Update copyright years in gcc/
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "rtl.h"
36 #include "tm_p.h"
37 #include "hard-reg-set.h"
38 #include "basic-block.h"
39 #include "insn-config.h"
40 #include "regs.h"
41 #include "flags.h"
42 #include "function.h"
43 #include "except.h"
44 #include "diagnostic-core.h"
45 #include "recog.h"
46 #include "expr.h"
47 #include "predict.h"
48 #include "coverage.h"
49 #include "sreal.h"
50 #include "params.h"
51 #include "target.h"
52 #include "cfgloop.h"
53 #include "tree-flow.h"
54 #include "ggc.h"
55 #include "tree-pass.h"
56 #include "tree-scalar-evolution.h"
57 #include "cfgloop.h"
58 #include "pointer-set.h"
59
60 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
61 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
62 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
63 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
64
65 /* Random guesstimation given names.
66 PROV_VERY_UNLIKELY should be small enough so basic block predicted
67 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
68 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
69 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
70 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
71 #define PROB_ALWAYS (REG_BR_PROB_BASE)
72
73 static void combine_predictions_for_insn (rtx, basic_block);
74 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
75 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
76 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
77 static bool can_predict_insn_p (const_rtx);
78
79 /* Information we hold about each branch predictor.
80 Filled using information from predict.def. */
81
82 struct predictor_info
83 {
84 const char *const name; /* Name used in the debugging dumps. */
85 const int hitrate; /* Expected hitrate used by
86 predict_insn_def call. */
87 const int flags;
88 };
89
90 /* Use given predictor without Dempster-Shaffer theory if it matches
91 using first_match heuristics. */
92 #define PRED_FLAG_FIRST_MATCH 1
93
94 /* Recompute hitrate in percent to our representation. */
95
96 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
97
98 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
99 static const struct predictor_info predictor_info[]= {
100 #include "predict.def"
101
102 /* Upper bound on predictors. */
103 {NULL, 0, 0}
104 };
105 #undef DEF_PREDICTOR
106
107 /* Return TRUE if frequency FREQ is considered to be hot. */
108
109 static inline bool
110 maybe_hot_frequency_p (struct function *fun, int freq)
111 {
112 struct cgraph_node *node = cgraph_get_node (fun->decl);
113 if (!profile_info || !flag_branch_probabilities)
114 {
115 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
116 return false;
117 if (node->frequency == NODE_FREQUENCY_HOT)
118 return true;
119 }
120 if (profile_status_for_function (fun) == PROFILE_ABSENT)
121 return true;
122 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
123 && freq < (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)->frequency * 2 / 3))
124 return false;
125 if (freq < (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun)->frequency
126 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
127 return false;
128 return true;
129 }
130
131 /* Return TRUE if frequency FREQ is considered to be hot. */
132
133 static inline bool
134 maybe_hot_count_p (struct function *fun, gcov_type count)
135 {
136 gcov_working_set_t *ws;
137 static gcov_type min_count = -1;
138 if (fun && profile_status_for_function (fun) != PROFILE_READ)
139 return true;
140 /* Code executed at most once is not hot. */
141 if (profile_info->runs >= count)
142 return false;
143 if (min_count == -1)
144 {
145 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
146 gcc_assert (ws);
147 min_count = ws->min_counter;
148 }
149 return (count >= min_count);
150 }
151
152 /* Return true in case BB can be CPU intensive and should be optimized
153 for maximal performance. */
154
155 bool
156 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
157 {
158 gcc_checking_assert (fun);
159 if (profile_status_for_function (fun) == PROFILE_READ)
160 return maybe_hot_count_p (fun, bb->count);
161 return maybe_hot_frequency_p (fun, bb->frequency);
162 }
163
164 /* Return true if the call can be hot. */
165
166 bool
167 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
168 {
169 if (profile_info && flag_branch_probabilities
170 && !maybe_hot_count_p (NULL,
171 edge->count))
172 return false;
173 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
174 || (edge->callee
175 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
176 return false;
177 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
178 && (edge->callee
179 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
180 return false;
181 if (optimize_size)
182 return false;
183 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
184 return true;
185 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
186 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
187 return false;
188 if (flag_guess_branch_prob
189 && edge->frequency <= (CGRAPH_FREQ_BASE
190 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
191 return false;
192 return true;
193 }
194
195 /* Return true in case BB can be CPU intensive and should be optimized
196 for maximal performance. */
197
198 bool
199 maybe_hot_edge_p (edge e)
200 {
201 if (profile_status == PROFILE_READ)
202 return maybe_hot_count_p (cfun, e->count);
203 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
204 }
205
206
207 /* Return true in case BB is probably never executed. */
208
209 bool
210 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
211 {
212 gcc_checking_assert (fun);
213 if (profile_info && flag_branch_probabilities)
214 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
215 if ((!profile_info || !flag_branch_probabilities)
216 && (cgraph_get_node (fun->decl)->frequency
217 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
218 return true;
219 return false;
220 }
221
222 /* Return true if NODE should be optimized for size. */
223
224 bool
225 cgraph_optimize_for_size_p (struct cgraph_node *node)
226 {
227 if (optimize_size)
228 return true;
229 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
230 return true;
231 else
232 return false;
233 }
234
235 /* Return true when current function should always be optimized for size. */
236
237 bool
238 optimize_function_for_size_p (struct function *fun)
239 {
240 if (optimize_size)
241 return true;
242 if (!fun || !fun->decl)
243 return false;
244 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
245 }
246
247 /* Return true when current function should always be optimized for speed. */
248
249 bool
250 optimize_function_for_speed_p (struct function *fun)
251 {
252 return !optimize_function_for_size_p (fun);
253 }
254
255 /* Return TRUE when BB should be optimized for size. */
256
257 bool
258 optimize_bb_for_size_p (const_basic_block bb)
259 {
260 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
261 }
262
263 /* Return TRUE when BB should be optimized for speed. */
264
265 bool
266 optimize_bb_for_speed_p (const_basic_block bb)
267 {
268 return !optimize_bb_for_size_p (bb);
269 }
270
271 /* Return TRUE when BB should be optimized for size. */
272
273 bool
274 optimize_edge_for_size_p (edge e)
275 {
276 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
277 }
278
279 /* Return TRUE when BB should be optimized for speed. */
280
281 bool
282 optimize_edge_for_speed_p (edge e)
283 {
284 return !optimize_edge_for_size_p (e);
285 }
286
287 /* Return TRUE when BB should be optimized for size. */
288
289 bool
290 optimize_insn_for_size_p (void)
291 {
292 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
293 }
294
295 /* Return TRUE when BB should be optimized for speed. */
296
297 bool
298 optimize_insn_for_speed_p (void)
299 {
300 return !optimize_insn_for_size_p ();
301 }
302
303 /* Return TRUE when LOOP should be optimized for size. */
304
305 bool
306 optimize_loop_for_size_p (struct loop *loop)
307 {
308 return optimize_bb_for_size_p (loop->header);
309 }
310
311 /* Return TRUE when LOOP should be optimized for speed. */
312
313 bool
314 optimize_loop_for_speed_p (struct loop *loop)
315 {
316 return optimize_bb_for_speed_p (loop->header);
317 }
318
319 /* Return TRUE when LOOP nest should be optimized for speed. */
320
321 bool
322 optimize_loop_nest_for_speed_p (struct loop *loop)
323 {
324 struct loop *l = loop;
325 if (optimize_loop_for_speed_p (loop))
326 return true;
327 l = loop->inner;
328 while (l && l != loop)
329 {
330 if (optimize_loop_for_speed_p (l))
331 return true;
332 if (l->inner)
333 l = l->inner;
334 else if (l->next)
335 l = l->next;
336 else
337 {
338 while (l != loop && !l->next)
339 l = loop_outer (l);
340 if (l != loop)
341 l = l->next;
342 }
343 }
344 return false;
345 }
346
347 /* Return TRUE when LOOP nest should be optimized for size. */
348
349 bool
350 optimize_loop_nest_for_size_p (struct loop *loop)
351 {
352 return !optimize_loop_nest_for_speed_p (loop);
353 }
354
355 /* Return true when edge E is likely to be well predictable by branch
356 predictor. */
357
358 bool
359 predictable_edge_p (edge e)
360 {
361 if (profile_status == PROFILE_ABSENT)
362 return false;
363 if ((e->probability
364 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
365 || (REG_BR_PROB_BASE - e->probability
366 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
367 return true;
368 return false;
369 }
370
371
372 /* Set RTL expansion for BB profile. */
373
374 void
375 rtl_profile_for_bb (basic_block bb)
376 {
377 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
378 }
379
380 /* Set RTL expansion for edge profile. */
381
382 void
383 rtl_profile_for_edge (edge e)
384 {
385 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
386 }
387
388 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
389 void
390 default_rtl_profile (void)
391 {
392 crtl->maybe_hot_insn_p = true;
393 }
394
395 /* Return true if the one of outgoing edges is already predicted by
396 PREDICTOR. */
397
398 bool
399 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
400 {
401 rtx note;
402 if (!INSN_P (BB_END (bb)))
403 return false;
404 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
405 if (REG_NOTE_KIND (note) == REG_BR_PRED
406 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
407 return true;
408 return false;
409 }
410
411 /* This map contains for a basic block the list of predictions for the
412 outgoing edges. */
413
414 static struct pointer_map_t *bb_predictions;
415
416 /* Structure representing predictions in tree level. */
417
418 struct edge_prediction {
419 struct edge_prediction *ep_next;
420 edge ep_edge;
421 enum br_predictor ep_predictor;
422 int ep_probability;
423 };
424
425 /* Return true if the one of outgoing edges is already predicted by
426 PREDICTOR. */
427
428 bool
429 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
430 {
431 struct edge_prediction *i;
432 void **preds = pointer_map_contains (bb_predictions, bb);
433
434 if (!preds)
435 return false;
436
437 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
438 if (i->ep_predictor == predictor)
439 return true;
440 return false;
441 }
442
443 /* Return true when the probability of edge is reliable.
