params.c (set_param_value): Use gcc_assert & gcc_unreachable.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void estimate_loops_at_level (struct loop *, bitmap);
78 static void propagate_freq (struct loop *, bitmap);
79 static void estimate_bb_frequencies (struct loops *);
80 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
81 static bool last_basic_block_p (basic_block);
82 static void compute_function_frequency (void);
83 static void choose_function_section (void);
84 static bool can_predict_insn_p (rtx);
85
86 /* Information we hold about each branch predictor.
87 Filled using information from predict.def. */
88
89 struct predictor_info
90 {
91 const char *const name; /* Name used in the debugging dumps. */
92 const int hitrate; /* Expected hitrate used by
93 predict_insn_def call. */
94 const int flags;
95 };
96
97 /* Use given predictor without Dempster-Shaffer theory if it matches
98 using first_match heuristics. */
99 #define PRED_FLAG_FIRST_MATCH 1
100
101 /* Recompute hitrate in percent to our representation. */
102
103 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104
105 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
106 static const struct predictor_info predictor_info[]= {
107 #include "predict.def"
108
109 /* Upper bound on predictors. */
110 {NULL, 0, 0}
111 };
112 #undef DEF_PREDICTOR
113
114 /* Return true in case BB can be CPU intensive and should be optimized
115 for maximal performance. */
116
117 bool
118 maybe_hot_bb_p (basic_block bb)
119 {
120 if (profile_info && flag_branch_probabilities
121 && (bb->count
122 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
123 return false;
124 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
125 return false;
126 return true;
127 }
128
129 /* Return true in case BB is cold and should be optimized for size. */
130
131 bool
132 probably_cold_bb_p (basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return true;
138 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
139 return true;
140 return false;
141 }
142
143 /* Return true in case BB is probably never executed. */
144 bool
145 probably_never_executed_bb_p (basic_block bb)
146 {
147 if (profile_info && flag_branch_probabilities)
148 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
149 return false;
150 }
151
152 /* Return true if the one of outgoing edges is already predicted by
153 PREDICTOR. */
154
155 bool
156 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 {
158 rtx note;
159 if (!INSN_P (BB_END (bb)))
160 return false;
161 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
162 if (REG_NOTE_KIND (note) == REG_BR_PRED
163 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
164 return true;
165 return false;
166 }
167
168 /* Return true if the one of outgoing edges is already predicted by
169 PREDICTOR. */
170
171 bool
172 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 {
174 struct edge_prediction *i = bb_ann (bb)->predictions;
175 for (i = bb_ann (bb)->predictions; i; i = i->next)
176 if (i->predictor == predictor)
177 return true;
178 return false;
179 }
180
181 static void
182 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 {
184 gcc_assert (any_condjump_p (insn));
185 if (!flag_guess_branch_prob)
186 return;
187
188 REG_NOTES (insn)
189 = gen_rtx_EXPR_LIST (REG_BR_PRED,
190 gen_rtx_CONCAT (VOIDmode,
191 GEN_INT ((int) predictor),
192 GEN_INT ((int) probability)),
193 REG_NOTES (insn));
194 }
195
196 /* Predict insn by given predictor. */
197
198 void
199 predict_insn_def (rtx insn, enum br_predictor predictor,
200 enum prediction taken)
201 {
202 int probability = predictor_info[(int) predictor].hitrate;
203
204 if (taken != TAKEN)
205 probability = REG_BR_PROB_BASE - probability;
206
207 predict_insn (insn, predictor, probability);
208 }
209
210 /* Predict edge E with given probability if possible. */
211
212 void
213 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
214 {
215 rtx last_insn;
216 last_insn = BB_END (e->src);
217
218 /* We can store the branch prediction information only about
219 conditional jumps. */
220 if (!any_condjump_p (last_insn))
221 return;
222
223 /* We always store probability of branching. */
224 if (e->flags & EDGE_FALLTHRU)
225 probability = REG_BR_PROB_BASE - probability;
226
227 predict_insn (last_insn, predictor, probability);
228 }
229
230 /* Predict edge E with the given PROBABILITY. */
231 void
232 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
233 {
234 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
235
236 i->next = bb_ann (e->src)->predictions;
237 bb_ann (e->src)->predictions = i;
238 i->probability = probability;
239 i->predictor = predictor;
240 i->edge = e;
241 }
242
243 /* Return true when we can store prediction on insn INSN.
