1281 else if (integer_zerop (op0) || integer_zerop (op1))
1282 ;
1283 else
1284 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1285 break;
1286
1287 case NE_EXPR:
1288 case LTGT_EXPR:
1289 /* Floating point comparisons appears to behave in a very
1290 unpredictable way because of special role of = tests in
1291 FP code. */
1292 if (FLOAT_TYPE_P (type))
1293 ;
1294 /* Comparisons with 0 are often used for booleans and there is
1295 nothing useful to predict about them. */
1296 else if (integer_zerop (op0)
1297 || integer_zerop (op1))
1298 ;
1299 else
1300 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1301 break;
1302
1303 case ORDERED_EXPR:
1304 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1305 break;
1306
1307 case UNORDERED_EXPR:
1308 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1309 break;
1310
1311 case LE_EXPR:
1312 case LT_EXPR:
1313 if (integer_zerop (op1)
1314 || integer_onep (op1)
1315 || integer_all_onesp (op1)
1316 || real_zerop (op1)
1317 || real_onep (op1)
1318 || real_minus_onep (op1))
1319 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1320 break;
1321
1322 case GE_EXPR:
1323 case GT_EXPR:
1324 if (integer_zerop (op1)
1325 || integer_onep (op1)
1326 || integer_all_onesp (op1)
1327 || real_zerop (op1)
1328 || real_onep (op1)
1329 || real_minus_onep (op1))
1330 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1331 break;
1332
1333 default:
1334 break;
1335 }
1336 }
1337
1338 /* Try to guess whether the value of return means error code. */
1339
1340 static enum br_predictor
1341 return_prediction (tree val, enum prediction *prediction)
1342 {
1343 /* VOID. */
1344 if (!val)
1345 return PRED_NO_PREDICTION;
1346 /* Different heuristics for pointers and scalars. */
1347 if (POINTER_TYPE_P (TREE_TYPE (val)))
1348 {
1349 /* NULL is usually not returned. */
1350 if (integer_zerop (val))
1351 {
1352 *prediction = NOT_TAKEN;
1353 return PRED_NULL_RETURN;
1354 }
1355 }
1356 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1357 {
1358 /* Negative return values are often used to indicate
1359 errors. */
1360 if (TREE_CODE (val) == INTEGER_CST
1361 && tree_int_cst_sgn (val) < 0)
1362 {
1363 *prediction = NOT_TAKEN;
1364 return PRED_NEGATIVE_RETURN;
1365 }
1366 /* Constant return values seems to be commonly taken.
1367 Zero/one often represent booleans so exclude them from the
1368 heuristics. */
1369 if (TREE_CONSTANT (val)
1370 && (!integer_zerop (val) && !integer_onep (val)))
1371 {
1372 *prediction = TAKEN;
1373 return PRED_CONST_RETURN;
1374 }
1375 }
1376 return PRED_NO_PREDICTION;
1377 }
1378
1379 /* Find the basic block with return expression and look up for possible
1380 return value trying to apply RETURN_PREDICTION heuristics. */
1381 static void
1382 apply_return_prediction (void)
1383 {
1384 gimple return_stmt = NULL;
1385 tree return_val;
1386 edge e;
1387 gimple phi;
1388 int phi_num_args, i;
1389 enum br_predictor pred;
1390 enum prediction direction;
1391 edge_iterator ei;
1392
1393 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1394 {
1395 return_stmt = last_stmt (e->src);
1396 if (return_stmt
1397 && gimple_code (return_stmt) == GIMPLE_RETURN)
1398 break;
1399 }
1400 if (!e)
1401 return;
1402 return_val = gimple_return_retval (return_stmt);
1403 if (!return_val)
1404 return;
1405 if (TREE_CODE (return_val) != SSA_NAME
1406 || !SSA_NAME_DEF_STMT (return_val)