444
445 The profile guessing code is good at predicting branch outcome (ie.
446 taken/not taken), that is predicted right slightly over 75% of time.
447 It is however notoriously poor on predicting the probability itself.
448 In general the profile appear a lot flatter (with probabilities closer
449 to 50%) than the reality so it is bad idea to use it to drive optimization
450 such as those disabling dynamic branch prediction for well predictable
451 branches.
452
453 There are two exceptions - edges leading to noreturn edges and edges
454 predicted by number of iterations heuristics are predicted well. This macro
455 should be able to distinguish those, but at the moment it simply check for
456 noreturn heuristic that is only one giving probability over 99% or bellow
457 1%. In future we might want to propagate reliability information across the
458 CFG if we find this information useful on multiple places. */
459 static bool
460 probability_reliable_p (int prob)
461 {
462 return (profile_status == PROFILE_READ
463 || (profile_status == PROFILE_GUESSED
464 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
465 }
466
467 /* Same predicate as above, working on edges. */
468 bool
469 edge_probability_reliable_p (const_edge e)
470 {
471 return probability_reliable_p (e->probability);
472 }
473
474 /* Same predicate as edge_probability_reliable_p, working on notes. */
475 bool
476 br_prob_note_reliable_p (const_rtx note)
477 {
478 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
479 return probability_reliable_p (INTVAL (XEXP (note, 0)));
480 }
481
482 static void
483 predict_insn (rtx insn, enum br_predictor predictor, int probability)
484 {
485 gcc_assert (any_condjump_p (insn));
486 if (!flag_guess_branch_prob)
487 return;
488
489 add_reg_note (insn, REG_BR_PRED,
490 gen_rtx_CONCAT (VOIDmode,
491 GEN_INT ((int) predictor),
492 GEN_INT ((int) probability)));
493 }
494
495 /* Predict insn by given predictor. */
496
497 void
498 predict_insn_def (rtx insn, enum br_predictor predictor,
499 enum prediction taken)
500 {
501 int probability = predictor_info[(int) predictor].hitrate;
502
503 if (taken != TAKEN)
504 probability = REG_BR_PROB_BASE - probability;
505
506 predict_insn (insn, predictor, probability);
507 }
508
509 /* Predict edge E with given probability if possible. */
510
511 void
512 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
513 {
514 rtx last_insn;
515 last_insn = BB_END (e->src);
516
517 /* We can store the branch prediction information only about
518 conditional jumps. */
519 if (!any_condjump_p (last_insn))
520 return;
521
522 /* We always store probability of branching. */
523 if (e->flags & EDGE_FALLTHRU)
524 probability = REG_BR_PROB_BASE - probability;
525
526 predict_insn (last_insn, predictor, probability);
527 }
528
529 /* Predict edge E with the given PROBABILITY. */
530 void
531 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
532 {
533 gcc_assert (profile_status != PROFILE_GUESSED);
534 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
535 && flag_guess_branch_prob && optimize)
536 {
537 struct edge_prediction *i = XNEW (struct edge_prediction);
538 void **preds = pointer_map_insert (bb_predictions, e->src);
539
540 i->ep_next = (struct edge_prediction *) *preds;
541 *preds = i;
542 i->ep_probability = probability;
543 i->ep_predictor = predictor;
544 i->ep_edge = e;
545 }
546 }
547
548 /* Remove all predictions on given basic block that are attached
549 to edge E. */
550 void
551 remove_predictions_associated_with_edge (edge e)
552 {
553 void **preds;
554
555 if (!bb_predictions)
556 return;
557
558 preds = pointer_map_contains (bb_predictions, e->src);
559
560 if (preds)
561 {
562 struct edge_prediction **prediction = (struct edge_prediction **) preds;
563 struct edge_prediction *next;
564
565 while (*prediction)
566 {
567 if ((*prediction)->ep_edge == e)
568 {
569 next = (*prediction)->ep_next;
570 free (*prediction);
571 *prediction = next;
572 }
573 else
574 prediction = &((*prediction)->ep_next);
575 }
576 }
577 }
578
579 /* Clears the list of predictions stored for BB. */
580
581 static void
582 clear_bb_predictions (basic_block bb)
583 {
584 void **preds = pointer_map_contains (bb_predictions, bb);
585 struct edge_prediction *pred, *next;
586
587 if (!preds)
588 return;
589
590 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
591 {
592 next = pred->ep_next;
593 free (pred);
594 }
595 *preds = NULL;
596 }
597
598 /* Return true when we can store prediction on insn INSN.
599 At the moment we represent predictions only on conditional
600 jumps, not at computed jump or other complicated cases. */
601 static bool
602 can_predict_insn_p (const_rtx insn)
603 {
604 return (JUMP_P (insn)
605 && any_condjump_p (insn)
606 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
607 }
608
609 /* Predict edge E by given predictor if possible. */
610
611 void
612 predict_edge_def (edge e, enum br_predictor predictor,
613 enum prediction taken)
614 {
615 int probability = predictor_info[(int) predictor].hitrate;
616
617 if (taken != TAKEN)
618 probability = REG_BR_PROB_BASE - probability;
619
620 predict_edge (e, predictor, probability);
621 }
622
623 /* Invert all branch predictions or probability notes in the INSN. This needs
624 to be done each time we invert the condition used by the jump. */
625
626 void
627 invert_br_probabilities (rtx insn)
628 {
629 rtx note;
630
631 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
632 if (REG_NOTE_KIND (note) == REG_BR_PROB)
633 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
634 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
635 XEXP (XEXP (note, 0), 1)
636 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
637 }
638
639 /* Dump information about the branch prediction to the output file. */
640
641 static void
642 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
643 basic_block bb, int used)
644 {
645 edge e;
646 edge_iterator ei;
647
648 if (!file)
649 return;
650
651 FOR_EACH_EDGE (e, ei, bb->succs)
652 if (! (e->flags & EDGE_FALLTHRU))
653 break;
654
655 fprintf (file, " %s heuristics%s: %.1f%%",
656 predictor_info[predictor].name,
657 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
658
659 if (bb->count)
660 {
661 fprintf (file, " exec ");
662 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
663 if (e)
664 {
665 fprintf (file, " hit ");
666 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
667 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
668 }
669 }
670
671 fprintf (file, "\n");
672 }
673
674 /* We can not predict the probabilities of outgoing edges of bb. Set them
675 evenly and hope for the best. */
676 static void
677 set_even_probabilities (basic_block bb)
678 {
679 int nedges = 0;
680 edge e;
681 edge_iterator ei;
682
683 FOR_EACH_EDGE (e, ei, bb->succs)
684 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
685 nedges ++;
686 FOR_EACH_EDGE (e, ei, bb->succs)
687 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
688 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
689 else
690 e->probability = 0;
691 }
692
693 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
694 note if not already present. Remove now useless REG_BR_PRED notes. */
695
696 static void
697 combine_predictions_for_insn (rtx insn, basic_block bb)
698 {
699 rtx prob_note;
700 rtx *pnote;
701 rtx note;
702 int best_probability = PROB_EVEN;
703 enum br_predictor best_predictor = END_PREDICTORS;
704 int combined_probability = REG_BR_PROB_BASE / 2;
705 int d;
706 bool first_match = false;
707 bool found = false;
708
709 if (!can_predict_insn_p (insn))
710 {
711 set_even_probabilities (bb);
712 return;
713 }
714
715 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
716 pnote = &REG_NOTES (insn);
717 if (dump_file)
718 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
719 bb->index);
720
721 /* We implement "first match" heuristics and use probability guessed
722 by predictor with smallest index. */
723 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
724 if (REG_NOTE_KIND (note) == REG_BR_PRED)
725 {
726 enum br_predictor predictor = ((enum br_predictor)
727 INTVAL (XEXP (XEXP (note, 0), 0)));
728 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
729
730 found = true;
731 if (best_predictor > predictor)
732 best_probability = probability, best_predictor = predictor;
733
734 d = (combined_probability * probability
735 + (REG_BR_PROB_BASE - combined_probability)
736 * (REG_BR_PROB_BASE - probability));
737
738 /* Use FP math to avoid overflows of 32bit integers. */
739 if (d == 0)
740 /* If one probability is 0% and one 100%, avoid division by zero. */
741 combined_probability = REG_BR_PROB_BASE / 2;
742 else
743 combined_probability = (((double) combined_probability) * probability
744 * REG_BR_PROB_BASE / d + 0.5);
745 }
746
747 /* Decide which heuristic to use. In case we didn't match anything,
748 use no_prediction heuristic, in case we did match, use either
749 first match or Dempster-Shaffer theory depending on the flags. */
750
751 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
752 first_match = true;
753
754 if (!found)
755 dump_prediction (dump_file, PRED_NO_PREDICTION,
756 combined_probability, bb, true);
757 else
758 {
759 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
760 bb, !first_match);
761 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
762 bb, first_match);
763 }
764
765 if (first_match)
766 combined_probability = best_probability;
767 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
768
769 while (*pnote)
770 {
771 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
772 {
773 enum br_predictor predictor = ((enum br_predictor)
774 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
775 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
776
777 dump_prediction (dump_file, predictor, probability, bb,
778 !first_match || best_predictor == predictor);
779 *pnote = XEXP (*pnote, 1);
780 }
781 else
782 pnote = &XEXP (*pnote, 1);
783 }
784
785 if (!prob_note)
786 {
787 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
788
789 /* Save the prediction into CFG in case we are seeing non-degenerated
790 conditional jump. */
791 if (!single_succ_p (bb))
792 {
793 BRANCH_EDGE (bb)->probability = combined_probability;
794 FALLTHRU_EDGE (bb)->probability
795 = REG_BR_PROB_BASE - combined_probability;
796 }
797 }
798 else if (!single_succ_p (bb))
799 {
800 int prob = INTVAL (XEXP (prob_note, 0));
801
802 BRANCH_EDGE (bb)->probability = prob;
803 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
804 }
805 else
806 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
807 }
808
809 /* Combine predictions into single probability and store them into CFG.
