PR 35736 -- use void_type_node for PREDICT_EXPR tree
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
78 static void compute_function_frequency (void);
79 static void choose_function_section (void);
80 static bool can_predict_insn_p (const_rtx);
81
82 /* Information we hold about each branch predictor.
83 Filled using information from predict.def. */
84
85 struct predictor_info
86 {
87 const char *const name; /* Name used in the debugging dumps. */
88 const int hitrate; /* Expected hitrate used by
89 predict_insn_def call. */
90 const int flags;
91 };
92
93 /* Use given predictor without Dempster-Shaffer theory if it matches
94 using first_match heuristics. */
95 #define PRED_FLAG_FIRST_MATCH 1
96
97 /* Recompute hitrate in percent to our representation. */
98
99 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
100
101 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
102 static const struct predictor_info predictor_info[]= {
103 #include "predict.def"
104
105 /* Upper bound on predictors. */
106 {NULL, 0, 0}
107 };
108 #undef DEF_PREDICTOR
109
110 /* Return TRUE if frequency FREQ is considered to be hot. */
111 static bool
112 maybe_hot_frequency_p (int freq)
113 {
114 if (!profile_info || !flag_branch_probabilities)
115 {
116 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
117 return false;
118 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
119 return true;
120 }
121 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
122 return false;
123 return true;
124 }
125
126 /* Return true in case BB can be CPU intensive and should be optimized
127 for maximal performance. */
128
129 bool
130 maybe_hot_bb_p (const_basic_block bb)
131 {
132 if (profile_info && flag_branch_probabilities
133 && (bb->count
134 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
135 return false;
136 return maybe_hot_frequency_p (bb->frequency);
137 }
138
139 /* Return true in case BB can be CPU intensive and should be optimized
140 for maximal performance. */
141
142 bool
143 maybe_hot_edge_p (edge e)
144 {
145 if (profile_info && flag_branch_probabilities
146 && (e->count
147 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
148 return false;
149 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
150 }
151
152 /* Return true in case BB is cold and should be optimized for size. */
153
154 bool
155 probably_cold_bb_p (const_basic_block bb)
156 {
157 if (profile_info && flag_branch_probabilities
158 && (bb->count
159 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
160 return true;
161 if ((!profile_info || !flag_branch_probabilities)
162 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
163 return true;
164 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
165 return true;
166 return false;
167 }
168
169 /* Return true in case BB is probably never executed. */
170 bool
171 probably_never_executed_bb_p (const_basic_block bb)
172 {
173 if (profile_info && flag_branch_probabilities)
174 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
175 if ((!profile_info || !flag_branch_probabilities)
176 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
177 return true;
178 return false;
179 }
180
181 /* Return true if the one of outgoing edges is already predicted by
182 PREDICTOR. */
183
184 bool
185 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
186 {
187 rtx note;
188 if (!INSN_P (BB_END (bb)))
189 return false;
190 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
191 if (REG_NOTE_KIND (note) == REG_BR_PRED
192 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
193 return true;
194 return false;
195 }
196
197 /* This map contains for a basic block the list of predictions for the
198 outgoing edges. */
199
200 static struct pointer_map_t *bb_predictions;
201
202 /* Return true if the one of outgoing edges is already predicted by
203 PREDICTOR. */
204
205 bool
206 tree_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
207 {
208 struct edge_prediction *i;
209 void **preds = pointer_map_contains (bb_predictions, bb);
210
211 if (!preds)
212 return false;
213
214 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
215 if (i->ep_predictor == predictor)
216 return true;
217 return false;
218 }
219
220 /* Return true when the probability of edge is reliable.
221
222 The profile guessing code is good at predicting branch outcome (ie.
223 taken/not taken), that is predicted right slightly over 75% of time.
224 It is however notoriously poor on predicting the probability itself.
225 In general the profile appear a lot flatter (with probabilities closer
226 to 50%) than the reality so it is bad idea to use it to drive optimization
227 such as those disabling dynamic branch prediction for well predictable
228 branches.
229
230 There are two exceptions - edges leading to noreturn edges and edges
231 predicted by number of iterations heuristics are predicted well. This macro
232 should be able to distinguish those, but at the moment it simply check for
233 noreturn heuristic that is only one giving probability over 99% or bellow
234 1%. In future we might want to propagate reliability information across the
235 CFG if we find this information useful on multiple places. */
236 static bool
237 probability_reliable_p (int prob)
238 {
239 return (profile_status == PROFILE_READ
240 || (profile_status == PROFILE_GUESSED
241 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
242 }
243
244 /* Same predicate as above, working on edges. */
245 bool
246 edge_probability_reliable_p (const_edge e)
247 {
248 return probability_reliable_p (e->probability);
249 }
250
251 /* Same predicate as edge_probability_reliable_p, working on notes. */
252 bool
253 br_prob_note_reliable_p (const_rtx note)
254 {
255 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
256 return probability_reliable_p (INTVAL (XEXP (note, 0)));
257 }
258
259 static void
260 predict_insn (rtx insn, enum br_predictor predictor, int probability)
261 {
262 gcc_assert (any_condjump_p (insn));
263 if (!flag_guess_branch_prob)
264 return;
265
266 add_reg_note (insn, REG_BR_PRED,
267 gen_rtx_CONCAT (VOIDmode,
268 GEN_INT ((int) predictor),
269 GEN_INT ((int) probability)));
270 }
271
272 /* Predict insn by given predictor. */
273
274 void
275 predict_insn_def (rtx insn, enum br_predictor predictor,
276 enum prediction taken)
277 {
278 int probability = predictor_info[(int) predictor].hitrate;
279
280 if (taken != TAKEN)
281 probability = REG_BR_PROB_BASE - probability;
282
283 predict_insn (insn, predictor, probability);
284 }
285
286 /* Predict edge E with given probability if possible. */
287
288 void
289 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
290 {
291 rtx last_insn;
292 last_insn = BB_END (e->src);
293
294 /* We can store the branch prediction information only about
295 conditional jumps. */
296 if (!any_condjump_p (last_insn))
297 return;
298
299 /* We always store probability of branching. */
300 if (e->flags & EDGE_FALLTHRU)
301 probability = REG_BR_PROB_BASE - probability;
302
303 predict_insn (last_insn, predictor, probability);
304 }
305
306 /* Predict edge E with the given PROBABILITY. */
307 void
308 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
309 {
310 gcc_assert (profile_status != PROFILE_GUESSED);
311 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
312 && flag_guess_branch_prob && optimize)
313 {
314 struct edge_prediction *i = XNEW (struct edge_prediction);
315 void **preds = pointer_map_insert (bb_predictions, e->src);
316
317 i->ep_next = (struct edge_prediction *) *preds;
318 *preds = i;
319 i->ep_probability = probability;
320 i->ep_predictor = predictor;
321 i->ep_edge = e;
322 }
323 }
324
325 /* Remove all predictions on given basic block that are attached
326 to edge E. */
327 void
328 remove_predictions_associated_with_edge (edge e)
329 {
330 void **preds;
331
332 if (!bb_predictions)
333 return;
334
335 preds = pointer_map_contains (bb_predictions, e->src);
336
337 if (preds)
338 {
339 struct edge_prediction **prediction = (struct edge_prediction **) preds;
340 struct edge_prediction *next;
341
342 while (*prediction)
343 {
344 if ((*prediction)->ep_edge == e)
345 {
346 next = (*prediction)->ep_next;
347 free (*prediction);
348 *prediction = next;
349 }
350 else
351 prediction = &((*prediction)->ep_next);
352 }
353 }
354 }
355
356 /* Clears the list of predictions stored for BB. */
357
358 static void
359 clear_bb_predictions (basic_block bb)
360 {
361 void **preds = pointer_map_contains (bb_predictions, bb);
362 struct edge_prediction *pred, *next;
363
364 if (!preds)
365 return;
366
367 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
368 {
369 next = pred->ep_next;
370 free (pred);
371 }
372 *preds = NULL;
373 }
374
375 /* Return true when we can store prediction on insn INSN.