244 At the moment we represent predictions only on conditional
245 jumps, not at computed jump or other complicated cases. */
246 static bool
247 can_predict_insn_p (rtx insn)
248 {
249 return (JUMP_P (insn)
250 && any_condjump_p (insn)
251 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
252 }
253
254 /* Predict edge E by given predictor if possible. */
255
256 void
257 predict_edge_def (edge e, enum br_predictor predictor,
258 enum prediction taken)
259 {
260 int probability = predictor_info[(int) predictor].hitrate;
261
262 if (taken != TAKEN)
263 probability = REG_BR_PROB_BASE - probability;
264
265 predict_edge (e, predictor, probability);
266 }
267
268 /* Invert all branch predictions or probability notes in the INSN. This needs
269 to be done each time we invert the condition used by the jump. */
270
271 void
272 invert_br_probabilities (rtx insn)
273 {
274 rtx note;
275
276 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
277 if (REG_NOTE_KIND (note) == REG_BR_PROB)
278 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
279 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
280 XEXP (XEXP (note, 0), 1)
281 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
282 }
283
284 /* Dump information about the branch prediction to the output file. */
285
286 static void
287 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
288 basic_block bb, int used)
289 {
290 edge e;
291 edge_iterator ei;
292
293 if (!file)
294 return;
295
296 FOR_EACH_EDGE (e, ei, bb->succs)
297 if (! (e->flags & EDGE_FALLTHRU))
298 break;
299
300 fprintf (file, " %s heuristics%s: %.1f%%",
301 predictor_info[predictor].name,
302 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
303
304 if (bb->count)
305 {
306 fprintf (file, " exec ");
307 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
308 if (e)
309 {
310 fprintf (file, " hit ");
311 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
312 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
313 }
314 }
315
316 fprintf (file, "\n");
317 }
318
319 /* We can not predict the probabilities of outgoing edges of bb. Set them
320 evenly and hope for the best. */
321 static void
322 set_even_probabilities (basic_block bb)
323 {
324 int nedges = 0;
325 edge e;
326 edge_iterator ei;
327
328 FOR_EACH_EDGE (e, ei, bb->succs)
329 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
330 nedges ++;
331 FOR_EACH_EDGE (e, ei, bb->succs)
332 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
333 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
334 else
335 e->probability = 0;
336 }
337
338 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
339 note if not already present. Remove now useless REG_BR_PRED notes. */
340
341 static void
342 combine_predictions_for_insn (rtx insn, basic_block bb)
343 {
344 rtx prob_note;
345 rtx *pnote;
346 rtx note;
347 int best_probability = PROB_EVEN;
348 int best_predictor = END_PREDICTORS;
349 int combined_probability = REG_BR_PROB_BASE / 2;
350 int d;
351 bool first_match = false;
352 bool found = false;
353
354 if (!can_predict_insn_p (insn))
355 {
356 set_even_probabilities (bb);
357 return;
358 }
359
360 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
361 pnote = &REG_NOTES (insn);
362 if (dump_file)
363 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
364 bb->index);
365
366 /* We implement "first match" heuristics and use probability guessed
367 by predictor with smallest index. */
368 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
369 if (REG_NOTE_KIND (note) == REG_BR_PRED)
370 {
371 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
372 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
373
374 found = true;
375 if (best_predictor > predictor)
376 best_probability = probability, best_predictor = predictor;
377
378 d = (combined_probability * probability
379 + (REG_BR_PROB_BASE - combined_probability)
380 * (REG_BR_PROB_BASE - probability));
381
382 /* Use FP math to avoid overflows of 32bit integers. */
383 if (d == 0)
384 /* If one probability is 0% and one 100%, avoid division by zero. */
385 combined_probability = REG_BR_PROB_BASE / 2;
386 else
387 combined_probability = (((double) combined_probability) * probability
388 * REG_BR_PROB_BASE / d + 0.5);
389 }
390
391 /* Decide which heuristic to use. In case we didn't match anything,
392 use no_prediction heuristic, in case we did match, use either
393 first match or Dempster-Shaffer theory depending on the flags. */
394
395 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
396 first_match = true;
397
398 if (!found)
399 dump_prediction (dump_file, PRED_NO_PREDICTION,
400 combined_probability, bb, true);
401 else
402 {
403 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
404 bb, !first_match);
405 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
406 bb, first_match);
