cgraph.c (dump_cgraph_node): Dump same_comdat_group, only_called_at_startup and only_...
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "diagnostic-core.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63 #include "pointer-set.h"
64
65 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
66 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
67 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
68 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
69
70 /* Random guesstimation given names.
71 PROV_VERY_UNLIKELY should be small enough so basic block predicted
72 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
73 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
74 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
75 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
76 #define PROB_ALWAYS (REG_BR_PROB_BASE)
77
78 static void combine_predictions_for_insn (rtx, basic_block);
79 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
80 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
81 static void choose_function_section (void);
82 static bool can_predict_insn_p (const_rtx);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return TRUE if frequency FREQ is considered to be hot. */
113
114 static inline bool
115 maybe_hot_frequency_p (int freq)
116 {
117 struct cgraph_node *node = cgraph_node (current_function_decl);
118 if (!profile_info || !flag_branch_probabilities)
119 {
120 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
121 return false;
122 if (node->frequency == NODE_FREQUENCY_HOT)
123 return true;
124 }
125 if (profile_status == PROFILE_ABSENT)
126 return true;
127 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
128 && freq <= (ENTRY_BLOCK_PTR->frequency * 2 / 3))
129 return false;
130 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
131 return false;
132 return true;
133 }
134
135 /* Return TRUE if frequency FREQ is considered to be hot. */
136
137 static inline bool
138 maybe_hot_count_p (gcov_type count)
139 {
140 if (profile_status != PROFILE_READ)
141 return true;
142 /* Code executed at most once is not hot. */
143 if (profile_info->runs >= count)
144 return false;
145 return (count
146 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
147 }
148
149 /* Return true in case BB can be CPU intensive and should be optimized
150 for maximal performance. */
151
152 bool
153 maybe_hot_bb_p (const_basic_block bb)
154 {
155 if (profile_status == PROFILE_READ)
156 return maybe_hot_count_p (bb->count);
157 return maybe_hot_frequency_p (bb->frequency);
158 }
159
160 /* Return true if the call can be hot. */
161
162 bool
163 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
164 {
165 if (profile_info && flag_branch_probabilities
166 && (edge->count
167 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
168 return false;
169 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
170 || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
171 return false;
172 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
173 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
174 return false;
175 if (optimize_size)
176 return false;
177 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
178 return true;
179 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
180 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
181 return false;
182 if (flag_guess_branch_prob
183 && edge->frequency <= (CGRAPH_FREQ_BASE
184 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
185 return false;
186 return true;
187 }
188
189 /* Return true in case BB can be CPU intensive and should be optimized
190 for maximal performance. */
191
192 bool
193 maybe_hot_edge_p (edge e)
194 {
195 if (profile_status == PROFILE_READ)
196 return maybe_hot_count_p (e->count);
197 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
198 }
199
200 /* Return true in case BB is probably never executed. */
201 bool
202 probably_never_executed_bb_p (const_basic_block bb)
203 {
204 if (profile_info && flag_branch_probabilities)
205 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
206 if ((!profile_info || !flag_branch_probabilities)
207 && cgraph_node (current_function_decl)->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
208 return true;
209 return false;
210 }
211
212 /* Return true when current function should always be optimized for size. */
213
214 bool
215 optimize_function_for_size_p (struct function *fun)
216 {
217 return (optimize_size
218 || (fun && fun->decl
219 && (cgraph_node (fun->decl)->frequency
220 == NODE_FREQUENCY_UNLIKELY_EXECUTED)));
221 }
222
223 /* Return true when current function should always be optimized for speed. */
224
225 bool
226 optimize_function_for_speed_p (struct function *fun)
227 {
228 return !optimize_function_for_size_p (fun);
229 }
230
231 /* Return TRUE when BB should be optimized for size. */
232
233 bool
234 optimize_bb_for_size_p (const_basic_block bb)
235 {
236 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
237 }
238
239 /* Return TRUE when BB should be optimized for speed. */
240
241 bool
242 optimize_bb_for_speed_p (const_basic_block bb)
243 {
244 return !optimize_bb_for_size_p (bb);
245 }
246
247 /* Return TRUE when BB should be optimized for size. */
248
249 bool
250 optimize_edge_for_size_p (edge e)
251 {
252 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
253 }
254
255 /* Return TRUE when BB should be optimized for speed. */
256
257 bool
258 optimize_edge_for_speed_p (edge e)
259 {
260 return !optimize_edge_for_size_p (e);
261 }
262
263 /* Return TRUE when BB should be optimized for size. */
264
265 bool
266 optimize_insn_for_size_p (void)
267 {
268 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
269 }
270
271 /* Return TRUE when BB should be optimized for speed. */
272
273 bool
274 optimize_insn_for_speed_p (void)
275 {
276 return !optimize_insn_for_size_p ();
277 }
278
279 /* Return TRUE when LOOP should be optimized for size. */
280
281 bool
282 optimize_loop_for_size_p (struct loop *loop)
283 {
284 return optimize_bb_for_size_p (loop->header);
285 }
286
287 /* Return TRUE when LOOP should be optimized for speed. */
288
289 bool
290 optimize_loop_for_speed_p (struct loop *loop)
291 {
292 return optimize_bb_for_speed_p (loop->header);
293 }
294
295 /* Return TRUE when LOOP nest should be optimized for speed. */
296
297 bool
298 optimize_loop_nest_for_speed_p (struct loop *loop)
299 {
300 struct loop *l = loop;
301 if (optimize_loop_for_speed_p (loop))
302 return true;
303 l = loop->inner;
304 while (l && l != loop)
305 {
306 if (optimize_loop_for_speed_p (l))
307 return true;
308 if (l->inner)
309 l = l->inner;
310 else if (l->next)
311 l = l->next;
312 else
313 {
314 while (l != loop && !l->next)
315 l = loop_outer (l);
316 if (l != loop)
317 l = l->next;
318 }
319 }
320 return false;
321 }
322
323 /* Return TRUE when LOOP nest should be optimized for size. */
324
325 bool
326 optimize_loop_nest_for_size_p (struct loop *loop)
327 {
328 return !optimize_loop_nest_for_speed_p (loop);
329 }
330
331 /* Return true when edge E is likely to be well predictable by branch
332 predictor. */
333
334 bool
335 predictable_edge_p (edge e)
336 {
337 if (profile_status == PROFILE_ABSENT)
338 return false;
339 if ((e->probability
340 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
341 || (REG_BR_PROB_BASE - e->probability
342 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
343 return true;
344 return false;
345 }
346
347
348 /* Set RTL expansion for BB profile. */
349
350 void
351 rtl_profile_for_bb (basic_block bb)
352 {
353 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
354 }
355
356 /* Set RTL expansion for edge profile. */
357
358 void
359 rtl_profile_for_edge (edge e)
360 {
361 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
362 }
363
364 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
365 void
366 default_rtl_profile (void)
367 {
368 crtl->maybe_hot_insn_p = true;
369 }
370
371 /* Return true if the one of outgoing edges is already predicted by
372 PREDICTOR. */
373
374 bool
375 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
376 {
377 rtx note;
378 if (!INSN_P (BB_END (bb)))
379 return false;
380 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
381 if (REG_NOTE_KIND (note) == REG_BR_PRED
382 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
383 return true;
384 return false;
385 }
386
387 /* This map contains for a basic block the list of predictions for the
388 outgoing edges. */
389
390 static struct pointer_map_t *bb_predictions;
391
392 /* Return true if the one of outgoing edges is already predicted by
393 PREDICTOR. */
394
395 bool
396 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
397 {
398 struct edge_prediction *i;
399 void **preds = pointer_map_contains (bb_predictions, bb);
400
401 if (!preds)
402 return false;
403
404 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
405 if (i->ep_predictor == predictor)
406 return true;
407 return false;
408 }
409
410 /* Return true when the probability of edge is reliable.
411
412 The profile guessing code is good at predicting branch outcome (ie.
413 taken/not taken), that is predicted right slightly over 75% of time.