376 At the moment we represent predictions only on conditional
377 jumps, not at computed jump or other complicated cases. */
378 static bool
379 can_predict_insn_p (const_rtx insn)
380 {
381 return (JUMP_P (insn)
382 && any_condjump_p (insn)
383 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
384 }
385
386 /* Predict edge E by given predictor if possible. */
387
388 void
389 predict_edge_def (edge e, enum br_predictor predictor,
390 enum prediction taken)
391 {
392 int probability = predictor_info[(int) predictor].hitrate;
393
394 if (taken != TAKEN)
395 probability = REG_BR_PROB_BASE - probability;
396
397 predict_edge (e, predictor, probability);
398 }
399
400 /* Invert all branch predictions or probability notes in the INSN. This needs
401 to be done each time we invert the condition used by the jump. */
402
403 void
404 invert_br_probabilities (rtx insn)
405 {
406 rtx note;
407
408 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
409 if (REG_NOTE_KIND (note) == REG_BR_PROB)
410 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
411 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
412 XEXP (XEXP (note, 0), 1)
413 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
414 }
415
416 /* Dump information about the branch prediction to the output file. */
417
418 static void
419 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
420 basic_block bb, int used)
421 {
422 edge e;
423 edge_iterator ei;
424
425 if (!file)
426 return;
427
428 FOR_EACH_EDGE (e, ei, bb->succs)
429 if (! (e->flags & EDGE_FALLTHRU))
430 break;
431
432 fprintf (file, " %s heuristics%s: %.1f%%",
433 predictor_info[predictor].name,
434 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
435
436 if (bb->count)
437 {
438 fprintf (file, " exec ");
439 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
440 if (e)
441 {
442 fprintf (file, " hit ");
443 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
444 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
445 }
446 }
447
448 fprintf (file, "\n");
449 }
450
451 /* We can not predict the probabilities of outgoing edges of bb. Set them
452 evenly and hope for the best. */
453 static void
454 set_even_probabilities (basic_block bb)
455 {
456 int nedges = 0;
457 edge e;
458 edge_iterator ei;
459
460 FOR_EACH_EDGE (e, ei, bb->succs)
461 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
462 nedges ++;
463 FOR_EACH_EDGE (e, ei, bb->succs)
464 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
465 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
466 else
467 e->probability = 0;
468 }
469
470 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
471 note if not already present. Remove now useless REG_BR_PRED notes. */
472
473 static void
474 combine_predictions_for_insn (rtx insn, basic_block bb)
475 {
476 rtx prob_note;
477 rtx *pnote;
478 rtx note;
479 int best_probability = PROB_EVEN;
480 int best_predictor = END_PREDICTORS;
481 int combined_probability = REG_BR_PROB_BASE / 2;
482 int d;
483 bool first_match = false;
484 bool found = false;
485
486 if (!can_predict_insn_p (insn))
487 {
488 set_even_probabilities (bb);
489 return;
490 }
491
492 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
493 pnote = &REG_NOTES (insn);
494 if (dump_file)
495 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
496 bb->index);
497
498 /* We implement "first match" heuristics and use probability guessed
499 by predictor with smallest index. */
500 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
501 if (REG_NOTE_KIND (note) == REG_BR_PRED)
502 {
503 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
504 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
505
506 found = true;
507 if (best_predictor > predictor)
508 best_probability = probability, best_predictor = predictor;
509
510 d = (combined_probability * probability
511 + (REG_BR_PROB_BASE - combined_probability)
512 * (REG_BR_PROB_BASE - probability));
513
514 /* Use FP math to avoid overflows of 32bit integers. */
515 if (d == 0)
516 /* If one probability is 0% and one 100%, avoid division by zero. */
517 combined_probability = REG_BR_PROB_BASE / 2;
518 else
519 combined_probability = (((double) combined_probability) * probability
520 * REG_BR_PROB_BASE / d + 0.5);
521 }
522
523 /* Decide which heuristic to use. In case we didn't match anything,
524 use no_prediction heuristic, in case we did match, use either
525 first match or Dempster-Shaffer theory depending on the flags. */
526
527 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
528 first_match = true;
529
530 if (!found)
531 dump_prediction (dump_file, PRED_NO_PREDICTION,
532 combined_probability, bb, true);
533 else
534 {
535 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
536 bb, !first_match);
537 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
538 bb, first_match);
539 }
540
541 if (first_match)
542 combined_probability = best_probability;
543 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
544
545 while (*pnote)
546 {
547 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
548 {
549 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
550 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
551
552 dump_prediction (dump_file, predictor, probability, bb,
553 !first_match || best_predictor == predictor);
554 *pnote = XEXP (*pnote, 1);
555 }
556 else
557 pnote = &XEXP (*pnote, 1);
558 }
559
560 if (!prob_note)
561 {
562 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
563
564 /* Save the prediction into CFG in case we are seeing non-degenerated
565 conditional jump. */
566 if (!single_succ_p (bb))
567 {
568 BRANCH_EDGE (bb)->probability = combined_probability;
569 FALLTHRU_EDGE (bb)->probability
570 = REG_BR_PROB_BASE - combined_probability;
571 }
572 }
573 else if (!single_succ_p (bb))
574 {
575 int prob = INTVAL (XEXP (prob_note, 0));
576
577 BRANCH_EDGE (bb)->probability = prob;
578 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
579 }
580 else
581 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
582 }
583
584 /* Combine predictions into single probability and store them into CFG.
