cgraph.c (dump_cgraph_node): Dump size/time/benefit.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
76
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void compute_function_frequency (void);
81 static void choose_function_section (void);
82 static bool can_predict_insn_p (const_rtx);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return TRUE if frequency FREQ is considered to be hot. */
113
114 static inline bool
115 maybe_hot_frequency_p (int freq)
116 {
117 if (!profile_info || !flag_branch_probabilities)
118 {
119 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
122 return true;
123 }
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
127 return false;
128 return true;
129 }
130
131 /* Return TRUE if frequency FREQ is considered to be hot. */
132
133 static inline bool
134 maybe_hot_count_p (gcov_type count)
135 {
136 if (profile_status != PROFILE_READ)
137 return true;
138 /* Code executed at most once is not hot. */
139 if (profile_info->runs >= count)
140 return false;
141 return (count
142 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
143 }
144
145 /* Return true in case BB can be CPU intensive and should be optimized
146 for maximal performance. */
147
148 bool
149 maybe_hot_bb_p (const_basic_block bb)
150 {
151 if (profile_status == PROFILE_READ)
152 return maybe_hot_count_p (bb->count);
153 return maybe_hot_frequency_p (bb->frequency);
154 }
155
156 /* Return true if the call can be hot. */
157
158 bool
159 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
160 {
161 if (profile_info && flag_branch_probabilities
162 && (edge->count
163 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
164 return false;
165 if (lookup_attribute ("cold", DECL_ATTRIBUTES (edge->callee->decl))
166 || lookup_attribute ("cold", DECL_ATTRIBUTES (edge->caller->decl)))
167 return false;
168 if (lookup_attribute ("hot", DECL_ATTRIBUTES (edge->caller->decl)))
169 return true;
170 if (flag_guess_branch_prob
171 && edge->frequency <= (CGRAPH_FREQ_BASE
172 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
173 return false;
174 return true;
175 }
176
177 /* Return true in case BB can be CPU intensive and should be optimized
178 for maximal performance. */
179
180 bool
181 maybe_hot_edge_p (edge e)
182 {
183 if (profile_status == PROFILE_READ)
184 return maybe_hot_count_p (e->count);
185 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
186 }
187
188 /* Return true in case BB is probably never executed. */
189 bool
190 probably_never_executed_bb_p (const_basic_block bb)
191 {
192 if (profile_info && flag_branch_probabilities)
193 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
194 if ((!profile_info || !flag_branch_probabilities)
195 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
196 return true;
197 return false;
198 }
199
200 /* Return true when current function should always be optimized for size. */
201
202 bool
203 optimize_function_for_size_p (struct function *fun)
204 {
205 return (optimize_size
206 || (fun && (fun->function_frequency
207 == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)));
208 }
209
210 /* Return true when current function should always be optimized for speed. */
211
212 bool
213 optimize_function_for_speed_p (struct function *fun)
214 {
215 return !optimize_function_for_size_p (fun);
216 }
217
218 /* Return TRUE when BB should be optimized for size. */
219
220 bool
221 optimize_bb_for_size_p (const_basic_block bb)
222 {
223 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
224 }
225
226 /* Return TRUE when BB should be optimized for speed. */
227
228 bool
229 optimize_bb_for_speed_p (const_basic_block bb)
230 {
231 return !optimize_bb_for_size_p (bb);
232 }
233
234 /* Return TRUE when BB should be optimized for size. */
235
236 bool
237 optimize_edge_for_size_p (edge e)
238 {
239 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
240 }
241
242 /* Return TRUE when BB should be optimized for speed. */
243
244 bool
245 optimize_edge_for_speed_p (edge e)
246 {
247 return !optimize_edge_for_size_p (e);
248 }
249
250 /* Return TRUE when BB should be optimized for size. */
251
252 bool
253 optimize_insn_for_size_p (void)
254 {
255 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
256 }
257
258 /* Return TRUE when BB should be optimized for speed. */
259
260 bool
261 optimize_insn_for_speed_p (void)
262 {
263 return !optimize_insn_for_size_p ();
264 }
265
266 /* Return TRUE when LOOP should be optimized for size. */
267
268 bool
269 optimize_loop_for_size_p (struct loop *loop)
270 {
271 return optimize_bb_for_size_p (loop->header);
272 }
273
274 /* Return TRUE when LOOP should be optimized for speed. */
275
276 bool
277 optimize_loop_for_speed_p (struct loop *loop)
278 {
279 return optimize_bb_for_speed_p (loop->header);
280 }
281
282 /* Return TRUE when LOOP nest should be optimized for speed. */
283
284 bool
285 optimize_loop_nest_for_speed_p (struct loop *loop)
286 {
287 struct loop *l = loop;
288 if (optimize_loop_for_speed_p (loop))
289 return true;
290 l = loop->inner;
291 while (l && l != loop)
292 {
293 if (optimize_loop_for_speed_p (l))
294 return true;
295 if (l->inner)
296 l = l->inner;
297 else if (l->next)
298 l = l->next;
299 else
300 {
301 while (l != loop && !l->next)
302 l = loop_outer (l);
303 if (l != loop)
304 l = l->next;
305 }
306 }
307 return false;
308 }
309
310 /* Return TRUE when LOOP nest should be optimized for size. */
311
312 bool
313 optimize_loop_nest_for_size_p (struct loop *loop)
314 {
315 return !optimize_loop_nest_for_speed_p (loop);
316 }
317
318 /* Return true when edge E is likely to be well predictable by branch
319 predictor. */
320
321 bool
322 predictable_edge_p (edge e)
323 {
324 if (profile_status == PROFILE_ABSENT)
325 return false;
326 if ((e->probability
327 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
328 || (REG_BR_PROB_BASE - e->probability
329 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
330 return true;
331 return false;
332 }
333
334
335 /* Set RTL expansion for BB profile. */
336
337 void
338 rtl_profile_for_bb (basic_block bb)
339 {
340 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
341 }
342
343 /* Set RTL expansion for edge profile. */
344
345 void
346 rtl_profile_for_edge (edge e)
347 {
348 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
349 }
350
351 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
352 void
353 default_rtl_profile (void)
354 {
355 crtl->maybe_hot_insn_p = true;
356 }
357
358 /* Return true if the one of outgoing edges is already predicted by
359 PREDICTOR. */
360
361 bool
362 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
363 {
364 rtx note;
365 if (!INSN_P (BB_END (bb)))
366 return false;
367 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
368 if (REG_NOTE_KIND (note) == REG_BR_PRED
369 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
370 return true;
371 return false;
372 }
373
374 /* This map contains for a basic block the list of predictions for the
375 outgoing edges. */
376
377 static struct pointer_map_t *bb_predictions;
378
379 /* Return true if the one of outgoing edges is already predicted by
380 PREDICTOR. */
381
382 bool
383 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
384 {
385 struct edge_prediction *i;
386 void **preds = pointer_map_contains (bb_predictions, bb);
387
388 if (!preds)
389 return false;
390
391 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
392 if (i->ep_predictor == predictor)
393 return true;
394 return false;
395 }
396
397 /* Return true when the probability of edge is reliable.
398
399 The profile guessing code is good at predicting branch outcome (ie.
400 taken/not taken), that is predicted right slightly over 75% of time.
401 It is however notoriously poor on predicting the probability itself.
402 In general the profile appear a lot flatter (with probabilities closer
403 to 50%) than the reality so it is bad idea to use it to drive optimization
404 such as those disabling dynamic branch prediction for well predictable
405 branches.
