predict.c (expr_expected_value_1): Assume compare-and-swap builtin boolean return...
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "diagnostic-core.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
76
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
82
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
85
86 struct predictor_info
87 {
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
92 };
93
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
97
98 /* Recompute hitrate in percent to our representation. */
99
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
101
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
105
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
108 };
109 #undef DEF_PREDICTOR
110
111 /* Return TRUE if frequency FREQ is considered to be hot. */
112
113 static inline bool
114 maybe_hot_frequency_p (int freq)
115 {
116 struct cgraph_node *node = cgraph_get_node (current_function_decl);
117 if (!profile_info || !flag_branch_probabilities)
118 {
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
123 }
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR->frequency * 2 / 3))
128 return false;
129 if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
130 return false;
131 return true;
132 }
133
134 /* Return TRUE if frequency FREQ is considered to be hot. */
135
136 static inline bool
137 maybe_hot_count_p (gcov_type count)
138 {
139 if (profile_status != PROFILE_READ)
140 return true;
141 /* Code executed at most once is not hot. */
142 if (profile_info->runs >= count)
143 return false;
144 return (count
145 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
146 }
147
148 /* Return true in case BB can be CPU intensive and should be optimized
149 for maximal performance. */
150
151 bool
152 maybe_hot_bb_p (const_basic_block bb)
153 {
154 if (profile_status == PROFILE_READ)
155 return maybe_hot_count_p (bb->count);
156 return maybe_hot_frequency_p (bb->frequency);
157 }
158
159 /* Return true if the call can be hot. */
160
161 bool
162 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
163 {
164 if (profile_info && flag_branch_probabilities
165 && (edge->count
166 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
167 return false;
168 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
169 || edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
170 return false;
171 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
172 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
173 return false;
174 if (optimize_size)
175 return false;
176 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
177 return true;
178 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
179 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
180 return false;
181 if (flag_guess_branch_prob
182 && edge->frequency <= (CGRAPH_FREQ_BASE
183 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
184 return false;
185 return true;
186 }
187
188 /* Return true in case BB can be CPU intensive and should be optimized
189 for maximal performance. */
190
191 bool
192 maybe_hot_edge_p (edge e)
193 {
194 if (profile_status == PROFILE_READ)
195 return maybe_hot_count_p (e->count);
196 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
197 }
198
199
200 /* Return true in case BB is probably never executed. */
201
202 bool
203 probably_never_executed_bb_p (const_basic_block bb)
204 {
205 if (profile_info && flag_branch_probabilities)
206 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
207 if ((!profile_info || !flag_branch_probabilities)
208 && (cgraph_get_node (current_function_decl)->frequency
209 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
210 return true;
211 return false;
212 }
213
214 /* Return true if NODE should be optimized for size. */
215
216 bool
217 cgraph_optimize_for_size_p (struct cgraph_node *node)
218 {
219 if (optimize_size)
220 return true;
221 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
222 return true;
223 else
224 return false;
225 }
226
227 /* Return true when current function should always be optimized for size. */
228
229 bool
230 optimize_function_for_size_p (struct function *fun)
231 {
232 if (optimize_size)
233 return true;
234 if (!fun || !fun->decl)
235 return false;
236 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
237 }
238
239 /* Return true when current function should always be optimized for speed. */
240
241 bool
242 optimize_function_for_speed_p (struct function *fun)
243 {
244 return !optimize_function_for_size_p (fun);
245 }
246
247 /* Return TRUE when BB should be optimized for size. */
248
249 bool
250 optimize_bb_for_size_p (const_basic_block bb)
251 {
252 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
253 }
254
255 /* Return TRUE when BB should be optimized for speed. */
256
257 bool
258 optimize_bb_for_speed_p (const_basic_block bb)
259 {
260 return !optimize_bb_for_size_p (bb);
261 }
262
263 /* Return TRUE when BB should be optimized for size. */
264
265 bool
266 optimize_edge_for_size_p (edge e)
267 {
268 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
269 }
270
271 /* Return TRUE when BB should be optimized for speed. */
272
273 bool
274 optimize_edge_for_speed_p (edge e)
275 {
276 return !optimize_edge_for_size_p (e);
277 }
278
279 /* Return TRUE when BB should be optimized for size. */
280
281 bool
282 optimize_insn_for_size_p (void)
283 {
284 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
285 }
286
287 /* Return TRUE when BB should be optimized for speed. */
288
289 bool
290 optimize_insn_for_speed_p (void)
291 {
292 return !optimize_insn_for_size_p ();
293 }
294
295 /* Return TRUE when LOOP should be optimized for size. */
296
297 bool
298 optimize_loop_for_size_p (struct loop *loop)
299 {
300 return optimize_bb_for_size_p (loop->header);
301 }
302
303 /* Return TRUE when LOOP should be optimized for speed. */
304
305 bool
306 optimize_loop_for_speed_p (struct loop *loop)
307 {
308 return optimize_bb_for_speed_p (loop->header);
309 }
310
311 /* Return TRUE when LOOP nest should be optimized for speed. */
312
313 bool
314 optimize_loop_nest_for_speed_p (struct loop *loop)
315 {
316 struct loop *l = loop;
317 if (optimize_loop_for_speed_p (loop))
318 return true;
319 l = loop->inner;
320 while (l && l != loop)
321 {
322 if (optimize_loop_for_speed_p (l))
323 return true;
324 if (l->inner)
325 l = l->inner;
326 else if (l->next)
327 l = l->next;
328 else
329 {
330 while (l != loop && !l->next)
331 l = loop_outer (l);
332 if (l != loop)
333 l = l->next;
334 }
335 }
336 return false;
337 }
338
339 /* Return TRUE when LOOP nest should be optimized for size. */
340
341 bool
342 optimize_loop_nest_for_size_p (struct loop *loop)
343 {
344 return !optimize_loop_nest_for_speed_p (loop);
345 }
346
347 /* Return true when edge E is likely to be well predictable by branch
348 predictor. */
349
350 bool
351 predictable_edge_p (edge e)
352 {
353 if (profile_status == PROFILE_ABSENT)
354 return false;
355 if ((e->probability
356 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
357 || (REG_BR_PROB_BASE - e->probability
358 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
359 return true;
360 return false;
361 }
362
363
364 /* Set RTL expansion for BB profile. */
365
366 void
367 rtl_profile_for_bb (basic_block bb)
368 {
369 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
370 }
371
372 /* Set RTL expansion for edge profile. */
373
374 void
375 rtl_profile_for_edge (edge e)
376 {
377 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
378 }
379
380 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
381 void
382 default_rtl_profile (void)
383 {
384 crtl->maybe_hot_insn_p = true;
385 }
386
387 /* Return true if the one of outgoing edges is already predicted by
388 PREDICTOR. */
389
390 bool
391 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
392 {
393 rtx note;
394 if (!INSN_P (BB_END (bb)))
395 return false;
396 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
397 if (REG_NOTE_KIND (note) == REG_BR_PRED
398 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
399 return true;
400 return false;
401 }
402
403 /* This map contains for a basic block the list of predictions for the
404 outgoing edges. */
405
406 static struct pointer_map_t *bb_predictions;
407
408 /* Structure representing predictions in tree level. */
409
410 struct edge_prediction {
411 struct edge_prediction *ep_next;
412 edge ep_edge;
413 enum br_predictor ep_predictor;
414 int ep_probability;
415 };
416
417 /* Return true if the one of outgoing edges is already predicted by
418 PREDICTOR. */
419
420 bool
421 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
422 {
423 struct edge_prediction *i;
424 void **preds = pointer_map_contains (bb_predictions, bb);
425
426 if (!preds)
427 return false;
428
429 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
430 if (i->ep_predictor == predictor)
431 return true;
432 return false;
433 }
434
435 /* Return true when the probability of edge is reliable.
436
437 The profile guessing code is good at predicting branch outcome (ie.
438 taken/not taken), that is predicted right slightly over 75% of time.