414 It is however notoriously poor on predicting the probability itself.
415 In general the profile appear a lot flatter (with probabilities closer
416 to 50%) than the reality so it is bad idea to use it to drive optimization
417 such as those disabling dynamic branch prediction for well predictable
418 branches.
419
420 There are two exceptions - edges leading to noreturn edges and edges
421 predicted by number of iterations heuristics are predicted well. This macro
422 should be able to distinguish those, but at the moment it simply check for
423 noreturn heuristic that is only one giving probability over 99% or bellow
424 1%. In future we might want to propagate reliability information across the
425 CFG if we find this information useful on multiple places. */
426 static bool
427 probability_reliable_p (int prob)
428 {
429 return (profile_status == PROFILE_READ
430 || (profile_status == PROFILE_GUESSED
431 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
432 }
433
434 /* Same predicate as above, working on edges. */
435 bool
436 edge_probability_reliable_p (const_edge e)
437 {
438 return probability_reliable_p (e->probability);
439 }
440
441 /* Same predicate as edge_probability_reliable_p, working on notes. */
442 bool
443 br_prob_note_reliable_p (const_rtx note)
444 {
445 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
446 return probability_reliable_p (INTVAL (XEXP (note, 0)));
447 }
448
449 static void
450 predict_insn (rtx insn, enum br_predictor predictor, int probability)
451 {
452 gcc_assert (any_condjump_p (insn));
453 if (!flag_guess_branch_prob)
454 return;
455
456 add_reg_note (insn, REG_BR_PRED,
457 gen_rtx_CONCAT (VOIDmode,
458 GEN_INT ((int) predictor),
459 GEN_INT ((int) probability)));
460 }
461
462 /* Predict insn by given predictor. */
463
464 void
465 predict_insn_def (rtx insn, enum br_predictor predictor,
466 enum prediction taken)
467 {
468 int probability = predictor_info[(int) predictor].hitrate;
469
470 if (taken != TAKEN)
471 probability = REG_BR_PROB_BASE - probability;
472
473 predict_insn (insn, predictor, probability);
474 }
475
476 /* Predict edge E with given probability if possible. */
477
478 void
479 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
480 {
481 rtx last_insn;
482 last_insn = BB_END (e->src);
483
484 /* We can store the branch prediction information only about
485 conditional jumps. */
486 if (!any_condjump_p (last_insn))
487 return;
488
489 /* We always store probability of branching. */
490 if (e->flags & EDGE_FALLTHRU)
491 probability = REG_BR_PROB_BASE - probability;
492
493 predict_insn (last_insn, predictor, probability);
494 }
495
496 /* Predict edge E with the given PROBABILITY. */
497 void
498 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
499 {
500 gcc_assert (profile_status != PROFILE_GUESSED);
501 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
502 && flag_guess_branch_prob && optimize)
503 {
504 struct edge_prediction *i = XNEW (struct edge_prediction);
505 void **preds = pointer_map_insert (bb_predictions, e->src);
506
507 i->ep_next = (struct edge_prediction *) *preds;
508 *preds = i;
509 i->ep_probability = probability;
510 i->ep_predictor = predictor;
511 i->ep_edge = e;
512 }
513 }
514
515 /* Remove all predictions on given basic block that are attached
516 to edge E. */
517 void
518 remove_predictions_associated_with_edge (edge e)
519 {
520 void **preds;
521
522 if (!bb_predictions)
523 return;
524
525 preds = pointer_map_contains (bb_predictions, e->src);
526
527 if (preds)
528 {
529 struct edge_prediction **prediction = (struct edge_prediction **) preds;
530 struct edge_prediction *next;
531
532 while (*prediction)
533 {
534 if ((*prediction)->ep_edge == e)
535 {
536 next = (*prediction)->ep_next;
537 free (*prediction);
538 *prediction = next;
539 }
540 else
541 prediction = &((*prediction)->ep_next);
542 }
543 }
544 }
545
546 /* Clears the list of predictions stored for BB. */
547
548 static void
549 clear_bb_predictions (basic_block bb)
550 {
551 void **preds = pointer_map_contains (bb_predictions, bb);
552 struct edge_prediction *pred, *next;
553
554 if (!preds)
555 return;
556
557 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
558 {
559 next = pred->ep_next;
560 free (pred);
561 }
562 *preds = NULL;
563 }
564
565 /* Return true when we can store prediction on insn INSN.
566 At the moment we represent predictions only on conditional
567 jumps, not at computed jump or other complicated cases. */
568 static bool
569 can_predict_insn_p (const_rtx insn)
570 {
571 return (JUMP_P (insn)
572 && any_condjump_p (insn)
573 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
574 }
575
576 /* Predict edge E by given predictor if possible. */
577
578 void
579 predict_edge_def (edge e, enum br_predictor predictor,
580 enum prediction taken)
581 {
582 int probability = predictor_info[(int) predictor].hitrate;
583
584 if (taken != TAKEN)
585 probability = REG_BR_PROB_BASE - probability;
586
587 predict_edge (e, predictor, probability);
588 }
589
590 /* Invert all branch predictions or probability notes in the INSN. This needs
591 to be done each time we invert the condition used by the jump. */
592
593 void
594 invert_br_probabilities (rtx insn)
595 {
596 rtx note;
597
598 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
599 if (REG_NOTE_KIND (note) == REG_BR_PROB)
600 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
601 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
602 XEXP (XEXP (note, 0), 1)
603 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
604 }
605
606 /* Dump information about the branch prediction to the output file. */
607
608 static void
609 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
610 basic_block bb, int used)
611 {
612 edge e;
613 edge_iterator ei;
614
615 if (!file)
616 return;
617
618 FOR_EACH_EDGE (e, ei, bb->succs)
619 if (! (e->flags & EDGE_FALLTHRU))
620 break;
621
622 fprintf (file, " %s heuristics%s: %.1f%%",
623 predictor_info[predictor].name,
624 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
625
626 if (bb->count)
627 {
628 fprintf (file, " exec ");
629 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
630 if (e)
631 {
632 fprintf (file, " hit ");
633 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
634 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
635 }
636 }
637
638 fprintf (file, "\n");
639 }
640
641 /* We can not predict the probabilities of outgoing edges of bb. Set them
642 evenly and hope for the best. */
643 static void
644 set_even_probabilities (basic_block bb)
645 {
646 int nedges = 0;
647 edge e;
648 edge_iterator ei;
649
650 FOR_EACH_EDGE (e, ei, bb->succs)
651 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
652 nedges ++;
653 FOR_EACH_EDGE (e, ei, bb->succs)
654 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
655 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
656 else
657 e->probability = 0;
658 }
659
660 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
661 note if not already present. Remove now useless REG_BR_PRED notes. */
662
663 static void
664 combine_predictions_for_insn (rtx insn, basic_block bb)
665 {
666 rtx prob_note;
667 rtx *pnote;
668 rtx note;
669 int best_probability = PROB_EVEN;
670 enum br_predictor best_predictor = END_PREDICTORS;
671 int combined_probability = REG_BR_PROB_BASE / 2;
672 int d;
673 bool first_match = false;
674 bool found = false;
675
676 if (!can_predict_insn_p (insn))
677 {
678 set_even_probabilities (bb);
679 return;
680 }
681
682 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
683 pnote = &REG_NOTES (insn);
684 if (dump_file)
685 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
686 bb->index);
687
688 /* We implement "first match" heuristics and use probability guessed
689 by predictor with smallest index. */
690 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
691 if (REG_NOTE_KIND (note) == REG_BR_PRED)
692 {
693 enum br_predictor predictor = ((enum br_predictor)
694 INTVAL (XEXP (XEXP (note, 0), 0)));
695 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
696
697 found = true;
698 if (best_predictor > predictor)
699 best_probability = probability, best_predictor = predictor;
700
701 d = (combined_probability * probability
702 + (REG_BR_PROB_BASE - combined_probability)
703 * (REG_BR_PROB_BASE - probability));
704
705 /* Use FP math to avoid overflows of 32bit integers. */
706 if (d == 0)
707 /* If one probability is 0% and one 100%, avoid division by zero. */
708 combined_probability = REG_BR_PROB_BASE / 2;
709 else
710 combined_probability = (((double) combined_probability) * probability
711 * REG_BR_PROB_BASE / d + 0.5);
712 }
713
714 /* Decide which heuristic to use. In case we didn't match anything,
715 use no_prediction heuristic, in case we did match, use either
716 first match or Dempster-Shaffer theory depending on the flags. */
717
718 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
719 first_match = true;
720
721 if (!found)
722 dump_prediction (dump_file, PRED_NO_PREDICTION,
723 combined_probability, bb, true);
724 else
725 {
726 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
727 bb, !first_match);
728 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
729 bb, first_match);
730 }
731
732 if (first_match)
733 combined_probability = best_probability;
734 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
735
736 while (*pnote)
737 {
738 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
739 {
740 enum br_predictor predictor = ((enum br_predictor)
741 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
742 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
743
744 dump_prediction (dump_file, predictor, probability, bb,
745 !first_match || best_predictor == predictor);
746 *pnote = XEXP (*pnote, 1);
747 }
748 else
749 pnote = &XEXP (*pnote, 1);
750 }
751
752 if (!prob_note)
753 {
754 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
755
756 /* Save the prediction into CFG in case we are seeing non-degenerated
757 conditional jump. */
758 if (!single_succ_p (bb))
759 {
760 BRANCH_EDGE (bb)->probability = combined_probability;
761 FALLTHRU_EDGE (bb)->probability
762 = REG_BR_PROB_BASE - combined_probability;
763 }
764 }
765 else if (!single_succ_p (bb))
766 {
767 int prob = INTVAL (XEXP (prob_note, 0));
768
769 BRANCH_EDGE (bb)->probability = prob;
770 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
771 }
772 else
773 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
774 }
775
776 /* Combine predictions into single probability and store them into CFG.