1407 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1408 return;
1409 phi = SSA_NAME_DEF_STMT (return_val);
1410 phi_num_args = gimple_phi_num_args (phi);
1411 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1412
1413 /* Avoid the degenerate case where all return values form the function
1414 belongs to same category (ie they are all positive constants)
1415 so we can hardly say something about them. */
1416 for (i = 1; i < phi_num_args; i++)
1417 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1418 break;
1419 if (i != phi_num_args)
1420 for (i = 0; i < phi_num_args; i++)
1421 {
1422 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1423 if (pred != PRED_NO_PREDICTION)
1424 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1425 direction);
1426 }
1427 }
1428
1429 /* Look for basic block that contains unlikely to happen events
1430 (such as noreturn calls) and mark all paths leading to execution
1431 of this basic blocks as unlikely. */
1432
1433 static void
1434 tree_bb_level_predictions (void)
1435 {
1436 basic_block bb;
1437
1438 apply_return_prediction ();
1439
1440 FOR_EACH_BB (bb)
1441 {
1442 gimple_stmt_iterator gsi;
1443
1444 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1445 {
1446 gimple stmt = gsi_stmt (gsi);
1447 tree decl;
1448
1449 if (is_gimple_call (stmt))
1450 {
1451 if (gimple_call_flags (stmt) & ECF_NORETURN)
1452 predict_paths_leading_to (bb, PRED_NORETURN,
1453 NOT_TAKEN);
1454 decl = gimple_call_fndecl (stmt);
1455 if (decl
1456 && lookup_attribute ("cold",
1457 DECL_ATTRIBUTES (decl)))
1458 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1459 NOT_TAKEN);
1460 }
1461 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1462 {
1463 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1464 gimple_predict_outcome (stmt));
1465 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1466 hints to callers. */
1467 }
1468 }
1469 }
1470 }
1471
1472 #ifdef ENABLE_CHECKING
1473
1474 /* Callback for pointer_map_traverse, asserts that the pointer map is
1475 empty. */
1476
1477 static bool
1478 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1479 void *data ATTRIBUTE_UNUSED)
1480 {
1481 gcc_assert (!*value);
1482 return false;
1483 }
1484 #endif
1485
1486 /* Predict branch probabilities and estimate profile of the tree CFG. */
1487 static unsigned int
1488 tree_estimate_probability (void)
1489 {
1490 basic_block bb;
1491
1492 loop_optimizer_init (0);
1493 if (dump_file && (dump_flags & TDF_DETAILS))
1494 flow_loops_dump (dump_file, NULL, 0);
1495
1496 add_noreturn_fake_exit_edges ();
1497 connect_infinite_loops_to_exit ();
1498 /* We use loop_niter_by_eval, which requires that the loops have
1499 preheaders. */
1500 create_preheaders (CP_SIMPLE_PREHEADERS);
1501 calculate_dominance_info (CDI_POST_DOMINATORS);
1502
1503 bb_predictions = pointer_map_create ();
1504 tree_bb_level_predictions ();
1505
1506 mark_irreducible_loops ();
1507 record_loop_exits ();
1508 if (number_of_loops () > 1)
1509 predict_loops ();
1510
1511 FOR_EACH_BB (bb)
1512 {
1513 edge e;
1514 edge_iterator ei;
1515
1516 FOR_EACH_EDGE (e, ei, bb->succs)
1517 {
1518 /* Predict early returns to be probable, as we've already taken
1519 care for error returns and other cases are often used for
1520 fast paths through function.
1521
1522 Since we've already removed the return statements, we are
1523 looking for CFG like:
1524
1525 if (conditional)
1526 {
1527 ..