810 Remove now useless prediction entries. */
811
812 static void
813 combine_predictions_for_bb (basic_block bb)
814 {
815 int best_probability = PROB_EVEN;
816 enum br_predictor best_predictor = END_PREDICTORS;
817 int combined_probability = REG_BR_PROB_BASE / 2;
818 int d;
819 bool first_match = false;
820 bool found = false;
821 struct edge_prediction *pred;
822 int nedges = 0;
823 edge e, first = NULL, second = NULL;
824 edge_iterator ei;
825 void **preds;
826
827 FOR_EACH_EDGE (e, ei, bb->succs)
828 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
829 {
830 nedges ++;
831 if (first && !second)
832 second = e;
833 if (!first)
834 first = e;
835 }
836
837 /* When there is no successor or only one choice, prediction is easy.
838
839 We are lazy for now and predict only basic blocks with two outgoing
840 edges. It is possible to predict generic case too, but we have to
841 ignore first match heuristics and do more involved combining. Implement
842 this later. */
843 if (nedges != 2)
844 {
845 if (!bb->count)
846 set_even_probabilities (bb);
847 clear_bb_predictions (bb);
848 if (dump_file)
849 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
850 nedges, bb->index);
851 return;
852 }
853
854 if (dump_file)
855 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
856
857 preds = pointer_map_contains (bb_predictions, bb);
858 if (preds)
859 {
860 /* We implement "first match" heuristics and use probability guessed
861 by predictor with smallest index. */
862 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
863 {
864 enum br_predictor predictor = pred->ep_predictor;
865 int probability = pred->ep_probability;
866
867 if (pred->ep_edge != first)
868 probability = REG_BR_PROB_BASE - probability;
869
870 found = true;
871 /* First match heuristics would be widly confused if we predicted
872 both directions. */
873 if (best_predictor > predictor)
874 {
875 struct edge_prediction *pred2;
876 int prob = probability;
877
878 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
879 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
880 {
881 int probability2 = pred->ep_probability;
882
883 if (pred2->ep_edge != first)
884 probability2 = REG_BR_PROB_BASE - probability2;
885
886 if ((probability < REG_BR_PROB_BASE / 2) !=
887 (probability2 < REG_BR_PROB_BASE / 2))
888 break;
889
890 /* If the same predictor later gave better result, go for it! */
891 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
892 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
893 prob = probability2;
894 }
895 if (!pred2)
896 best_probability = prob, best_predictor = predictor;
897 }
898
899 d = (combined_probability * probability
900 + (REG_BR_PROB_BASE - combined_probability)
901 * (REG_BR_PROB_BASE - probability));
902
903 /* Use FP math to avoid overflows of 32bit integers. */
904 if (d == 0)
905 /* If one probability is 0% and one 100%, avoid division by zero. */
906 combined_probability = REG_BR_PROB_BASE / 2;
907 else
908 combined_probability = (((double) combined_probability)
909 * probability
910 * REG_BR_PROB_BASE / d + 0.5);
911 }
912 }
913
914 /* Decide which heuristic to use. In case we didn't match anything,
915 use no_prediction heuristic, in case we did match, use either
916 first match or Dempster-Shaffer theory depending on the flags. */
917
918 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
919 first_match = true;
920
921 if (!found)
922 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
923 else
924 {
925 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
926 !first_match);
927 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
928 first_match);
929 }
930
931 if (first_match)
932 combined_probability = best_probability;
933 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
934
935 if (preds)
936 {
937 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
938 {
939 enum br_predictor predictor = pred->ep_predictor;
940 int probability = pred->ep_probability;
941
942 if (pred->ep_edge != EDGE_SUCC (bb, 0))
943 probability = REG_BR_PROB_BASE - probability;
944 dump_prediction (dump_file, predictor, probability, bb,
945 !first_match || best_predictor == predictor);
946 }
947 }
948 clear_bb_predictions (bb);
949
950 if (!bb->count)
951 {
952 first->probability = combined_probability;
953 second->probability = REG_BR_PROB_BASE - combined_probability;
954 }
955 }
956
957 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
958 Return the SSA_NAME if the condition satisfies, NULL otherwise.
959
960 T1 and T2 should be one of the following cases:
961 1. T1 is SSA_NAME, T2 is NULL
962 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
963 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
964
965 static tree
966 strips_small_constant (tree t1, tree t2)
967 {
968 tree ret = NULL;
969 int value = 0;
970
971 if (!t1)
972 return NULL;
973 else if (TREE_CODE (t1) == SSA_NAME)
974 ret = t1;
975 else if (host_integerp (t1, 0))
976 value = tree_low_cst (t1, 0);
977 else
978 return NULL;
979
980 if (!t2)
981 return ret;
982 else if (host_integerp (t2, 0))
983 value = tree_low_cst (t2, 0);
984 else if (TREE_CODE (t2) == SSA_NAME)
985 {
986 if (ret)
987 return NULL;
988 else
989 ret = t2;
990 }
991
992 if (value <= 4 && value >= -4)
993 return ret;
994 else
995 return NULL;
996 }
997
998 /* Return the SSA_NAME in T or T's operands.
999 Return NULL if SSA_NAME cannot be found. */
1000
1001 static tree
1002 get_base_value (tree t)
1003 {
1004 if (TREE_CODE (t) == SSA_NAME)
1005 return t;
1006
1007 if (!BINARY_CLASS_P (t))
1008 return NULL;
1009
1010 switch (TREE_OPERAND_LENGTH (t))
1011 {
1012 case 1:
1013 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1014 case 2:
1015 return strips_small_constant (TREE_OPERAND (t, 0),
1016 TREE_OPERAND (t, 1));
1017 default:
1018 return NULL;
1019 }
1020 }
1021
1022 /* Check the compare STMT in LOOP. If it compares an induction
1023 variable to a loop invariant, return true, and save
1024 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1025 Otherwise return false and set LOOP_INVAIANT to NULL. */
1026
1027 static bool
1028 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1029 tree *loop_invariant,
1030 enum tree_code *compare_code,
1031 int *loop_step,
1032 tree *loop_iv_base)
1033 {
1034 tree op0, op1, bound, base;
1035 affine_iv iv0, iv1;
1036 enum tree_code code;
1037 int step;
1038
1039 code = gimple_cond_code (stmt);
1040 *loop_invariant = NULL;
1041
1042 switch (code)
1043 {
1044 case GT_EXPR:
1045 case GE_EXPR:
1046 case NE_EXPR:
1047 case LT_EXPR:
1048 case LE_EXPR:
1049 case EQ_EXPR:
1050 break;
1051
1052 default:
1053 return false;
1054 }
1055
1056 op0 = gimple_cond_lhs (stmt);
1057 op1 = gimple_cond_rhs (stmt);
1058
1059 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1060 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1061 return false;
1062 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1063 return false;
1064 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1065 return false;
1066 if (TREE_CODE (iv0.step) != INTEGER_CST
1067 || TREE_CODE (iv1.step) != INTEGER_CST)
1068 return false;
1069 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1070 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1071 return false;
1072
1073 if (integer_zerop (iv0.step))
1074 {
1075 if (code != NE_EXPR && code != EQ_EXPR)
1076 code = invert_tree_comparison (code, false);
1077 bound = iv0.base;
1078 base = iv1.base;
1079 if (host_integerp (iv1.step, 0))
1080 step = tree_low_cst (iv1.step, 0);
1081 else
1082 return false;
1083 }
1084 else
1085 {
1086 bound = iv1.base;
1087 base = iv0.base;
1088 if (host_integerp (iv0.step, 0))
1089 step = tree_low_cst (iv0.step, 0);
1090 else
1091 return false;
1092 }
1093
1094 if (TREE_CODE (bound) != INTEGER_CST)
1095 bound = get_base_value (bound);
1096 if (!bound)
1097 return false;
1098 if (TREE_CODE (base) != INTEGER_CST)
1099 base = get_base_value (base);
1100 if (!base)
1101 return false;
1102
1103 *loop_invariant = bound;
1104 *compare_code = code;
1105 *loop_step = step;
1106 *loop_iv_base = base;
1107 return true;
1108 }
1109
1110 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1111
1112 static bool
1113 expr_coherent_p (tree t1, tree t2)
1114 {
1115 gimple stmt;
1116 tree ssa_name_1 = NULL;
1117 tree ssa_name_2 = NULL;
1118
1119 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1120 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1121
1122 if (t1 == t2)
1123 return true;
1124
1125 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1126 return true;
1127 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1128 return false;
1129
1130 /* Check to see if t1 is expressed/defined with t2. */
1131 stmt = SSA_NAME_DEF_STMT (t1);
1132 gcc_assert (stmt != NULL);
1133 if (is_gimple_assign (stmt))
1134 {
1135 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1136 if (ssa_name_1 && ssa_name_1 == t2)
1137 return true;
1138 }
1139
1140 /* Check to see if t2 is expressed/defined with t1. */
1141 stmt = SSA_NAME_DEF_STMT (t2);
1142 gcc_assert (stmt != NULL);
1143 if (is_gimple_assign (stmt))
1144 {
1145 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1146 if (ssa_name_2 && ssa_name_2 == t1)
1147 return true;
1148 }
1149
1150 /* Compare if t1 and t2's def_stmts are identical. */
1151 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1152 return true;
1153 else
1154 return false;
1155 }
1156
1157 /* Predict branch probability of BB when BB contains a branch that compares
1158 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1159 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1160