777 Remove now useless prediction entries. */
778
779 static void
780 combine_predictions_for_bb (basic_block bb)
781 {
782 int best_probability = PROB_EVEN;
783 enum br_predictor best_predictor = END_PREDICTORS;
784 int combined_probability = REG_BR_PROB_BASE / 2;
785 int d;
786 bool first_match = false;
787 bool found = false;
788 struct edge_prediction *pred;
789 int nedges = 0;
790 edge e, first = NULL, second = NULL;
791 edge_iterator ei;
792 void **preds;
793
794 FOR_EACH_EDGE (e, ei, bb->succs)
795 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
796 {
797 nedges ++;
798 if (first && !second)
799 second = e;
800 if (!first)
801 first = e;
802 }
803
804 /* When there is no successor or only one choice, prediction is easy.
805
806 We are lazy for now and predict only basic blocks with two outgoing
807 edges. It is possible to predict generic case too, but we have to
808 ignore first match heuristics and do more involved combining. Implement
809 this later. */
810 if (nedges != 2)
811 {
812 if (!bb->count)
813 set_even_probabilities (bb);
814 clear_bb_predictions (bb);
815 if (dump_file)
816 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
817 nedges, bb->index);
818 return;
819 }
820
821 if (dump_file)
822 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
823
824 preds = pointer_map_contains (bb_predictions, bb);
825 if (preds)
826 {
827 /* We implement "first match" heuristics and use probability guessed
828 by predictor with smallest index. */
829 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
830 {
831 enum br_predictor predictor = pred->ep_predictor;
832 int probability = pred->ep_probability;
833
834 if (pred->ep_edge != first)
835 probability = REG_BR_PROB_BASE - probability;
836
837 found = true;
838 /* First match heuristics would be widly confused if we predicted
839 both directions. */
840 if (best_predictor > predictor)
841 {
842 struct edge_prediction *pred2;
843 int prob = probability;
844
845 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
846 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
847 {
848 int probability2 = pred->ep_probability;
849
850 if (pred2->ep_edge != first)
851 probability2 = REG_BR_PROB_BASE - probability2;
852
853 if ((probability < REG_BR_PROB_BASE / 2) !=
854 (probability2 < REG_BR_PROB_BASE / 2))
855 break;
856
857 /* If the same predictor later gave better result, go for it! */
858 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
859 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
860 prob = probability2;
861 }
862 if (!pred2)
863 best_probability = prob, best_predictor = predictor;
864 }
865
866 d = (combined_probability * probability
867 + (REG_BR_PROB_BASE - combined_probability)
868 * (REG_BR_PROB_BASE - probability));
869
870 /* Use FP math to avoid overflows of 32bit integers. */
871 if (d == 0)
872 /* If one probability is 0% and one 100%, avoid division by zero. */
873 combined_probability = REG_BR_PROB_BASE / 2;
874 else
875 combined_probability = (((double) combined_probability)
876 * probability
877 * REG_BR_PROB_BASE / d + 0.5);
878 }
879 }
880
881 /* Decide which heuristic to use. In case we didn't match anything,
882 use no_prediction heuristic, in case we did match, use either
883 first match or Dempster-Shaffer theory depending on the flags. */
884
885 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
886 first_match = true;
887
888 if (!found)
889 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
890 else
891 {
892 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
893 !first_match);
894 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
895 first_match);
896 }
897
898 if (first_match)
899 combined_probability = best_probability;
900 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
901
902 if (preds)
903 {
904 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
905 {
906 enum br_predictor predictor = pred->ep_predictor;
907 int probability = pred->ep_probability;
908
909 if (pred->ep_edge != EDGE_SUCC (bb, 0))
910 probability = REG_BR_PROB_BASE - probability;
911 dump_prediction (dump_file, predictor, probability, bb,
912 !first_match || best_predictor == predictor);
913 }
914 }
915 clear_bb_predictions (bb);
916
917 if (!bb->count)
918 {
919 first->probability = combined_probability;
920 second->probability = REG_BR_PROB_BASE - combined_probability;
921 }
922 }
923
924 /* Predict edge probabilities by exploiting loop structure. */
925
926 static void
927 predict_loops (void)
928 {
929 loop_iterator li;
930 struct loop *loop;
931
932 /* Try to predict out blocks in a loop that are not part of a
933 natural loop. */
934 FOR_EACH_LOOP (li, loop, 0)
935 {
936 basic_block bb, *bbs;
937 unsigned j, n_exits;
938 VEC (edge, heap) *exits;
939 struct tree_niter_desc niter_desc;
940 edge ex;
941
942 exits = get_loop_exit_edges (loop);
943 n_exits = VEC_length (edge, exits);
944
945 FOR_EACH_VEC_ELT (edge, exits, j, ex)
946 {
947 tree niter = NULL;
948 HOST_WIDE_INT nitercst;
949 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
950 int probability;
951 enum br_predictor predictor;
952
953 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
954 niter = niter_desc.niter;
955 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
956 niter = loop_niter_by_eval (loop, ex);
957
958 if (TREE_CODE (niter) == INTEGER_CST)
959 {
960 if (host_integerp (niter, 1)
961 && compare_tree_int (niter, max-1) == -1)
962 nitercst = tree_low_cst (niter, 1) + 1;
963 else
964 nitercst = max;
965 predictor = PRED_LOOP_ITERATIONS;
966 }
967 /* If we have just one exit and we can derive some information about
968 the number of iterations of the loop from the statements inside
969 the loop, use it to predict this exit. */
970 else if (n_exits == 1)
971 {
972 nitercst = estimated_loop_iterations_int (loop, false);
973 if (nitercst < 0)
974 continue;
975 if (nitercst > max)
976 nitercst = max;
977
978 predictor = PRED_LOOP_ITERATIONS_GUESSED;
979 }
980 else
981 continue;
982
983 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
984 predict_edge (ex, predictor, probability);
985 }
986 VEC_free (edge, heap, exits);
987
988 bbs = get_loop_body (loop);
989
990 for (j = 0; j < loop->num_nodes; j++)
991 {
992 int header_found = 0;
993 edge e;
994 edge_iterator ei;
995
996 bb = bbs[j];
997
998 /* Bypass loop heuristics on continue statement. These
999 statements construct loops via "non-loop" constructs
1000 in the source language and are better to be handled
1001 separately. */
1002 if (predicted_by_p (bb, PRED_CONTINUE))
1003 continue;
1004
1005 /* Loop branch heuristics - predict an edge back to a
1006 loop's head as taken. */
1007 if (bb == loop->latch)
1008 {
1009 e = find_edge (loop->latch, loop->header);
1010 if (e)
1011 {
1012 header_found = 1;
1013 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1014 }
1015 }
1016
1017 /* Loop exit heuristics - predict an edge exiting the loop if the
1018 conditional has no loop header successors as not taken. */
1019 if (!header_found
1020 /* If we already used more reliable loop exit predictors, do not
1021 bother with PRED_LOOP_EXIT. */
1022 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1023 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1024 {
1025 /* For loop with many exits we don't want to predict all exits
1026 with the pretty large probability, because if all exits are
1027 considered in row, the loop would be predicted to iterate
1028 almost never. The code to divide probability by number of
1029 exits is very rough. It should compute the number of exits
1030 taken in each patch through function (not the overall number
1031 of exits that might be a lot higher for loops with wide switch
1032 statements in them) and compute n-th square root.