1528 goto return_block
1529 }
1530 some other blocks
1531 return_block:
1532 return_stmt. */
1533 if (e->dest != bb->next_bb
1534 && e->dest != EXIT_BLOCK_PTR
1535 && single_succ_p (e->dest)
1536 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1537 && gimple_code (last_stmt (e->dest)) == GIMPLE_RETURN)
1538 {
1539 edge e1;
1540 edge_iterator ei1;
1541
1542 if (single_succ_p (bb))
1543 {
1544 FOR_EACH_EDGE (e1, ei1, bb->preds)
1545 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1546 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1547 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1548 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1549 }
1550 else
1551 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1552 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1553 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1554 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1555 }
1556
1557 /* Look for block we are guarding (ie we dominate it,
1558 but it doesn't postdominate us). */
1559 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1560 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1561 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1562 {
1563 gimple_stmt_iterator bi;
1564
1565 /* The call heuristic claims that a guarded function call
1566 is improbable. This is because such calls are often used
1567 to signal exceptional situations such as printing error
1568 messages. */
1569 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1570 gsi_next (&bi))
1571 {
1572 gimple stmt = gsi_stmt (bi);
1573 if (is_gimple_call (stmt)
1574 /* Constant and pure calls are hardly used to signalize
1575 something exceptional. */
1576 && gimple_has_side_effects (stmt))
1577 {
1578 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1579 break;
1580 }
1581 }
1582 }
1583 }
1584 tree_predict_by_opcode (bb);
1585 }
1586 FOR_EACH_BB (bb)
1587 combine_predictions_for_bb (bb);
1588
1589 #ifdef ENABLE_CHECKING
1590 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1591 #endif
1592 pointer_map_destroy (bb_predictions);
1593 bb_predictions = NULL;
1594
1595 estimate_bb_frequencies ();
1596 free_dominance_info (CDI_POST_DOMINATORS);
1597 remove_fake_exit_edges ();
1598 loop_optimizer_finalize ();
1599 if (dump_file && (dump_flags & TDF_DETAILS))
1600 gimple_dump_cfg (dump_file, dump_flags);
1601 if (profile_status == PROFILE_ABSENT)
1602 profile_status = PROFILE_GUESSED;
1603 return 0;
1604 }
1605 \f
1606 /* Predict edges to successors of CUR whose sources are not postdominated by
1607 BB by PRED and recurse to all postdominators. */
1608
1609 static void
1610 predict_paths_for_bb (basic_block cur, basic_block bb,
1611 enum br_predictor pred,
1612 enum prediction taken)
1613 {
1614 edge e;
1615 edge_iterator ei;
1616 basic_block son;
1617
1618 /* We are looking for all edges forming edge cut induced by
1619 set of all blocks postdominated by BB. */
1620 FOR_EACH_EDGE (e, ei, cur->preds)
1621 if (e->src->index >= NUM_FIXED_BLOCKS
1622 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1623 {
1624 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1625 predict_edge_def (e, pred, taken);
1626 }
1627 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1628 son;
1629 son = next_dom_son (CDI_POST_DOMINATORS, son))
1630 predict_paths_for_bb (son, bb, pred, taken);
1631 }
1632
1633 /* Sets branch probabilities according to PREDiction and
1634 FLAGS. */
1635
1636 static void
1637 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1638 enum prediction taken)
1639 {
1640 predict_paths_for_bb (bb, bb, pred, taken);
1641 }
1642 \f
1643 /* This is used to carry information about basic blocks. It is
1644 attached to the AUX field of the standard CFG block. */
1645
1646 typedef struct block_info_def
1647 {
1648 /* Estimated frequency of execution of basic_block. */
1649 sreal frequency;
1650
1651 /* To keep queue of basic blocks to process. */
1652 basic_block next;
1653
1654 /* Number of predecessors we need to visit first. */
1655 int npredecessors;
1656 } *block_info;
1657
1658 /* Similar information for edges. */
1659 typedef struct edge_info_def
1660 {
1661 /* In case edge is a loopback edge, the probability edge will be reached
1662 in case header is. Estimated number of iterations of the loop can be
1663 then computed as 1 / (1 - back_edge_prob). */
1664 sreal back_edge_prob;
1665 /* True if the edge is a loopback edge in the natural loop. */
1666 unsigned int back_edge:1;
1667 } *edge_info;
1668
1669 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1670 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1671
1672 /* Helper function for estimate_bb_frequencies.