1161 E.g.
1162 for (int i = 0; i < bound; i++) {
1163 if (i < bound - 2)
1164 computation_1();
1165 else
1166 computation_2();
1167 }
1168
1169 In this loop, we will predict the branch inside the loop to be taken. */
1170
1171 static void
1172 predict_iv_comparison (struct loop *loop, basic_block bb,
1173 tree loop_bound_var,
1174 tree loop_iv_base_var,
1175 enum tree_code loop_bound_code,
1176 int loop_bound_step)
1177 {
1178 gimple stmt;
1179 tree compare_var, compare_base;
1180 enum tree_code compare_code;
1181 int compare_step;
1182 edge then_edge;
1183 edge_iterator ei;
1184
1185 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1186 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1187 || predicted_by_p (bb, PRED_LOOP_EXIT))
1188 return;
1189
1190 stmt = last_stmt (bb);
1191 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1192 return;
1193 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1194 &compare_code,
1195 &compare_step,
1196 &compare_base))
1197 return;
1198
1199 /* Find the taken edge. */
1200 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1201 if (then_edge->flags & EDGE_TRUE_VALUE)
1202 break;
1203
1204 /* When comparing an IV to a loop invariant, NE is more likely to be
1205 taken while EQ is more likely to be not-taken. */
1206 if (compare_code == NE_EXPR)
1207 {
1208 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1209 return;
1210 }
1211 else if (compare_code == EQ_EXPR)
1212 {
1213 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1214 return;
1215 }
1216
1217 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1218 return;
1219
1220 /* If loop bound, base and compare bound are all constants, we can
1221 calculate the probability directly. */
1222 if (host_integerp (loop_bound_var, 0)
1223 && host_integerp (compare_var, 0)
1224 && host_integerp (compare_base, 0))
1225 {
1226 int probability;
1227 HOST_WIDE_INT compare_count;
1228 HOST_WIDE_INT loop_bound = tree_low_cst (loop_bound_var, 0);
1229 HOST_WIDE_INT compare_bound = tree_low_cst (compare_var, 0);
1230 HOST_WIDE_INT base = tree_low_cst (compare_base, 0);
1231 HOST_WIDE_INT loop_count = (loop_bound - base) / compare_step;
1232
1233 if ((compare_step > 0)
1234 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1235 compare_count = (loop_bound - compare_bound) / compare_step;
1236 else
1237 compare_count = (compare_bound - base) / compare_step;
1238
1239 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1240 compare_count ++;
1241 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1242 loop_count ++;
1243 if (compare_count < 0)
1244 compare_count = 0;
1245 if (loop_count < 0)
1246 loop_count = 0;
1247
1248 if (loop_count == 0)
1249 probability = 0;
1250 else if (compare_count > loop_count)
1251 probability = REG_BR_PROB_BASE;
1252 else
1253 probability = (double) REG_BR_PROB_BASE * compare_count / loop_count;
1254 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1255 return;
1256 }
1257
1258 if (expr_coherent_p (loop_bound_var, compare_var))
1259 {
1260 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1261 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1262 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1263 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1264 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1265 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1266 else if (loop_bound_code == NE_EXPR)
1267 {
1268 /* If the loop backedge condition is "(i != bound)", we do
1269 the comparison based on the step of IV:
1270 * step < 0 : backedge condition is like (i > bound)
1271 * step > 0 : backedge condition is like (i < bound) */
1272 gcc_assert (loop_bound_step != 0);
1273 if (loop_bound_step > 0
1274 && (compare_code == LT_EXPR
1275 || compare_code == LE_EXPR))
1276 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1277 else if (loop_bound_step < 0
1278 && (compare_code == GT_EXPR
1279 || compare_code == GE_EXPR))
1280 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1281 else
1282 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1283 }
1284 else
1285 /* The branch is predicted not-taken if loop_bound_code is
1286 opposite with compare_code. */
1287 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1288 }
1289 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1290 {
1291 /* For cases like:
1292 for (i = s; i < h; i++)
1293 if (i > s + 2) ....
1294 The branch should be predicted taken. */
1295 if (loop_bound_step > 0
1296 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1297 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1298 else if (loop_bound_step < 0
1299 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1300 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1301 else
1302 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1303 }
1304 }
1305
1306 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1307 exits are resulted from short-circuit conditions that will generate an
1308 if_tmp. E.g.:
1309
1310 if (foo() || global > 10)
1311 break;
1312
1313 This will be translated into:
1314
1315 BB3:
1316 loop header...
1317 BB4:
1318 if foo() goto BB6 else goto BB5
1319 BB5:
1320 if global > 10 goto BB6 else goto BB7
1321 BB6:
1322 goto BB7
1323 BB7:
1324 iftmp = (PHI 0(BB5), 1(BB6))
1325 if iftmp == 1 goto BB8 else goto BB3
1326 BB8:
1327 outside of the loop...
1328
1329 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1330 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1331 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1332 exits to predict them using PRED_LOOP_EXIT. */
1333
1334 static void
1335 predict_extra_loop_exits (edge exit_edge)
1336 {
1337 unsigned i;
1338 bool check_value_one;
1339 gimple phi_stmt;
1340 tree cmp_rhs, cmp_lhs;
1341 gimple cmp_stmt = last_stmt (exit_edge->src);
1342
1343 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1344 return;
1345 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1346 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1347 if (!TREE_CONSTANT (cmp_rhs)
1348 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1349 return;
1350 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1351 return;
1352
1353 /* If check_value_one is true, only the phi_args with value '1' will lead
1354 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1355 loop exit. */
1356 check_value_one = (((integer_onep (cmp_rhs))
1357 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1358 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1359
1360 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1361 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1362 return;
1363
1364 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1365 {
1366 edge e1;
1367 edge_iterator ei;
1368 tree val = gimple_phi_arg_def (phi_stmt, i);
1369 edge e = gimple_phi_arg_edge (phi_stmt, i);
1370
1371 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1372 continue;
1373 if ((check_value_one ^ integer_onep (val)) == 1)
1374 continue;
1375 if (EDGE_COUNT (e->src->succs) != 1)
1376 {
1377 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1378 continue;
1379 }
1380
1381 FOR_EACH_EDGE (e1, ei, e->src->preds)
1382 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1383 }
1384 }
1385
1386 /* Predict edge probabilities by exploiting loop structure. */
1387
1388 static void
1389 predict_loops (void)
1390 {
1391 loop_iterator li;
1392 struct loop *loop;
1393
1394 /* Try to predict out blocks in a loop that are not part of a
1395 natural loop. */
1396 FOR_EACH_LOOP (li, loop, 0)
1397 {
1398 basic_block bb, *bbs;
1399 unsigned j, n_exits;
1400 vec<edge> exits;
1401 struct tree_niter_desc niter_desc;
1402 edge ex;
1403 struct nb_iter_bound *nb_iter;
1404 enum tree_code loop_bound_code = ERROR_MARK;
1405 int loop_bound_step = 0;
1406 tree loop_bound_var = NULL;
1407 tree loop_iv_base = NULL;
1408 gimple stmt = NULL;
1409
1410 exits = get_loop_exit_edges (loop);
1411 n_exits = exits.length ();
1412 if (!n_exits)
1413 {
1414 exits.release ();
1415 continue;
1416 }
1417
1418 FOR_EACH_VEC_ELT (exits, j, ex)
1419 {
1420 tree niter = NULL;
1421 HOST_WIDE_INT nitercst;
1422 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1423 int probability;
1424 enum br_predictor predictor;
1425
1426 predict_extra_loop_exits (ex);
1427
1428 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1429 niter = niter_desc.niter;
1430 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1431 niter = loop_niter_by_eval (loop, ex);
1432
1433 if (TREE_CODE (niter) == INTEGER_CST)
1434 {
1435 if (host_integerp (niter, 1)
1436 && max
1437 && compare_tree_int (niter, max - 1) == -1)
1438 nitercst = tree_low_cst (niter, 1) + 1;
1439 else
1440 nitercst = max;
1441 predictor = PRED_LOOP_ITERATIONS;
1442 }
1443 /* If we have just one exit and we can derive some information about
1444 the number of iterations of the loop from the statements inside
1445 the loop, use it to predict this exit. */
1446 else if (n_exits == 1)
1447 {
1448 nitercst = estimated_stmt_executions_int (loop);
1449 if (nitercst < 0)
1450 continue;
1451 if (nitercst > max)
1452 nitercst = max;
1453
1454 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1455 }
1456 else
1457 continue;
1458
1459 /* If the prediction for number of iterations is zero, do not
1460 predict the exit edges. */
1461 if (nitercst == 0)
1462 continue;
1463
1464 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1465 predict_edge (ex, predictor, probability);
1466 }
1467 exits.release ();
1468
1469 /* Find information about loop bound variables. */
1470 for (nb_iter = loop->bounds; nb_iter;
1471 nb_iter = nb_iter->next)
1472 if (nb_iter->stmt
1473 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1474 {
1475 stmt = nb_iter->stmt;
1476 break;
1477 }
1478 if (!stmt && last_stmt (loop->header)
1479 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1480 stmt = last_stmt (loop->header);
1481 if (stmt)
1482 is_comparison_with_loop_invariant_p (stmt, loop,
1483 &loop_bound_var,
1484 &loop_bound_code,
1485 &loop_bound_step,
1486 &loop_iv_base);
1487
1488 bbs = get_loop_body (loop);
1489
1490 for (j = 0; j < loop->num_nodes; j++)
1491 {
1492 int header_found = 0;
1493 edge e;
1494 edge_iterator ei;
1495
1496 bb = bbs[j];
1497
1498 /* Bypass loop heuristics on continue statement. These
1499 statements construct loops via "non-loop" constructs
1500 in the source language and are better to be handled
1501 separately. */
1502 if (predicted_by_p (bb, PRED_CONTINUE))
1503 continue;
1504
1505 /* Loop branch heuristics - predict an edge back to a
1506 loop's head as taken. */
1507 if (bb == loop->latch)
1508 {
1509 e = find_edge (loop->latch, loop->header);
1510 if (e)
1511 {
1512 header_found = 1;
1513 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1514 }
1515 }
1516
1517 /* Loop exit heuristics - predict an edge exiting the loop if the
1518 conditional has no loop header successors as not taken. */
1519 if (!header_found
1520 /* If we already used more reliable loop exit predictors, do not
1521 bother with PRED_LOOP_EXIT. */
1522 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1523 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1524 {
1525 /* For loop with many exits we don't want to predict all exits
1526 with the pretty large probability, because if all exits are
1527 considered in row, the loop would be predicted to iterate
1528 almost never. The code to divide probability by number of
1529 exits is very rough. It should compute the number of exits
1530 taken in each patch through function (not the overall number
1531 of exits that might be a lot higher for loops with wide switch
1532 statements in them) and compute n-th square root.