439 It is however notoriously poor on predicting the probability itself.
440 In general the profile appear a lot flatter (with probabilities closer
441 to 50%) than the reality so it is bad idea to use it to drive optimization
442 such as those disabling dynamic branch prediction for well predictable
443 branches.
444
445 There are two exceptions - edges leading to noreturn edges and edges
446 predicted by number of iterations heuristics are predicted well. This macro
447 should be able to distinguish those, but at the moment it simply check for
448 noreturn heuristic that is only one giving probability over 99% or bellow
449 1%. In future we might want to propagate reliability information across the
450 CFG if we find this information useful on multiple places. */
451 static bool
452 probability_reliable_p (int prob)
453 {
454 return (profile_status == PROFILE_READ
455 || (profile_status == PROFILE_GUESSED
456 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
457 }
458
459 /* Same predicate as above, working on edges. */
460 bool
461 edge_probability_reliable_p (const_edge e)
462 {
463 return probability_reliable_p (e->probability);
464 }
465
466 /* Same predicate as edge_probability_reliable_p, working on notes. */
467 bool
468 br_prob_note_reliable_p (const_rtx note)
469 {
470 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
471 return probability_reliable_p (INTVAL (XEXP (note, 0)));
472 }
473
474 static void
475 predict_insn (rtx insn, enum br_predictor predictor, int probability)
476 {
477 gcc_assert (any_condjump_p (insn));
478 if (!flag_guess_branch_prob)
479 return;
480
481 add_reg_note (insn, REG_BR_PRED,
482 gen_rtx_CONCAT (VOIDmode,
483 GEN_INT ((int) predictor),
484 GEN_INT ((int) probability)));
485 }
486
487 /* Predict insn by given predictor. */
488
489 void
490 predict_insn_def (rtx insn, enum br_predictor predictor,
491 enum prediction taken)
492 {
493 int probability = predictor_info[(int) predictor].hitrate;
494
495 if (taken != TAKEN)
496 probability = REG_BR_PROB_BASE - probability;
497
498 predict_insn (insn, predictor, probability);
499 }
500
501 /* Predict edge E with given probability if possible. */
502
503 void
504 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
505 {
506 rtx last_insn;
507 last_insn = BB_END (e->src);
508
509 /* We can store the branch prediction information only about
510 conditional jumps. */
511 if (!any_condjump_p (last_insn))
512 return;
513
514 /* We always store probability of branching. */
515 if (e->flags & EDGE_FALLTHRU)
516 probability = REG_BR_PROB_BASE - probability;
517
518 predict_insn (last_insn, predictor, probability);
519 }
520
521 /* Predict edge E with the given PROBABILITY. */
522 void
523 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
524 {
525 gcc_assert (profile_status != PROFILE_GUESSED);
526 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
527 && flag_guess_branch_prob && optimize)
528 {
529 struct edge_prediction *i = XNEW (struct edge_prediction);
530 void **preds = pointer_map_insert (bb_predictions, e->src);
531
532 i->ep_next = (struct edge_prediction *) *preds;
533 *preds = i;
534 i->ep_probability = probability;
535 i->ep_predictor = predictor;
536 i->ep_edge = e;
537 }
538 }
539
540 /* Remove all predictions on given basic block that are attached
541 to edge E. */
542 void
543 remove_predictions_associated_with_edge (edge e)
544 {
545 void **preds;
546
547 if (!bb_predictions)
548 return;
549
550 preds = pointer_map_contains (bb_predictions, e->src);
551
552 if (preds)
553 {
554 struct edge_prediction **prediction = (struct edge_prediction **) preds;
555 struct edge_prediction *next;
556
557 while (*prediction)
558 {
559 if ((*prediction)->ep_edge == e)
560 {
561 next = (*prediction)->ep_next;
562 free (*prediction);
563 *prediction = next;
564 }
565 else
566 prediction = &((*prediction)->ep_next);
567 }
568 }
569 }
570
571 /* Clears the list of predictions stored for BB. */
572
573 static void
574 clear_bb_predictions (basic_block bb)
575 {
576 void **preds = pointer_map_contains (bb_predictions, bb);
577 struct edge_prediction *pred, *next;
578
579 if (!preds)
580 return;
581
582 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
583 {
584 next = pred->ep_next;
585 free (pred);
586 }
587 *preds = NULL;
588 }
589
590 /* Return true when we can store prediction on insn INSN.
591 At the moment we represent predictions only on conditional
592 jumps, not at computed jump or other complicated cases. */
593 static bool
594 can_predict_insn_p (const_rtx insn)
595 {
596 return (JUMP_P (insn)
597 && any_condjump_p (insn)
598 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
599 }
600
601 /* Predict edge E by given predictor if possible. */
602
603 void
604 predict_edge_def (edge e, enum br_predictor predictor,
605 enum prediction taken)
606 {
607 int probability = predictor_info[(int) predictor].hitrate;
608
609 if (taken != TAKEN)
610 probability = REG_BR_PROB_BASE - probability;
611
612 predict_edge (e, predictor, probability);
613 }
614
615 /* Invert all branch predictions or probability notes in the INSN. This needs
616 to be done each time we invert the condition used by the jump. */
617
618 void
619 invert_br_probabilities (rtx insn)
620 {
621 rtx note;
622
623 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
624 if (REG_NOTE_KIND (note) == REG_BR_PROB)
625 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
626 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
627 XEXP (XEXP (note, 0), 1)
628 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
629 }
630
631 /* Dump information about the branch prediction to the output file. */
632
633 static void
634 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
635 basic_block bb, int used)
636 {
637 edge e;
638 edge_iterator ei;
639
640 if (!file)
641 return;
642
643 FOR_EACH_EDGE (e, ei, bb->succs)
644 if (! (e->flags & EDGE_FALLTHRU))
645 break;
646
647 fprintf (file, " %s heuristics%s: %.1f%%",
648 predictor_info[predictor].name,
649 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
650
651 if (bb->count)
652 {
653 fprintf (file, " exec ");
654 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
655 if (e)
656 {
657 fprintf (file, " hit ");
658 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
659 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
660 }
661 }
662
663 fprintf (file, "\n");
664 }
665
666 /* We can not predict the probabilities of outgoing edges of bb. Set them
667 evenly and hope for the best. */
668 static void
669 set_even_probabilities (basic_block bb)
670 {
671 int nedges = 0;
672 edge e;
673 edge_iterator ei;
674
675 FOR_EACH_EDGE (e, ei, bb->succs)
676 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
677 nedges ++;
678 FOR_EACH_EDGE (e, ei, bb->succs)
679 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
680 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
681 else
682 e->probability = 0;
683 }
684
685 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
686 note if not already present. Remove now useless REG_BR_PRED notes. */
687
688 static void
689 combine_predictions_for_insn (rtx insn, basic_block bb)
690 {
691 rtx prob_note;
692 rtx *pnote;
693 rtx note;
694 int best_probability = PROB_EVEN;
695 enum br_predictor best_predictor = END_PREDICTORS;
696 int combined_probability = REG_BR_PROB_BASE / 2;
697 int d;
698 bool first_match = false;
699 bool found = false;
700
701 if (!can_predict_insn_p (insn))
702 {
703 set_even_probabilities (bb);
704 return;
705 }
706
707 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
708 pnote = &REG_NOTES (insn);
709 if (dump_file)
710 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
711 bb->index);
712
713 /* We implement "first match" heuristics and use probability guessed
714 by predictor with smallest index. */
715 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
716 if (REG_NOTE_KIND (note) == REG_BR_PRED)
717 {
718 enum br_predictor predictor = ((enum br_predictor)
719 INTVAL (XEXP (XEXP (note, 0), 0)));
720 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
721
722 found = true;
723 if (best_predictor > predictor)
724 best_probability = probability, best_predictor = predictor;
725
726 d = (combined_probability * probability
727 + (REG_BR_PROB_BASE - combined_probability)
728 * (REG_BR_PROB_BASE - probability));
729
730 /* Use FP math to avoid overflows of 32bit integers. */
731 if (d == 0)
732 /* If one probability is 0% and one 100%, avoid division by zero. */
733 combined_probability = REG_BR_PROB_BASE / 2;
734 else
735 combined_probability = (((double) combined_probability) * probability
736 * REG_BR_PROB_BASE / d + 0.5);
737 }
738
739 /* Decide which heuristic to use. In case we didn't match anything,
740 use no_prediction heuristic, in case we did match, use either
741 first match or Dempster-Shaffer theory depending on the flags. */
742
743 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
744 first_match = true;
745
746 if (!found)
747 dump_prediction (dump_file, PRED_NO_PREDICTION,
748 combined_probability, bb, true);
749 else
750 {
751 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
752 bb, !first_match);
753 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
754 bb, first_match);
755 }
756
757 if (first_match)
758 combined_probability = best_probability;
759 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
760
761 while (*pnote)
762 {
763 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
764 {
765 enum br_predictor predictor = ((enum br_predictor)
766 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
767 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
768
769 dump_prediction (dump_file, predictor, probability, bb,
770 !first_match || best_predictor == predictor);
771 *pnote = XEXP (*pnote, 1);
772 }
773 else
774 pnote = &XEXP (*pnote, 1);
775 }
776
777 if (!prob_note)
778 {
779 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
780
781 /* Save the prediction into CFG in case we are seeing non-degenerated
782 conditional jump. */
783 if (!single_succ_p (bb))
784 {
785 BRANCH_EDGE (bb)->probability = combined_probability;
786 FALLTHRU_EDGE (bb)->probability
787 = REG_BR_PROB_BASE - combined_probability;
788 }
789 }
790 else if (!single_succ_p (bb))
791 {
792 int prob = INTVAL (XEXP (prob_note, 0));
793
794 BRANCH_EDGE (bb)->probability = prob;
795 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
796 }
797 else
798 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
799 }
800
801 /* Combine predictions into single probability and store them into CFG.