406
407 There are two exceptions - edges leading to noreturn edges and edges
408 predicted by number of iterations heuristics are predicted well. This macro
409 should be able to distinguish those, but at the moment it simply check for
410 noreturn heuristic that is only one giving probability over 99% or bellow
411 1%. In future we might want to propagate reliability information across the
412 CFG if we find this information useful on multiple places. */
413 static bool
414 probability_reliable_p (int prob)
415 {
416 return (profile_status == PROFILE_READ
417 || (profile_status == PROFILE_GUESSED
418 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
419 }
420
421 /* Same predicate as above, working on edges. */
422 bool
423 edge_probability_reliable_p (const_edge e)
424 {
425 return probability_reliable_p (e->probability);
426 }
427
428 /* Same predicate as edge_probability_reliable_p, working on notes. */
429 bool
430 br_prob_note_reliable_p (const_rtx note)
431 {
432 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
433 return probability_reliable_p (INTVAL (XEXP (note, 0)));
434 }
435
436 static void
437 predict_insn (rtx insn, enum br_predictor predictor, int probability)
438 {
439 gcc_assert (any_condjump_p (insn));
440 if (!flag_guess_branch_prob)
441 return;
442
443 add_reg_note (insn, REG_BR_PRED,
444 gen_rtx_CONCAT (VOIDmode,
445 GEN_INT ((int) predictor),
446 GEN_INT ((int) probability)));
447 }
448
449 /* Predict insn by given predictor. */
450
451 void
452 predict_insn_def (rtx insn, enum br_predictor predictor,
453 enum prediction taken)
454 {
455 int probability = predictor_info[(int) predictor].hitrate;
456
457 if (taken != TAKEN)
458 probability = REG_BR_PROB_BASE - probability;
459
460 predict_insn (insn, predictor, probability);
461 }
462
463 /* Predict edge E with given probability if possible. */
464
465 void
466 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
467 {
468 rtx last_insn;
469 last_insn = BB_END (e->src);
470
471 /* We can store the branch prediction information only about
472 conditional jumps. */
473 if (!any_condjump_p (last_insn))
474 return;
475
476 /* We always store probability of branching. */
477 if (e->flags & EDGE_FALLTHRU)
478 probability = REG_BR_PROB_BASE - probability;
479
480 predict_insn (last_insn, predictor, probability);
481 }
482
483 /* Predict edge E with the given PROBABILITY. */
484 void
485 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
486 {
487 gcc_assert (profile_status != PROFILE_GUESSED);
488 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
489 && flag_guess_branch_prob && optimize)
490 {
491 struct edge_prediction *i = XNEW (struct edge_prediction);
492 void **preds = pointer_map_insert (bb_predictions, e->src);
493
494 i->ep_next = (struct edge_prediction *) *preds;
495 *preds = i;
496 i->ep_probability = probability;
497 i->ep_predictor = predictor;
498 i->ep_edge = e;
499 }
500 }
501
502 /* Remove all predictions on given basic block that are attached
503 to edge E. */
504 void
505 remove_predictions_associated_with_edge (edge e)
506 {
507 void **preds;
508
509 if (!bb_predictions)
510 return;
511
512 preds = pointer_map_contains (bb_predictions, e->src);
513
514 if (preds)
515 {
516 struct edge_prediction **prediction = (struct edge_prediction **) preds;
517 struct edge_prediction *next;
518
519 while (*prediction)
520 {
521 if ((*prediction)->ep_edge == e)
522 {
523 next = (*prediction)->ep_next;
524 free (*prediction);
525 *prediction = next;
526 }
527 else
528 prediction = &((*prediction)->ep_next);
529 }
530 }
531 }
532
533 /* Clears the list of predictions stored for BB. */
534
535 static void
536 clear_bb_predictions (basic_block bb)
537 {
538 void **preds = pointer_map_contains (bb_predictions, bb);
539 struct edge_prediction *pred, *next;
540
541 if (!preds)
542 return;
543
544 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
545 {
546 next = pred->ep_next;
547 free (pred);
548 }
549 *preds = NULL;
550 }
551
552 /* Return true when we can store prediction on insn INSN.
553 At the moment we represent predictions only on conditional
554 jumps, not at computed jump or other complicated cases. */
555 static bool
556 can_predict_insn_p (const_rtx insn)
557 {
558 return (JUMP_P (insn)
559 && any_condjump_p (insn)
560 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
561 }
562
563 /* Predict edge E by given predictor if possible. */
564
565 void
566 predict_edge_def (edge e, enum br_predictor predictor,
567 enum prediction taken)
568 {
569 int probability = predictor_info[(int) predictor].hitrate;
570
571 if (taken != TAKEN)
572 probability = REG_BR_PROB_BASE - probability;
573
574 predict_edge (e, predictor, probability);
575 }
576
577 /* Invert all branch predictions or probability notes in the INSN. This needs
578 to be done each time we invert the condition used by the jump. */
579
580 void
581 invert_br_probabilities (rtx insn)
582 {
583 rtx note;
584
585 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
586 if (REG_NOTE_KIND (note) == REG_BR_PROB)
587 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
588 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
589 XEXP (XEXP (note, 0), 1)
590 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
591 }
592
593 /* Dump information about the branch prediction to the output file. */
594
595 static void
596 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
597 basic_block bb, int used)
598 {
599 edge e;
600 edge_iterator ei;
601
602 if (!file)
603 return;
604
605 FOR_EACH_EDGE (e, ei, bb->succs)
606 if (! (e->flags & EDGE_FALLTHRU))
607 break;
608
609 fprintf (file, " %s heuristics%s: %.1f%%",
610 predictor_info[predictor].name,
611 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
612
613 if (bb->count)
614 {
615 fprintf (file, " exec ");
616 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
617 if (e)
618 {
619 fprintf (file, " hit ");
620 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
621 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
622 }
623 }
624
625 fprintf (file, "\n");
626 }
627
628 /* We can not predict the probabilities of outgoing edges of bb. Set them
629 evenly and hope for the best. */
630 static void
631 set_even_probabilities (basic_block bb)
632 {
633 int nedges = 0;
634 edge e;
635 edge_iterator ei;
636
637 FOR_EACH_EDGE (e, ei, bb->succs)
638 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
639 nedges ++;
640 FOR_EACH_EDGE (e, ei, bb->succs)
641 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
642 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
643 else
644 e->probability = 0;
645 }
646
647 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
648 note if not already present. Remove now useless REG_BR_PRED notes. */
649
650 static void
651 combine_predictions_for_insn (rtx insn, basic_block bb)
652 {
653 rtx prob_note;
654 rtx *pnote;
655 rtx note;
656 int best_probability = PROB_EVEN;
657 enum br_predictor best_predictor = END_PREDICTORS;
658 int combined_probability = REG_BR_PROB_BASE / 2;
659 int d;
660 bool first_match = false;
661 bool found = false;
662
663 if (!can_predict_insn_p (insn))
664 {
665 set_even_probabilities (bb);
666 return;
667 }
668
669 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
670 pnote = &REG_NOTES (insn);
671 if (dump_file)
672 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
673 bb->index);
674
675 /* We implement "first match" heuristics and use probability guessed
676 by predictor with smallest index. */
677 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
678 if (REG_NOTE_KIND (note) == REG_BR_PRED)
679 {
680 enum br_predictor predictor = ((enum br_predictor)
681 INTVAL (XEXP (XEXP (note, 0), 0)));
682 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
683
684 found = true;
685 if (best_predictor > predictor)
686 best_probability = probability, best_predictor = predictor;
687
688 d = (combined_probability * probability
689 + (REG_BR_PROB_BASE - combined_probability)
690 * (REG_BR_PROB_BASE - probability));
691
692 /* Use FP math to avoid overflows of 32bit integers. */
693 if (d == 0)
694 /* If one probability is 0% and one 100%, avoid division by zero. */
695 combined_probability = REG_BR_PROB_BASE / 2;
696 else
697 combined_probability = (((double) combined_probability) * probability
698 * REG_BR_PROB_BASE / d + 0.5);
699 }
700
701 /* Decide which heuristic to use. In case we didn't match anything,
702 use no_prediction heuristic, in case we did match, use either
703 first match or Dempster-Shaffer theory depending on the flags. */
704
705 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
706 first_match = true;
707
708 if (!found)
709 dump_prediction (dump_file, PRED_NO_PREDICTION,
710 combined_probability, bb, true);
711 else
712 {
713 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
714 bb, !first_match);
715 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
716 bb, first_match);
717 }
718
719 if (first_match)
720 combined_probability = best_probability;
721 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
722
723 while (*pnote)
724 {
725 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
726 {
727 enum br_predictor predictor = ((enum br_predictor)
728 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
729 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
730
731 dump_prediction (dump_file, predictor, probability, bb,
732 !first_match || best_predictor == predictor);
733 *pnote = XEXP (*pnote, 1);
734 }
735 else
736 pnote = &XEXP (*pnote, 1);
737 }
738
739 if (!prob_note)
740 {
741 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
742
743 /* Save the prediction into CFG in case we are seeing non-degenerated
744 conditional jump. */
745 if (!single_succ_p (bb))
746 {
747 BRANCH_EDGE (bb)->probability = combined_probability;
748 FALLTHRU_EDGE (bb)->probability
749 = REG_BR_PROB_BASE - combined_probability;
750 }
751 }
752 else if (!single_succ_p (bb))
753 {
754 int prob = INTVAL (XEXP (prob_note, 0));
755
756 BRANCH_EDGE (bb)->probability = prob;
757 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
758 }
759 else
760 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
761 }
762
763 /* Combine predictions into single probability and store them into CFG.