1533
1534 We limit the minimal probability by 2% to avoid
1535 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1536 as this was causing regression in perl benchmark containing such
1537 a wide loop. */
1538
1539 int probability = ((REG_BR_PROB_BASE
1540 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1541 / n_exits);
1542 if (probability < HITRATE (2))
1543 probability = HITRATE (2);
1544 FOR_EACH_EDGE (e, ei, bb->succs)
1545 if (e->dest->index < NUM_FIXED_BLOCKS
1546 || !flow_bb_inside_loop_p (loop, e->dest))
1547 predict_edge (e, PRED_LOOP_EXIT, probability);
1548 }
1549 if (loop_bound_var)
1550 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1551 loop_bound_code,
1552 loop_bound_step);
1553 }
1554
1555 /* Free basic blocks from get_loop_body. */
1556 free (bbs);
1557 }
1558 }
1559
1560 /* Attempt to predict probabilities of BB outgoing edges using local
1561 properties. */
1562 static void
1563 bb_estimate_probability_locally (basic_block bb)
1564 {
1565 rtx last_insn = BB_END (bb);
1566 rtx cond;
1567
1568 if (! can_predict_insn_p (last_insn))
1569 return;
1570 cond = get_condition (last_insn, NULL, false, false);
1571 if (! cond)
1572 return;
1573
1574 /* Try "pointer heuristic."
1575 A comparison ptr == 0 is predicted as false.
1576 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1577 if (COMPARISON_P (cond)
1578 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1579 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1580 {
1581 if (GET_CODE (cond) == EQ)
1582 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1583 else if (GET_CODE (cond) == NE)
1584 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1585 }
1586 else
1587
1588 /* Try "opcode heuristic."
1589 EQ tests are usually false and NE tests are usually true. Also,
1590 most quantities are positive, so we can make the appropriate guesses
1591 about signed comparisons against zero. */
1592 switch (GET_CODE (cond))
1593 {
1594 case CONST_INT:
1595 /* Unconditional branch. */
1596 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1597 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1598 break;
1599
1600 case EQ:
1601 case UNEQ:
1602 /* Floating point comparisons appears to behave in a very
1603 unpredictable way because of special role of = tests in
1604 FP code. */
1605 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1606 ;
1607 /* Comparisons with 0 are often used for booleans and there is
1608 nothing useful to predict about them. */
1609 else if (XEXP (cond, 1) == const0_rtx
1610 || XEXP (cond, 0) == const0_rtx)
1611 ;
1612 else
1613 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1614 break;
1615
1616 case NE:
1617 case LTGT:
1618 /* Floating point comparisons appears to behave in a very
1619 unpredictable way because of special role of = tests in
1620 FP code. */
1621 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1622 ;
1623 /* Comparisons with 0 are often used for booleans and there is
1624 nothing useful to predict about them. */
1625 else if (XEXP (cond, 1) == const0_rtx
1626 || XEXP (cond, 0) == const0_rtx)
1627 ;
1628 else
1629 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1630 break;
1631
1632 case ORDERED:
1633 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1634 break;
1635
1636 case UNORDERED:
1637 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1638 break;
1639
1640 case LE:
1641 case LT:
1642 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1643 || XEXP (cond, 1) == constm1_rtx)
1644 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1645 break;
1646
1647 case GE:
1648 case GT:
1649 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1650 || XEXP (cond, 1) == constm1_rtx)
1651 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1652 break;
1653
1654 default:
1655 break;
1656 }
1657 }
1658
1659 /* Set edge->probability for each successor edge of BB. */
1660 void
1661 guess_outgoing_edge_probabilities (basic_block bb)
1662 {
1663 bb_estimate_probability_locally (bb);
1664 combine_predictions_for_insn (BB_END (bb), bb);
1665 }
1666 \f
1667 static tree expr_expected_value (tree, bitmap);
1668
1669 /* Helper function for expr_expected_value. */
1670
1671 static tree
1672 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1673 tree op1, bitmap visited)
1674 {
1675 gimple def;
1676
1677 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1678 {
1679 if (TREE_CONSTANT (op0))
1680 return op0;
1681
1682 if (code != SSA_NAME)
1683 return NULL_TREE;
1684
1685 def = SSA_NAME_DEF_STMT (op0);
1686
1687 /* If we were already here, break the infinite cycle. */
1688 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1689 return NULL;
1690
1691 if (gimple_code (def) == GIMPLE_PHI)
1692 {
1693 /* All the arguments of the PHI node must have the same constant
1694 length. */
1695 int i, n = gimple_phi_num_args (def);
1696 tree val = NULL, new_val;
1697
1698 for (i = 0; i < n; i++)
1699 {
1700 tree arg = PHI_ARG_DEF (def, i);
1701
1702 /* If this PHI has itself as an argument, we cannot
1703 determine the string length of this argument. However,
1704 if we can find an expected constant value for the other
1705 PHI args then we can still be sure that this is
1706 likely a constant. So be optimistic and just
1707 continue with the next argument. */
1708 if (arg == PHI_RESULT (def))
1709 continue;
1710
1711 new_val = expr_expected_value (arg, visited);
1712 if (!new_val)
1713 return NULL;
1714 if (!val)
1715 val = new_val;
1716 else if (!operand_equal_p (val, new_val, false))
1717 return NULL;
1718 }
1719 return val;
1720 }
1721 if (is_gimple_assign (def))
1722 {
1723 if (gimple_assign_lhs (def) != op0)
1724 return NULL;
1725
1726 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1727 gimple_assign_rhs1 (def),
1728 gimple_assign_rhs_code (def),
1729 gimple_assign_rhs2 (def),
1730 visited);
1731 }
1732
1733 if (is_gimple_call (def))
1734 {
1735 tree decl = gimple_call_fndecl (def);
1736 if (!decl)
1737 return NULL;
1738 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1739 switch (DECL_FUNCTION_CODE (decl))
1740 {
1741 case BUILT_IN_EXPECT:
1742 {
1743 tree val;
1744 if (gimple_call_num_args (def) != 2)
1745 return NULL;
1746 val = gimple_call_arg (def, 0);
1747 if (TREE_CONSTANT (val))
1748 return val;
1749 return gimple_call_arg (def, 1);
1750 }
1751
1752 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1753 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1754 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1755 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1756 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1757 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1758 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1759 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1760 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1761 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1762 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1763 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1764 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1765 /* Assume that any given atomic operation has low contention,
1766 and thus the compare-and-swap operation succeeds. */
1767 return boolean_true_node;
1768 }
1769 }
1770
1771 return NULL;
1772 }
1773
1774 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1775 {
1776 tree res;
1777 op0 = expr_expected_value (op0, visited);
1778 if (!op0)
1779 return NULL;
1780 op1 = expr_expected_value (op1, visited);
1781 if (!op1)
1782 return NULL;
1783 res = fold_build2 (code, type, op0, op1);
1784 if (TREE_CONSTANT (res))
1785 return res;
1786 return NULL;
1787 }
1788 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1789 {
1790 tree res;
1791 op0 = expr_expected_value (op0, visited);
1792 if (!op0)
1793 return NULL;
1794 res = fold_build1 (code, type, op0);
1795 if (TREE_CONSTANT (res))
1796 return res;
1797 return NULL;
1798 }
1799 return NULL;
1800 }
1801
1802 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1803 The function is used by builtin_expect branch predictor so the evidence
1804 must come from this construct and additional possible constant folding.
1805
1806 We may want to implement more involved value guess (such as value range
1807 propagation based prediction), but such tricks shall go to new
1808 implementation. */
1809
1810 static tree
1811 expr_expected_value (tree expr, bitmap visited)
1812 {
1813 enum tree_code code;
1814 tree op0, op1;
1815
1816 if (TREE_CONSTANT (expr))
1817 return expr;
1818
1819 extract_ops_from_tree (expr, &code, &op0, &op1);
1820 return expr_expected_value_1 (TREE_TYPE (expr),
1821 op0, code, op1, visited);
1822 }
1823
1824 \f
1825 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1826 we no longer need. */
1827 static unsigned int
1828 strip_predict_hints (void)
1829 {
1830 basic_block bb;
1831 gimple ass_stmt;
1832 tree var;
1833
1834 FOR_EACH_BB (bb)
1835 {
1836 gimple_stmt_iterator bi;
1837 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1838 {
1839 gimple stmt = gsi_stmt (bi);
1840
1841 if (gimple_code (stmt) == GIMPLE_PREDICT)
1842 {
1843 gsi_remove (&bi, true);
1844 continue;
1845 }
1846 else if (gimple_code (stmt) == GIMPLE_CALL)
1847 {
1848 tree fndecl = gimple_call_fndecl (stmt);
1849
1850 if (fndecl
1851 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1852 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1853 && gimple_call_num_args (stmt) == 2)
1854 {
1855 var = gimple_call_lhs (stmt);
1856 if (var)
1857 {
1858 ass_stmt
1859 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1860 gsi_replace (&bi, ass_stmt, true);
1861 }
1862 else
1863 {
1864 gsi_remove (&bi, true);
1865 continue;
1866 }
1867 }
1868 }
1869 gsi_next (&bi);
1870 }
1871 }
1872 return 0;
1873 }
1874 \f
1875 /* Predict using opcode of the last statement in basic block. */
1876 static void
1877 tree_predict_by_opcode (basic_block bb)
1878 {
1879 gimple stmt = last_stmt (bb);
1880 edge then_edge;
1881 tree op0, op1;
1882 tree type;
1883 tree val;
1884 enum tree_code cmp;
1885 bitmap visited;
1886 edge_iterator ei;
1887
1888 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1889 return;
1890 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1891 if (then_edge->flags & EDGE_TRUE_VALUE)
1892 break;
1893 op0 = gimple_cond_lhs (stmt);
1894 op1 = gimple_cond_rhs (stmt);
1895 cmp = gimple_cond_code (stmt);
1896 type = TREE_TYPE (op0);
1897 visited = BITMAP_ALLOC (NULL);
1898 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1899 BITMAP_FREE (visited);
1900 if (val)
1901 {
1902 if (integer_zerop (val))
1903 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1904 else
1905 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1906 return;
1907 }
1908 /* Try "pointer heuristic."