802 Remove now useless prediction entries. */
803
804 static void
805 combine_predictions_for_bb (basic_block bb)
806 {
807 int best_probability = PROB_EVEN;
808 enum br_predictor best_predictor = END_PREDICTORS;
809 int combined_probability = REG_BR_PROB_BASE / 2;
810 int d;
811 bool first_match = false;
812 bool found = false;
813 struct edge_prediction *pred;
814 int nedges = 0;
815 edge e, first = NULL, second = NULL;
816 edge_iterator ei;
817 void **preds;
818
819 FOR_EACH_EDGE (e, ei, bb->succs)
820 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
821 {
822 nedges ++;
823 if (first && !second)
824 second = e;
825 if (!first)
826 first = e;
827 }
828
829 /* When there is no successor or only one choice, prediction is easy.
830
831 We are lazy for now and predict only basic blocks with two outgoing
832 edges. It is possible to predict generic case too, but we have to
833 ignore first match heuristics and do more involved combining. Implement
834 this later. */
835 if (nedges != 2)
836 {
837 if (!bb->count)
838 set_even_probabilities (bb);
839 clear_bb_predictions (bb);
840 if (dump_file)
841 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
842 nedges, bb->index);
843 return;
844 }
845
846 if (dump_file)
847 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
848
849 preds = pointer_map_contains (bb_predictions, bb);
850 if (preds)
851 {
852 /* We implement "first match" heuristics and use probability guessed
853 by predictor with smallest index. */
854 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
855 {
856 enum br_predictor predictor = pred->ep_predictor;
857 int probability = pred->ep_probability;
858
859 if (pred->ep_edge != first)
860 probability = REG_BR_PROB_BASE - probability;
861
862 found = true;
863 /* First match heuristics would be widly confused if we predicted
864 both directions. */
865 if (best_predictor > predictor)
866 {
867 struct edge_prediction *pred2;
868 int prob = probability;
869
870 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
871 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
872 {
873 int probability2 = pred->ep_probability;
874
875 if (pred2->ep_edge != first)
876 probability2 = REG_BR_PROB_BASE - probability2;
877
878 if ((probability < REG_BR_PROB_BASE / 2) !=
879 (probability2 < REG_BR_PROB_BASE / 2))
880 break;
881
882 /* If the same predictor later gave better result, go for it! */
883 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
884 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
885 prob = probability2;
886 }
887 if (!pred2)
888 best_probability = prob, best_predictor = predictor;
889 }
890
891 d = (combined_probability * probability
892 + (REG_BR_PROB_BASE - combined_probability)
893 * (REG_BR_PROB_BASE - probability));
894
895 /* Use FP math to avoid overflows of 32bit integers. */
896 if (d == 0)
897 /* If one probability is 0% and one 100%, avoid division by zero. */
898 combined_probability = REG_BR_PROB_BASE / 2;
899 else
900 combined_probability = (((double) combined_probability)
901 * probability
902 * REG_BR_PROB_BASE / d + 0.5);
903 }
904 }
905
906 /* Decide which heuristic to use. In case we didn't match anything,
907 use no_prediction heuristic, in case we did match, use either
908 first match or Dempster-Shaffer theory depending on the flags. */
909
910 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
911 first_match = true;
912
913 if (!found)
914 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
915 else
916 {
917 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
918 !first_match);
919 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
920 first_match);
921 }
922
923 if (first_match)
924 combined_probability = best_probability;
925 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
926
927 if (preds)
928 {
929 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
930 {
931 enum br_predictor predictor = pred->ep_predictor;
932 int probability = pred->ep_probability;
933
934 if (pred->ep_edge != EDGE_SUCC (bb, 0))
935 probability = REG_BR_PROB_BASE - probability;
936 dump_prediction (dump_file, predictor, probability, bb,
937 !first_match || best_predictor == predictor);
938 }
939 }
940 clear_bb_predictions (bb);
941
942 if (!bb->count)
943 {
944 first->probability = combined_probability;
945 second->probability = REG_BR_PROB_BASE - combined_probability;
946 }
947 }
948
949 /* Predict edge probabilities by exploiting loop structure. */
950
951 static void
952 predict_loops (void)
953 {
954 loop_iterator li;
955 struct loop *loop;
956
957 /* Try to predict out blocks in a loop that are not part of a
958 natural loop. */
959 FOR_EACH_LOOP (li, loop, 0)
960 {
961 basic_block bb, *bbs;
962 unsigned j, n_exits;
963 VEC (edge, heap) *exits;
964 struct tree_niter_desc niter_desc;
965 edge ex;
966
967 exits = get_loop_exit_edges (loop);
968 n_exits = VEC_length (edge, exits);
969
970 FOR_EACH_VEC_ELT (edge, exits, j, ex)
971 {
972 tree niter = NULL;
973 HOST_WIDE_INT nitercst;
974 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
975 int probability;
976 enum br_predictor predictor;
977
978 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
979 niter = niter_desc.niter;
980 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
981 niter = loop_niter_by_eval (loop, ex);
982
983 if (TREE_CODE (niter) == INTEGER_CST)
984 {
985 if (host_integerp (niter, 1)
986 && compare_tree_int (niter, max-1) == -1)
987 nitercst = tree_low_cst (niter, 1) + 1;
988 else
989 nitercst = max;
990 predictor = PRED_LOOP_ITERATIONS;
991 }
992 /* If we have just one exit and we can derive some information about
993 the number of iterations of the loop from the statements inside
994 the loop, use it to predict this exit. */
995 else if (n_exits == 1)
996 {
997 nitercst = max_stmt_executions_int (loop, false);
998 if (nitercst < 0)
999 continue;
1000 if (nitercst > max)
1001 nitercst = max;
1002
1003 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1004 }
1005 else
1006 continue;
1007
1008 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1009 predict_edge (ex, predictor, probability);
1010 }
1011 VEC_free (edge, heap, exits);
1012
1013 bbs = get_loop_body (loop);
1014
1015 for (j = 0; j < loop->num_nodes; j++)
1016 {
1017 int header_found = 0;
1018 edge e;
1019 edge_iterator ei;
1020
1021 bb = bbs[j];
1022
1023 /* Bypass loop heuristics on continue statement. These
1024 statements construct loops via "non-loop" constructs
1025 in the source language and are better to be handled
1026 separately. */
1027 if (predicted_by_p (bb, PRED_CONTINUE))
1028 continue;
1029
1030 /* Loop branch heuristics - predict an edge back to a
1031 loop's head as taken. */
1032 if (bb == loop->latch)
1033 {
1034 e = find_edge (loop->latch, loop->header);
1035 if (e)
1036 {
1037 header_found = 1;
1038 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1039 }
1040 }
1041
1042 /* Loop exit heuristics - predict an edge exiting the loop if the
1043 conditional has no loop header successors as not taken. */
1044 if (!header_found
1045 /* If we already used more reliable loop exit predictors, do not
1046 bother with PRED_LOOP_EXIT. */
1047 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1048 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1049 {
1050 /* For loop with many exits we don't want to predict all exits
1051 with the pretty large probability, because if all exits are
1052 considered in row, the loop would be predicted to iterate
1053 almost never. The code to divide probability by number of
1054 exits is very rough. It should compute the number of exits
1055 taken in each patch through function (not the overall number
1056 of exits that might be a lot higher for loops with wide switch
1057 statements in them) and compute n-th square root.