407 }
408
409 if (first_match)
410 combined_probability = best_probability;
411 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
412
413 while (*pnote)
414 {
415 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
416 {
417 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
418 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
419
420 dump_prediction (dump_file, predictor, probability, bb,
421 !first_match || best_predictor == predictor);
422 *pnote = XEXP (*pnote, 1);
423 }
424 else
425 pnote = &XEXP (*pnote, 1);
426 }
427
428 if (!prob_note)
429 {
430 REG_NOTES (insn)
431 = gen_rtx_EXPR_LIST (REG_BR_PROB,
432 GEN_INT (combined_probability), REG_NOTES (insn));
433
434 /* Save the prediction into CFG in case we are seeing non-degenerated
435 conditional jump. */
436 if (!single_succ_p (bb))
437 {
438 BRANCH_EDGE (bb)->probability = combined_probability;
439 FALLTHRU_EDGE (bb)->probability
440 = REG_BR_PROB_BASE - combined_probability;
441 }
442 }
443 else if (!single_succ_p (bb))
444 {
445 int prob = INTVAL (XEXP (prob_note, 0));
446
447 BRANCH_EDGE (bb)->probability = prob;
448 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
449 }
450 else
451 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
452 }
453
454 /* Combine predictions into single probability and store them into CFG.
455 Remove now useless prediction entries. */
456
457 static void
458 combine_predictions_for_bb (FILE *file, basic_block bb)
459 {
460 int best_probability = PROB_EVEN;
461 int best_predictor = END_PREDICTORS;
462 int combined_probability = REG_BR_PROB_BASE / 2;
463 int d;
464 bool first_match = false;
465 bool found = false;
466 struct edge_prediction *pred;
467 int nedges = 0;
468 edge e, first = NULL, second = NULL;
469 edge_iterator ei;
470
471 FOR_EACH_EDGE (e, ei, bb->succs)
472 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
473 {
474 nedges ++;
475 if (first && !second)
476 second = e;
477 if (!first)
478 first = e;
479 }
480
481 /* When there is no successor or only one choice, prediction is easy.
482
483 We are lazy for now and predict only basic blocks with two outgoing
484 edges. It is possible to predict generic case too, but we have to
485 ignore first match heuristics and do more involved combining. Implement
486 this later. */
487 if (nedges != 2)
488 {
489 if (!bb->count)
490 set_even_probabilities (bb);
491 bb_ann (bb)->predictions = NULL;
492 if (file)
493 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
494 nedges, bb->index);
495 return;
496 }
497
498 if (file)
499 fprintf (file, "Predictions for bb %i\n", bb->index);
500
501 /* We implement "first match" heuristics and use probability guessed
502 by predictor with smallest index. */
503 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
504 {
505 int predictor = pred->predictor;
506 int probability = pred->probability;
507
508 if (pred->edge != first)
509 probability = REG_BR_PROB_BASE - probability;
510
511 found = true;
512 if (best_predictor > predictor)
513 best_probability = probability, best_predictor = predictor;
514
515 d = (combined_probability * probability
516 + (REG_BR_PROB_BASE - combined_probability)
517 * (REG_BR_PROB_BASE - probability));
518
519 /* Use FP math to avoid overflows of 32bit integers. */
520 if (d == 0)
521 /* If one probability is 0% and one 100%, avoid division by zero. */
522 combined_probability = REG_BR_PROB_BASE / 2;
523 else
524 combined_probability = (((double) combined_probability) * probability
525 * REG_BR_PROB_BASE / d + 0.5);
526 }
527
528 /* Decide which heuristic to use. In case we didn't match anything,
529 use no_prediction heuristic, in case we did match, use either
530 first match or Dempster-Shaffer theory depending on the flags. */
531
532 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
533 first_match = true;
534
535 if (!found)
536 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
537 else
538 {
539 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
540 !first_match);
541 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
542 first_match);
543 }
544
545 if (first_match)
546 combined_probability = best_probability;
547 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
548
549 for (pred = bb_ann (bb)->predictions; pred; pred = pred->next)
550 {
551 int predictor = pred->predictor;
552 int probability = pred->probability;
553
554 if (pred->edge != EDGE_SUCC (bb, 0))
555 probability = REG_BR_PROB_BASE - probability;
556 dump_prediction (file, predictor, probability, bb,
557 !first_match || best_predictor == predictor);
558 }
559 bb_ann (bb)->predictions = NULL;
560
561 if (!bb->count)
562 {
563 first->probability = combined_probability;
564 second->probability = REG_BR_PROB_BASE - combined_probability;
565 }
566 }
567
568 /* Predict edge probabilities by exploiting loop structure.