585 Remove now useless prediction entries. */
586
587 static void
588 combine_predictions_for_bb (basic_block bb)
589 {
590 int best_probability = PROB_EVEN;
591 int best_predictor = END_PREDICTORS;
592 int combined_probability = REG_BR_PROB_BASE / 2;
593 int d;
594 bool first_match = false;
595 bool found = false;
596 struct edge_prediction *pred;
597 int nedges = 0;
598 edge e, first = NULL, second = NULL;
599 edge_iterator ei;
600 void **preds;
601
602 FOR_EACH_EDGE (e, ei, bb->succs)
603 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
604 {
605 nedges ++;
606 if (first && !second)
607 second = e;
608 if (!first)
609 first = e;
610 }
611
612 /* When there is no successor or only one choice, prediction is easy.
613
614 We are lazy for now and predict only basic blocks with two outgoing
615 edges. It is possible to predict generic case too, but we have to
616 ignore first match heuristics and do more involved combining. Implement
617 this later. */
618 if (nedges != 2)
619 {
620 if (!bb->count)
621 set_even_probabilities (bb);
622 clear_bb_predictions (bb);
623 if (dump_file)
624 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
625 nedges, bb->index);
626 return;
627 }
628
629 if (dump_file)
630 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
631
632 preds = pointer_map_contains (bb_predictions, bb);
633 if (preds)
634 {
635 /* We implement "first match" heuristics and use probability guessed
636 by predictor with smallest index. */
637 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
638 {
639 int predictor = pred->ep_predictor;
640 int probability = pred->ep_probability;
641
642 if (pred->ep_edge != first)
643 probability = REG_BR_PROB_BASE - probability;
644
645 found = true;
646 if (best_predictor > predictor)
647 best_probability = probability, best_predictor = predictor;
648
649 d = (combined_probability * probability
650 + (REG_BR_PROB_BASE - combined_probability)
651 * (REG_BR_PROB_BASE - probability));
652
653 /* Use FP math to avoid overflows of 32bit integers. */
654 if (d == 0)
655 /* If one probability is 0% and one 100%, avoid division by zero. */
656 combined_probability = REG_BR_PROB_BASE / 2;
657 else
658 combined_probability = (((double) combined_probability)
659 * probability
660 * REG_BR_PROB_BASE / d + 0.5);
661 }
662 }
663
664 /* Decide which heuristic to use. In case we didn't match anything,
665 use no_prediction heuristic, in case we did match, use either
666 first match or Dempster-Shaffer theory depending on the flags. */
667
668 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
669 first_match = true;
670
671 if (!found)
672 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
673 else
674 {
675 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
676 !first_match);
677 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
678 first_match);
679 }
680
681 if (first_match)
682 combined_probability = best_probability;
683 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
684
685 if (preds)
686 {
687 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
688 {
689 int predictor = pred->ep_predictor;
690 int probability = pred->ep_probability;
691
692 if (pred->ep_edge != EDGE_SUCC (bb, 0))
693 probability = REG_BR_PROB_BASE - probability;
694 dump_prediction (dump_file, predictor, probability, bb,
695 !first_match || best_predictor == predictor);
696 }
697 }
698 clear_bb_predictions (bb);
699
700 if (!bb->count)
701 {
702 first->probability = combined_probability;
703 second->probability = REG_BR_PROB_BASE - combined_probability;
704 }
705 }
706
707 /* Predict edge probabilities by exploiting loop structure. */
708
709 static void
710 predict_loops (void)
711 {
712 loop_iterator li;
713 struct loop *loop;
714
715 scev_initialize ();
716
717 /* Try to predict out blocks in a loop that are not part of a
718 natural loop. */
719 FOR_EACH_LOOP (li, loop, 0)
720 {
721 basic_block bb, *bbs;
722 unsigned j, n_exits;
723 VEC (edge, heap) *exits;
724 struct tree_niter_desc niter_desc;
725 edge ex;
726
727 exits = get_loop_exit_edges (loop);
728 n_exits = VEC_length (edge, exits);
729
730 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
731 {
732 tree niter = NULL;
733 HOST_WIDE_INT nitercst;
734 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
735 int probability;
736 enum br_predictor predictor;
737
738 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
739 niter = niter_desc.niter;
740 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
741 niter = loop_niter_by_eval (loop, ex);
742
743 if (TREE_CODE (niter) == INTEGER_CST)
744 {
745 if (host_integerp (niter, 1)
746 && compare_tree_int (niter, max-1) == -1)
747 nitercst = tree_low_cst (niter, 1) + 1;
748 else
749 nitercst = max;
750 predictor = PRED_LOOP_ITERATIONS;
751 }
752 /* If we have just one exit and we can derive some information about
753 the number of iterations of the loop from the statements inside
754 the loop, use it to predict this exit. */
755 else if (n_exits == 1)
756 {
757 nitercst = estimated_loop_iterations_int (loop, false);
758 if (nitercst < 0)
759 continue;
760 if (nitercst > max)
761 nitercst = max;
762
763 predictor = PRED_LOOP_ITERATIONS_GUESSED;
764 }
765 else
766 continue;
767
768 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
769 predict_edge (ex, predictor, probability);
770 }
771 VEC_free (edge, heap, exits);
772
773 bbs = get_loop_body (loop);
774
775 for (j = 0; j < loop->num_nodes; j++)
776 {
777 int header_found = 0;
778 edge e;
779 edge_iterator ei;
780
781 bb = bbs[j];
782
783 /* Bypass loop heuristics on continue statement. These
784 statements construct loops via "non-loop" constructs
785 in the source language and are better to be handled
786 separately. */
787 if (predicted_by_p (bb, PRED_CONTINUE))
788 continue;
789
790 /* Loop branch heuristics - predict an edge back to a
791 loop's head as taken. */
792 if (bb == loop->latch)
793 {
794 e = find_edge (loop->latch, loop->header);
795 if (e)
796 {
797 header_found = 1;
798 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
799 }
800 }
801
802 /* Loop exit heuristics - predict an edge exiting the loop if the
803 conditional has no loop header successors as not taken. */
804 if (!header_found
805 /* If we already used more reliable loop exit predictors, do not
806 bother with PRED_LOOP_EXIT. */
807 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
808 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
809 {
810 /* For loop with many exits we don't want to predict all exits
811 with the pretty large probability, because if all exits are
812 considered in row, the loop would be predicted to iterate
813 almost never. The code to divide probability by number of
814 exits is very rough. It should compute the number of exits
815 taken in each patch through function (not the overall number
816 of exits that might be a lot higher for loops with wide switch
817 statements in them) and compute n-th square root.
818
819 We limit the minimal probability by 2% to avoid
820 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
821 as this was causing regression in perl benchmark containing such
822 a wide loop. */
823
824 int probability = ((REG_BR_PROB_BASE
825 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
826 / n_exits);
827 if (probability < HITRATE (2))
828 probability = HITRATE (2);
829 FOR_EACH_EDGE (e, ei, bb->succs)
830 if (e->dest->index < NUM_FIXED_BLOCKS
831 || !flow_bb_inside_loop_p (loop, e->dest))
832 predict_edge (e, PRED_LOOP_EXIT, probability);
833 }
834 }
835
836 /* Free basic blocks from get_loop_body. */
837 free (bbs);
838 }
839
840 scev_finalize ();
841 }
842
843 /* Attempt to predict probabilities of BB outgoing edges using local
844 properties. */
845 static void
846 bb_estimate_probability_locally (basic_block bb)
847 {
848 rtx last_insn = BB_END (bb);
849 rtx cond;
850
851 if (! can_predict_insn_p (last_insn))
852 return;
853 cond = get_condition (last_insn, NULL, false, false);
854 if (! cond)
855 return;
856
857 /* Try "pointer heuristic."