1058
1059 We limit the minimal probability by 2% to avoid
1060 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1061 as this was causing regression in perl benchmark containing such
1062 a wide loop. */
1063
1064 int probability = ((REG_BR_PROB_BASE
1065 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1066 / n_exits);
1067 if (probability < HITRATE (2))
1068 probability = HITRATE (2);
1069 FOR_EACH_EDGE (e, ei, bb->succs)
1070 if (e->dest->index < NUM_FIXED_BLOCKS
1071 || !flow_bb_inside_loop_p (loop, e->dest))
1072 predict_edge (e, PRED_LOOP_EXIT, probability);
1073 }
1074 }
1075
1076 /* Free basic blocks from get_loop_body. */
1077 free (bbs);
1078 }
1079 }
1080
1081 /* Attempt to predict probabilities of BB outgoing edges using local
1082 properties. */
1083 static void
1084 bb_estimate_probability_locally (basic_block bb)
1085 {
1086 rtx last_insn = BB_END (bb);
1087 rtx cond;
1088
1089 if (! can_predict_insn_p (last_insn))
1090 return;
1091 cond = get_condition (last_insn, NULL, false, false);
1092 if (! cond)
1093 return;
1094
1095 /* Try "pointer heuristic."
1096 A comparison ptr == 0 is predicted as false.
1097 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1098 if (COMPARISON_P (cond)
1099 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1100 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1101 {
1102 if (GET_CODE (cond) == EQ)
1103 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1104 else if (GET_CODE (cond) == NE)
1105 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1106 }
1107 else
1108
1109 /* Try "opcode heuristic."
1110 EQ tests are usually false and NE tests are usually true. Also,
1111 most quantities are positive, so we can make the appropriate guesses
1112 about signed comparisons against zero. */
1113 switch (GET_CODE (cond))
1114 {
1115 case CONST_INT:
1116 /* Unconditional branch. */
1117 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1118 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1119 break;
1120
1121 case EQ:
1122 case UNEQ:
1123 /* Floating point comparisons appears to behave in a very
1124 unpredictable way because of special role of = tests in
1125 FP code. */
1126 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1127 ;
1128 /* Comparisons with 0 are often used for booleans and there is
1129 nothing useful to predict about them. */
1130 else if (XEXP (cond, 1) == const0_rtx
1131 || XEXP (cond, 0) == const0_rtx)
1132 ;
1133 else
1134 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1135 break;
1136
1137 case NE:
1138 case LTGT:
1139 /* Floating point comparisons appears to behave in a very
1140 unpredictable way because of special role of = tests in
1141 FP code. */
1142 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1143 ;
1144 /* Comparisons with 0 are often used for booleans and there is
1145 nothing useful to predict about them. */
1146 else if (XEXP (cond, 1) == const0_rtx
1147 || XEXP (cond, 0) == const0_rtx)
1148 ;
1149 else
1150 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1151 break;
1152
1153 case ORDERED:
1154 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1155 break;
1156
1157 case UNORDERED:
1158 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1159 break;
1160
1161 case LE:
1162 case LT:
1163 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1164 || XEXP (cond, 1) == constm1_rtx)
1165 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1166 break;
1167
1168 case GE:
1169 case GT:
1170 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1171 || XEXP (cond, 1) == constm1_rtx)
1172 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1173 break;
1174
1175 default:
1176 break;
1177 }
1178 }
1179
1180 /* Set edge->probability for each successor edge of BB. */
1181 void
1182 guess_outgoing_edge_probabilities (basic_block bb)
1183 {
1184 bb_estimate_probability_locally (bb);
1185 combine_predictions_for_insn (BB_END (bb), bb);
1186 }
1187 \f
1188 static tree expr_expected_value (tree, bitmap);
1189
1190 /* Helper function for expr_expected_value. */
1191
1192 static tree
1193 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1194 tree op1, bitmap visited)
1195 {
1196 gimple def;
1197
1198 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1199 {
1200 if (TREE_CONSTANT (op0))
1201 return op0;
1202
1203 if (code != SSA_NAME)
1204 return NULL_TREE;
1205
1206 def = SSA_NAME_DEF_STMT (op0);
1207
1208 /* If we were already here, break the infinite cycle. */
1209 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1210 return NULL;
1211
1212 if (gimple_code (def) == GIMPLE_PHI)
1213 {
1214 /* All the arguments of the PHI node must have the same constant
1215 length. */
1216 int i, n = gimple_phi_num_args (def);
1217 tree val = NULL, new_val;
1218
1219 for (i = 0; i < n; i++)
1220 {
1221 tree arg = PHI_ARG_DEF (def, i);
1222
1223 /* If this PHI has itself as an argument, we cannot
1224 determine the string length of this argument. However,
1225 if we can find an expected constant value for the other
1226 PHI args then we can still be sure that this is
1227 likely a constant. So be optimistic and just
1228 continue with the next argument. */
1229 if (arg == PHI_RESULT (def))
1230 continue;
1231
1232 new_val = expr_expected_value (arg, visited);
1233 if (!new_val)
1234 return NULL;
1235 if (!val)
1236 val = new_val;
1237 else if (!operand_equal_p (val, new_val, false))
1238 return NULL;
1239 }
1240 return val;
1241 }
1242 if (is_gimple_assign (def))
1243 {
1244 if (gimple_assign_lhs (def) != op0)
1245 return NULL;
1246
1247 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1248 gimple_assign_rhs1 (def),
1249 gimple_assign_rhs_code (def),
1250 gimple_assign_rhs2 (def),
1251 visited);
1252 }
1253
1254 if (is_gimple_call (def))
1255 {
1256 tree decl = gimple_call_fndecl (def);
1257 if (!decl)
1258 return NULL;
1259 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1260 switch (DECL_FUNCTION_CODE (decl))
1261 {
1262 case BUILT_IN_EXPECT:
1263 {
1264 tree val;
1265 if (gimple_call_num_args (def) != 2)
1266 return NULL;
1267 val = gimple_call_arg (def, 0);
1268 if (TREE_CONSTANT (val))
1269 return val;
1270 return gimple_call_arg (def, 1);
1271 }
1272
1273 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1274 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1275 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1276 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1277 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1278 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1279 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1280 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1281 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1282 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1283 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1284 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1285 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1286 /* Assume that any given atomic operation has low contention,
1287 and thus the compare-and-swap operation succeeds. */
1288 return boolean_true_node;
1289 }
1290 }
1291
1292 return NULL;
1293 }
1294
1295 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1296 {
1297 tree res;
1298 op0 = expr_expected_value (op0, visited);
1299 if (!op0)
1300 return NULL;
1301 op1 = expr_expected_value (op1, visited);
1302 if (!op1)
1303 return NULL;
1304 res = fold_build2 (code, type, op0, op1);
1305 if (TREE_CONSTANT (res))
1306 return res;
1307 return NULL;
1308 }
1309 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1310 {
1311 tree res;
1312 op0 = expr_expected_value (op0, visited);
1313 if (!op0)
1314 return NULL;
1315 res = fold_build1 (code, type, op0);
1316 if (TREE_CONSTANT (res))
1317 return res;
1318 return NULL;
1319 }
1320 return NULL;
1321 }
1322
1323 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1324 The function is used by builtin_expect branch predictor so the evidence
1325 must come from this construct and additional possible constant folding.