764 Remove now useless prediction entries. */
765
766 static void
767 combine_predictions_for_bb (basic_block bb)
768 {
769 int best_probability = PROB_EVEN;
770 enum br_predictor best_predictor = END_PREDICTORS;
771 int combined_probability = REG_BR_PROB_BASE / 2;
772 int d;
773 bool first_match = false;
774 bool found = false;
775 struct edge_prediction *pred;
776 int nedges = 0;
777 edge e, first = NULL, second = NULL;
778 edge_iterator ei;
779 void **preds;
780
781 FOR_EACH_EDGE (e, ei, bb->succs)
782 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
783 {
784 nedges ++;
785 if (first && !second)
786 second = e;
787 if (!first)
788 first = e;
789 }
790
791 /* When there is no successor or only one choice, prediction is easy.
792
793 We are lazy for now and predict only basic blocks with two outgoing
794 edges. It is possible to predict generic case too, but we have to
795 ignore first match heuristics and do more involved combining. Implement
796 this later. */
797 if (nedges != 2)
798 {
799 if (!bb->count)
800 set_even_probabilities (bb);
801 clear_bb_predictions (bb);
802 if (dump_file)
803 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
804 nedges, bb->index);
805 return;
806 }
807
808 if (dump_file)
809 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
810
811 preds = pointer_map_contains (bb_predictions, bb);
812 if (preds)
813 {
814 /* We implement "first match" heuristics and use probability guessed
815 by predictor with smallest index. */
816 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
817 {
818 enum br_predictor predictor = pred->ep_predictor;
819 int probability = pred->ep_probability;
820
821 if (pred->ep_edge != first)
822 probability = REG_BR_PROB_BASE - probability;
823
824 found = true;
825 /* First match heuristics would be widly confused if we predicted
826 both directions. */
827 if (best_predictor > predictor)
828 {
829 struct edge_prediction *pred2;
830 int prob = probability;
831
832 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
833 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
834 {
835 int probability2 = pred->ep_probability;
836
837 if (pred2->ep_edge != first)
838 probability2 = REG_BR_PROB_BASE - probability2;
839
840 if ((probability < REG_BR_PROB_BASE / 2) !=
841 (probability2 < REG_BR_PROB_BASE / 2))
842 break;
843
844 /* If the same predictor later gave better result, go for it! */
845 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
846 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
847 prob = probability2;
848 }
849 if (!pred2)
850 best_probability = prob, best_predictor = predictor;
851 }
852
853 d = (combined_probability * probability
854 + (REG_BR_PROB_BASE - combined_probability)
855 * (REG_BR_PROB_BASE - probability));
856
857 /* Use FP math to avoid overflows of 32bit integers. */
858 if (d == 0)
859 /* If one probability is 0% and one 100%, avoid division by zero. */
860 combined_probability = REG_BR_PROB_BASE / 2;
861 else
862 combined_probability = (((double) combined_probability)
863 * probability
864 * REG_BR_PROB_BASE / d + 0.5);
865 }
866 }
867
868 /* Decide which heuristic to use. In case we didn't match anything,
869 use no_prediction heuristic, in case we did match, use either
870 first match or Dempster-Shaffer theory depending on the flags. */
871
872 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
873 first_match = true;
874
875 if (!found)
876 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
877 else
878 {
879 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
880 !first_match);
881 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
882 first_match);
883 }
884
885 if (first_match)
886 combined_probability = best_probability;
887 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
888
889 if (preds)
890 {
891 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
892 {
893 enum br_predictor predictor = pred->ep_predictor;
894 int probability = pred->ep_probability;
895
896 if (pred->ep_edge != EDGE_SUCC (bb, 0))
897 probability = REG_BR_PROB_BASE - probability;
898 dump_prediction (dump_file, predictor, probability, bb,
899 !first_match || best_predictor == predictor);
900 }
901 }
902 clear_bb_predictions (bb);
903
904 if (!bb->count)
905 {
906 first->probability = combined_probability;
907 second->probability = REG_BR_PROB_BASE - combined_probability;
908 }
909 }
910
911 /* Predict edge probabilities by exploiting loop structure. */
912
913 static void
914 predict_loops (void)
915 {
916 loop_iterator li;
917 struct loop *loop;
918
919 scev_initialize ();
920
921 /* Try to predict out blocks in a loop that are not part of a
922 natural loop. */
923 FOR_EACH_LOOP (li, loop, 0)
924 {
925 basic_block bb, *bbs;
926 unsigned j, n_exits;
927 VEC (edge, heap) *exits;
928 struct tree_niter_desc niter_desc;
929 edge ex;
930
931 exits = get_loop_exit_edges (loop);
932 n_exits = VEC_length (edge, exits);
933
934 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
935 {
936 tree niter = NULL;
937 HOST_WIDE_INT nitercst;
938 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
939 int probability;
940 enum br_predictor predictor;
941
942 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
943 niter = niter_desc.niter;
944 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
945 niter = loop_niter_by_eval (loop, ex);
946
947 if (TREE_CODE (niter) == INTEGER_CST)
948 {
949 if (host_integerp (niter, 1)
950 && compare_tree_int (niter, max-1) == -1)
951 nitercst = tree_low_cst (niter, 1) + 1;
952 else
953 nitercst = max;
954 predictor = PRED_LOOP_ITERATIONS;
955 }
956 /* If we have just one exit and we can derive some information about
957 the number of iterations of the loop from the statements inside
958 the loop, use it to predict this exit. */
959 else if (n_exits == 1)
960 {
961 nitercst = estimated_loop_iterations_int (loop, false);
962 if (nitercst < 0)
963 continue;
964 if (nitercst > max)
965 nitercst = max;
966
967 predictor = PRED_LOOP_ITERATIONS_GUESSED;
968 }
969 else
970 continue;
971
972 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
973 predict_edge (ex, predictor, probability);
974 }
975 VEC_free (edge, heap, exits);
976
977 bbs = get_loop_body (loop);
978
979 for (j = 0; j < loop->num_nodes; j++)
980 {
981 int header_found = 0;
982 edge e;
983 edge_iterator ei;
984
985 bb = bbs[j];
986
987 /* Bypass loop heuristics on continue statement. These
988 statements construct loops via "non-loop" constructs
989 in the source language and are better to be handled
990 separately. */
991 if (predicted_by_p (bb, PRED_CONTINUE))
992 continue;
993
994 /* Loop branch heuristics - predict an edge back to a
995 loop's head as taken. */
996 if (bb == loop->latch)
997 {
998 e = find_edge (loop->latch, loop->header);
999 if (e)
1000 {
1001 header_found = 1;
1002 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1003 }
1004 }
1005
1006 /* Loop exit heuristics - predict an edge exiting the loop if the
1007 conditional has no loop header successors as not taken. */
1008 if (!header_found
1009 /* If we already used more reliable loop exit predictors, do not
1010 bother with PRED_LOOP_EXIT. */
1011 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1012 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1013 {
1014 /* For loop with many exits we don't want to predict all exits
1015 with the pretty large probability, because if all exits are
1016 considered in row, the loop would be predicted to iterate
1017 almost never. The code to divide probability by number of
1018 exits is very rough. It should compute the number of exits
1019 taken in each patch through function (not the overall number
1020 of exits that might be a lot higher for loops with wide switch
1021 statements in them) and compute n-th square root.