1033
1034 We limit the minimal probability by 2% to avoid
1035 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1036 as this was causing regression in perl benchmark containing such
1037 a wide loop. */
1038
1039 int probability = ((REG_BR_PROB_BASE
1040 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1041 / n_exits);
1042 if (probability < HITRATE (2))
1043 probability = HITRATE (2);
1044 FOR_EACH_EDGE (e, ei, bb->succs)
1045 if (e->dest->index < NUM_FIXED_BLOCKS
1046 || !flow_bb_inside_loop_p (loop, e->dest))
1047 predict_edge (e, PRED_LOOP_EXIT, probability);
1048 }
1049 }
1050
1051 /* Free basic blocks from get_loop_body. */
1052 free (bbs);
1053 }
1054 }
1055
1056 /* Attempt to predict probabilities of BB outgoing edges using local
1057 properties. */
1058 static void
1059 bb_estimate_probability_locally (basic_block bb)
1060 {
1061 rtx last_insn = BB_END (bb);
1062 rtx cond;
1063
1064 if (! can_predict_insn_p (last_insn))
1065 return;
1066 cond = get_condition (last_insn, NULL, false, false);
1067 if (! cond)
1068 return;
1069
1070 /* Try "pointer heuristic."
1071 A comparison ptr == 0 is predicted as false.
1072 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1073 if (COMPARISON_P (cond)
1074 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1075 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1076 {
1077 if (GET_CODE (cond) == EQ)
1078 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1079 else if (GET_CODE (cond) == NE)
1080 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1081 }
1082 else
1083
1084 /* Try "opcode heuristic."
1085 EQ tests are usually false and NE tests are usually true. Also,
1086 most quantities are positive, so we can make the appropriate guesses
1087 about signed comparisons against zero. */
1088 switch (GET_CODE (cond))
1089 {
1090 case CONST_INT:
1091 /* Unconditional branch. */
1092 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1093 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1094 break;
1095
1096 case EQ:
1097 case UNEQ:
1098 /* Floating point comparisons appears to behave in a very
1099 unpredictable way because of special role of = tests in
1100 FP code. */
1101 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1102 ;
1103 /* Comparisons with 0 are often used for booleans and there is
1104 nothing useful to predict about them. */
1105 else if (XEXP (cond, 1) == const0_rtx
1106 || XEXP (cond, 0) == const0_rtx)
1107 ;
1108 else
1109 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1110 break;
1111
1112 case NE:
1113 case LTGT:
1114 /* Floating point comparisons appears to behave in a very
1115 unpredictable way because of special role of = tests in
1116 FP code. */
1117 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1118 ;
1119 /* Comparisons with 0 are often used for booleans and there is
1120 nothing useful to predict about them. */
1121 else if (XEXP (cond, 1) == const0_rtx
1122 || XEXP (cond, 0) == const0_rtx)
1123 ;
1124 else
1125 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1126 break;
1127
1128 case ORDERED:
1129 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1130 break;
1131
1132 case UNORDERED:
1133 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1134 break;
1135
1136 case LE:
1137 case LT:
1138 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1139 || XEXP (cond, 1) == constm1_rtx)
1140 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1141 break;
1142
1143 case GE:
1144 case GT:
1145 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1146 || XEXP (cond, 1) == constm1_rtx)
1147 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1148 break;
1149
1150 default:
1151 break;
1152 }
1153 }
1154
1155 /* Set edge->probability for each successor edge of BB. */
1156 void
1157 guess_outgoing_edge_probabilities (basic_block bb)
1158 {
1159 bb_estimate_probability_locally (bb);
1160 combine_predictions_for_insn (BB_END (bb), bb);
1161 }
1162 \f
1163 static tree expr_expected_value (tree, bitmap);
1164
1165 /* Helper function for expr_expected_value. */
1166
1167 static tree
1168 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1169 {
1170 gimple def;
1171
1172 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1173 {
1174 if (TREE_CONSTANT (op0))
1175 return op0;
1176
1177 if (code != SSA_NAME)
1178 return NULL_TREE;
1179
1180 def = SSA_NAME_DEF_STMT (op0);
1181
1182 /* If we were already here, break the infinite cycle. */
1183 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1184 return NULL;
1185
1186 if (gimple_code (def) == GIMPLE_PHI)
1187 {
1188 /* All the arguments of the PHI node must have the same constant
1189 length. */
1190 int i, n = gimple_phi_num_args (def);
1191 tree val = NULL, new_val;
1192
1193 for (i = 0; i < n; i++)
1194 {
1195 tree arg = PHI_ARG_DEF (def, i);
1196
1197 /* If this PHI has itself as an argument, we cannot
1198 determine the string length of this argument. However,
1199 if we can find an expected constant value for the other
1200 PHI args then we can still be sure that this is
1201 likely a constant. So be optimistic and just
1202 continue with the next argument. */
1203 if (arg == PHI_RESULT (def))
1204 continue;
1205
1206 new_val = expr_expected_value (arg, visited);
1207 if (!new_val)
1208 return NULL;
1209 if (!val)
1210 val = new_val;
1211 else if (!operand_equal_p (val, new_val, false))
1212 return NULL;
1213 }
1214 return val;
1215 }
1216 if (is_gimple_assign (def))
1217 {
1218 if (gimple_assign_lhs (def) != op0)
1219 return NULL;
1220
1221 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1222 gimple_assign_rhs1 (def),
1223 gimple_assign_rhs_code (def),
1224 gimple_assign_rhs2 (def),
1225 visited);
1226 }
1227
1228 if (is_gimple_call (def))
1229 {
1230 tree decl = gimple_call_fndecl (def);
1231 if (!decl)
1232 return NULL;
1233 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1234 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1235 {
1236 tree val;
1237
1238 if (gimple_call_num_args (def) != 2)
1239 return NULL;
1240 val = gimple_call_arg (def, 0);
1241 if (TREE_CONSTANT (val))
1242 return val;
1243 return gimple_call_arg (def, 1);
1244 }
1245 }
1246
1247 return NULL;
1248 }
1249
1250 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1251 {
1252 tree res;
1253 op0 = expr_expected_value (op0, visited);
1254 if (!op0)
1255 return NULL;
1256 op1 = expr_expected_value (op1, visited);
1257 if (!op1)
1258 return NULL;
1259 res = fold_build2 (code, type, op0, op1);
1260 if (TREE_CONSTANT (res))
1261 return res;
1262 return NULL;
1263 }
1264 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1265 {
1266 tree res;
1267 op0 = expr_expected_value (op0, visited);
1268 if (!op0)
1269 return NULL;
1270 res = fold_build1 (code, type, op0);
1271 if (TREE_CONSTANT (res))
1272 return res;
1273 return NULL;
1274 }
1275 return NULL;
1276 }
1277
1278 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1279 The function is used by builtin_expect branch predictor so the evidence
1280 must come from this construct and additional possible constant folding.