1326
1327 We may want to implement more involved value guess (such as value range
1328 propagation based prediction), but such tricks shall go to new
1329 implementation. */
1330
1331 static tree
1332 expr_expected_value (tree expr, bitmap visited)
1333 {
1334 enum tree_code code;
1335 tree op0, op1;
1336
1337 if (TREE_CONSTANT (expr))
1338 return expr;
1339
1340 extract_ops_from_tree (expr, &code, &op0, &op1);
1341 return expr_expected_value_1 (TREE_TYPE (expr),
1342 op0, code, op1, visited);
1343 }
1344
1345 \f
1346 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1347 we no longer need. */
1348 static unsigned int
1349 strip_predict_hints (void)
1350 {
1351 basic_block bb;
1352 gimple ass_stmt;
1353 tree var;
1354
1355 FOR_EACH_BB (bb)
1356 {
1357 gimple_stmt_iterator bi;
1358 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1359 {
1360 gimple stmt = gsi_stmt (bi);
1361
1362 if (gimple_code (stmt) == GIMPLE_PREDICT)
1363 {
1364 gsi_remove (&bi, true);
1365 continue;
1366 }
1367 else if (gimple_code (stmt) == GIMPLE_CALL)
1368 {
1369 tree fndecl = gimple_call_fndecl (stmt);
1370
1371 if (fndecl
1372 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1373 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1374 && gimple_call_num_args (stmt) == 2)
1375 {
1376 var = gimple_call_lhs (stmt);
1377 if (var)
1378 {
1379 ass_stmt
1380 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1381 gsi_replace (&bi, ass_stmt, true);
1382 }
1383 else
1384 {
1385 gsi_remove (&bi, true);
1386 continue;
1387 }
1388 }
1389 }
1390 gsi_next (&bi);
1391 }
1392 }
1393 return 0;
1394 }
1395 \f
1396 /* Predict using opcode of the last statement in basic block. */
1397 static void
1398 tree_predict_by_opcode (basic_block bb)
1399 {
1400 gimple stmt = last_stmt (bb);
1401 edge then_edge;
1402 tree op0, op1;
1403 tree type;
1404 tree val;
1405 enum tree_code cmp;
1406 bitmap visited;
1407 edge_iterator ei;
1408
1409 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1410 return;
1411 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1412 if (then_edge->flags & EDGE_TRUE_VALUE)
1413 break;
1414 op0 = gimple_cond_lhs (stmt);
1415 op1 = gimple_cond_rhs (stmt);
1416 cmp = gimple_cond_code (stmt);
1417 type = TREE_TYPE (op0);
1418 visited = BITMAP_ALLOC (NULL);
1419 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1420 BITMAP_FREE (visited);
1421 if (val)
1422 {
1423 if (integer_zerop (val))
1424 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1425 else
1426 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1427 return;
1428 }
1429 /* Try "pointer heuristic."
1430 A comparison ptr == 0 is predicted as false.
1431 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1432 if (POINTER_TYPE_P (type))
1433 {
1434 if (cmp == EQ_EXPR)
1435 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1436 else if (cmp == NE_EXPR)
1437 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1438 }
1439 else
1440
1441 /* Try "opcode heuristic."
1442 EQ tests are usually false and NE tests are usually true. Also,
1443 most quantities are positive, so we can make the appropriate guesses
1444 about signed comparisons against zero. */
1445 switch (cmp)
1446 {
1447 case EQ_EXPR:
1448 case UNEQ_EXPR:
1449 /* Floating point comparisons appears to behave in a very
1450 unpredictable way because of special role of = tests in
1451 FP code. */
1452 if (FLOAT_TYPE_P (type))
1453 ;
1454 /* Comparisons with 0 are often used for booleans and there is
1455 nothing useful to predict about them. */
1456 else if (integer_zerop (op0) || integer_zerop (op1))
1457 ;
1458 else
1459 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1460 break;
1461
1462 case NE_EXPR:
1463 case LTGT_EXPR:
1464 /* Floating point comparisons appears to behave in a very
1465 unpredictable way because of special role of = tests in
1466 FP code. */
1467 if (FLOAT_TYPE_P (type))
1468 ;
1469 /* Comparisons with 0 are often used for booleans and there is
1470 nothing useful to predict about them. */
1471 else if (integer_zerop (op0)
1472 || integer_zerop (op1))
1473 ;
1474 else
1475 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1476 break;
1477
1478 case ORDERED_EXPR:
1479 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1480 break;
1481
1482 case UNORDERED_EXPR:
1483 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1484 break;
1485
1486 case LE_EXPR:
1487 case LT_EXPR:
1488 if (integer_zerop (op1)
1489 || integer_onep (op1)
1490 || integer_all_onesp (op1)
1491 || real_zerop (op1)
1492 || real_onep (op1)
1493 || real_minus_onep (op1))
1494 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1495 break;
1496
1497 case GE_EXPR:
1498 case GT_EXPR:
1499 if (integer_zerop (op1)
1500 || integer_onep (op1)
1501 || integer_all_onesp (op1)
1502 || real_zerop (op1)
1503 || real_onep (op1)
1504 || real_minus_onep (op1))
1505 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1506 break;
1507
1508 default:
1509 break;
1510 }
1511 }
1512
1513 /* Try to guess whether the value of return means error code. */
1514
1515 static enum br_predictor
1516 return_prediction (tree val, enum prediction *prediction)
1517 {
1518 /* VOID. */
1519 if (!val)
1520 return PRED_NO_PREDICTION;
1521 /* Different heuristics for pointers and scalars. */
1522 if (POINTER_TYPE_P (TREE_TYPE (val)))
1523 {
1524 /* NULL is usually not returned. */
1525 if (integer_zerop (val))
1526 {
1527 *prediction = NOT_TAKEN;
1528 return PRED_NULL_RETURN;
1529 }
1530 }
1531 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1532 {
1533 /* Negative return values are often used to indicate
1534 errors. */
1535 if (TREE_CODE (val) == INTEGER_CST
1536 && tree_int_cst_sgn (val) < 0)
1537 {
1538 *prediction = NOT_TAKEN;
1539 return PRED_NEGATIVE_RETURN;
1540 }
1541 /* Constant return values seems to be commonly taken.