858 A comparison ptr == 0 is predicted as false.
859 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
860 if (COMPARISON_P (cond)
861 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
862 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
863 {
864 if (GET_CODE (cond) == EQ)
865 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
866 else if (GET_CODE (cond) == NE)
867 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
868 }
869 else
870
871 /* Try "opcode heuristic."
872 EQ tests are usually false and NE tests are usually true. Also,
873 most quantities are positive, so we can make the appropriate guesses
874 about signed comparisons against zero. */
875 switch (GET_CODE (cond))
876 {
877 case CONST_INT:
878 /* Unconditional branch. */
879 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
880 cond == const0_rtx ? NOT_TAKEN : TAKEN);
881 break;
882
883 case EQ:
884 case UNEQ:
885 /* Floating point comparisons appears to behave in a very
886 unpredictable way because of special role of = tests in
887 FP code. */
888 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
889 ;
890 /* Comparisons with 0 are often used for booleans and there is
891 nothing useful to predict about them. */
892 else if (XEXP (cond, 1) == const0_rtx
893 || XEXP (cond, 0) == const0_rtx)
894 ;
895 else
896 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
897 break;
898
899 case NE:
900 case LTGT:
901 /* Floating point comparisons appears to behave in a very
902 unpredictable way because of special role of = tests in
903 FP code. */
904 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
905 ;
906 /* Comparisons with 0 are often used for booleans and there is
907 nothing useful to predict about them. */
908 else if (XEXP (cond, 1) == const0_rtx
909 || XEXP (cond, 0) == const0_rtx)
910 ;
911 else
912 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
913 break;
914
915 case ORDERED:
916 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
917 break;
918
919 case UNORDERED:
920 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
921 break;
922
923 case LE:
924 case LT:
925 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
926 || XEXP (cond, 1) == constm1_rtx)
927 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
928 break;
929
930 case GE:
931 case GT:
932 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
933 || XEXP (cond, 1) == constm1_rtx)
934 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
935 break;
936
937 default:
938 break;
939 }
940 }
941
942 /* Set edge->probability for each successor edge of BB. */
943 void
944 guess_outgoing_edge_probabilities (basic_block bb)
945 {
946 bb_estimate_probability_locally (bb);
947 combine_predictions_for_insn (BB_END (bb), bb);
948 }
949 \f
950 /* Return constant EXPR will likely have at execution time, NULL if unknown.
951 The function is used by builtin_expect branch predictor so the evidence
952 must come from this construct and additional possible constant folding.
953
954 We may want to implement more involved value guess (such as value range
955 propagation based prediction), but such tricks shall go to new
956 implementation. */
957
958 static tree
959 expr_expected_value (tree expr, bitmap visited)
960 {
961 if (TREE_CONSTANT (expr))
962 return expr;
963 else if (TREE_CODE (expr) == SSA_NAME)
964 {
965 tree def = SSA_NAME_DEF_STMT (expr);
966
967 /* If we were already here, break the infinite cycle. */
968 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
969 return NULL;
970 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
971
972 if (TREE_CODE (def) == PHI_NODE)
973 {
974 /* All the arguments of the PHI node must have the same constant
975 length. */
976 int i;
977 tree val = NULL, new_val;
978
979 for (i = 0; i < PHI_NUM_ARGS (def); i++)
980 {
981 tree arg = PHI_ARG_DEF (def, i);
982
983 /* If this PHI has itself as an argument, we cannot
984 determine the string length of this argument. However,
985 if we can find an expected constant value for the other
986 PHI args then we can still be sure that this is
987 likely a constant. So be optimistic and just
988 continue with the next argument. */
989 if (arg == PHI_RESULT (def))
990 continue;
991
992 new_val = expr_expected_value (arg, visited);
993 if (!new_val)
994 return NULL;
995 if (!val)
996 val = new_val;
997 else if (!operand_equal_p (val, new_val, false))
998 return NULL;
999 }
1000 return val;
1001 }
1002 if (TREE_CODE (def) != GIMPLE_MODIFY_STMT
1003 || GIMPLE_STMT_OPERAND (def, 0) != expr)
1004 return NULL;
1005 return expr_expected_value (GIMPLE_STMT_OPERAND (def, 1), visited);
1006 }
1007 else if (TREE_CODE (expr) == CALL_EXPR)
1008 {
1009 tree decl = get_callee_fndecl (expr);
1010 if (!decl)
1011 return NULL;
1012 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1013 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1014 {
1015 tree val;
1016
1017 if (call_expr_nargs (expr) != 2)
1018 return NULL;
1019 val = CALL_EXPR_ARG (expr, 0);
1020 if (TREE_CONSTANT (val))
1021 return val;
1022 return CALL_EXPR_ARG (expr, 1);
1023 }
1024 }
1025 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1026 {
1027 tree op0, op1, res;
1028 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
1029 if (!op0)
1030 return NULL;
1031 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
1032 if (!op1)
1033 return NULL;
1034 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
1035 if (TREE_CONSTANT (res))
1036 return res;
1037 return NULL;
1038 }
1039 if (UNARY_CLASS_P (expr))
1040 {
1041 tree op0, res;
1042 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
1043 if (!op0)
1044 return NULL;
1045 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
1046 if (TREE_CONSTANT (res))
1047 return res;
1048 return NULL;
1049 }
1050 return NULL;
1051 }
1052 \f
1053 /* Get rid of all builtin_expect calls we no longer need. */
1054 static void
1055 strip_builtin_expect (void)
1056 {
1057 basic_block bb;
1058 FOR_EACH_BB (bb)
1059 {
1060 block_stmt_iterator bi;
1061 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1062 {
1063 tree stmt = bsi_stmt (bi);
1064 tree fndecl;
1065 tree call;
1066
1067 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1068 && (call = GIMPLE_STMT_OPERAND (stmt, 1))
1069 && TREE_CODE (call) == CALL_EXPR
1070 && (fndecl = get_callee_fndecl (call))
1071 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1072 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1073 && call_expr_nargs (call) == 2)
1074 {
1075 GIMPLE_STMT_OPERAND (stmt, 1) = CALL_EXPR_ARG (call, 0);
1076 update_stmt (stmt);
1077 }
1078 }
1079 }
1080 }
1081 \f
1082 /* Predict using opcode of the last statement in basic block. */
1083 static void
1084 tree_predict_by_opcode (basic_block bb)
1085 {
1086 tree stmt = last_stmt (bb);
1087 edge then_edge;
1088 tree cond;
1089 tree op0;
1090 tree type;
1091 tree val;
1092 bitmap visited;
1093 edge_iterator ei;
1094
1095 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1096 return;
1097 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1098 if (then_edge->flags & EDGE_TRUE_VALUE)
1099 break;
1100 cond = TREE_OPERAND (stmt, 0);
1101 if (!COMPARISON_CLASS_P (cond))
1102 return;
1103 op0 = TREE_OPERAND (cond, 0);
1104 type = TREE_TYPE (op0);
1105 visited = BITMAP_ALLOC (NULL);
1106 val = expr_expected_value (cond, visited);
1107 BITMAP_FREE (visited);
1108 if (val)
1109 {
1110 if (integer_zerop (val))
1111 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1112 else
1113 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1114 return;
1115 }
1116 /* Try "pointer heuristic."