569 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
570 RTL otherwise use tree based approach. */
571 static void
572 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
573 {
574 unsigned i;
575
576 if (!rtlsimpleloops)
577 scev_initialize (loops_info);
578
579 /* Try to predict out blocks in a loop that are not part of a
580 natural loop. */
581 for (i = 1; i < loops_info->num; i++)
582 {
583 basic_block bb, *bbs;
584 unsigned j;
585 unsigned n_exits;
586 struct loop *loop = loops_info->parray[i];
587 struct niter_desc desc;
588 unsigned HOST_WIDE_INT niter;
589 edge *exits;
590
591 exits = get_loop_exit_edges (loop, &n_exits);
592
593 if (rtlsimpleloops)
594 {
595 iv_analysis_loop_init (loop);
596 find_simple_exit (loop, &desc);
597
598 if (desc.simple_p && desc.const_iter)
599 {
600 int prob;
601 niter = desc.niter + 1;
602 if (niter == 0) /* We might overflow here. */
603 niter = desc.niter;
604
605 prob = (REG_BR_PROB_BASE
606 - (REG_BR_PROB_BASE + niter /2) / niter);
607 /* Branch prediction algorithm gives 0 frequency for everything
608 after the end of loop for loop having 0 probability to finish. */
609 if (prob == REG_BR_PROB_BASE)
610 prob = REG_BR_PROB_BASE - 1;
611 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
612 prob);
613 }
614 }
615 else
616 {
617 struct tree_niter_desc niter_desc;
618
619 for (j = 0; j < n_exits; j++)
620 {
621 tree niter = NULL;
622
623 if (number_of_iterations_exit (loop, exits[j], &niter_desc))
624 niter = niter_desc.niter;
625 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
626 niter = loop_niter_by_eval (loop, exits[j]);
627
628 if (TREE_CODE (niter) == INTEGER_CST)
629 {
630 int probability;
631 if (host_integerp (niter, 1)
632 && tree_int_cst_lt (niter,
633 build_int_cstu (NULL_TREE,
634 REG_BR_PROB_BASE - 1)))
635 {
636 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
637 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
638 }
639 else
640 probability = 1;
641
642 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
643 }
644 }
645
646 }
647 free (exits);
648
649 bbs = get_loop_body (loop);
650
651 for (j = 0; j < loop->num_nodes; j++)
652 {
653 int header_found = 0;
654 edge e;
655 edge_iterator ei;
656
657 bb = bbs[j];
658
659 /* Bypass loop heuristics on continue statement. These
660 statements construct loops via "non-loop" constructs
661 in the source language and are better to be handled
662 separately. */
663 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
664 || predicted_by_p (bb, PRED_CONTINUE))
665 continue;
666
667 /* Loop branch heuristics - predict an edge back to a
668 loop's head as taken. */
669 if (bb == loop->latch)
670 {
671 e = find_edge (loop->latch, loop->header);
672 if (e)
673 {
674 header_found = 1;
675 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
676 }
677 }
678
679 /* Loop exit heuristics - predict an edge exiting the loop if the
680 conditional has no loop header successors as not taken. */
681 if (!header_found)
682 FOR_EACH_EDGE (e, ei, bb->succs)
683 if (e->dest->index < 0
684 || !flow_bb_inside_loop_p (loop, e->dest))
685 predict_edge
686 (e, PRED_LOOP_EXIT,
687 (REG_BR_PROB_BASE
688 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
689 / n_exits);
690 }
691
692 /* Free basic blocks from get_loop_body. */
693 free (bbs);
694 }
695
696 if (!rtlsimpleloops)
697 {
698 scev_finalize ();
699 current_loops = NULL;
700 }
701 }
702
703 /* Attempt to predict probabilities of BB outgoing edges using local
704 properties. */
705 static void
706 bb_estimate_probability_locally (basic_block bb)
707 {
708 rtx last_insn = BB_END (bb);
709 rtx cond;
710
711 if (! can_predict_insn_p (last_insn))
712 return;
713 cond = get_condition (last_insn, NULL, false, false);
714 if (! cond)
715 return;
716
717 /* Try "pointer heuristic."