1022
1023 We limit the minimal probability by 2% to avoid
1024 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1025 as this was causing regression in perl benchmark containing such
1026 a wide loop. */
1027
1028 int probability = ((REG_BR_PROB_BASE
1029 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1030 / n_exits);
1031 if (probability < HITRATE (2))
1032 probability = HITRATE (2);
1033 FOR_EACH_EDGE (e, ei, bb->succs)
1034 if (e->dest->index < NUM_FIXED_BLOCKS
1035 || !flow_bb_inside_loop_p (loop, e->dest))
1036 predict_edge (e, PRED_LOOP_EXIT, probability);
1037 }
1038 }
1039
1040 /* Free basic blocks from get_loop_body. */
1041 free (bbs);
1042 }
1043
1044 scev_finalize ();
1045 }
1046
1047 /* Attempt to predict probabilities of BB outgoing edges using local
1048 properties. */
1049 static void
1050 bb_estimate_probability_locally (basic_block bb)
1051 {
1052 rtx last_insn = BB_END (bb);
1053 rtx cond;
1054
1055 if (! can_predict_insn_p (last_insn))
1056 return;
1057 cond = get_condition (last_insn, NULL, false, false);
1058 if (! cond)
1059 return;
1060
1061 /* Try "pointer heuristic."
1062 A comparison ptr == 0 is predicted as false.
1063 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1064 if (COMPARISON_P (cond)
1065 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1066 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1067 {
1068 if (GET_CODE (cond) == EQ)
1069 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1070 else if (GET_CODE (cond) == NE)
1071 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1072 }
1073 else
1074
1075 /* Try "opcode heuristic."
1076 EQ tests are usually false and NE tests are usually true. Also,
1077 most quantities are positive, so we can make the appropriate guesses
1078 about signed comparisons against zero. */
1079 switch (GET_CODE (cond))
1080 {
1081 case CONST_INT:
1082 /* Unconditional branch. */
1083 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1084 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1085 break;
1086
1087 case EQ:
1088 case UNEQ:
1089 /* Floating point comparisons appears to behave in a very
1090 unpredictable way because of special role of = tests in
1091 FP code. */
1092 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1093 ;
1094 /* Comparisons with 0 are often used for booleans and there is
1095 nothing useful to predict about them. */
1096 else if (XEXP (cond, 1) == const0_rtx
1097 || XEXP (cond, 0) == const0_rtx)
1098 ;
1099 else
1100 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1101 break;
1102
1103 case NE:
1104 case LTGT:
1105 /* Floating point comparisons appears to behave in a very
1106 unpredictable way because of special role of = tests in
1107 FP code. */
1108 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1109 ;
1110 /* Comparisons with 0 are often used for booleans and there is
1111 nothing useful to predict about them. */
1112 else if (XEXP (cond, 1) == const0_rtx
1113 || XEXP (cond, 0) == const0_rtx)
1114 ;
1115 else
1116 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1117 break;
1118
1119 case ORDERED:
1120 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1121 break;
1122
1123 case UNORDERED:
1124 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1125 break;
1126
1127 case LE:
1128 case LT:
1129 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1130 || XEXP (cond, 1) == constm1_rtx)
1131 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1132 break;
1133
1134 case GE:
1135 case GT:
1136 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1137 || XEXP (cond, 1) == constm1_rtx)
1138 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1139 break;
1140
1141 default:
1142 break;
1143 }
1144 }
1145
1146 /* Set edge->probability for each successor edge of BB. */
1147 void
1148 guess_outgoing_edge_probabilities (basic_block bb)
1149 {
1150 bb_estimate_probability_locally (bb);
1151 combine_predictions_for_insn (BB_END (bb), bb);
1152 }
1153 \f
1154 static tree expr_expected_value (tree, bitmap);
1155
1156 /* Helper function for expr_expected_value. */
1157
1158 static tree
1159 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1160 {
1161 gimple def;
1162
1163 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1164 {
1165 if (TREE_CONSTANT (op0))
1166 return op0;
1167
1168 if (code != SSA_NAME)
1169 return NULL_TREE;
1170
1171 def = SSA_NAME_DEF_STMT (op0);
1172
1173 /* If we were already here, break the infinite cycle. */
1174 if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
1175 return NULL;
1176 bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
1177
1178 if (gimple_code (def) == GIMPLE_PHI)
1179 {
1180 /* All the arguments of the PHI node must have the same constant
1181 length. */
1182 int i, n = gimple_phi_num_args (def);
1183 tree val = NULL, new_val;
1184
1185 for (i = 0; i < n; i++)
1186 {
1187 tree arg = PHI_ARG_DEF (def, i);
1188
1189 /* If this PHI has itself as an argument, we cannot
1190 determine the string length of this argument. However,
1191 if we can find an expected constant value for the other
1192 PHI args then we can still be sure that this is
1193 likely a constant. So be optimistic and just
1194 continue with the next argument. */
1195 if (arg == PHI_RESULT (def))
1196 continue;
1197
1198 new_val = expr_expected_value (arg, visited);
1199 if (!new_val)
1200 return NULL;
1201 if (!val)
1202 val = new_val;
1203 else if (!operand_equal_p (val, new_val, false))
1204 return NULL;
1205 }
1206 return val;
1207 }
1208 if (is_gimple_assign (def))
1209 {
1210 if (gimple_assign_lhs (def) != op0)
1211 return NULL;
1212
1213 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1214 gimple_assign_rhs1 (def),
1215 gimple_assign_rhs_code (def),
1216 gimple_assign_rhs2 (def),
1217 visited);
1218 }
1219
1220 if (is_gimple_call (def))
1221 {
1222 tree decl = gimple_call_fndecl (def);
1223 if (!decl)
1224 return NULL;
1225 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1226 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1227 {
1228 tree val;
1229
1230 if (gimple_call_num_args (def) != 2)
1231 return NULL;
1232 val = gimple_call_arg (def, 0);
1233 if (TREE_CONSTANT (val))
1234 return val;
1235 return gimple_call_arg (def, 1);
1236 }
1237 }
1238
1239 return NULL;
1240 }
1241
1242 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1243 {
1244 tree res;
1245 op0 = expr_expected_value (op0, visited);
1246 if (!op0)
1247 return NULL;
1248 op1 = expr_expected_value (op1, visited);
1249 if (!op1)
1250 return NULL;
1251 res = fold_build2 (code, type, op0, op1);
1252 if (TREE_CONSTANT (res))
1253 return res;
1254 return NULL;
1255 }
1256 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1257 {
1258 tree res;
1259 op0 = expr_expected_value (op0, visited);
1260 if (!op0)
1261 return NULL;
1262 res = fold_build1 (code, type, op0);
1263 if (TREE_CONSTANT (res))
1264 return res;
1265 return NULL;
1266 }
1267 return NULL;
1268 }
1269
1270 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1271 The function is used by builtin_expect branch predictor so the evidence
1272 must come from this construct and additional possible constant folding.