1117 A comparison ptr == 0 is predicted as false.
1118 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1119 if (POINTER_TYPE_P (type))
1120 {
1121 if (TREE_CODE (cond) == EQ_EXPR)
1122 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1123 else if (TREE_CODE (cond) == NE_EXPR)
1124 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1125 }
1126 else
1127
1128 /* Try "opcode heuristic."
1129 EQ tests are usually false and NE tests are usually true. Also,
1130 most quantities are positive, so we can make the appropriate guesses
1131 about signed comparisons against zero. */
1132 switch (TREE_CODE (cond))
1133 {
1134 case EQ_EXPR:
1135 case UNEQ_EXPR:
1136 /* Floating point comparisons appears to behave in a very
1137 unpredictable way because of special role of = tests in
1138 FP code. */
1139 if (FLOAT_TYPE_P (type))
1140 ;
1141 /* Comparisons with 0 are often used for booleans and there is
1142 nothing useful to predict about them. */
1143 else if (integer_zerop (op0)
1144 || integer_zerop (TREE_OPERAND (cond, 1)))
1145 ;
1146 else
1147 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1148 break;
1149
1150 case NE_EXPR:
1151 case LTGT_EXPR:
1152 /* Floating point comparisons appears to behave in a very
1153 unpredictable way because of special role of = tests in
1154 FP code. */
1155 if (FLOAT_TYPE_P (type))
1156 ;
1157 /* Comparisons with 0 are often used for booleans and there is
1158 nothing useful to predict about them. */
1159 else if (integer_zerop (op0)
1160 || integer_zerop (TREE_OPERAND (cond, 1)))
1161 ;
1162 else
1163 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1164 break;
1165
1166 case ORDERED_EXPR:
1167 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1168 break;
1169
1170 case UNORDERED_EXPR:
1171 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1172 break;
1173
1174 case LE_EXPR:
1175 case LT_EXPR:
1176 if (integer_zerop (TREE_OPERAND (cond, 1))
1177 || integer_onep (TREE_OPERAND (cond, 1))
1178 || integer_all_onesp (TREE_OPERAND (cond, 1))
1179 || real_zerop (TREE_OPERAND (cond, 1))
1180 || real_onep (TREE_OPERAND (cond, 1))
1181 || real_minus_onep (TREE_OPERAND (cond, 1)))
1182 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1183 break;
1184
1185 case GE_EXPR:
1186 case GT_EXPR:
1187 if (integer_zerop (TREE_OPERAND (cond, 1))
1188 || integer_onep (TREE_OPERAND (cond, 1))
1189 || integer_all_onesp (TREE_OPERAND (cond, 1))
1190 || real_zerop (TREE_OPERAND (cond, 1))
1191 || real_onep (TREE_OPERAND (cond, 1))
1192 || real_minus_onep (TREE_OPERAND (cond, 1)))
1193 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1194 break;
1195
1196 default:
1197 break;
1198 }
1199 }
1200
1201 /* Try to guess whether the value of return means error code. */
1202 static enum br_predictor
1203 return_prediction (tree val, enum prediction *prediction)
1204 {
1205 /* VOID. */
1206 if (!val)
1207 return PRED_NO_PREDICTION;
1208 /* Different heuristics for pointers and scalars. */
1209 if (POINTER_TYPE_P (TREE_TYPE (val)))
1210 {
1211 /* NULL is usually not returned. */
1212 if (integer_zerop (val))
1213 {
1214 *prediction = NOT_TAKEN;
1215 return PRED_NULL_RETURN;
1216 }
1217 }
1218 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1219 {
1220 /* Negative return values are often used to indicate
1221 errors. */
1222 if (TREE_CODE (val) == INTEGER_CST
1223 && tree_int_cst_sgn (val) < 0)
1224 {
1225 *prediction = NOT_TAKEN;
1226 return PRED_NEGATIVE_RETURN;
1227 }
1228 /* Constant return values seems to be commonly taken.
1229 Zero/one often represent booleans so exclude them from the
1230 heuristics. */
1231 if (TREE_CONSTANT (val)
1232 && (!integer_zerop (val) && !integer_onep (val)))
1233 {
1234 *prediction = TAKEN;
1235 return PRED_CONST_RETURN;
1236 }
1237 }
1238 return PRED_NO_PREDICTION;
1239 }
1240
1241 /* Find the basic block with return expression and look up for possible
1242 return value trying to apply RETURN_PREDICTION heuristics. */
1243 static void
1244 apply_return_prediction (void)
1245 {
1246 tree return_stmt = NULL;
1247 tree return_val;
1248 edge e;
1249 tree phi;
1250 int phi_num_args, i;
1251 enum br_predictor pred;
1252 enum prediction direction;
1253 edge_iterator ei;
1254
1255 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1256 {
1257 return_stmt = last_stmt (e->src);
1258 if (return_stmt
1259 && TREE_CODE (return_stmt) == RETURN_EXPR)
1260 break;
1261 }
1262 if (!e)
1263 return;
1264 return_val = TREE_OPERAND (return_stmt, 0);
1265 if (!return_val)
1266 return;
1267 if (TREE_CODE (return_val) == GIMPLE_MODIFY_STMT)
1268 return_val = GIMPLE_STMT_OPERAND (return_val, 1);
1269 if (TREE_CODE (return_val) != SSA_NAME
1270 || !SSA_NAME_DEF_STMT (return_val)
1271 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1272 return;
1273 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1274 if (PHI_RESULT (phi) == return_val)
1275 break;
1276 if (!phi)
1277 return;
1278 phi_num_args = PHI_NUM_ARGS (phi);
1279 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1280
1281 /* Avoid the degenerate case where all return values form the function
1282 belongs to same category (ie they are all positive constants)
1283 so we can hardly say something about them. */
1284 for (i = 1; i < phi_num_args; i++)
1285 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1286 break;
1287 if (i != phi_num_args)
1288 for (i = 0; i < phi_num_args; i++)
1289 {
1290 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1291 if (pred != PRED_NO_PREDICTION)
1292 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, pred,
1293 direction);
1294 }
1295 }
1296
1297 /* Look for basic block that contains unlikely to happen events
1298 (such as noreturn calls) and mark all paths leading to execution
1299 of this basic blocks as unlikely. */
1300
1301 static void
1302 tree_bb_level_predictions (void)
1303 {
1304 basic_block bb;
1305
1306 apply_return_prediction ();
1307
1308 FOR_EACH_BB (bb)
1309 {
1310 block_stmt_iterator bsi = bsi_last (bb);
1311
1312 for (bsi = bsi_start (bb); !bsi_end_p (bsi);)
1313 {
1314 tree stmt = bsi_stmt (bsi);
1315 tree decl;
1316 bool next = false;
1317
1318 switch (TREE_CODE (stmt))
1319 {
1320 case GIMPLE_MODIFY_STMT:
1321 if (TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR)
1322 {
1323 stmt = GIMPLE_STMT_OPERAND (stmt, 1);
1324 goto call_expr;
1325 }
1326 break;
1327 case CALL_EXPR:
1328 call_expr:;
1329 if (call_expr_flags (stmt) & ECF_NORETURN)
1330 predict_paths_leading_to (bb, PRED_NORETURN,
1331 NOT_TAKEN);
1332 decl = get_callee_fndecl (stmt);
1333 if (decl
1334 && lookup_attribute ("cold",
1335 DECL_ATTRIBUTES (decl)))
1336 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1337 NOT_TAKEN);