1542 Zero/one often represent booleans so exclude them from the
1543 heuristics. */
1544 if (TREE_CONSTANT (val)
1545 && (!integer_zerop (val) && !integer_onep (val)))
1546 {
1547 *prediction = TAKEN;
1548 return PRED_CONST_RETURN;
1549 }
1550 }
1551 return PRED_NO_PREDICTION;
1552 }
1553
1554 /* Find the basic block with return expression and look up for possible
1555 return value trying to apply RETURN_PREDICTION heuristics. */
1556 static void
1557 apply_return_prediction (void)
1558 {
1559 gimple return_stmt = NULL;
1560 tree return_val;
1561 edge e;
1562 gimple phi;
1563 int phi_num_args, i;
1564 enum br_predictor pred;
1565 enum prediction direction;
1566 edge_iterator ei;
1567
1568 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1569 {
1570 return_stmt = last_stmt (e->src);
1571 if (return_stmt
1572 && gimple_code (return_stmt) == GIMPLE_RETURN)
1573 break;
1574 }
1575 if (!e)
1576 return;
1577 return_val = gimple_return_retval (return_stmt);
1578 if (!return_val)
1579 return;
1580 if (TREE_CODE (return_val) != SSA_NAME
1581 || !SSA_NAME_DEF_STMT (return_val)
1582 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1583 return;
1584 phi = SSA_NAME_DEF_STMT (return_val);
1585 phi_num_args = gimple_phi_num_args (phi);
1586 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1587
1588 /* Avoid the degenerate case where all return values form the function
1589 belongs to same category (ie they are all positive constants)
1590 so we can hardly say something about them. */
1591 for (i = 1; i < phi_num_args; i++)
1592 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1593 break;
1594 if (i != phi_num_args)
1595 for (i = 0; i < phi_num_args; i++)
1596 {
1597 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1598 if (pred != PRED_NO_PREDICTION)
1599 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
1600 direction);
1601 }
1602 }
1603
1604 /* Look for basic block that contains unlikely to happen events
1605 (such as noreturn calls) and mark all paths leading to execution
1606 of this basic blocks as unlikely. */
1607
1608 static void
1609 tree_bb_level_predictions (void)
1610 {
1611 basic_block bb;
1612 bool has_return_edges = false;
1613 edge e;
1614 edge_iterator ei;
1615
1616 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1617 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1618 {
1619 has_return_edges = true;
1620 break;
1621 }
1622
1623 apply_return_prediction ();
1624
1625 FOR_EACH_BB (bb)
1626 {
1627 gimple_stmt_iterator gsi;
1628
1629 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1630 {
1631 gimple stmt = gsi_stmt (gsi);
1632 tree decl;
1633
1634 if (is_gimple_call (stmt))
1635 {
1636 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1637 && has_return_edges)
1638 predict_paths_leading_to (bb, PRED_NORETURN,
1639 NOT_TAKEN);
1640 decl = gimple_call_fndecl (stmt);
1641 if (decl
1642 && lookup_attribute ("cold",
1643 DECL_ATTRIBUTES (decl)))
1644 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1645 NOT_TAKEN);
1646 }
1647 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1648 {
1649 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1650 gimple_predict_outcome (stmt));
1651 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1652 hints to callers. */
1653 }
1654 }
1655 }
1656 }
1657
1658 #ifdef ENABLE_CHECKING
1659
1660 /* Callback for pointer_map_traverse, asserts that the pointer map is
1661 empty. */
1662
1663 static bool
1664 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1665 void *data ATTRIBUTE_UNUSED)
1666 {
1667 gcc_assert (!*value);
1668 return false;
1669 }
1670 #endif
1671
1672 /* Predict branch probabilities and estimate profile for basic block BB. */
1673
1674 static void
1675 tree_estimate_probability_bb (basic_block bb)
1676 {
1677 edge e;
1678 edge_iterator ei;
1679 gimple last;
1680
1681 FOR_EACH_EDGE (e, ei, bb->succs)
1682 {
1683 /* Predict early returns to be probable, as we've already taken
1684 care for error returns and other cases are often used for
1685 fast paths through function.
1686
1687 Since we've already removed the return statements, we are
1688 looking for CFG like:
1689
1690 if (conditional)
1691 {
1692 ..
1693 goto return_block
1694 }
1695 some other blocks
1696 return_block:
1697 return_stmt. */
1698 if (e->dest != bb->next_bb
1699 && e->dest != EXIT_BLOCK_PTR
1700 && single_succ_p (e->dest)
1701 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1702 && (last = last_stmt (e->dest)) != NULL
1703 && gimple_code (last) == GIMPLE_RETURN)
1704 {
1705 edge e1;
1706 edge_iterator ei1;
1707
1708 if (single_succ_p (bb))
1709 {
1710 FOR_EACH_EDGE (e1, ei1, bb->preds)
1711 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1712 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1713 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1714 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1715 }
1716 else
1717 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1718 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1719 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1720 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1721 }
1722
1723 /* Look for block we are guarding (ie we dominate it,
1724 but it doesn't postdominate us). */
1725 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1726 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1727 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1728 {
1729 gimple_stmt_iterator bi;
1730
1731 /* The call heuristic claims that a guarded function call
1732 is improbable. This is because such calls are often used
1733 to signal exceptional situations such as printing error
1734 messages. */
1735 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1736 gsi_next (&bi))
1737 {
1738 gimple stmt = gsi_stmt (bi);
1739 if (is_gimple_call (stmt)
1740 /* Constant and pure calls are hardly used to signalize
1741 something exceptional. */
1742 && gimple_has_side_effects (stmt))
1743 {
1744 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1745 break;
1746 }
1747 }
1748 }
1749 }
1750 tree_predict_by_opcode (bb);
1751 }
1752
1753 /* Predict branch probabilities and estimate profile of the tree CFG.
1754 This function can be called from the loop optimizers to recompute
1755 the profile information. */
1756
1757 void
1758 tree_estimate_probability (void)
1759 {
1760 basic_block bb;
1761
1762 add_noreturn_fake_exit_edges ();
1763 connect_infinite_loops_to_exit ();
1764 /* We use loop_niter_by_eval, which requires that the loops have
1765 preheaders. */
1766 create_preheaders (CP_SIMPLE_PREHEADERS);
1767 calculate_dominance_info (CDI_POST_DOMINATORS);
1768
1769 bb_predictions = pointer_map_create ();
1770 tree_bb_level_predictions ();
1771 record_loop_exits ();
1772
1773 if (number_of_loops () > 1)
1774 predict_loops ();
1775
1776 FOR_EACH_BB (bb)
1777 tree_estimate_probability_bb (bb);
1778
1779 FOR_EACH_BB (bb)
1780 combine_predictions_for_bb (bb);
1781
1782 #ifdef ENABLE_CHECKING
1783 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1784 #endif
1785 pointer_map_destroy (bb_predictions);
1786 bb_predictions = NULL;
1787
1788 estimate_bb_frequencies ();
1789 free_dominance_info (CDI_POST_DOMINATORS);
1790 remove_fake_exit_edges ();
1791 }
1792
1793 /* Predict branch probabilities and estimate profile of the tree CFG.