1281
1282 We may want to implement more involved value guess (such as value range
1283 propagation based prediction), but such tricks shall go to new
1284 implementation. */
1285
1286 static tree
1287 expr_expected_value (tree expr, bitmap visited)
1288 {
1289 enum tree_code code;
1290 tree op0, op1;
1291
1292 if (TREE_CONSTANT (expr))
1293 return expr;
1294
1295 extract_ops_from_tree (expr, &code, &op0, &op1);
1296 return expr_expected_value_1 (TREE_TYPE (expr),
1297 op0, code, op1, visited);
1298 }
1299
1300 \f
1301 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1302 we no longer need. */
1303 static unsigned int
1304 strip_predict_hints (void)
1305 {
1306 basic_block bb;
1307 gimple ass_stmt;
1308 tree var;
1309
1310 FOR_EACH_BB (bb)
1311 {
1312 gimple_stmt_iterator bi;
1313 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1314 {
1315 gimple stmt = gsi_stmt (bi);
1316
1317 if (gimple_code (stmt) == GIMPLE_PREDICT)
1318 {
1319 gsi_remove (&bi, true);
1320 continue;
1321 }
1322 else if (gimple_code (stmt) == GIMPLE_CALL)
1323 {
1324 tree fndecl = gimple_call_fndecl (stmt);
1325
1326 if (fndecl
1327 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1328 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1329 && gimple_call_num_args (stmt) == 2)
1330 {
1331 var = gimple_call_lhs (stmt);
1332 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1333
1334 gsi_replace (&bi, ass_stmt, true);
1335 }
1336 }
1337 gsi_next (&bi);
1338 }
1339 }
1340 return 0;
1341 }
1342 \f
1343 /* Predict using opcode of the last statement in basic block. */
1344 static void
1345 tree_predict_by_opcode (basic_block bb)
1346 {
1347 gimple stmt = last_stmt (bb);
1348 edge then_edge;
1349 tree op0, op1;
1350 tree type;
1351 tree val;
1352 enum tree_code cmp;
1353 bitmap visited;
1354 edge_iterator ei;
1355
1356 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1357 return;
1358 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1359 if (then_edge->flags & EDGE_TRUE_VALUE)
1360 break;
1361 op0 = gimple_cond_lhs (stmt);
1362 op1 = gimple_cond_rhs (stmt);
1363 cmp = gimple_cond_code (stmt);
1364 type = TREE_TYPE (op0);
1365 visited = BITMAP_ALLOC (NULL);
1366 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1367 BITMAP_FREE (visited);
1368 if (val)
1369 {
1370 if (integer_zerop (val))
1371 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1372 else
1373 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1374 return;
1375 }
1376 /* Try "pointer heuristic."
1377 A comparison ptr == 0 is predicted as false.
1378 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1379 if (POINTER_TYPE_P (type))
1380 {
1381 if (cmp == EQ_EXPR)
1382 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1383 else if (cmp == NE_EXPR)
1384 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1385 }
1386 else
1387
1388 /* Try "opcode heuristic."
1389 EQ tests are usually false and NE tests are usually true. Also,
1390 most quantities are positive, so we can make the appropriate guesses
1391 about signed comparisons against zero. */
1392 switch (cmp)
1393 {
1394 case EQ_EXPR:
1395 case UNEQ_EXPR:
1396 /* Floating point comparisons appears to behave in a very
1397 unpredictable way because of special role of = tests in
1398 FP code. */
1399 if (FLOAT_TYPE_P (type))
1400 ;
1401 /* Comparisons with 0 are often used for booleans and there is
1402 nothing useful to predict about them. */
1403 else if (integer_zerop (op0) || integer_zerop (op1))
1404 ;
1405 else
1406 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1407 break;
1408
1409 case NE_EXPR:
1410 case LTGT_EXPR:
1411 /* Floating point comparisons appears to behave in a very
1412 unpredictable way because of special role of = tests in
1413 FP code. */
1414 if (FLOAT_TYPE_P (type))
1415 ;
1416 /* Comparisons with 0 are often used for booleans and there is
1417 nothing useful to predict about them. */
1418 else if (integer_zerop (op0)
1419 || integer_zerop (op1))
1420 ;
1421 else
1422 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1423 break;
1424
1425 case ORDERED_EXPR:
1426 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1427 break;
1428
1429 case UNORDERED_EXPR:
1430 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1431 break;
1432
1433 case LE_EXPR:
1434 case LT_EXPR:
1435 if (integer_zerop (op1)
1436 || integer_onep (op1)
1437 || integer_all_onesp (op1)
1438 || real_zerop (op1)
1439 || real_onep (op1)
1440 || real_minus_onep (op1))
1441 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1442 break;
1443
1444 case GE_EXPR:
1445 case GT_EXPR:
1446 if (integer_zerop (op1)
1447 || integer_onep (op1)
1448 || integer_all_onesp (op1)
1449 || real_zerop (op1)
1450 || real_onep (op1)
1451 || real_minus_onep (op1))
1452 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1453 break;
1454
1455 default:
1456 break;
1457 }
1458 }
1459
1460 /* Try to guess whether the value of return means error code. */
1461
1462 static enum br_predictor
1463 return_prediction (tree val, enum prediction *prediction)
1464 {
1465 /* VOID. */
1466 if (!val)
1467 return PRED_NO_PREDICTION;
1468 /* Different heuristics for pointers and scalars. */
1469 if (POINTER_TYPE_P (TREE_TYPE (val)))
1470 {
1471 /* NULL is usually not returned. */
1472 if (integer_zerop (val))
1473 {
1474 *prediction = NOT_TAKEN;
1475 return PRED_NULL_RETURN;
1476 }
1477 }
1478 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1479 {
1480 /* Negative return values are often used to indicate
1481 errors. */
1482 if (TREE_CODE (val) == INTEGER_CST
1483 && tree_int_cst_sgn (val) < 0)
1484 {
1485 *prediction = NOT_TAKEN;
1486 return PRED_NEGATIVE_RETURN;
1487 }
1488 /* Constant return values seems to be commonly taken.