1338 break;
1339 case PREDICT_EXPR:
1340 predict_paths_leading_to (bb, PREDICT_EXPR_PREDICTOR (stmt),
1341 PREDICT_EXPR_OUTCOME (stmt));
1342 bsi_remove (&bsi, true);
1343 next = true;
1344 break;
1345 default:
1346 break;
1347 }
1348 if (!next)
1349 bsi_next (&bsi);
1350 }
1351 }
1352 }
1353
1354 #ifdef ENABLE_CHECKING
1355
1356 /* Callback for pointer_map_traverse, asserts that the pointer map is
1357 empty. */
1358
1359 static bool
1360 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1361 void *data ATTRIBUTE_UNUSED)
1362 {
1363 gcc_assert (!*value);
1364 return false;
1365 }
1366 #endif
1367
1368 /* Predict branch probabilities and estimate profile of the tree CFG. */
1369 static unsigned int
1370 tree_estimate_probability (void)
1371 {
1372 basic_block bb;
1373
1374 loop_optimizer_init (0);
1375 if (dump_file && (dump_flags & TDF_DETAILS))
1376 flow_loops_dump (dump_file, NULL, 0);
1377
1378 add_noreturn_fake_exit_edges ();
1379 connect_infinite_loops_to_exit ();
1380 /* We use loop_niter_by_eval, which requires that the loops have
1381 preheaders. */
1382 create_preheaders (CP_SIMPLE_PREHEADERS);
1383 calculate_dominance_info (CDI_POST_DOMINATORS);
1384
1385 bb_predictions = pointer_map_create ();
1386 tree_bb_level_predictions ();
1387
1388 mark_irreducible_loops ();
1389 record_loop_exits ();
1390 if (number_of_loops () > 1)
1391 predict_loops ();
1392
1393 FOR_EACH_BB (bb)
1394 {
1395 edge e;
1396 edge_iterator ei;
1397
1398 FOR_EACH_EDGE (e, ei, bb->succs)
1399 {
1400 /* Predict early returns to be probable, as we've already taken
1401 care for error returns and other cases are often used for
1402 fast paths through function.
1403
1404 Since we've already removed the return statements, we are
1405 looking for CFG like:
1406
1407 if (conditional)
1408 {
1409 ..
1410 goto return_block
1411 }
1412 some other blocks
1413 return_block:
1414 return_stmt. */
1415 if (e->dest != bb->next_bb
1416 && e->dest != EXIT_BLOCK_PTR
1417 && single_succ_p (e->dest)
1418 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1419 && TREE_CODE (last_stmt (e->dest)) == RETURN_EXPR)
1420 {
1421 edge e1;
1422 edge_iterator ei1;
1423
1424 if (single_succ_p (bb))
1425 {
1426 FOR_EACH_EDGE (e1, ei1, bb->preds)
1427 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1428 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1429 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1430 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1431 }
1432 else
1433 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1434 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1435 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1436 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1437 }
1438
1439 /* Look for block we are guarding (ie we dominate it,
1440 but it doesn't postdominate us). */
1441 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1442 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1443 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1444 {
1445 block_stmt_iterator bi;
1446
1447 /* The call heuristic claims that a guarded function call
1448 is improbable. This is because such calls are often used
1449 to signal exceptional situations such as printing error
1450 messages. */
1451 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1452 bsi_next (&bi))
1453 {
1454 tree stmt = bsi_stmt (bi);
1455 if ((TREE_CODE (stmt) == CALL_EXPR
1456 || (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1457 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1))
1458 == CALL_EXPR))
1459 /* Constant and pure calls are hardly used to signalize
1460 something exceptional. */
1461 && TREE_SIDE_EFFECTS (stmt))
1462 {
1463 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1464 break;
1465 }
1466 }
1467 }
1468 }
1469 tree_predict_by_opcode (bb);
1470 }
1471 FOR_EACH_BB (bb)
1472 combine_predictions_for_bb (bb);
1473
1474 #ifdef ENABLE_CHECKING
1475 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1476 #endif
1477 pointer_map_destroy (bb_predictions);
1478 bb_predictions = NULL;
1479
1480 strip_builtin_expect ();
1481 estimate_bb_frequencies ();
1482 free_dominance_info (CDI_POST_DOMINATORS);
1483 remove_fake_exit_edges ();
1484 loop_optimizer_finalize ();
1485 if (dump_file && (dump_flags & TDF_DETAILS))
1486 dump_tree_cfg (dump_file, dump_flags);
1487 if (profile_status == PROFILE_ABSENT)
1488 profile_status = PROFILE_GUESSED;
1489 return 0;
1490 }
1491 \f
1492 /* Predict edges to successors of CUR whose sources are not postdominated by
1493 BB by PRED and recurse to all postdominators. */
1494
1495 static void
1496 predict_paths_for_bb (basic_block cur, basic_block bb,
1497 enum br_predictor pred,
1498 enum prediction taken)
1499 {
1500 edge e;
1501 edge_iterator ei;
1502 basic_block son;
1503
1504 /* We are looking for all edges forming edge cut induced by
1505 set of all blocks postdominated by BB. */
1506 FOR_EACH_EDGE (e, ei, cur->preds)
1507 if (e->src->index >= NUM_FIXED_BLOCKS
1508 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1509 {
1510 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1511 predict_edge_def (e, pred, taken);
1512 }
1513 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1514 son;
1515 son = next_dom_son (CDI_POST_DOMINATORS, son))
1516 predict_paths_for_bb (son, bb, pred, taken);
1517 }
1518
1519 /* Sets branch probabilities according to PREDiction and
1520 FLAGS. */
1521
1522 static void
1523 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1524 enum prediction taken)
1525 {
1526 predict_paths_for_bb (bb, bb, pred, taken);
1527 }
1528 \f
1529 /* This is used to carry information about basic blocks. It is
1530 attached to the AUX field of the standard CFG block. */
1531
1532 typedef struct block_info_def
1533 {
1534 /* Estimated frequency of execution of basic_block. */
1535 sreal frequency;
1536
1537 /* To keep queue of basic blocks to process. */
1538 basic_block next;
1539
1540 /* Number of predecessors we need to visit first. */
1541 int npredecessors;
1542 } *block_info;
1543
1544 /* Similar information for edges. */
1545 typedef struct edge_info_def
1546 {
1547 /* In case edge is a loopback edge, the probability edge will be reached
1548 in case header is. Estimated number of iterations of the loop can be
1549 then computed as 1 / (1 - back_edge_prob). */
1550 sreal back_edge_prob;
1551 /* True if the edge is a loopback edge in the natural loop. */
1552 unsigned int back_edge:1;
1553 } *edge_info;
1554
1555 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1556 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1557
1558 /* Helper function for estimate_bb_frequencies.