1273
1274 We may want to implement more involved value guess (such as value range
1275 propagation based prediction), but such tricks shall go to new
1276 implementation. */
1277
1278 static tree
1279 expr_expected_value (tree expr, bitmap visited)
1280 {
1281 enum tree_code code;
1282 tree op0, op1;
1283
1284 if (TREE_CONSTANT (expr))
1285 return expr;
1286
1287 extract_ops_from_tree (expr, &code, &op0, &op1);
1288 return expr_expected_value_1 (TREE_TYPE (expr),
1289 op0, code, op1, visited);
1290 }
1291
1292 \f
1293 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1294 we no longer need. */
1295 static unsigned int
1296 strip_predict_hints (void)
1297 {
1298 basic_block bb;
1299 gimple ass_stmt;
1300 tree var;
1301
1302 FOR_EACH_BB (bb)
1303 {
1304 gimple_stmt_iterator bi;
1305 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1306 {
1307 gimple stmt = gsi_stmt (bi);
1308
1309 if (gimple_code (stmt) == GIMPLE_PREDICT)
1310 {
1311 gsi_remove (&bi, true);
1312 continue;
1313 }
1314 else if (gimple_code (stmt) == GIMPLE_CALL)
1315 {
1316 tree fndecl = gimple_call_fndecl (stmt);
1317
1318 if (fndecl
1319 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1320 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1321 && gimple_call_num_args (stmt) == 2)
1322 {
1323 var = gimple_call_lhs (stmt);
1324 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1325
1326 gsi_replace (&bi, ass_stmt, true);
1327 }
1328 }
1329 gsi_next (&bi);
1330 }
1331 }
1332 return 0;
1333 }
1334 \f
1335 /* Predict using opcode of the last statement in basic block. */
1336 static void
1337 tree_predict_by_opcode (basic_block bb)
1338 {
1339 gimple stmt = last_stmt (bb);
1340 edge then_edge;
1341 tree op0, op1;
1342 tree type;
1343 tree val;
1344 enum tree_code cmp;
1345 bitmap visited;
1346 edge_iterator ei;
1347
1348 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1349 return;
1350 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1351 if (then_edge->flags & EDGE_TRUE_VALUE)
1352 break;
1353 op0 = gimple_cond_lhs (stmt);
1354 op1 = gimple_cond_rhs (stmt);
1355 cmp = gimple_cond_code (stmt);
1356 type = TREE_TYPE (op0);
1357 visited = BITMAP_ALLOC (NULL);
1358 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1359 BITMAP_FREE (visited);
1360 if (val)
1361 {
1362 if (integer_zerop (val))
1363 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1364 else
1365 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1366 return;
1367 }
1368 /* Try "pointer heuristic."
1369 A comparison ptr == 0 is predicted as false.
1370 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1371 if (POINTER_TYPE_P (type))
1372 {
1373 if (cmp == EQ_EXPR)
1374 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1375 else if (cmp == NE_EXPR)
1376 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1377 }
1378 else
1379
1380 /* Try "opcode heuristic."
1381 EQ tests are usually false and NE tests are usually true. Also,
1382 most quantities are positive, so we can make the appropriate guesses
1383 about signed comparisons against zero. */
1384 switch (cmp)
1385 {
1386 case EQ_EXPR:
1387 case UNEQ_EXPR:
1388 /* Floating point comparisons appears to behave in a very
1389 unpredictable way because of special role of = tests in
1390 FP code. */
1391 if (FLOAT_TYPE_P (type))
1392 ;
1393 /* Comparisons with 0 are often used for booleans and there is
1394 nothing useful to predict about them. */
1395 else if (integer_zerop (op0) || integer_zerop (op1))
1396 ;
1397 else
1398 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1399 break;
1400
1401 case NE_EXPR:
1402 case LTGT_EXPR:
1403 /* Floating point comparisons appears to behave in a very
1404 unpredictable way because of special role of = tests in
1405 FP code. */
1406 if (FLOAT_TYPE_P (type))
1407 ;
1408 /* Comparisons with 0 are often used for booleans and there is
1409 nothing useful to predict about them. */
1410 else if (integer_zerop (op0)
1411 || integer_zerop (op1))
1412 ;
1413 else
1414 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1415 break;
1416
1417 case ORDERED_EXPR:
1418 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1419 break;
1420
1421 case UNORDERED_EXPR:
1422 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1423 break;
1424
1425 case LE_EXPR:
1426 case LT_EXPR:
1427 if (integer_zerop (op1)
1428 || integer_onep (op1)
1429 || integer_all_onesp (op1)
1430 || real_zerop (op1)
1431 || real_onep (op1)
1432 || real_minus_onep (op1))
1433 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1434 break;
1435
1436 case GE_EXPR:
1437 case GT_EXPR:
1438 if (integer_zerop (op1)
1439 || integer_onep (op1)
1440 || integer_all_onesp (op1)
1441 || real_zerop (op1)
1442 || real_onep (op1)
1443 || real_minus_onep (op1))
1444 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1445 break;
1446
1447 default:
1448 break;
1449 }
1450 }
1451
1452 /* Try to guess whether the value of return means error code. */
1453
1454 static enum br_predictor
1455 return_prediction (tree val, enum prediction *prediction)
1456 {
1457 /* VOID. */
1458 if (!val)
1459 return PRED_NO_PREDICTION;
1460 /* Different heuristics for pointers and scalars. */
1461 if (POINTER_TYPE_P (TREE_TYPE (val)))
1462 {
1463 /* NULL is usually not returned. */
1464 if (integer_zerop (val))
1465 {
1466 *prediction = NOT_TAKEN;
1467 return PRED_NULL_RETURN;
1468 }
1469 }
1470 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1471 {
1472 /* Negative return values are often used to indicate
1473 errors. */
1474 if (TREE_CODE (val) == INTEGER_CST
1475 && tree_int_cst_sgn (val) < 0)
1476 {
1477 *prediction = NOT_TAKEN;
1478 return PRED_NEGATIVE_RETURN;
1479 }
1480 /* Constant return values seems to be commonly taken.