1489 Zero/one often represent booleans so exclude them from the
1490 heuristics. */
1491 if (TREE_CONSTANT (val)
1492 && (!integer_zerop (val) && !integer_onep (val)))
1493 {
1494 *prediction = TAKEN;
1495 return PRED_CONST_RETURN;
1496 }
1497 }
1498 return PRED_NO_PREDICTION;
1499 }
1500
1501 /* Find the basic block with return expression and look up for possible
1502 return value trying to apply RETURN_PREDICTION heuristics. */
1503 static void
1504 apply_return_prediction (void)
1505 {
1506 gimple return_stmt = NULL;
1507 tree return_val;
1508 edge e;
1509 gimple phi;
1510 int phi_num_args, i;
1511 enum br_predictor pred;
1512 enum prediction direction;
1513 edge_iterator ei;
1514
1515 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1516 {
1517 return_stmt = last_stmt (e->src);
1518 if (return_stmt
1519 && gimple_code (return_stmt) == GIMPLE_RETURN)
1520 break;
1521 }
1522 if (!e)
1523 return;
1524 return_val = gimple_return_retval (return_stmt);
1525 if (!return_val)
1526 return;
1527 if (TREE_CODE (return_val) != SSA_NAME
1528 || !SSA_NAME_DEF_STMT (return_val)
1529 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1530 return;
1531 phi = SSA_NAME_DEF_STMT (return_val);
1532 phi_num_args = gimple_phi_num_args (phi);
1533 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1534
1535 /* Avoid the degenerate case where all return values form the function
1536 belongs to same category (ie they are all positive constants)
1537 so we can hardly say something about them. */
1538 for (i = 1; i < phi_num_args; i++)
1539 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1540 break;
1541 if (i != phi_num_args)
1542 for (i = 0; i < phi_num_args; i++)
1543 {
1544 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1545 if (pred != PRED_NO_PREDICTION)
1546 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1547 direction);
1548 }
1549 }
1550
1551 /* Look for basic block that contains unlikely to happen events
1552 (such as noreturn calls) and mark all paths leading to execution
1553 of this basic blocks as unlikely. */
1554
1555 static void
1556 tree_bb_level_predictions (void)
1557 {
1558 basic_block bb;
1559 bool has_return_edges = false;
1560 edge e;
1561 edge_iterator ei;
1562
1563 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1564 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1565 {
1566 has_return_edges = true;
1567 break;
1568 }
1569
1570 apply_return_prediction ();
1571
1572 FOR_EACH_BB (bb)
1573 {
1574 gimple_stmt_iterator gsi;
1575
1576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1577 {
1578 gimple stmt = gsi_stmt (gsi);
1579 tree decl;
1580
1581 if (is_gimple_call (stmt))
1582 {
1583 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1584 && has_return_edges)
1585 predict_paths_leading_to (bb, PRED_NORETURN,
1586 NOT_TAKEN);
1587 decl = gimple_call_fndecl (stmt);
1588 if (decl
1589 && lookup_attribute ("cold",
1590 DECL_ATTRIBUTES (decl)))
1591 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1592 NOT_TAKEN);
1593 }
1594 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1595 {
1596 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1597 gimple_predict_outcome (stmt));
1598 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1599 hints to callers. */
1600 }
1601 }
1602 }
1603 }
1604
1605 #ifdef ENABLE_CHECKING
1606
1607 /* Callback for pointer_map_traverse, asserts that the pointer map is
1608 empty. */
1609
1610 static bool
1611 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1612 void *data ATTRIBUTE_UNUSED)
1613 {
1614 gcc_assert (!*value);
1615 return false;
1616 }
1617 #endif
1618
1619 /* Predict branch probabilities and estimate profile for basic block BB. */
1620
1621 static void
1622 tree_estimate_probability_bb (basic_block bb)
1623 {
1624 edge e;
1625 edge_iterator ei;
1626 gimple last;
1627
1628 FOR_EACH_EDGE (e, ei, bb->succs)
1629 {
1630 /* Predict early returns to be probable, as we've already taken
1631 care for error returns and other cases are often used for
1632 fast paths through function.
1633
1634 Since we've already removed the return statements, we are
1635 looking for CFG like:
1636
1637 if (conditional)
1638 {
1639 ..
1640 goto return_block
1641 }
1642 some other blocks
1643 return_block:
1644 return_stmt. */
1645 if (e->dest != bb->next_bb
1646 && e->dest != EXIT_BLOCK_PTR
1647 && single_succ_p (e->dest)
1648 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1649 && (last = last_stmt (e->dest)) != NULL
1650 && gimple_code (last) == GIMPLE_RETURN)
1651 {
1652 edge e1;
1653 edge_iterator ei1;
1654
1655 if (single_succ_p (bb))
1656 {
1657 FOR_EACH_EDGE (e1, ei1, bb->preds)
1658 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1659 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1660 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1661 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1662 }
1663 else
1664 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1665 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1666 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1667 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1668 }
1669
1670 /* Look for block we are guarding (ie we dominate it,
1671 but it doesn't postdominate us). */
1672 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1673 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1674 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1675 {
1676 gimple_stmt_iterator bi;
1677
1678 /* The call heuristic claims that a guarded function call
1679 is improbable. This is because such calls are often used
1680 to signal exceptional situations such as printing error
1681 messages. */
1682 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1683 gsi_next (&bi))
1684 {
1685 gimple stmt = gsi_stmt (bi);
1686 if (is_gimple_call (stmt)
1687 /* Constant and pure calls are hardly used to signalize
1688 something exceptional. */
1689 && gimple_has_side_effects (stmt))
1690 {
1691 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1692 break;
1693 }
1694 }
1695 }
1696 }
1697 tree_predict_by_opcode (bb);
1698 }
1699
1700 /* Predict branch probabilities and estimate profile of the tree CFG.
1701 This function can be called from the loop optimizers to recompute
1702 the profile information. */
1703
1704 void
1705 tree_estimate_probability (void)
1706 {
1707 basic_block bb;
1708
1709 add_noreturn_fake_exit_edges ();
1710 connect_infinite_loops_to_exit ();
1711 /* We use loop_niter_by_eval, which requires that the loops have
1712 preheaders. */
1713 create_preheaders (CP_SIMPLE_PREHEADERS);
1714 calculate_dominance_info (CDI_POST_DOMINATORS);
1715
1716 bb_predictions = pointer_map_create ();
1717 tree_bb_level_predictions ();
1718 record_loop_exits ();
1719
1720 if (number_of_loops () > 1)
1721 predict_loops ();
1722
1723 FOR_EACH_BB (bb)
1724 tree_estimate_probability_bb (bb);
1725
1726 FOR_EACH_BB (bb)
1727 combine_predictions_for_bb (bb);
1728
1729 #ifdef ENABLE_CHECKING
1730 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1731 #endif
1732 pointer_map_destroy (bb_predictions);
1733 bb_predictions = NULL;
1734
1735 estimate_bb_frequencies ();
1736 free_dominance_info (CDI_POST_DOMINATORS);
1737 remove_fake_exit_edges ();
1738 }
1739
1740 /* Predict branch probabilities and estimate profile of the tree CFG.
1741 This is the driver function for PASS_PROFILE. */
1742
1743 static unsigned int
1744 tree_estimate_probability_driver (void)
1745 {
1746 unsigned nb_loops;
1747
1748 loop_optimizer_init (0);
1749 if (dump_file && (dump_flags & TDF_DETAILS))
1750 flow_loops_dump (dump_file, NULL, 0);
1751
1752 mark_irreducible_loops ();
1753
1754 nb_loops = number_of_loops ();
1755 if (nb_loops > 1)
1756 scev_initialize ();
1757
1758 tree_estimate_probability ();
1759
1760 if (nb_loops > 1)
1761 scev_finalize ();
1762
1763 loop_optimizer_finalize ();
1764 if (dump_file && (dump_flags & TDF_DETAILS))
1765 gimple_dump_cfg (dump_file, dump_flags);
1766 if (profile_status == PROFILE_ABSENT)
1767 profile_status = PROFILE_GUESSED;
1768 return 0;
1769 }
1770 \f
1771 /* Predict edges to successors of CUR whose sources are not postdominated by
1772 BB by PRED and recurse to all postdominators. */
1773
1774 static void
1775 predict_paths_for_bb (basic_block cur, basic_block bb,
1776 enum br_predictor pred,
1777 enum prediction taken)
1778 {
1779 edge e;
1780 edge_iterator ei;
1781 basic_block son;
1782
1783 /* We are looking for all edges forming edge cut induced by
1784 set of all blocks postdominated by BB. */
1785 FOR_EACH_EDGE (e, ei, cur->preds)
1786 if (e->src->index >= NUM_FIXED_BLOCKS
1787 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1788 {
1789 edge e2;
1790 edge_iterator ei2;
1791 bool found = false;
1792
1793 /* Ignore abnormals, we predict them as not taken anyway. */
1794 if (e->flags & (EDGE_EH | EDGE_FAKE | EDGE_ABNORMAL))
1795 continue;
1796 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1797
1798 /* See if there is how many edge from e->src that is not abnormal
1799 and does not lead to BB. */
1800 FOR_EACH_EDGE (e2, ei2, e->src->succs)
1801 if (e2 != e
1802 && !(e2->flags & (EDGE_EH | EDGE_FAKE | EDGE_ABNORMAL))
1803 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1804 {
1805 found = true;
1806 break;
1807 }
1808
1809 /* If there is non-abnormal path leaving e->src, predict edge
1810 using predictor. Otherwise we need to look for paths
1811 leading to e->src. */
1812 if (found)
1813 predict_edge_def (e, pred, taken);
1814 else
1815 predict_paths_for_bb (e->src, e->src, pred, taken);
1816 }
1817 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1818 son;
1819 son = next_dom_son (CDI_POST_DOMINATORS, son))
1820 predict_paths_for_bb (son, bb, pred, taken);
1821 }
1822
1823 /* Sets branch probabilities according to PREDiction and
1824 FLAGS. */
1825
1826 static void
1827 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1828 enum prediction taken)
1829 {
1830 predict_paths_for_bb (bb, bb, pred, taken);
1831 }
1832 \f
1833 /* This is used to carry information about basic blocks. It is
1834 attached to the AUX field of the standard CFG block. */
1835
1836 typedef struct block_info_def
1837 {
1838 /* Estimated frequency of execution of basic_block. */
1839 sreal frequency;
1840
1841 /* To keep queue of basic blocks to process. */
1842 basic_block next;
1843
1844 /* Number of predecessors we need to visit first. */
1845 int npredecessors;
1846 } *block_info;
1847
1848 /* Similar information for edges. */
1849 typedef struct edge_info_def
1850 {
1851 /* In case edge is a loopback edge, the probability edge will be reached
1852 in case header is. Estimated number of iterations of the loop can be
1853 then computed as 1 / (1 - back_edge_prob). */
1854 sreal back_edge_prob;
1855 /* True if the edge is a loopback edge in the natural loop. */
1856 unsigned int back_edge:1;
1857 } *edge_info;
1858
1859 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1860 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1861
1862 /* Helper function for estimate_bb_frequencies.