1909 A comparison ptr == 0 is predicted as false.
1910 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1911 if (POINTER_TYPE_P (type))
1912 {
1913 if (cmp == EQ_EXPR)
1914 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1915 else if (cmp == NE_EXPR)
1916 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1917 }
1918 else
1919
1920 /* Try "opcode heuristic."
1921 EQ tests are usually false and NE tests are usually true. Also,
1922 most quantities are positive, so we can make the appropriate guesses
1923 about signed comparisons against zero. */
1924 switch (cmp)
1925 {
1926 case EQ_EXPR:
1927 case UNEQ_EXPR:
1928 /* Floating point comparisons appears to behave in a very
1929 unpredictable way because of special role of = tests in
1930 FP code. */
1931 if (FLOAT_TYPE_P (type))
1932 ;
1933 /* Comparisons with 0 are often used for booleans and there is
1934 nothing useful to predict about them. */
1935 else if (integer_zerop (op0) || integer_zerop (op1))
1936 ;
1937 else
1938 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1939 break;
1940
1941 case NE_EXPR:
1942 case LTGT_EXPR:
1943 /* Floating point comparisons appears to behave in a very
1944 unpredictable way because of special role of = tests in
1945 FP code. */
1946 if (FLOAT_TYPE_P (type))
1947 ;
1948 /* Comparisons with 0 are often used for booleans and there is
1949 nothing useful to predict about them. */
1950 else if (integer_zerop (op0)
1951 || integer_zerop (op1))
1952 ;
1953 else
1954 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1955 break;
1956
1957 case ORDERED_EXPR:
1958 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1959 break;
1960
1961 case UNORDERED_EXPR:
1962 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1963 break;
1964
1965 case LE_EXPR:
1966 case LT_EXPR:
1967 if (integer_zerop (op1)
1968 || integer_onep (op1)
1969 || integer_all_onesp (op1)
1970 || real_zerop (op1)
1971 || real_onep (op1)
1972 || real_minus_onep (op1))
1973 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1974 break;
1975
1976 case GE_EXPR:
1977 case GT_EXPR:
1978 if (integer_zerop (op1)
1979 || integer_onep (op1)
1980 || integer_all_onesp (op1)
1981 || real_zerop (op1)
1982 || real_onep (op1)
1983 || real_minus_onep (op1))
1984 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1985 break;
1986
1987 default:
1988 break;
1989 }
1990 }
1991
1992 /* Try to guess whether the value of return means error code. */
1993
1994 static enum br_predictor
1995 return_prediction (tree val, enum prediction *prediction)
1996 {
1997 /* VOID. */
1998 if (!val)
1999 return PRED_NO_PREDICTION;
2000 /* Different heuristics for pointers and scalars. */
2001 if (POINTER_TYPE_P (TREE_TYPE (val)))
2002 {
2003 /* NULL is usually not returned. */
2004 if (integer_zerop (val))
2005 {
2006 *prediction = NOT_TAKEN;
2007 return PRED_NULL_RETURN;
2008 }
2009 }
2010 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2011 {
2012 /* Negative return values are often used to indicate
2013 errors. */
2014 if (TREE_CODE (val) == INTEGER_CST
2015 && tree_int_cst_sgn (val) < 0)
2016 {
2017 *prediction = NOT_TAKEN;
2018 return PRED_NEGATIVE_RETURN;
2019 }
2020 /* Constant return values seems to be commonly taken.
2021 Zero/one often represent booleans so exclude them from the
2022 heuristics. */
2023 if (TREE_CONSTANT (val)
2024 && (!integer_zerop (val) && !integer_onep (val)))
2025 {
2026 *prediction = TAKEN;
2027 return PRED_CONST_RETURN;
2028 }
2029 }
2030 return PRED_NO_PREDICTION;
2031 }
2032
2033 /* Find the basic block with return expression and look up for possible
2034 return value trying to apply RETURN_PREDICTION heuristics. */
2035 static void
2036 apply_return_prediction (void)
2037 {
2038 gimple return_stmt = NULL;
2039 tree return_val;
2040 edge e;
2041 gimple phi;
2042 int phi_num_args, i;
2043 enum br_predictor pred;
2044 enum prediction direction;
2045 edge_iterator ei;
2046
2047 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2048 {
2049 return_stmt = last_stmt (e->src);
2050 if (return_stmt
2051 && gimple_code (return_stmt) == GIMPLE_RETURN)
2052 break;
2053 }
2054 if (!e)
2055 return;
2056 return_val = gimple_return_retval (return_stmt);
2057 if (!return_val)
2058 return;
2059 if (TREE_CODE (return_val) != SSA_NAME
2060 || !SSA_NAME_DEF_STMT (return_val)
2061 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2062 return;
2063 phi = SSA_NAME_DEF_STMT (return_val);
2064 phi_num_args = gimple_phi_num_args (phi);
2065 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2066
2067 /* Avoid the degenerate case where all return values form the function
2068 belongs to same category (ie they are all positive constants)
2069 so we can hardly say something about them. */
2070 for (i = 1; i < phi_num_args; i++)
2071 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2072 break;
2073 if (i != phi_num_args)
2074 for (i = 0; i < phi_num_args; i++)
2075 {
2076 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2077 if (pred != PRED_NO_PREDICTION)
2078 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2079 direction);
2080 }
2081 }
2082
2083 /* Look for basic block that contains unlikely to happen events
2084 (such as noreturn calls) and mark all paths leading to execution
2085 of this basic blocks as unlikely. */
2086
2087 static void
2088 tree_bb_level_predictions (void)
2089 {
2090 basic_block bb;
2091 bool has_return_edges = false;
2092 edge e;
2093 edge_iterator ei;
2094
2095 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2096 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2097 {
2098 has_return_edges = true;
2099 break;
2100 }
2101
2102 apply_return_prediction ();
2103
2104 FOR_EACH_BB (bb)
2105 {
2106 gimple_stmt_iterator gsi;
2107
2108 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2109 {
2110 gimple stmt = gsi_stmt (gsi);
2111 tree decl;
2112
2113 if (is_gimple_call (stmt))
2114 {
2115 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2116 && has_return_edges)
2117 predict_paths_leading_to (bb, PRED_NORETURN,
2118 NOT_TAKEN);
2119 decl = gimple_call_fndecl (stmt);
2120 if (decl
2121 && lookup_attribute ("cold",
2122 DECL_ATTRIBUTES (decl)))
2123 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2124 NOT_TAKEN);
2125 }
2126 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2127 {
2128 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2129 gimple_predict_outcome (stmt));
2130 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2131 hints to callers. */
2132 }
2133 }
2134 }
2135 }
2136
2137 #ifdef ENABLE_CHECKING
2138
2139 /* Callback for pointer_map_traverse, asserts that the pointer map is
2140 empty. */
2141
2142 static bool
2143 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2144 void *data ATTRIBUTE_UNUSED)
2145 {
2146 gcc_assert (!*value);
2147 return false;
2148 }
2149 #endif
2150
2151 /* Predict branch probabilities and estimate profile for basic block BB. */
2152
2153 static void
2154 tree_estimate_probability_bb (basic_block bb)
2155 {
2156 edge e;
2157 edge_iterator ei;
2158 gimple last;
2159
2160 FOR_EACH_EDGE (e, ei, bb->succs)
2161 {
2162 /* Predict edges to user labels with attributes. */
2163 if (e->dest != EXIT_BLOCK_PTR)
2164 {
2165 gimple_stmt_iterator gi;
2166 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2167 {
2168 gimple stmt = gsi_stmt (gi);
2169 tree decl;
2170
2171 if (gimple_code (stmt) != GIMPLE_LABEL)
2172 break;
2173 decl = gimple_label_label (stmt);
2174 if (DECL_ARTIFICIAL (decl))
2175 continue;
2176
2177 /* Finally, we have a user-defined label. */
2178 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2179 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2180 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2181 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2182 }
2183 }
2184
2185 /* Predict early returns to be probable, as we've already taken
2186 care for error returns and other cases are often used for
2187 fast paths through function.
2188
2189 Since we've already removed the return statements, we are
2190 looking for CFG like:
2191
2192 if (conditional)
2193 {
2194 ..
2195 goto return_block
2196 }
2197 some other blocks
2198 return_block:
2199 return_stmt. */
2200 if (e->dest != bb->next_bb
2201 && e->dest != EXIT_BLOCK_PTR
2202 && single_succ_p (e->dest)
2203 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
2204 && (last = last_stmt (e->dest)) != NULL
2205 && gimple_code (last) == GIMPLE_RETURN)
2206 {
2207 edge e1;
2208 edge_iterator ei1;
2209
2210 if (single_succ_p (bb))
2211 {
2212 FOR_EACH_EDGE (e1, ei1, bb->preds)
2213 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2214 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2215 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2216 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2217 }
2218 else
2219 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2220 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2221 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2222 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2223 }
2224
2225 /* Look for block we are guarding (ie we dominate it,
2226 but it doesn't postdominate us). */
2227 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
2228 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2229 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2230 {
2231 gimple_stmt_iterator bi;
2232
2233 /* The call heuristic claims that a guarded function call
2234 is improbable. This is because such calls are often used
2235 to signal exceptional situations such as printing error
2236 messages. */
2237 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2238 gsi_next (&bi))
2239 {
2240 gimple stmt = gsi_stmt (bi);
2241 if (is_gimple_call (stmt)
2242 /* Constant and pure calls are hardly used to signalize
2243 something exceptional. */
2244 && gimple_has_side_effects (stmt))
2245 {
2246 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2247 break;
2248 }
2249 }
2250 }
2251 }
2252 tree_predict_by_opcode (bb);
2253 }
2254
2255 /* Predict branch probabilities and estimate profile of the tree CFG.