1559 Propagate the frequencies in blocks marked in
1560 TOVISIT, starting in HEAD. */
1561
1562 static void
1563 propagate_freq (basic_block head, bitmap tovisit)
1564 {
1565 basic_block bb;
1566 basic_block last;
1567 unsigned i;
1568 edge e;
1569 basic_block nextbb;
1570 bitmap_iterator bi;
1571
1572 /* For each basic block we need to visit count number of his predecessors
1573 we need to visit first. */
1574 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1575 {
1576 edge_iterator ei;
1577 int count = 0;
1578
1579 /* The outermost "loop" includes the exit block, which we can not
1580 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1581 directly. Do the same for the entry block. */
1582 bb = BASIC_BLOCK (i);
1583
1584 FOR_EACH_EDGE (e, ei, bb->preds)
1585 {
1586 bool visit = bitmap_bit_p (tovisit, e->src->index);
1587
1588 if (visit && !(e->flags & EDGE_DFS_BACK))
1589 count++;
1590 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1591 fprintf (dump_file,
1592 "Irreducible region hit, ignoring edge to %i->%i\n",
1593 e->src->index, bb->index);
1594 }
1595 BLOCK_INFO (bb)->npredecessors = count;
1596 }
1597
1598 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1599 last = head;
1600 for (bb = head; bb; bb = nextbb)
1601 {
1602 edge_iterator ei;
1603 sreal cyclic_probability, frequency;
1604
1605 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1606 memcpy (&frequency, &real_zero, sizeof (real_zero));
1607
1608 nextbb = BLOCK_INFO (bb)->next;
1609 BLOCK_INFO (bb)->next = NULL;
1610
1611 /* Compute frequency of basic block. */
1612 if (bb != head)
1613 {
1614 #ifdef ENABLE_CHECKING
1615 FOR_EACH_EDGE (e, ei, bb->preds)
1616 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1617 || (e->flags & EDGE_DFS_BACK));
1618 #endif
1619
1620 FOR_EACH_EDGE (e, ei, bb->preds)
1621 if (EDGE_INFO (e)->back_edge)
1622 {
1623 sreal_add (&cyclic_probability, &cyclic_probability,
1624 &EDGE_INFO (e)->back_edge_prob);
1625 }
1626 else if (!(e->flags & EDGE_DFS_BACK))
1627 {
1628 sreal tmp;
1629
1630 /* frequency += (e->probability
1631 * BLOCK_INFO (e->src)->frequency /
1632 REG_BR_PROB_BASE); */
1633
1634 sreal_init (&tmp, e->probability, 0);
1635 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1636 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1637 sreal_add (&frequency, &frequency, &tmp);
1638 }
1639
1640 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1641 {
1642 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1643 sizeof (frequency));
1644 }
1645 else
1646 {
1647 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1648 {
1649 memcpy (&cyclic_probability, &real_almost_one,
1650 sizeof (real_almost_one));
1651 }
1652
1653 /* BLOCK_INFO (bb)->frequency = frequency
1654 / (1 - cyclic_probability) */
1655
1656 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1657 sreal_div (&BLOCK_INFO (bb)->frequency,
1658 &frequency, &cyclic_probability);
1659 }
1660 }
1661
1662 bitmap_clear_bit (tovisit, bb->index);
1663
1664 e = find_edge (bb, head);
1665 if (e)
1666 {
1667 sreal tmp;
1668
1669 /* EDGE_INFO (e)->back_edge_prob
1670 = ((e->probability * BLOCK_INFO (bb)->frequency)
1671 / REG_BR_PROB_BASE); */
1672
1673 sreal_init (&tmp, e->probability, 0);
1674 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1675 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1676 &tmp, &real_inv_br_prob_base);
1677 }
1678
1679 /* Propagate to successor blocks. */
1680 FOR_EACH_EDGE (e, ei, bb->succs)
1681 if (!(e->flags & EDGE_DFS_BACK)
1682 && BLOCK_INFO (e->dest)->npredecessors)
1683 {
1684 BLOCK_INFO (e->dest)->npredecessors--;
1685 if (!BLOCK_INFO (e->dest)->npredecessors)
1686 {
1687 if (!nextbb)
1688 nextbb = e->dest;
1689 else
1690 BLOCK_INFO (last)->next = e->dest;
1691
1692 last = e->dest;
1693 }
1694 }
1695 }
1696 }
1697
1698 /* Estimate probabilities of loopback edges in loops at same nest level. */
1699
1700 static void
1701 estimate_loops_at_level (struct loop *first_loop)
1702 {
1703 struct loop *loop;
1704
1705 for (loop = first_loop; loop; loop = loop->next)
1706 {
1707 edge e;
1708 basic_block *bbs;
1709 unsigned i;
1710 bitmap tovisit = BITMAP_ALLOC (NULL);
1711
1712 estimate_loops_at_level (loop->inner);
1713
1714 /* Find current loop back edge and mark it. */
1715 e = loop_latch_edge (loop);
1716 EDGE_INFO (e)->back_edge = 1;
1717
1718 bbs = get_loop_body (loop);
1719 for (i = 0; i < loop->num_nodes; i++)
1720 bitmap_set_bit (tovisit, bbs[i]->index);
1721 free (bbs);
1722 propagate_freq (loop->header, tovisit);
1723 BITMAP_FREE (tovisit);
1724 }
1725 }
1726
1727 /* Propagates frequencies through structure of loops. */
1728
1729 static void
1730 estimate_loops (void)
1731 {
1732 bitmap tovisit = BITMAP_ALLOC (NULL);
1733 basic_block bb;
1734
1735 /* Start by estimating the frequencies in the loops. */
1736 if (number_of_loops () > 1)
1737 estimate_loops_at_level (current_loops->tree_root->inner);
1738
1739 /* Now propagate the frequencies through all the blocks. */
1740 FOR_ALL_BB (bb)
1741 {
1742 bitmap_set_bit (tovisit, bb->index);
1743 }
1744 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1745 BITMAP_FREE (tovisit);
1746 }
1747
1748 /* Convert counts measured by profile driven feedback to frequencies.