1481 Zero/one often represent booleans so exclude them from the
1482 heuristics. */
1483 if (TREE_CONSTANT (val)
1484 && (!integer_zerop (val) && !integer_onep (val)))
1485 {
1486 *prediction = TAKEN;
1487 return PRED_CONST_RETURN;
1488 }
1489 }
1490 return PRED_NO_PREDICTION;
1491 }
1492
1493 /* Find the basic block with return expression and look up for possible
1494 return value trying to apply RETURN_PREDICTION heuristics. */
1495 static void
1496 apply_return_prediction (void)
1497 {
1498 gimple return_stmt = NULL;
1499 tree return_val;
1500 edge e;
1501 gimple phi;
1502 int phi_num_args, i;
1503 enum br_predictor pred;
1504 enum prediction direction;
1505 edge_iterator ei;
1506
1507 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1508 {
1509 return_stmt = last_stmt (e->src);
1510 if (return_stmt
1511 && gimple_code (return_stmt) == GIMPLE_RETURN)
1512 break;
1513 }
1514 if (!e)
1515 return;
1516 return_val = gimple_return_retval (return_stmt);
1517 if (!return_val)
1518 return;
1519 if (TREE_CODE (return_val) != SSA_NAME
1520 || !SSA_NAME_DEF_STMT (return_val)
1521 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1522 return;
1523 phi = SSA_NAME_DEF_STMT (return_val);
1524 phi_num_args = gimple_phi_num_args (phi);
1525 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1526
1527 /* Avoid the degenerate case where all return values form the function
1528 belongs to same category (ie they are all positive constants)
1529 so we can hardly say something about them. */
1530 for (i = 1; i < phi_num_args; i++)
1531 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1532 break;
1533 if (i != phi_num_args)
1534 for (i = 0; i < phi_num_args; i++)
1535 {
1536 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1537 if (pred != PRED_NO_PREDICTION)
1538 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1539 direction);
1540 }
1541 }
1542
1543 /* Look for basic block that contains unlikely to happen events
1544 (such as noreturn calls) and mark all paths leading to execution
1545 of this basic blocks as unlikely. */
1546
1547 static void
1548 tree_bb_level_predictions (void)
1549 {
1550 basic_block bb;
1551 bool has_return_edges = false;
1552 edge e;
1553 edge_iterator ei;
1554
1555 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1556 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1557 {
1558 has_return_edges = true;
1559 break;
1560 }
1561
1562 apply_return_prediction ();
1563
1564 FOR_EACH_BB (bb)
1565 {
1566 gimple_stmt_iterator gsi;
1567
1568 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1569 {
1570 gimple stmt = gsi_stmt (gsi);
1571 tree decl;
1572
1573 if (is_gimple_call (stmt))
1574 {
1575 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1576 && has_return_edges)
1577 predict_paths_leading_to (bb, PRED_NORETURN,
1578 NOT_TAKEN);
1579 decl = gimple_call_fndecl (stmt);
1580 if (decl
1581 && lookup_attribute ("cold",
1582 DECL_ATTRIBUTES (decl)))
1583 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1584 NOT_TAKEN);
1585 }
1586 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1587 {
1588 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1589 gimple_predict_outcome (stmt));
1590 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1591 hints to callers. */
1592 }
1593 }
1594 }
1595 }
1596
1597 #ifdef ENABLE_CHECKING
1598
1599 /* Callback for pointer_map_traverse, asserts that the pointer map is
1600 empty. */
1601
1602 static bool
1603 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1604 void *data ATTRIBUTE_UNUSED)
1605 {
1606 gcc_assert (!*value);
1607 return false;
1608 }
1609 #endif
1610
1611 /* Predict branch probabilities and estimate profile of the tree CFG. */
1612 static unsigned int
1613 tree_estimate_probability (void)
1614 {
1615 basic_block bb;
1616
1617 loop_optimizer_init (0);
1618 if (dump_file && (dump_flags & TDF_DETAILS))
1619 flow_loops_dump (dump_file, NULL, 0);
1620
1621 add_noreturn_fake_exit_edges ();
1622 connect_infinite_loops_to_exit ();
1623 /* We use loop_niter_by_eval, which requires that the loops have
1624 preheaders. */
1625 create_preheaders (CP_SIMPLE_PREHEADERS);
1626 calculate_dominance_info (CDI_POST_DOMINATORS);
1627
1628 bb_predictions = pointer_map_create ();
1629 tree_bb_level_predictions ();
1630
1631 mark_irreducible_loops ();
1632 record_loop_exits ();
1633 if (number_of_loops () > 1)
1634 predict_loops ();
1635
1636 FOR_EACH_BB (bb)
1637 {
1638 edge e;
1639 edge_iterator ei;
1640 gimple last;
1641
1642 FOR_EACH_EDGE (e, ei, bb->succs)
1643 {
1644 /* Predict early returns to be probable, as we've already taken
1645 care for error returns and other cases are often used for
1646 fast paths through function.
1647
1648 Since we've already removed the return statements, we are
1649 looking for CFG like:
1650
1651 if (conditional)
1652 {
1653 ..
1654 goto return_block
1655 }
1656 some other blocks
1657 return_block:
1658 return_stmt. */
1659 if (e->dest != bb->next_bb
1660 && e->dest != EXIT_BLOCK_PTR
1661 && single_succ_p (e->dest)
1662 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1663 && (last = last_stmt (e->dest)) != NULL
1664 && gimple_code (last) == GIMPLE_RETURN)
1665 {
1666 edge e1;
1667 edge_iterator ei1;
1668
1669 if (single_succ_p (bb))
1670 {
1671 FOR_EACH_EDGE (e1, ei1, bb->preds)
1672 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1673 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1674 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1675 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1676 }
1677 else
1678 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1679 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1680 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1681 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1682 }
1683
1684 /* Look for block we are guarding (ie we dominate it,
1685 but it doesn't postdominate us). */
1686 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1687 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1688 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1689 {
1690 gimple_stmt_iterator bi;
1691
1692 /* The call heuristic claims that a guarded function call
1693 is improbable. This is because such calls are often used
1694 to signal exceptional situations such as printing error
1695 messages. */
1696 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1697 gsi_next (&bi))
1698 {
1699 gimple stmt = gsi_stmt (bi);
1700 if (is_gimple_call (stmt)
1701 /* Constant and pure calls are hardly used to signalize
1702 something exceptional. */
1703 && gimple_has_side_effects (stmt))
1704 {
1705 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1706 break;
1707 }
1708 }
1709 }
1710 }
1711 tree_predict_by_opcode (bb);
1712 }
1713 FOR_EACH_BB (bb)
1714 combine_predictions_for_bb (bb);
1715
1716 #ifdef ENABLE_CHECKING
1717 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1718 #endif
1719 pointer_map_destroy (bb_predictions);
1720 bb_predictions = NULL;
1721
1722 estimate_bb_frequencies ();
1723 free_dominance_info (CDI_POST_DOMINATORS);
1724 remove_fake_exit_edges ();
1725 loop_optimizer_finalize ();
1726 if (dump_file && (dump_flags & TDF_DETAILS))
1727 gimple_dump_cfg (dump_file, dump_flags);
1728 if (profile_status == PROFILE_ABSENT)
1729 profile_status = PROFILE_GUESSED;
1730 return 0;
1731 }
1732 \f
1733 /* Predict edges to successors of CUR whose sources are not postdominated by
1734 BB by PRED and recurse to all postdominators. */
1735
1736 static void
1737 predict_paths_for_bb (basic_block cur, basic_block bb,
1738 enum br_predictor pred,
1739 enum prediction taken)
1740 {
1741 edge e;
1742 edge_iterator ei;
1743 basic_block son;
1744
1745 /* We are looking for all edges forming edge cut induced by
1746 set of all blocks postdominated by BB. */
1747 FOR_EACH_EDGE (e, ei, cur->preds)
1748 if (e->src->index >= NUM_FIXED_BLOCKS
1749 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1750 {
1751 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1752 predict_edge_def (e, pred, taken);
1753 }
1754 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1755 son;
1756 son = next_dom_son (CDI_POST_DOMINATORS, son))
1757 predict_paths_for_bb (son, bb, pred, taken);
1758 }
1759
1760 /* Sets branch probabilities according to PREDiction and
1761 FLAGS. */
1762
1763 static void
1764 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1765 enum prediction taken)
1766 {
1767 predict_paths_for_bb (bb, bb, pred, taken);
1768 }
1769 \f
1770 /* This is used to carry information about basic blocks. It is
1771 attached to the AUX field of the standard CFG block. */
1772
1773 typedef struct block_info_def
1774 {
1775 /* Estimated frequency of execution of basic_block. */
1776 sreal frequency;
1777
1778 /* To keep queue of basic blocks to process. */
1779 basic_block next;
1780
1781 /* Number of predecessors we need to visit first. */
1782 int npredecessors;
1783 } *block_info;
1784
1785 /* Similar information for edges. */
1786 typedef struct edge_info_def
1787 {
1788 /* In case edge is a loopback edge, the probability edge will be reached
1789 in case header is. Estimated number of iterations of the loop can be
1790 then computed as 1 / (1 - back_edge_prob). */
1791 sreal back_edge_prob;
1792 /* True if the edge is a loopback edge in the natural loop. */
1793 unsigned int back_edge:1;
1794 } *edge_info;
1795
1796 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1797 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1798
1799 /* Helper function for estimate_bb_frequencies.