1794 This is the driver function for PASS_PROFILE. */
1795
1796 static unsigned int
1797 tree_estimate_probability_driver (void)
1798 {
1799 unsigned nb_loops;
1800
1801 loop_optimizer_init (0);
1802 if (dump_file && (dump_flags & TDF_DETAILS))
1803 flow_loops_dump (dump_file, NULL, 0);
1804
1805 mark_irreducible_loops ();
1806
1807 nb_loops = number_of_loops ();
1808 if (nb_loops > 1)
1809 scev_initialize ();
1810
1811 tree_estimate_probability ();
1812
1813 if (nb_loops > 1)
1814 scev_finalize ();
1815
1816 loop_optimizer_finalize ();
1817 if (dump_file && (dump_flags & TDF_DETAILS))
1818 gimple_dump_cfg (dump_file, dump_flags);
1819 if (profile_status == PROFILE_ABSENT)
1820 profile_status = PROFILE_GUESSED;
1821 return 0;
1822 }
1823 \f
1824 /* Predict edges to successors of CUR whose sources are not postdominated by
1825 BB by PRED and recurse to all postdominators. */
1826
1827 static void
1828 predict_paths_for_bb (basic_block cur, basic_block bb,
1829 enum br_predictor pred,
1830 enum prediction taken)
1831 {
1832 edge e;
1833 edge_iterator ei;
1834 basic_block son;
1835
1836 /* We are looking for all edges forming edge cut induced by
1837 set of all blocks postdominated by BB. */
1838 FOR_EACH_EDGE (e, ei, cur->preds)
1839 if (e->src->index >= NUM_FIXED_BLOCKS
1840 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1841 {
1842 edge e2;
1843 edge_iterator ei2;
1844 bool found = false;
1845
1846 /* Ignore fake edges and eh, we predict them as not taken anyway. */
1847 if (e->flags & (EDGE_EH | EDGE_FAKE))
1848 continue;
1849 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1850
1851 /* See if there is how many edge from e->src that is not abnormal
1852 and does not lead to BB. */
1853 FOR_EACH_EDGE (e2, ei2, e->src->succs)
1854 if (e2 != e
1855 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
1856 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
1857 {
1858 found = true;
1859 break;
1860 }
1861
1862 /* If there is non-abnormal path leaving e->src, predict edge
1863 using predictor. Otherwise we need to look for paths
1864 leading to e->src. */
1865 if (found)
1866 predict_edge_def (e, pred, taken);
1867 else
1868 predict_paths_for_bb (e->src, e->src, pred, taken);
1869 }
1870 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1871 son;
1872 son = next_dom_son (CDI_POST_DOMINATORS, son))
1873 predict_paths_for_bb (son, bb, pred, taken);
1874 }
1875
1876 /* Sets branch probabilities according to PREDiction and
1877 FLAGS. */
1878
1879 static void
1880 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1881 enum prediction taken)
1882 {
1883 predict_paths_for_bb (bb, bb, pred, taken);
1884 }
1885
1886 /* Like predict_paths_leading_to but take edge instead of basic block. */
1887
1888 static void
1889 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
1890 enum prediction taken)
1891 {
1892 bool has_nonloop_edge = false;
1893 edge_iterator ei;
1894 edge e2;
1895
1896 basic_block bb = e->src;
1897 FOR_EACH_EDGE (e2, ei, bb->succs)
1898 if (e2->dest != e->src && e2->dest != e->dest
1899 && !(e->flags & (EDGE_EH | EDGE_FAKE))
1900 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
1901 {
1902 has_nonloop_edge = true;
1903 break;
1904 }
1905 if (!has_nonloop_edge)
1906 predict_paths_for_bb (bb, bb, pred, taken);
1907 else
1908 predict_edge_def (e, pred, taken);
1909 }
1910 \f
1911 /* This is used to carry information about basic blocks. It is
1912 attached to the AUX field of the standard CFG block. */
1913
1914 typedef struct block_info_def
1915 {
1916 /* Estimated frequency of execution of basic_block. */
1917 sreal frequency;
1918
1919 /* To keep queue of basic blocks to process. */
1920 basic_block next;
1921
1922 /* Number of predecessors we need to visit first. */
1923 int npredecessors;
1924 } *block_info;
1925
1926 /* Similar information for edges. */
1927 typedef struct edge_info_def
1928 {
1929 /* In case edge is a loopback edge, the probability edge will be reached
1930 in case header is. Estimated number of iterations of the loop can be
1931 then computed as 1 / (1 - back_edge_prob). */
1932 sreal back_edge_prob;
1933 /* True if the edge is a loopback edge in the natural loop. */
1934 unsigned int back_edge:1;
1935 } *edge_info;
1936
1937 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1938 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1939
1940 /* Helper function for estimate_bb_frequencies.
1941 Propagate the frequencies in blocks marked in
1942 TOVISIT, starting in HEAD. */
1943
1944 static void
1945 propagate_freq (basic_block head, bitmap tovisit)
1946 {
1947 basic_block bb;
1948 basic_block last;
1949 unsigned i;
1950 edge e;
1951 basic_block nextbb;
1952 bitmap_iterator bi;
1953
1954 /* For each basic block we need to visit count number of his predecessors
1955 we need to visit first. */
1956 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1957 {
1958 edge_iterator ei;
1959 int count = 0;
1960
1961 bb = BASIC_BLOCK (i);
1962
1963 FOR_EACH_EDGE (e, ei, bb->preds)
1964 {
1965 bool visit = bitmap_bit_p (tovisit, e->src->index);
1966
1967 if (visit && !(e->flags & EDGE_DFS_BACK))
1968 count++;
1969 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1970 fprintf (dump_file,
1971 "Irreducible region hit, ignoring edge to %i->%i\n",
1972 e->src->index, bb->index);
1973 }
1974 BLOCK_INFO (bb)->npredecessors = count;
1975 /* When function never returns, we will never process exit block. */
1976 if (!count && bb == EXIT_BLOCK_PTR)
1977 bb->count = bb->frequency = 0;
1978 }
1979
1980 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1981 last = head;
1982 for (bb = head; bb; bb = nextbb)
1983 {
1984 edge_iterator ei;
1985 sreal cyclic_probability, frequency;
1986
1987 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1988 memcpy (&frequency, &real_zero, sizeof (real_zero));
1989
1990 nextbb = BLOCK_INFO (bb)->next;
1991 BLOCK_INFO (bb)->next = NULL;
1992
1993 /* Compute frequency of basic block. */
1994 if (bb != head)
1995 {
1996 #ifdef ENABLE_CHECKING
1997 FOR_EACH_EDGE (e, ei, bb->preds)
1998 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1999 || (e->flags & EDGE_DFS_BACK));
2000 #endif
2001
2002 FOR_EACH_EDGE (e, ei, bb->preds)
2003 if (EDGE_INFO (e)->back_edge)
2004 {
2005 sreal_add (&cyclic_probability, &cyclic_probability,
2006 &EDGE_INFO (e)->back_edge_prob);
2007 }
2008 else if (!(e->flags & EDGE_DFS_BACK))
2009 {
2010 sreal tmp;
2011
2012 /* frequency += (e->probability
2013 * BLOCK_INFO (e->src)->frequency /
2014 REG_BR_PROB_BASE); */
2015
2016 sreal_init (&tmp, e->probability, 0);
2017 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2018 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2019 sreal_add (&frequency, &frequency, &tmp);
2020 }
2021
2022 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2023 {
2024 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2025 sizeof (frequency));
2026 }
2027 else
2028 {
2029 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2030 {
2031 memcpy (&cyclic_probability, &real_almost_one,
2032 sizeof (real_almost_one));
2033 }
2034
2035 /* BLOCK_INFO (bb)->frequency = frequency
2036 / (1 - cyclic_probability) */
2037
2038 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2039 sreal_div (&BLOCK_INFO (bb)->frequency,
2040 &frequency, &cyclic_probability);
2041 }
2042 }
2043
2044 bitmap_clear_bit (tovisit, bb->index);
2045
2046 e = find_edge (bb, head);
2047 if (e)
2048 {
2049 sreal tmp;
2050
2051 /* EDGE_INFO (e)->back_edge_prob
2052 = ((e->probability * BLOCK_INFO (bb)->frequency)
2053 / REG_BR_PROB_BASE); */
2054
2055 sreal_init (&tmp, e->probability, 0);
2056 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2057 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2058 &tmp, &real_inv_br_prob_base);
2059 }
2060
2061 /* Propagate to successor blocks. */
2062 FOR_EACH_EDGE (e, ei, bb->succs)
2063 if (!(e->flags & EDGE_DFS_BACK)
2064 && BLOCK_INFO (e->dest)->npredecessors)
2065 {
2066 BLOCK_INFO (e->dest)->npredecessors--;
2067 if (!BLOCK_INFO (e->dest)->npredecessors)
2068 {
2069 if (!nextbb)
2070 nextbb = e->dest;
2071 else
2072 BLOCK_INFO (last)->next = e->dest;
2073
2074 last = e->dest;
2075 }
2076 }
2077 }
2078 }
2079
2080 /* Estimate probabilities of loopback edges in loops at same nest level. */
2081
2082 static void
2083 estimate_loops_at_level (struct loop *first_loop)
2084 {
2085 struct loop *loop;
2086
2087 for (loop = first_loop; loop; loop = loop->next)
2088 {
2089 edge e;
2090 basic_block *bbs;
2091 unsigned i;
2092 bitmap tovisit = BITMAP_ALLOC (NULL);
2093
2094 estimate_loops_at_level (loop->inner);
2095
2096 /* Find current loop back edge and mark it. */
2097 e = loop_latch_edge (loop);
2098 EDGE_INFO (e)->back_edge = 1;
2099
2100 bbs = get_loop_body (loop);
2101 for (i = 0; i < loop->num_nodes; i++)
2102 bitmap_set_bit (tovisit, bbs[i]->index);
2103 free (bbs);
2104 propagate_freq (loop->header, tovisit);
2105 BITMAP_FREE (tovisit);
2106 }
2107 }
2108
2109 /* Propagates frequencies through structure of loops. */
2110
2111 static void
2112 estimate_loops (void)
2113 {
2114 bitmap tovisit = BITMAP_ALLOC (NULL);
2115 basic_block bb;
2116
2117 /* Start by estimating the frequencies in the loops. */
2118 if (number_of_loops () > 1)
2119 estimate_loops_at_level (current_loops->tree_root->inner);
2120
2121 /* Now propagate the frequencies through all the blocks. */
2122 FOR_ALL_BB (bb)
2123 {
2124 bitmap_set_bit (tovisit, bb->index);
2125 }
2126 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2127 BITMAP_FREE (tovisit);
2128 }
2129
2130 /* Convert counts measured by profile driven feedback to frequencies.