1673 Propagate the frequencies in blocks marked in
1674 TOVISIT, starting in HEAD. */
1675
1676 static void
1677 propagate_freq (basic_block head, bitmap tovisit)
1678 {
1679 basic_block bb;
1680 basic_block last;
1681 unsigned i;
1682 edge e;
1683 basic_block nextbb;
1684 bitmap_iterator bi;
1685
1686 /* For each basic block we need to visit count number of his predecessors
1687 we need to visit first. */
1688 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1689 {
1690 edge_iterator ei;
1691 int count = 0;
1692
1693 /* The outermost "loop" includes the exit block, which we can not
1694 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1695 directly. Do the same for the entry block. */
1696 bb = BASIC_BLOCK (i);
1697
1698 FOR_EACH_EDGE (e, ei, bb->preds)
1699 {
1700 bool visit = bitmap_bit_p (tovisit, e->src->index);
1701
1702 if (visit && !(e->flags & EDGE_DFS_BACK))
1703 count++;
1704 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1705 fprintf (dump_file,
1706 "Irreducible region hit, ignoring edge to %i->%i\n",
1707 e->src->index, bb->index);
1708 }
1709 BLOCK_INFO (bb)->npredecessors = count;
1710 }
1711
1712 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1713 last = head;
1714 for (bb = head; bb; bb = nextbb)
1715 {
1716 edge_iterator ei;
1717 sreal cyclic_probability, frequency;
1718
1719 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1720 memcpy (&frequency, &real_zero, sizeof (real_zero));
1721
1722 nextbb = BLOCK_INFO (bb)->next;
1723 BLOCK_INFO (bb)->next = NULL;
1724
1725 /* Compute frequency of basic block. */
1726 if (bb != head)
1727 {
1728 #ifdef ENABLE_CHECKING
1729 FOR_EACH_EDGE (e, ei, bb->preds)
1730 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1731 || (e->flags & EDGE_DFS_BACK));
1732 #endif
1733
1734 FOR_EACH_EDGE (e, ei, bb->preds)
1735 if (EDGE_INFO (e)->back_edge)
1736 {
1737 sreal_add (&cyclic_probability, &cyclic_probability,
1738 &EDGE_INFO (e)->back_edge_prob);
1739 }
1740 else if (!(e->flags & EDGE_DFS_BACK))
1741 {
1742 sreal tmp;
1743
1744 /* frequency += (e->probability
1745 * BLOCK_INFO (e->src)->frequency /
1746 REG_BR_PROB_BASE); */
1747
1748 sreal_init (&tmp, e->probability, 0);
1749 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1750 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1751 sreal_add (&frequency, &frequency, &tmp);
1752 }
1753
1754 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1755 {
1756 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1757 sizeof (frequency));
1758 }
1759 else
1760 {
1761 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1762 {
1763 memcpy (&cyclic_probability, &real_almost_one,
1764 sizeof (real_almost_one));
1765 }
1766
1767 /* BLOCK_INFO (bb)->frequency = frequency
1768 / (1 - cyclic_probability) */
1769
1770 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1771 sreal_div (&BLOCK_INFO (bb)->frequency,
1772 &frequency, &cyclic_probability);
1773 }
1774 }
1775
1776 bitmap_clear_bit (tovisit, bb->index);
1777
1778 e = find_edge (bb, head);
1779 if (e)
1780 {
1781 sreal tmp;
1782
1783 /* EDGE_INFO (e)->back_edge_prob
1784 = ((e->probability * BLOCK_INFO (bb)->frequency)
1785 / REG_BR_PROB_BASE); */
1786
1787 sreal_init (&tmp, e->probability, 0);
1788 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1789 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1790 &tmp, &real_inv_br_prob_base);
1791 }
1792
1793 /* Propagate to successor blocks. */
1794 FOR_EACH_EDGE (e, ei, bb->succs)
1795 if (!(e->flags & EDGE_DFS_BACK)
1796 && BLOCK_INFO (e->dest)->npredecessors)
1797 {
1798 BLOCK_INFO (e->dest)->npredecessors--;
1799 if (!BLOCK_INFO (e->dest)->npredecessors)
1800 {
1801 if (!nextbb)
1802 nextbb = e->dest;
1803 else
1804 BLOCK_INFO (last)->next = e->dest;
1805
1806 last = e->dest;
1807 }
1808 }
1809 }
1810 }
1811
1812 /* Estimate probabilities of loopback edges in loops at same nest level. */
1813
1814 static void
1815 estimate_loops_at_level (struct loop *first_loop)
1816 {
1817 struct loop *loop;
1818
1819 for (loop = first_loop; loop; loop = loop->next)
1820 {
1821 edge e;
1822 basic_block *bbs;
1823 unsigned i;
1824 bitmap tovisit = BITMAP_ALLOC (NULL);
1825
1826 estimate_loops_at_level (loop->inner);
1827