1863 Propagate the frequencies in blocks marked in
1864 TOVISIT, starting in HEAD. */
1865
1866 static void
1867 propagate_freq (basic_block head, bitmap tovisit)
1868 {
1869 basic_block bb;
1870 basic_block last;
1871 unsigned i;
1872 edge e;
1873 basic_block nextbb;
1874 bitmap_iterator bi;
1875
1876 /* For each basic block we need to visit count number of his predecessors
1877 we need to visit first. */
1878 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1879 {
1880 edge_iterator ei;
1881 int count = 0;
1882
1883 bb = BASIC_BLOCK (i);
1884
1885 FOR_EACH_EDGE (e, ei, bb->preds)
1886 {
1887 bool visit = bitmap_bit_p (tovisit, e->src->index);
1888
1889 if (visit && !(e->flags & EDGE_DFS_BACK))
1890 count++;
1891 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1892 fprintf (dump_file,
1893 "Irreducible region hit, ignoring edge to %i->%i\n",
1894 e->src->index, bb->index);
1895 }
1896 BLOCK_INFO (bb)->npredecessors = count;
1897 /* When function never returns, we will never process exit block. */
1898 if (!count && bb == EXIT_BLOCK_PTR)
1899 bb->count = bb->frequency = 0;
1900 }
1901
1902 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1903 last = head;
1904 for (bb = head; bb; bb = nextbb)
1905 {
1906 edge_iterator ei;
1907 sreal cyclic_probability, frequency;
1908
1909 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1910 memcpy (&frequency, &real_zero, sizeof (real_zero));
1911
1912 nextbb = BLOCK_INFO (bb)->next;
1913 BLOCK_INFO (bb)->next = NULL;
1914
1915 /* Compute frequency of basic block. */
1916 if (bb != head)
1917 {
1918 #ifdef ENABLE_CHECKING
1919 FOR_EACH_EDGE (e, ei, bb->preds)
1920 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1921 || (e->flags & EDGE_DFS_BACK));
1922 #endif
1923
1924 FOR_EACH_EDGE (e, ei, bb->preds)
1925 if (EDGE_INFO (e)->back_edge)
1926 {
1927 sreal_add (&cyclic_probability, &cyclic_probability,
1928 &EDGE_INFO (e)->back_edge_prob);
1929 }
1930 else if (!(e->flags & EDGE_DFS_BACK))
1931 {
1932 sreal tmp;
1933
1934 /* frequency += (e->probability
1935 * BLOCK_INFO (e->src)->frequency /
1936 REG_BR_PROB_BASE); */
1937
1938 sreal_init (&tmp, e->probability, 0);
1939 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1940 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1941 sreal_add (&frequency, &frequency, &tmp);
1942 }
1943
1944 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1945 {
1946 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1947 sizeof (frequency));
1948 }
1949 else
1950 {
1951 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1952 {
1953 memcpy (&cyclic_probability, &real_almost_one,
1954 sizeof (real_almost_one));
1955 }
1956
1957 /* BLOCK_INFO (bb)->frequency = frequency
1958 / (1 - cyclic_probability) */
1959
1960 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1961 sreal_div (&BLOCK_INFO (bb)->frequency,
1962 &frequency, &cyclic_probability);
1963 }
1964 }
1965
1966 bitmap_clear_bit (tovisit, bb->index);
1967
1968 e = find_edge (bb, head);
1969 if (e)
1970 {
1971 sreal tmp;
1972
1973 /* EDGE_INFO (e)->back_edge_prob
1974 = ((e->probability * BLOCK_INFO (bb)->frequency)
1975 / REG_BR_PROB_BASE); */
1976
1977 sreal_init (&tmp, e->probability, 0);
1978 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1979 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1980 &tmp, &real_inv_br_prob_base);
1981 }
1982
1983 /* Propagate to successor blocks. */
1984 FOR_EACH_EDGE (e, ei, bb->succs)
1985 if (!(e->flags & EDGE_DFS_BACK)
1986 && BLOCK_INFO (e->dest)->npredecessors)
1987 {
1988 BLOCK_INFO (e->dest)->npredecessors--;
1989 if (!BLOCK_INFO (e->dest)->npredecessors)
1990 {
1991 if (!nextbb)
1992 nextbb = e->dest;
1993 else
1994 BLOCK_INFO (last)->next = e->dest;
1995
1996 last = e->dest;
1997 }
1998 }
1999 }
2000 }
2001
2002 /* Estimate probabilities of loopback edges in loops at same nest level. */
2003
2004 static void
2005 estimate_loops_at_level (struct loop *first_loop)
2006 {
2007 struct loop *loop;
2008
2009 for (loop = first_loop; loop; loop = loop->next)
2010 {
2011 edge e;
2012 basic_block *bbs;
2013 unsigned i;
2014 bitmap tovisit = BITMAP_ALLOC (NULL);
2015
2016 estimate_loops_at_level (loop->inner);
2017
2018 /* Find current loop back edge and mark it. */
2019 e = loop_latch_edge (loop);
2020 EDGE_INFO (e)->back_edge = 1;
2021
2022 bbs = get_loop_body (loop);
2023 for (i = 0; i < loop->num_nodes; i++)
2024 bitmap_set_bit (tovisit, bbs[i]->index);
2025 free (bbs);
2026 propagate_freq (loop->header, tovisit);
2027 BITMAP_FREE (tovisit);
2028 }
2029 }
2030
2031 /* Propagates frequencies through structure of loops. */
2032
2033 static void
2034 estimate_loops (void)
2035 {
2036 bitmap tovisit = BITMAP_ALLOC (NULL);
2037 basic_block bb;
2038
2039 /* Start by estimating the frequencies in the loops. */
2040 if (number_of_loops () > 1)
2041 estimate_loops_at_level (current_loops->tree_root->inner);
2042
2043 /* Now propagate the frequencies through all the blocks. */
2044 FOR_ALL_BB (bb)
2045 {
2046 bitmap_set_bit (tovisit, bb->index);
2047 }
2048 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2049 BITMAP_FREE (tovisit);
2050 }
2051
2052 /* Convert counts measured by profile driven feedback to frequencies.