1800 Propagate the frequencies in blocks marked in
1801 TOVISIT, starting in HEAD. */
1802
1803 static void
1804 propagate_freq (basic_block head, bitmap tovisit)
1805 {
1806 basic_block bb;
1807 basic_block last;
1808 unsigned i;
1809 edge e;
1810 basic_block nextbb;
1811 bitmap_iterator bi;
1812
1813 /* For each basic block we need to visit count number of his predecessors
1814 we need to visit first. */
1815 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1816 {
1817 edge_iterator ei;
1818 int count = 0;
1819
1820 /* The outermost "loop" includes the exit block, which we can not
1821 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1822 directly. Do the same for the entry block. */
1823 bb = BASIC_BLOCK (i);
1824
1825 FOR_EACH_EDGE (e, ei, bb->preds)
1826 {
1827 bool visit = bitmap_bit_p (tovisit, e->src->index);
1828
1829 if (visit && !(e->flags & EDGE_DFS_BACK))
1830 count++;
1831 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1832 fprintf (dump_file,
1833 "Irreducible region hit, ignoring edge to %i->%i\n",
1834 e->src->index, bb->index);
1835 }
1836 BLOCK_INFO (bb)->npredecessors = count;
1837 }
1838
1839 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1840 last = head;
1841 for (bb = head; bb; bb = nextbb)
1842 {
1843 edge_iterator ei;
1844 sreal cyclic_probability, frequency;
1845
1846 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1847 memcpy (&frequency, &real_zero, sizeof (real_zero));
1848
1849 nextbb = BLOCK_INFO (bb)->next;
1850 BLOCK_INFO (bb)->next = NULL;
1851
1852 /* Compute frequency of basic block. */
1853 if (bb != head)
1854 {
1855 #ifdef ENABLE_CHECKING
1856 FOR_EACH_EDGE (e, ei, bb->preds)
1857 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1858 || (e->flags & EDGE_DFS_BACK));
1859 #endif
1860
1861 FOR_EACH_EDGE (e, ei, bb->preds)
1862 if (EDGE_INFO (e)->back_edge)
1863 {
1864 sreal_add (&cyclic_probability, &cyclic_probability,
1865 &EDGE_INFO (e)->back_edge_prob);
1866 }
1867 else if (!(e->flags & EDGE_DFS_BACK))
1868 {
1869 sreal tmp;
1870
1871 /* frequency += (e->probability
1872 * BLOCK_INFO (e->src)->frequency /
1873 REG_BR_PROB_BASE); */
1874
1875 sreal_init (&tmp, e->probability, 0);
1876 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1877 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1878 sreal_add (&frequency, &frequency, &tmp);
1879 }
1880
1881 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1882 {
1883 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1884 sizeof (frequency));
1885 }
1886 else
1887 {
1888 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1889 {
1890 memcpy (&cyclic_probability, &real_almost_one,
1891 sizeof (real_almost_one));
1892 }
1893
1894 /* BLOCK_INFO (bb)->frequency = frequency
1895 / (1 - cyclic_probability) */
1896
1897 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1898 sreal_div (&BLOCK_INFO (bb)->frequency,
1899 &frequency, &cyclic_probability);
1900 }
1901 }
1902
1903 bitmap_clear_bit (tovisit, bb->index);
1904
1905 e = find_edge (bb, head);
1906 if (e)
1907 {
1908 sreal tmp;
1909
1910 /* EDGE_INFO (e)->back_edge_prob
1911 = ((e->probability * BLOCK_INFO (bb)->frequency)
1912 / REG_BR_PROB_BASE); */
1913
1914 sreal_init (&tmp, e->probability, 0);
1915 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1916 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1917 &tmp, &real_inv_br_prob_base);
1918 }
1919
1920 /* Propagate to successor blocks. */
1921 FOR_EACH_EDGE (e, ei, bb->succs)
1922 if (!(e->flags & EDGE_DFS_BACK)
1923 && BLOCK_INFO (e->dest)->npredecessors)
1924 {
1925 BLOCK_INFO (e->dest)->npredecessors--;
1926 if (!BLOCK_INFO (e->dest)->npredecessors)
1927 {
1928 if (!nextbb)
1929 nextbb = e->dest;
1930 else
1931 BLOCK_INFO (last)->next = e->dest;
1932
1933 last = e->dest;
1934 }
1935 }
1936 }
1937 }
1938
1939 /* Estimate probabilities of loopback edges in loops at same nest level. */
1940
1941 static void
1942 estimate_loops_at_level (struct loop *first_loop)
1943 {
1944 struct loop *loop;
1945
1946 for (loop = first_loop; loop; loop = loop->next)
1947 {
1948 edge e;
1949 basic_block *bbs;
1950 unsigned i;
1951 bitmap tovisit = BITMAP_ALLOC (NULL);
1952
1953 estimate_loops_at_level (loop->inner);
1954
1955 /* Find current loop back edge and mark it. */
1956 e = loop_latch_edge (loop);
1957 EDGE_INFO (e)->back_edge = 1;
1958
1959 bbs = get_loop_body (loop);
1960 for (i = 0; i < loop->num_nodes; i++)
1961 bitmap_set_bit (tovisit, bbs[i]->index);
1962 free (bbs);
1963 propagate_freq (loop->header, tovisit);
1964 BITMAP_FREE (tovisit);
1965 }
1966 }
1967
1968 /* Propagates frequencies through structure of loops. */
1969
1970 static void
1971 estimate_loops (void)
1972 {
1973 bitmap tovisit = BITMAP_ALLOC (NULL);
1974 basic_block bb;
1975
1976 /* Start by estimating the frequencies in the loops. */
1977 if (number_of_loops () > 1)
1978 estimate_loops_at_level (current_loops->tree_root->inner);
1979
1980 /* Now propagate the frequencies through all the blocks. */
1981 FOR_ALL_BB (bb)
1982 {
1983 bitmap_set_bit (tovisit, bb->index);
1984 }
1985 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1986 BITMAP_FREE (tovisit);
1987 }
1988
1989 /* Convert counts measured by profile driven feedback to frequencies.