1828 /* Find current loop back edge and mark it. */
1829 e = loop_latch_edge (loop);
1830 EDGE_INFO (e)->back_edge = 1;
1831
1832 bbs = get_loop_body (loop);
1833 for (i = 0; i < loop->num_nodes; i++)
1834 bitmap_set_bit (tovisit, bbs[i]->index);
1835 free (bbs);
1836 propagate_freq (loop->header, tovisit);
1837 BITMAP_FREE (tovisit);
1838 }
1839 }
1840
1841 /* Propagates frequencies through structure of loops. */
1842
1843 static void
1844 estimate_loops (void)
1845 {
1846 bitmap tovisit = BITMAP_ALLOC (NULL);
1847 basic_block bb;
1848
1849 /* Start by estimating the frequencies in the loops. */
1850 if (number_of_loops () > 1)
1851 estimate_loops_at_level (current_loops->tree_root->inner);
1852
1853 /* Now propagate the frequencies through all the blocks. */
1854 FOR_ALL_BB (bb)
1855 {
1856 bitmap_set_bit (tovisit, bb->index);
1857 }
1858 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1859 BITMAP_FREE (tovisit);
1860 }
1861
1862 /* Convert counts measured by profile driven feedback to frequencies.
1863 Return nonzero iff there was any nonzero execution count. */
1864
1865 int
1866 counts_to_freqs (void)
1867 {
1868 gcov_type count_max, true_count_max = 0;
1869 basic_block bb;
1870
1871 FOR_EACH_BB (bb)
1872 true_count_max = MAX (bb->count, true_count_max);
1873
1874 count_max = MAX (true_count_max, 1);
1875 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1876 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1877
1878 return true_count_max;
1879 }
1880
1881 /* Return true if function is likely to be expensive, so there is no point to
1882 optimize performance of prologue, epilogue or do inlining at the expense
1883 of code size growth. THRESHOLD is the limit of number of instructions
1884 function can execute at average to be still considered not expensive. */
1885
1886 bool
1887 expensive_function_p (int threshold)
1888 {
1889 unsigned int sum = 0;
1890 basic_block bb;
1891 unsigned int limit;
1892
1893 /* We can not compute accurately for large thresholds due to scaled
1894 frequencies. */
1895 gcc_assert (threshold <= BB_FREQ_MAX);
1896
1897 /* Frequencies are out of range. This either means that function contains
1898 internal loop executing more than BB_FREQ_MAX times or profile feedback
1899 is available and function has not been executed at all. */
1900 if (ENTRY_BLOCK_PTR->frequency == 0)
1901 return true;
1902
1903 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1904 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1905 FOR_EACH_BB (bb)
1906 {
1907 rtx insn;
1908
1909 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1910 insn = NEXT_INSN (insn))
1911 if (active_insn_p (insn))
1912 {
1913 sum += bb->frequency;
1914 if (sum > limit)
1915 return true;
1916 }
1917 }
1918
1919 return false;
1920 }
1921
1922 /* Estimate basic blocks frequency by given branch probabilities. */
1923
1924 void
1925 estimate_bb_frequencies (void)
1926 {
1927 basic_block bb;
1928 sreal freq_max;
1929
1930 if (!flag_branch_probabilities || !counts_to_freqs ())
1931 {
1932 static int real_values_initialized = 0;
1933
1934 if (!real_values_initialized)
1935 {
1936 real_values_initialized = 1;
1937 sreal_init (&real_zero, 0, 0);
1938 sreal_init (&real_one, 1, 0);
1939 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1940 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1941 sreal_init (&real_one_half, 1, -1);
1942 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1943 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1944 }
1945
1946 mark_dfs_back_edges ();
1947
1948 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1949
1950 /* Set up block info for each basic block. */
1951 alloc_aux_for_blocks (sizeof (struct block_info_def));
1952 alloc_aux_for_edges (sizeof (struct edge_info_def));
1953 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1954 {
1955 edge e;
1956 edge_iterator ei;
1957
1958 FOR_EACH_EDGE (e, ei, bb->succs)
1959 {
1960 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1961 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1962 &EDGE_INFO (e)->back_edge_prob,
1963 &real_inv_br_prob_base);
1964 }
1965 }
1966
1967 /* First compute probabilities locally for each loop from innermost