2256 This function can be called from the loop optimizers to recompute
2257 the profile information. */
2258
2259 void
2260 tree_estimate_probability (void)
2261 {
2262 basic_block bb;
2263
2264 add_noreturn_fake_exit_edges ();
2265 connect_infinite_loops_to_exit ();
2266 /* We use loop_niter_by_eval, which requires that the loops have
2267 preheaders. */
2268 create_preheaders (CP_SIMPLE_PREHEADERS);
2269 calculate_dominance_info (CDI_POST_DOMINATORS);
2270
2271 bb_predictions = pointer_map_create ();
2272 tree_bb_level_predictions ();
2273 record_loop_exits ();
2274
2275 if (number_of_loops () > 1)
2276 predict_loops ();
2277
2278 FOR_EACH_BB (bb)
2279 tree_estimate_probability_bb (bb);
2280
2281 FOR_EACH_BB (bb)
2282 combine_predictions_for_bb (bb);
2283
2284 #ifdef ENABLE_CHECKING
2285 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2286 #endif
2287 pointer_map_destroy (bb_predictions);
2288 bb_predictions = NULL;
2289
2290 estimate_bb_frequencies ();
2291 free_dominance_info (CDI_POST_DOMINATORS);
2292 remove_fake_exit_edges ();
2293 }
2294
2295 /* Predict branch probabilities and estimate profile of the tree CFG.
2296 This is the driver function for PASS_PROFILE. */
2297
2298 static unsigned int
2299 tree_estimate_probability_driver (void)
2300 {
2301 unsigned nb_loops;
2302
2303 loop_optimizer_init (LOOPS_NORMAL);
2304 if (dump_file && (dump_flags & TDF_DETAILS))
2305 flow_loops_dump (dump_file, NULL, 0);
2306
2307 mark_irreducible_loops ();
2308
2309 nb_loops = number_of_loops ();
2310 if (nb_loops > 1)
2311 scev_initialize ();
2312
2313 tree_estimate_probability ();
2314
2315 if (nb_loops > 1)
2316 scev_finalize ();
2317
2318 loop_optimizer_finalize ();
2319 if (dump_file && (dump_flags & TDF_DETAILS))
2320 gimple_dump_cfg (dump_file, dump_flags);
2321 if (profile_status == PROFILE_ABSENT)
2322 profile_status = PROFILE_GUESSED;
2323 return 0;
2324 }
2325 \f
2326 /* Predict edges to successors of CUR whose sources are not postdominated by
2327 BB by PRED and recurse to all postdominators. */
2328
2329 static void
2330 predict_paths_for_bb (basic_block cur, basic_block bb,
2331 enum br_predictor pred,
2332 enum prediction taken,
2333 bitmap visited)
2334 {
2335 edge e;
2336 edge_iterator ei;
2337 basic_block son;
2338
2339 /* We are looking for all edges forming edge cut induced by
2340 set of all blocks postdominated by BB. */
2341 FOR_EACH_EDGE (e, ei, cur->preds)
2342 if (e->src->index >= NUM_FIXED_BLOCKS
2343 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2344 {
2345 edge e2;
2346 edge_iterator ei2;
2347 bool found = false;
2348
2349 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2350 if (e->flags & (EDGE_EH | EDGE_FAKE))
2351 continue;
2352 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2353
2354 /* See if there is an edge from e->src that is not abnormal
2355 and does not lead to BB. */
2356 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2357 if (e2 != e
2358 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2359 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2360 {
2361 found = true;
2362 break;
2363 }
2364
2365 /* If there is non-abnormal path leaving e->src, predict edge
2366 using predictor. Otherwise we need to look for paths
2367 leading to e->src.
2368
2369 The second may lead to infinite loop in the case we are predicitng
2370 regions that are only reachable by abnormal edges. We simply
2371 prevent visiting given BB twice. */
2372 if (found)
2373 predict_edge_def (e, pred, taken);
2374 else if (bitmap_set_bit (visited, e->src->index))
2375 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2376 }
2377 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2378 son;
2379 son = next_dom_son (CDI_POST_DOMINATORS, son))
2380 predict_paths_for_bb (son, bb, pred, taken, visited);
2381 }
2382
2383 /* Sets branch probabilities according to PREDiction and
2384 FLAGS. */
2385
2386 static void
2387 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2388 enum prediction taken)
2389 {
2390 bitmap visited = BITMAP_ALLOC (NULL);
2391 predict_paths_for_bb (bb, bb, pred, taken, visited);
2392 BITMAP_FREE (visited);
2393 }
2394
2395 /* Like predict_paths_leading_to but take edge instead of basic block. */
2396
2397 static void
2398 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2399 enum prediction taken)
2400 {
2401 bool has_nonloop_edge = false;
2402 edge_iterator ei;
2403 edge e2;
2404
2405 basic_block bb = e->src;
2406 FOR_EACH_EDGE (e2, ei, bb->succs)
2407 if (e2->dest != e->src && e2->dest != e->dest
2408 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2409 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2410 {
2411 has_nonloop_edge = true;
2412 break;
2413 }
2414 if (!has_nonloop_edge)
2415 {
2416 bitmap visited = BITMAP_ALLOC (NULL);
2417 predict_paths_for_bb (bb, bb, pred, taken, visited);
2418 BITMAP_FREE (visited);
2419 }
2420 else
2421 predict_edge_def (e, pred, taken);
2422 }
2423 \f
2424 /* This is used to carry information about basic blocks. It is
2425 attached to the AUX field of the standard CFG block. */
2426
2427 typedef struct block_info_def
2428 {
2429 /* Estimated frequency of execution of basic_block. */
2430 sreal frequency;
2431
2432 /* To keep queue of basic blocks to process. */
2433 basic_block next;
2434
2435 /* Number of predecessors we need to visit first. */
2436 int npredecessors;
2437 } *block_info;
2438
2439 /* Similar information for edges. */
2440 typedef struct edge_info_def
2441 {
2442 /* In case edge is a loopback edge, the probability edge will be reached
2443 in case header is. Estimated number of iterations of the loop can be
2444 then computed as 1 / (1 - back_edge_prob). */
2445 sreal back_edge_prob;
2446 /* True if the edge is a loopback edge in the natural loop. */
2447 unsigned int back_edge:1;
2448 } *edge_info;
2449
2450 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2451 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2452
2453 /* Helper function for estimate_bb_frequencies.
2454 Propagate the frequencies in blocks marked in
2455 TOVISIT, starting in HEAD. */
2456
2457 static void
2458 propagate_freq (basic_block head, bitmap tovisit)
2459 {
2460 basic_block bb;
2461 basic_block last;
2462 unsigned i;
2463 edge e;
2464 basic_block nextbb;
2465 bitmap_iterator bi;
2466
2467 /* For each basic block we need to visit count number of his predecessors
2468 we need to visit first. */
2469 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2470 {
2471 edge_iterator ei;
2472 int count = 0;
2473
2474 bb = BASIC_BLOCK (i);
2475
2476 FOR_EACH_EDGE (e, ei, bb->preds)
2477 {
2478 bool visit = bitmap_bit_p (tovisit, e->src->index);
2479
2480 if (visit && !(e->flags & EDGE_DFS_BACK))
2481 count++;
2482 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2483 fprintf (dump_file,
2484 "Irreducible region hit, ignoring edge to %i->%i\n",
2485 e->src->index, bb->index);
2486 }
2487 BLOCK_INFO (bb)->npredecessors = count;
2488 /* When function never returns, we will never process exit block. */
2489 if (!count && bb == EXIT_BLOCK_PTR)
2490 bb->count = bb->frequency = 0;
2491 }
2492
2493 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2494 last = head;
2495 for (bb = head; bb; bb = nextbb)
2496 {
2497 edge_iterator ei;
2498 sreal cyclic_probability, frequency;
2499
2500 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2501 memcpy (&frequency, &real_zero, sizeof (real_zero));
2502
2503 nextbb = BLOCK_INFO (bb)->next;
2504 BLOCK_INFO (bb)->next = NULL;
2505
2506 /* Compute frequency of basic block. */
2507 if (bb != head)
2508 {
2509 #ifdef ENABLE_CHECKING
2510 FOR_EACH_EDGE (e, ei, bb->preds)
2511 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2512 || (e->flags & EDGE_DFS_BACK));
2513 #endif
2514
2515 FOR_EACH_EDGE (e, ei, bb->preds)
2516 if (EDGE_INFO (e)->back_edge)
2517 {
2518 sreal_add (&cyclic_probability, &cyclic_probability,
2519 &EDGE_INFO (e)->back_edge_prob);
2520 }
2521 else if (!(e->flags & EDGE_DFS_BACK))
2522 {
2523 sreal tmp;
2524
2525 /* frequency += (e->probability
2526 * BLOCK_INFO (e->src)->frequency /
2527 REG_BR_PROB_BASE); */
2528
2529 sreal_init (&tmp, e->probability, 0);
2530 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2531 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2532 sreal_add (&frequency, &frequency, &tmp);
2533 }
2534
2535 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2536 {
2537 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2538 sizeof (frequency));
2539 }
2540 else
2541 {
2542 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2543 {
2544 memcpy (&cyclic_probability, &real_almost_one,
2545 sizeof (real_almost_one));
2546 }
2547
2548 /* BLOCK_INFO (bb)->frequency = frequency
2549 / (1 - cyclic_probability) */
2550
2551 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2552 sreal_div (&BLOCK_INFO (bb)->frequency,
2553 &frequency, &cyclic_probability);
2554 }
2555 }
2556
2557 bitmap_clear_bit (tovisit, bb->index);
2558
2559 e = find_edge (bb, head);
2560 if (e)
2561 {
2562 sreal tmp;
2563
2564 /* EDGE_INFO (e)->back_edge_prob
2565 = ((e->probability * BLOCK_INFO (bb)->frequency)
2566 / REG_BR_PROB_BASE); */
2567
2568 sreal_init (&tmp, e->probability, 0);
2569 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2570 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2571 &tmp, &real_inv_br_prob_base);
2572 }
2573
2574 /* Propagate to successor blocks. */
2575 FOR_EACH_EDGE (e, ei, bb->succs)
2576 if (!(e->flags & EDGE_DFS_BACK)
2577 && BLOCK_INFO (e->dest)->npredecessors)
2578 {
2579 BLOCK_INFO (e->dest)->npredecessors--;
2580 if (!BLOCK_INFO (e->dest)->npredecessors)
2581 {
2582 if (!nextbb)
2583 nextbb = e->dest;
2584 else
2585 BLOCK_INFO (last)->next = e->dest;
2586
2587 last = e->dest;
2588 }
2589 }
2590 }
2591 }
2592
2593 /* Estimate probabilities of loopback edges in loops at same nest level. */
2594
2595 static void
2596 estimate_loops_at_level (struct loop *first_loop)
2597 {
2598 struct loop *loop;
2599
2600 for (loop = first_loop; loop; loop = loop->next)
2601 {
2602 edge e;
2603 basic_block *bbs;
2604 unsigned i;
2605 bitmap tovisit = BITMAP_ALLOC (NULL);
2606
2607 estimate_loops_at_level (loop->inner);
2608
2609 /* Find current loop back edge and mark it. */
2610 e = loop_latch_edge (loop);
2611 EDGE_INFO (e)->back_edge = 1;
2612
2613 bbs = get_loop_body (loop);
2614 for (i = 0; i < loop->num_nodes; i++)
2615 bitmap_set_bit (tovisit, bbs[i]->index);
2616 free (bbs);
2617 propagate_freq (loop->header, tovisit);
2618 BITMAP_FREE (tovisit);
2619 }
2620 }
2621
2622 /* Propagates frequencies through structure of loops. */
2623
2624 static void
2625 estimate_loops (void)
2626 {
2627 bitmap tovisit = BITMAP_ALLOC (NULL);
2628 basic_block bb;
2629
2630 /* Start by estimating the frequencies in the loops. */
2631 if (number_of_loops () > 1)
2632 estimate_loops_at_level (current_loops->tree_root->inner);
2633
2634 /* Now propagate the frequencies through all the blocks. */
2635 FOR_ALL_BB (bb)
2636 {
2637 bitmap_set_bit (tovisit, bb->index);
2638 }
2639 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
2640 BITMAP_FREE (tovisit);
2641 }
2642
2643 /* Convert counts measured by profile driven feedback to frequencies.