1990 Return nonzero iff there was any nonzero execution count. */
1991
1992 int
1993 counts_to_freqs (void)
1994 {
1995 gcov_type count_max, true_count_max = 0;
1996 basic_block bb;
1997
1998 FOR_EACH_BB (bb)
1999 true_count_max = MAX (bb->count, true_count_max);
2000
2001 count_max = MAX (true_count_max, 1);
2002 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2003 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2004
2005 return true_count_max;
2006 }
2007
2008 /* Return true if function is likely to be expensive, so there is no point to
2009 optimize performance of prologue, epilogue or do inlining at the expense
2010 of code size growth. THRESHOLD is the limit of number of instructions
2011 function can execute at average to be still considered not expensive. */
2012
2013 bool
2014 expensive_function_p (int threshold)
2015 {
2016 unsigned int sum = 0;
2017 basic_block bb;
2018 unsigned int limit;
2019
2020 /* We can not compute accurately for large thresholds due to scaled
2021 frequencies. */
2022 gcc_assert (threshold <= BB_FREQ_MAX);
2023
2024 /* Frequencies are out of range. This either means that function contains
2025 internal loop executing more than BB_FREQ_MAX times or profile feedback
2026 is available and function has not been executed at all. */
2027 if (ENTRY_BLOCK_PTR->frequency == 0)
2028 return true;
2029
2030 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2031 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2032 FOR_EACH_BB (bb)
2033 {
2034 rtx insn;
2035
2036 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2037 insn = NEXT_INSN (insn))
2038 if (active_insn_p (insn))
2039 {
2040 sum += bb->frequency;
2041 if (sum > limit)
2042 return true;
2043 }
2044 }
2045
2046 return false;
2047 }
2048
2049 /* Estimate basic blocks frequency by given branch probabilities. */
2050
2051 void
2052 estimate_bb_frequencies (void)
2053 {
2054 basic_block bb;
2055 sreal freq_max;
2056
2057 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2058 {
2059 static int real_values_initialized = 0;
2060
2061 if (!real_values_initialized)
2062 {
2063 real_values_initialized = 1;
2064 sreal_init (&real_zero, 0, 0);
2065 sreal_init (&real_one, 1, 0);
2066 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2067 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2068 sreal_init (&real_one_half, 1, -1);
2069 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2070 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2071 }
2072
2073 mark_dfs_back_edges ();
2074
2075 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2076
2077 /* Set up block info for each basic block. */
2078 alloc_aux_for_blocks (sizeof (struct block_info_def));
2079 alloc_aux_for_edges (sizeof (struct edge_info_def));
2080 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2081 {
2082 edge e;
2083 edge_iterator ei;
2084
2085 FOR_EACH_EDGE (e, ei, bb->succs)
2086 {
2087 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2088 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2089 &EDGE_INFO (e)->back_edge_prob,
2090 &real_inv_br_prob_base);
2091 }
2092 }
2093
2094 /* First compute probabilities locally for each loop from innermost
2095 to outermost to examine probabilities for back edges. */
2096 estimate_loops ();
2097
2098 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2099 FOR_EACH_BB (bb)
2100 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2101 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2102
2103 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2104 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2105 {
2106 sreal tmp;
2107
2108 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2109 sreal_add (&tmp, &tmp, &real_one_half);
2110 bb->frequency = sreal_to_int (&tmp);
2111 }
2112
2113 free_aux_for_blocks ();
2114 free_aux_for_edges ();
2115 }
2116 compute_function_frequency ();
2117 if (flag_reorder_functions)
2118 choose_function_section ();
2119 }
2120
2121 /* Decide whether function is hot, cold or unlikely executed. */
2122 static void
2123 compute_function_frequency (void)
2124 {
2125 basic_block bb;
2126
2127 if (!profile_info || !flag_branch_probabilities)
2128 {
2129 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2130 != NULL)
2131 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2132 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2133 != NULL)
2134 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2135 return;
2136 }
2137 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2138 FOR_EACH_BB (bb)
2139 {
2140 if (maybe_hot_bb_p (bb))
2141 {
2142 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2143 return;
2144 }
2145 if (!probably_never_executed_bb_p (bb))
2146 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
2147 }
2148 }
2149
2150 /* Choose appropriate section for the function. */
2151 static void
2152 choose_function_section (void)
2153 {
2154 if (DECL_SECTION_NAME (current_function_decl)
2155 || !targetm.have_named_sections
2156 /* Theoretically we can split the gnu.linkonce text section too,
2157 but this requires more work as the frequency needs to match
2158 for all generated objects so we need to merge the frequency
2159 of all instances. For now just never set frequency for these. */
2160 || DECL_ONE_ONLY (current_function_decl))
2161 return;
2162
2163 /* If we are doing the partitioning optimization, let the optimization
2164 choose the correct section into which to put things. */
2165
2166 if (flag_reorder_blocks_and_partition)
2167 return;
2168
2169 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
2170 DECL_SECTION_NAME (current_function_decl) =
2171 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2172 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
2173 DECL_SECTION_NAME (current_function_decl) =
2174 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2175 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2176 }
2177
2178 static bool
2179 gate_estimate_probability (void)
2180 {
2181 return flag_guess_branch_prob;
2182 }
2183
2184 /* Build PREDICT_EXPR. */
2185 tree
2186 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2187 {
2188 tree t = build1 (PREDICT_EXPR, void_type_node,
2189 build_int_cst (NULL, predictor));
2190 SET_PREDICT_EXPR_OUTCOME (t, taken);
2191 return t;
2192 }
2193
2194 const char *
2195 predictor_name (enum br_predictor predictor)
2196 {
2197 return predictor_info[predictor].name;
2198 }
2199
2200 struct gimple_opt_pass pass_profile =
2201 {
2202 {
2203 GIMPLE_PASS,
2204 "profile", /* name */
2205 gate_estimate_probability, /* gate */
2206 tree_estimate_probability, /* execute */
2207 NULL, /* sub */
2208 NULL, /* next */
2209 0, /* static_pass_number */
2210 TV_BRANCH_PROB, /* tv_id */
2211 PROP_cfg, /* properties_required */
2212 0, /* properties_provided */
2213 0, /* properties_destroyed */
2214 0, /* todo_flags_start */
2215 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2216 }
2217 };
2218
2219 struct gimple_opt_pass pass_strip_predict_hints =
2220 {
2221 {
2222 GIMPLE_PASS,
2223 NULL, /* name */
2224 NULL, /* gate */
2225 strip_predict_hints, /* execute */
2226 NULL, /* sub */
2227 NULL, /* next */
2228 0, /* static_pass_number */
2229 TV_BRANCH_PROB, /* tv_id */
2230 PROP_cfg, /* properties_required */
2231 0, /* properties_provided */
2232 0, /* properties_destroyed */
2233 0, /* todo_flags_start */
2234 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2235 }
2236 };