1968 to outermost to examine probabilities for back edges. */
1969 estimate_loops ();
1970
1971 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1972 FOR_EACH_BB (bb)
1973 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1974 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1975
1976 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1977 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1978 {
1979 sreal tmp;
1980
1981 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1982 sreal_add (&tmp, &tmp, &real_one_half);
1983 bb->frequency = sreal_to_int (&tmp);
1984 }
1985
1986 free_aux_for_blocks ();
1987 free_aux_for_edges ();
1988 }
1989 compute_function_frequency ();
1990 if (flag_reorder_functions)
1991 choose_function_section ();
1992 }
1993
1994 /* Decide whether function is hot, cold or unlikely executed. */
1995 static void
1996 compute_function_frequency (void)
1997 {
1998 basic_block bb;
1999
2000 if (!profile_info || !flag_branch_probabilities)
2001 {
2002 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2003 != NULL)
2004 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2005 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2006 != NULL)
2007 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2008 return;
2009 }
2010 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2011 FOR_EACH_BB (bb)
2012 {
2013 if (maybe_hot_bb_p (bb))
2014 {
2015 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2016 return;
2017 }
2018 if (!probably_never_executed_bb_p (bb))
2019 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
2020 }
2021 }
2022
2023 /* Choose appropriate section for the function. */
2024 static void
2025 choose_function_section (void)
2026 {
2027 if (DECL_SECTION_NAME (current_function_decl)
2028 || !targetm.have_named_sections
2029 /* Theoretically we can split the gnu.linkonce text section too,
2030 but this requires more work as the frequency needs to match
2031 for all generated objects so we need to merge the frequency
2032 of all instances. For now just never set frequency for these. */
2033 || DECL_ONE_ONLY (current_function_decl))
2034 return;
2035
2036 /* If we are doing the partitioning optimization, let the optimization
2037 choose the correct section into which to put things. */
2038
2039 if (flag_reorder_blocks_and_partition)
2040 return;
2041
2042 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
2043 DECL_SECTION_NAME (current_function_decl) =
2044 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2045 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
2046 DECL_SECTION_NAME (current_function_decl) =
2047 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2048 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2049 }
2050
2051 static bool
2052 gate_estimate_probability (void)
2053 {
2054 return flag_guess_branch_prob;
2055 }
2056
2057 /* Build PREDICT_EXPR. */
2058 tree
2059 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2060 {
2061 tree t = build1 (PREDICT_EXPR, void_type_node,
2062 build_int_cst (NULL, predictor));
2063 PREDICT_EXPR_OUTCOME (t) = taken;
2064 return t;
2065 }
2066
2067 const char *
2068 predictor_name (enum br_predictor predictor)
2069 {
2070 return predictor_info[predictor].name;
2071 }
2072
2073 struct gimple_opt_pass pass_profile =
2074 {
2075 {
2076 GIMPLE_PASS,
2077 "profile", /* name */
2078 gate_estimate_probability, /* gate */
2079 tree_estimate_probability, /* execute */
2080 NULL, /* sub */
2081 NULL, /* next */
2082 0, /* static_pass_number */
2083 TV_BRANCH_PROB, /* tv_id */
2084 PROP_cfg, /* properties_required */
2085 0, /* properties_provided */
2086 0, /* properties_destroyed */
2087 0, /* todo_flags_start */
2088 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2089 }
2090 };
2091
2092 struct gimple_opt_pass pass_strip_predict_hints =
2093 {
2094 {
2095 GIMPLE_PASS,
2096 "", /* name */
2097 NULL, /* gate */
2098 strip_predict_hints, /* execute */
2099 NULL, /* sub */
2100 NULL, /* next */
2101 0, /* static_pass_number */
2102 TV_BRANCH_PROB, /* tv_id */
2103 PROP_cfg, /* properties_required */
2104 0, /* properties_provided */
2105 0, /* properties_destroyed */
2106 0, /* todo_flags_start */
2107 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2108 }
2109 };