2131 Return nonzero iff there was any nonzero execution count. */
2132
2133 int
2134 counts_to_freqs (void)
2135 {
2136 gcov_type count_max, true_count_max = 0;
2137 basic_block bb;
2138
2139 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2140 true_count_max = MAX (bb->count, true_count_max);
2141
2142 count_max = MAX (true_count_max, 1);
2143 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2144 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2145
2146 return true_count_max;
2147 }
2148
2149 /* Return true if function is likely to be expensive, so there is no point to
2150 optimize performance of prologue, epilogue or do inlining at the expense
2151 of code size growth. THRESHOLD is the limit of number of instructions
2152 function can execute at average to be still considered not expensive. */
2153
2154 bool
2155 expensive_function_p (int threshold)
2156 {
2157 unsigned int sum = 0;
2158 basic_block bb;
2159 unsigned int limit;
2160
2161 /* We can not compute accurately for large thresholds due to scaled
2162 frequencies. */
2163 gcc_assert (threshold <= BB_FREQ_MAX);
2164
2165 /* Frequencies are out of range. This either means that function contains
2166 internal loop executing more than BB_FREQ_MAX times or profile feedback
2167 is available and function has not been executed at all. */
2168 if (ENTRY_BLOCK_PTR->frequency == 0)
2169 return true;
2170
2171 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2172 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2173 FOR_EACH_BB (bb)
2174 {
2175 rtx insn;
2176
2177 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2178 insn = NEXT_INSN (insn))
2179 if (active_insn_p (insn))
2180 {
2181 sum += bb->frequency;
2182 if (sum > limit)
2183 return true;
2184 }
2185 }
2186
2187 return false;
2188 }
2189
2190 /* Estimate basic blocks frequency by given branch probabilities. */
2191
2192 void
2193 estimate_bb_frequencies (void)
2194 {
2195 basic_block bb;
2196 sreal freq_max;
2197
2198 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2199 {
2200 static int real_values_initialized = 0;
2201
2202 if (!real_values_initialized)
2203 {
2204 real_values_initialized = 1;
2205 sreal_init (&real_zero, 0, 0);
2206 sreal_init (&real_one, 1, 0);
2207 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2208 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2209 sreal_init (&real_one_half, 1, -1);
2210 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2211 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2212 }
2213
2214 mark_dfs_back_edges ();
2215
2216 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2217
2218 /* Set up block info for each basic block. */
2219 alloc_aux_for_blocks (sizeof (struct block_info_def));
2220 alloc_aux_for_edges (sizeof (struct edge_info_def));
2221 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2222 {
2223 edge e;
2224 edge_iterator ei;
2225
2226 FOR_EACH_EDGE (e, ei, bb->succs)
2227 {
2228 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2229 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2230 &EDGE_INFO (e)->back_edge_prob,
2231 &real_inv_br_prob_base);
2232 }
2233 }
2234
2235 /* First compute probabilities locally for each loop from innermost
2236 to outermost to examine probabilities for back edges. */
2237 estimate_loops ();
2238
2239 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2240 FOR_EACH_BB (bb)
2241 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2242 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2243
2244 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2245 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2246 {
2247 sreal tmp;
2248
2249 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2250 sreal_add (&tmp, &tmp, &real_one_half);
2251 bb->frequency = sreal_to_int (&tmp);
2252 }
2253
2254 free_aux_for_blocks ();
2255 free_aux_for_edges ();
2256 }
2257 compute_function_frequency ();
2258 }
2259
2260 /* Decide whether function is hot, cold or unlikely executed. */
2261 void
2262 compute_function_frequency (void)
2263 {
2264 basic_block bb;
2265 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2266 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2267 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2268 node->only_called_at_startup = true;
2269 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2270 node->only_called_at_exit = true;
2271
2272 if (!profile_info || !flag_branch_probabilities)
2273 {
2274 int flags = flags_from_decl_or_type (current_function_decl);
2275 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2276 != NULL)
2277 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2278 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2279 != NULL)
2280 node->frequency = NODE_FREQUENCY_HOT;
2281 else if (flags & ECF_NORETURN)
2282 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2283 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2284 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2285 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2286 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2287 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2288 return;
2289 }
2290 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2291 FOR_EACH_BB (bb)
2292 {
2293 if (maybe_hot_bb_p (bb))
2294 {
2295 node->frequency = NODE_FREQUENCY_HOT;
2296 return;
2297 }
2298 if (!probably_never_executed_bb_p (bb))
2299 node->frequency = NODE_FREQUENCY_NORMAL;
2300 }
2301 }
2302
2303 static bool
2304 gate_estimate_probability (void)
2305 {
2306 return flag_guess_branch_prob;
2307 }
2308
2309 /* Build PREDICT_EXPR. */
2310 tree
2311 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2312 {
2313 tree t = build1 (PREDICT_EXPR, void_type_node,
2314 build_int_cst (integer_type_node, predictor));
2315 SET_PREDICT_EXPR_OUTCOME (t, taken);
2316 return t;
2317 }
2318
2319 const char *
2320 predictor_name (enum br_predictor predictor)
2321 {
2322 return predictor_info[predictor].name;
2323 }
2324
2325 struct gimple_opt_pass pass_profile =
2326 {
2327 {
2328 GIMPLE_PASS,
2329 "profile_estimate", /* name */
2330 gate_estimate_probability, /* gate */
2331 tree_estimate_probability_driver, /* execute */
2332 NULL, /* sub */
2333 NULL, /* next */
2334 0, /* static_pass_number */
2335 TV_BRANCH_PROB, /* tv_id */
2336 PROP_cfg, /* properties_required */
2337 0, /* properties_provided */
2338 0, /* properties_destroyed */
2339 0, /* todo_flags_start */
2340 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2341 }
2342 };
2343
2344 struct gimple_opt_pass pass_strip_predict_hints =
2345 {
2346 {
2347 GIMPLE_PASS,
2348 "*strip_predict_hints", /* name */
2349 NULL, /* gate */
2350 strip_predict_hints, /* execute */
2351 NULL, /* sub */
2352 NULL, /* next */
2353 0, /* static_pass_number */
2354 TV_BRANCH_PROB, /* tv_id */
2355 PROP_cfg, /* properties_required */
2356 0, /* properties_provided */
2357 0, /* properties_destroyed */
2358 0, /* todo_flags_start */
2359 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2360 }
2361 };
2362
2363 /* Rebuild function frequencies. Passes are in general expected to
2364 maintain profile by hand, however in some cases this is not possible:
2365 for example when inlining several functions with loops freuqencies might run
2366 out of scale and thus needs to be recomputed. */
2367
2368 void
2369 rebuild_frequencies (void)
2370 {
2371 timevar_push (TV_REBUILD_FREQUENCIES);
2372 if (profile_status == PROFILE_GUESSED)
2373 {
2374 loop_optimizer_init (0);
2375 add_noreturn_fake_exit_edges ();
2376 mark_irreducible_loops ();
2377 connect_infinite_loops_to_exit ();
2378 estimate_bb_frequencies ();
2379 remove_fake_exit_edges ();
2380 loop_optimizer_finalize ();
2381 }
2382 else if (profile_status == PROFILE_READ)
2383 counts_to_freqs ();
2384 else
2385 gcc_unreachable ();
2386 timevar_pop (TV_REBUILD_FREQUENCIES);
2387 }