2644 Return nonzero iff there was any nonzero execution count. */
2645
2646 int
2647 counts_to_freqs (void)
2648 {
2649 gcov_type count_max, true_count_max = 0;
2650 basic_block bb;
2651
2652 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2653 true_count_max = MAX (bb->count, true_count_max);
2654
2655 count_max = MAX (true_count_max, 1);
2656 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2657 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2658
2659 return true_count_max;
2660 }
2661
2662 /* Return true if function is likely to be expensive, so there is no point to
2663 optimize performance of prologue, epilogue or do inlining at the expense
2664 of code size growth. THRESHOLD is the limit of number of instructions
2665 function can execute at average to be still considered not expensive. */
2666
2667 bool
2668 expensive_function_p (int threshold)
2669 {
2670 unsigned int sum = 0;
2671 basic_block bb;
2672 unsigned int limit;
2673
2674 /* We can not compute accurately for large thresholds due to scaled
2675 frequencies. */
2676 gcc_assert (threshold <= BB_FREQ_MAX);
2677
2678 /* Frequencies are out of range. This either means that function contains
2679 internal loop executing more than BB_FREQ_MAX times or profile feedback
2680 is available and function has not been executed at all. */
2681 if (ENTRY_BLOCK_PTR->frequency == 0)
2682 return true;
2683
2684 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2685 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2686 FOR_EACH_BB (bb)
2687 {
2688 rtx insn;
2689
2690 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2691 insn = NEXT_INSN (insn))
2692 if (active_insn_p (insn))
2693 {
2694 sum += bb->frequency;
2695 if (sum > limit)
2696 return true;
2697 }
2698 }
2699
2700 return false;
2701 }
2702
2703 /* Estimate basic blocks frequency by given branch probabilities. */
2704
2705 void
2706 estimate_bb_frequencies (void)
2707 {
2708 basic_block bb;
2709 sreal freq_max;
2710
2711 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2712 {
2713 static int real_values_initialized = 0;
2714
2715 if (!real_values_initialized)
2716 {
2717 real_values_initialized = 1;
2718 sreal_init (&real_zero, 0, 0);
2719 sreal_init (&real_one, 1, 0);
2720 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2721 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2722 sreal_init (&real_one_half, 1, -1);
2723 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2724 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2725 }
2726
2727 mark_dfs_back_edges ();
2728
2729 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2730
2731 /* Set up block info for each basic block. */
2732 alloc_aux_for_blocks (sizeof (struct block_info_def));
2733 alloc_aux_for_edges (sizeof (struct edge_info_def));
2734 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2735 {
2736 edge e;
2737 edge_iterator ei;
2738
2739 FOR_EACH_EDGE (e, ei, bb->succs)
2740 {
2741 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2742 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2743 &EDGE_INFO (e)->back_edge_prob,
2744 &real_inv_br_prob_base);
2745 }
2746 }
2747
2748 /* First compute probabilities locally for each loop from innermost
2749 to outermost to examine probabilities for back edges. */
2750 estimate_loops ();
2751
2752 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2753 FOR_EACH_BB (bb)
2754 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2755 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2756
2757 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2758 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2759 {
2760 sreal tmp;
2761
2762 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2763 sreal_add (&tmp, &tmp, &real_one_half);
2764 bb->frequency = sreal_to_int (&tmp);
2765 }
2766
2767 free_aux_for_blocks ();
2768 free_aux_for_edges ();
2769 }
2770 compute_function_frequency ();
2771 }
2772
2773 /* Decide whether function is hot, cold or unlikely executed. */
2774 void
2775 compute_function_frequency (void)
2776 {
2777 basic_block bb;
2778 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2779 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2780 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2781 node->only_called_at_startup = true;
2782 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2783 node->only_called_at_exit = true;
2784
2785 if (!profile_info || !flag_branch_probabilities)
2786 {
2787 int flags = flags_from_decl_or_type (current_function_decl);
2788 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2789 != NULL)
2790 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2791 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2792 != NULL)
2793 node->frequency = NODE_FREQUENCY_HOT;
2794 else if (flags & ECF_NORETURN)
2795 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2796 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
2797 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2798 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2799 || DECL_STATIC_DESTRUCTOR (current_function_decl))
2800 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
2801 return;
2802 }
2803 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
2804 FOR_EACH_BB (bb)
2805 {
2806 if (maybe_hot_bb_p (cfun, bb))
2807 {
2808 node->frequency = NODE_FREQUENCY_HOT;
2809 return;
2810 }
2811 if (!probably_never_executed_bb_p (cfun, bb))
2812 node->frequency = NODE_FREQUENCY_NORMAL;
2813 }
2814 }
2815
2816 static bool
2817 gate_estimate_probability (void)
2818 {
2819 return flag_guess_branch_prob;
2820 }
2821
2822 /* Build PREDICT_EXPR. */
2823 tree
2824 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2825 {
2826 tree t = build1 (PREDICT_EXPR, void_type_node,
2827 build_int_cst (integer_type_node, predictor));
2828 SET_PREDICT_EXPR_OUTCOME (t, taken);
2829 return t;
2830 }
2831
2832 const char *
2833 predictor_name (enum br_predictor predictor)
2834 {
2835 return predictor_info[predictor].name;
2836 }
2837
2838 struct gimple_opt_pass pass_profile =
2839 {
2840 {
2841 GIMPLE_PASS,
2842 "profile_estimate", /* name */
2843 OPTGROUP_NONE, /* optinfo_flags */
2844 gate_estimate_probability, /* gate */
2845 tree_estimate_probability_driver, /* execute */
2846 NULL, /* sub */
2847 NULL, /* next */
2848 0, /* static_pass_number */
2849 TV_BRANCH_PROB, /* tv_id */
2850 PROP_cfg, /* properties_required */
2851 0, /* properties_provided */
2852 0, /* properties_destroyed */
2853 0, /* todo_flags_start */
2854 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2855 }
2856 };
2857
2858 struct gimple_opt_pass pass_strip_predict_hints =
2859 {
2860 {
2861 GIMPLE_PASS,
2862 "*strip_predict_hints", /* name */
2863 OPTGROUP_NONE, /* optinfo_flags */
2864 NULL, /* gate */
2865 strip_predict_hints, /* execute */
2866 NULL, /* sub */
2867 NULL, /* next */
2868 0, /* static_pass_number */
2869 TV_BRANCH_PROB, /* tv_id */
2870 PROP_cfg, /* properties_required */
2871 0, /* properties_provided */
2872 0, /* properties_destroyed */
2873 0, /* todo_flags_start */
2874 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2875 }
2876 };
2877
2878 /* Rebuild function frequencies. Passes are in general expected to
2879 maintain profile by hand, however in some cases this is not possible:
2880 for example when inlining several functions with loops freuqencies might run
2881 out of scale and thus needs to be recomputed. */
2882
2883 void
2884 rebuild_frequencies (void)
2885 {
2886 timevar_push (TV_REBUILD_FREQUENCIES);
2887 if (profile_status == PROFILE_GUESSED)
2888 {
2889 loop_optimizer_init (0);
2890 add_noreturn_fake_exit_edges ();
2891 mark_irreducible_loops ();
2892 connect_infinite_loops_to_exit ();
2893 estimate_bb_frequencies ();
2894 remove_fake_exit_edges ();
2895 loop_optimizer_finalize ();
2896 }
2897 else if (profile_status == PROFILE_READ)
2898 counts_to_freqs ();
2899 else
2900 gcc_unreachable ();
2901 timevar_pop (TV_REBUILD_FREQUENCIES);
2902 }