1749 Return nonzero iff there was any nonzero execution count. */
1750
1751 int
1752 counts_to_freqs (void)
1753 {
1754 gcov_type count_max, true_count_max = 0;
1755 basic_block bb;
1756
1757 FOR_EACH_BB (bb)
1758 true_count_max = MAX (bb->count, true_count_max);
1759
1760 count_max = MAX (true_count_max, 1);
1761 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1762 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1763
1764 return true_count_max;
1765 }
1766
1767 /* Return true if function is likely to be expensive, so there is no point to
1768 optimize performance of prologue, epilogue or do inlining at the expense
1769 of code size growth. THRESHOLD is the limit of number of instructions
1770 function can execute at average to be still considered not expensive. */
1771
1772 bool
1773 expensive_function_p (int threshold)
1774 {
1775 unsigned int sum = 0;
1776 basic_block bb;
1777 unsigned int limit;
1778
1779 /* We can not compute accurately for large thresholds due to scaled
1780 frequencies. */
1781 gcc_assert (threshold <= BB_FREQ_MAX);
1782
1783 /* Frequencies are out of range. This either means that function contains
1784 internal loop executing more than BB_FREQ_MAX times or profile feedback
1785 is available and function has not been executed at all. */
1786 if (ENTRY_BLOCK_PTR->frequency == 0)
1787 return true;
1788
1789 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1790 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1791 FOR_EACH_BB (bb)
1792 {
1793 rtx insn;
1794
1795 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1796 insn = NEXT_INSN (insn))
1797 if (active_insn_p (insn))
1798 {
1799 sum += bb->frequency;
1800 if (sum > limit)
1801 return true;
1802 }
1803 }
1804
1805 return false;
1806 }
1807
1808 /* Estimate basic blocks frequency by given branch probabilities. */
1809
1810 void
1811 estimate_bb_frequencies (void)
1812 {
1813 basic_block bb;
1814 sreal freq_max;
1815
1816 if (!flag_branch_probabilities || !counts_to_freqs ())
1817 {
1818 static int real_values_initialized = 0;
1819
1820 if (!real_values_initialized)
1821 {
1822 real_values_initialized = 1;
1823 sreal_init (&real_zero, 0, 0);
1824 sreal_init (&real_one, 1, 0);
1825 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1826 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1827 sreal_init (&real_one_half, 1, -1);
1828 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1829 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1830 }
1831
1832 mark_dfs_back_edges ();
1833
1834 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1835
1836 /* Set up block info for each basic block. */
1837 alloc_aux_for_blocks (sizeof (struct block_info_def));
1838 alloc_aux_for_edges (sizeof (struct edge_info_def));
1839 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1840 {
1841 edge e;
1842 edge_iterator ei;
1843
1844 FOR_EACH_EDGE (e, ei, bb->succs)
1845 {
1846 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1847 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1848 &EDGE_INFO (e)->back_edge_prob,
1849 &real_inv_br_prob_base);
1850 }
1851 }
1852
1853 /* First compute probabilities locally for each loop from innermost
1854 to outermost to examine probabilities for back edges. */
1855 estimate_loops ();
1856
1857 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1858 FOR_EACH_BB (bb)
1859 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1860 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1861
1862 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1863 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1864 {
1865 sreal tmp;
1866
1867 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1868 sreal_add (&tmp, &tmp, &real_one_half);
1869 bb->frequency = sreal_to_int (&tmp);
1870 }
1871
1872 free_aux_for_blocks ();
1873 free_aux_for_edges ();
1874 }
1875 compute_function_frequency ();
1876 if (flag_reorder_functions)
1877 choose_function_section ();
1878 }
1879
1880 /* Decide whether function is hot, cold or unlikely executed. */
1881 static void
1882 compute_function_frequency (void)
1883 {
1884 basic_block bb;
1885
1886 if (!profile_info || !flag_branch_probabilities)
1887 {
1888 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
1889 != NULL)
1890 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1891 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
1892 != NULL)
1893 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1894 return;
1895 }
1896 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1897 FOR_EACH_BB (bb)
1898 {
1899 if (maybe_hot_bb_p (bb))
1900 {
1901 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1902 return;
1903 }
1904 if (!probably_never_executed_bb_p (bb))
1905 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1906 }
1907 }
1908
1909 /* Choose appropriate section for the function. */
1910 static void
1911 choose_function_section (void)
1912 {
1913 if (DECL_SECTION_NAME (current_function_decl)
1914 || !targetm.have_named_sections
1915 /* Theoretically we can split the gnu.linkonce text section too,
1916 but this requires more work as the frequency needs to match
1917 for all generated objects so we need to merge the frequency
1918 of all instances. For now just never set frequency for these. */
1919 || DECL_ONE_ONLY (current_function_decl))
1920 return;
1921
1922 /* If we are doing the partitioning optimization, let the optimization
1923 choose the correct section into which to put things. */
1924
1925 if (flag_reorder_blocks_and_partition)
1926 return;
1927
1928 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1929 DECL_SECTION_NAME (current_function_decl) =
1930 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1931 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1932 DECL_SECTION_NAME (current_function_decl) =
1933 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1934 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1935 }
1936
1937 static bool
1938 gate_estimate_probability (void)
1939 {
1940 return flag_guess_branch_prob;
1941 }
1942
1943 /* Build PREDICT_EXPR. */
1944 tree
1945 build_predict_expr (enum br_predictor predictor, enum prediction taken)
1946 {
1947 tree t = build1 (PREDICT_EXPR, void_type_node,
1948 build_int_cst (NULL, predictor));
1949 PREDICT_EXPR_OUTCOME (t) = taken;
1950 return t;
1951 }
1952
1953 const char *
1954 predictor_name (enum br_predictor predictor)
1955 {
1956 return predictor_info[predictor].name;
1957 }
1958
1959 struct gimple_opt_pass pass_profile =
1960 {
1961 {
1962 GIMPLE_PASS,
1963 "profile", /* name */
1964 gate_estimate_probability, /* gate */
1965 tree_estimate_probability, /* execute */
1966 NULL, /* sub */
1967 NULL, /* next */
1968 0, /* static_pass_number */
1969 TV_BRANCH_PROB, /* tv_id */
1970 PROP_cfg, /* properties_required */
1971 0, /* properties_provided */
1972 0, /* properties_destroyed */
1973 0, /* todo_flags_start */
1974 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
1975 }
1976 };