2053 Return nonzero iff there was any nonzero execution count. */
2054
2055 int
2056 counts_to_freqs (void)
2057 {
2058 gcov_type count_max, true_count_max = 0;
2059 basic_block bb;
2060
2061 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2062 true_count_max = MAX (bb->count, true_count_max);
2063
2064 count_max = MAX (true_count_max, 1);
2065 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2066 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2067
2068 return true_count_max;
2069 }
2070
2071 /* Return true if function is likely to be expensive, so there is no point to
2072 optimize performance of prologue, epilogue or do inlining at the expense
2073 of code size growth. THRESHOLD is the limit of number of instructions
2074 function can execute at average to be still considered not expensive. */
2075
2076 bool
2077 expensive_function_p (int threshold)
2078 {
2079 unsigned int sum = 0;
2080 basic_block bb;
2081 unsigned int limit;
2082
2083 /* We can not compute accurately for large thresholds due to scaled
2084 frequencies. */
2085 gcc_assert (threshold <= BB_FREQ_MAX);
2086
2087 /* Frequencies are out of range. This either means that function contains
2088 internal loop executing more than BB_FREQ_MAX times or profile feedback
2089 is available and function has not been executed at all. */
2090 if (ENTRY_BLOCK_PTR->frequency == 0)
2091 return true;
2092
2093 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2094 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2095 FOR_EACH_BB (bb)
2096 {
2097 rtx insn;
2098
2099 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2100 insn = NEXT_INSN (insn))
2101 if (active_insn_p (insn))
2102 {
2103 sum += bb->frequency;
2104 if (sum > limit)
2105 return true;
2106 }
2107 }
2108
2109 return false;
2110 }
2111
2112 /* Estimate basic blocks frequency by given branch probabilities. */
2113
2114 void
2115 estimate_bb_frequencies (void)
2116 {
2117 basic_block bb;
2118 sreal freq_max;
2119
2120 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2121 {
2122 static int real_values_initialized = 0;
2123
2124 if (!real_values_initialized)
2125 {
2126 real_values_initialized = 1;
2127 sreal_init (&real_zero, 0, 0);
2128 sreal_init (&real_one, 1, 0);
2129 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2130 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2131 sreal_init (&real_one_half, 1, -1);
2132 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2133 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2134 }
2135
2136 mark_dfs_back_edges ();
2137
2138 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2139
2140 /* Set up block info for each basic block. */
2141 alloc_aux_for_blocks (sizeof (struct block_info_def));
2142 alloc_aux_for_edges (sizeof (struct edge_info_def));
2143 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2144 {
2145 edge e;
2146 edge_iterator ei;
2147
2148 FOR_EACH_EDGE (e, ei, bb->succs)
2149 {
2150 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2151 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2152 &EDGE_INFO (e)->back_edge_prob,
2153 &real_inv_br_prob_base);
2154 }
2155 }
2156
2157 /* First compute probabilities locally for each loop from innermost
2158 to outermost to examine probabilities for back edges. */
2159 estimate_loops ();
2160
2161 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2162 FOR_EACH_BB (bb)
2163 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2164 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2165
2166 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2167 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2168 {
2169 sreal tmp;
2170
2171 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2172 sreal_add (&tmp, &tmp, &real_one_half);
2173 bb->frequency = sreal_to_int (&tmp);
2174 }
2175
2176 free_aux_for_blocks ();
2177 free_aux_for_edges ();
2178 }
2179 compute_function_frequency ();
2180 if (flag_reorder_functions)
2181 choose_function_section ();
2182 }
2183
2184 /* Decide whether function is hot, cold or unlikely executed. */
2185 void
2186 compute_function_frequency (void)
2187 {
2188 basic_block bb;
2189 struct cgraph_node *node = cgraph_node (current_function_decl);
2190 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2191 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2192 node->only_called_at_startup = true;
2193 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2194 node->only_called_at_exit = true;
2195
2196 if (!profile_info || !flag_branch_probabilities)
2197 {
2198 int flags = flags_from_decl_or_type (current_function_decl);
2199 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2200 != NULL)
2201 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2202 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2203 != NULL)
2204 node->frequency = NODE_FREQUENCY_HOT;
2205 else if (flags & ECF_NORETURN)
2206 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2207 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2208 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2209 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2210 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2211 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2212 return;
2213 }
2214 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2215 FOR_EACH_BB (bb)
2216 {
2217 if (maybe_hot_bb_p (bb))
2218 {
2219 node->frequency = NODE_FREQUENCY_HOT;
2220 return;
2221 }
2222 if (!probably_never_executed_bb_p (bb))
2223 node->frequency = NODE_FREQUENCY_NORMAL;
2224 }
2225 }
2226
2227 /* Choose appropriate section for the function. */
2228 static void
2229 choose_function_section (void)
2230 {
2231 struct cgraph_node *node = cgraph_node (current_function_decl);
2232 if (DECL_SECTION_NAME (current_function_decl)
2233 || !targetm.have_named_sections
2234 /* Theoretically we can split the gnu.linkonce text section too,
2235 but this requires more work as the frequency needs to match
2236 for all generated objects so we need to merge the frequency
2237 of all instances. For now just never set frequency for these. */
2238 || DECL_ONE_ONLY (current_function_decl))
2239 return;
2240
2241 /* If we are doing the partitioning optimization, let the optimization
2242 choose the correct section into which to put things. */
2243
2244 if (flag_reorder_blocks_and_partition)
2245 return;
2246
2247 if (node->frequency == NODE_FREQUENCY_HOT)
2248 DECL_SECTION_NAME (current_function_decl) =
2249 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2250 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
2251 DECL_SECTION_NAME (current_function_decl) =
2252 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2253 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2254 }
2255
2256 static bool
2257 gate_estimate_probability (void)
2258 {
2259 return flag_guess_branch_prob;
2260 }
2261
2262 /* Build PREDICT_EXPR. */
2263 tree
2264 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2265 {
2266 tree t = build1 (PREDICT_EXPR, void_type_node,
2267 build_int_cst (NULL, predictor));
2268 SET_PREDICT_EXPR_OUTCOME (t, taken);
2269 return t;
2270 }
2271
2272 const char *
2273 predictor_name (enum br_predictor predictor)
2274 {
2275 return predictor_info[predictor].name;
2276 }
2277
2278 struct gimple_opt_pass pass_profile =
2279 {
2280 {
2281 GIMPLE_PASS,
2282 "profile", /* name */
2283 gate_estimate_probability, /* gate */
2284 tree_estimate_probability_driver, /* execute */
2285 NULL, /* sub */
2286 NULL, /* next */
2287 0, /* static_pass_number */
2288 TV_BRANCH_PROB, /* tv_id */
2289 PROP_cfg, /* properties_required */
2290 0, /* properties_provided */
2291 0, /* properties_destroyed */
2292 0, /* todo_flags_start */
2293 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2294 }
2295 };
2296
2297 struct gimple_opt_pass pass_strip_predict_hints =
2298 {
2299 {
2300 GIMPLE_PASS,
2301 "*strip_predict_hints", /* name */
2302 NULL, /* gate */
2303 strip_predict_hints, /* execute */
2304 NULL, /* sub */
2305 NULL, /* next */
2306 0, /* static_pass_number */
2307 TV_BRANCH_PROB, /* tv_id */
2308 PROP_cfg, /* properties_required */
2309 0, /* properties_provided */
2310 0, /* properties_destroyed */
2311 0, /* todo_flags_start */
2312 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2313 }
2314 };
2315
2316 /* Rebuild function frequencies. Passes are in general expected to
2317 maintain profile by hand, however in some cases this is not possible:
2318 for example when inlining several functions with loops freuqencies might run
2319 out of scale and thus needs to be recomputed. */
2320
2321 void
2322 rebuild_frequencies (void)
2323 {
2324 if (profile_status == PROFILE_GUESSED)
2325 {
2326 loop_optimizer_init (0);
2327 add_noreturn_fake_exit_edges ();
2328 mark_irreducible_loops ();
2329 connect_infinite_loops_to_exit ();
2330 estimate_bb_frequencies ();
2331 remove_fake_exit_edges ();
2332 loop_optimizer_finalize ();
2333 }
2334 else if (profile_status == PROFILE_READ)
2335 counts_to_freqs ();
2336 else
2337 gcc_unreachable ();
2338 }