718 A comparison ptr == 0 is predicted as false.
719 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
720 if (COMPARISON_P (cond)
721 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
722 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
723 {
724 if (GET_CODE (cond) == EQ)
725 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
726 else if (GET_CODE (cond) == NE)
727 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
728 }
729 else
730
731 /* Try "opcode heuristic."
732 EQ tests are usually false and NE tests are usually true. Also,
733 most quantities are positive, so we can make the appropriate guesses
734 about signed comparisons against zero. */
735 switch (GET_CODE (cond))
736 {
737 case CONST_INT:
738 /* Unconditional branch. */
739 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
740 cond == const0_rtx ? NOT_TAKEN : TAKEN);
741 break;
742
743 case EQ:
744 case UNEQ:
745 /* Floating point comparisons appears to behave in a very
746 unpredictable way because of special role of = tests in
747 FP code. */
748 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
749 ;
750 /* Comparisons with 0 are often used for booleans and there is
751 nothing useful to predict about them. */
752 else if (XEXP (cond, 1) == const0_rtx
753 || XEXP (cond, 0) == const0_rtx)
754 ;
755 else
756 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
757 break;
758
759 case NE:
760 case LTGT:
761 /* Floating point comparisons appears to behave in a very
762 unpredictable way because of special role of = tests in
763 FP code. */
764 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
765 ;
766 /* Comparisons with 0 are often used for booleans and there is
767 nothing useful to predict about them. */
768 else if (XEXP (cond, 1) == const0_rtx
769 || XEXP (cond, 0) == const0_rtx)
770 ;
771 else
772 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
773 break;
774
775 case ORDERED:
776 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
777 break;
778
779 case UNORDERED:
780 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
781 break;
782
783 case LE:
784 case LT:
785 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
786 || XEXP (cond, 1) == constm1_rtx)
787 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
788 break;
789
790 case GE:
791 case GT:
792 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
793 || XEXP (cond, 1) == constm1_rtx)
794 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
795 break;
796
797 default:
798 break;
799 }
800 }
801
802 /* Statically estimate the probability that a branch will be taken and produce
803 estimated profile. When profile feedback is present never executed portions
804 of function gets estimated. */
805
806 void
807 estimate_probability (struct loops *loops_info)
808 {
809 basic_block bb;
810
811 connect_infinite_loops_to_exit ();
812 calculate_dominance_info (CDI_DOMINATORS);
813 calculate_dominance_info (CDI_POST_DOMINATORS);
814
815 predict_loops (loops_info, true);
816
817 iv_analysis_done ();
818
819 /* Attempt to predict conditional jumps using a number of heuristics. */
820 FOR_EACH_BB (bb)
821 {
822 rtx last_insn = BB_END (bb);
823 edge e;
824 edge_iterator ei;
825
826 if (! can_predict_insn_p (last_insn))
827 continue;
828
829 FOR_EACH_EDGE (e, ei, bb->succs)
830 {
831 /* Predict early returns to be probable, as we've already taken
832 care for error returns and other are often used for fast paths
833 trought function. */
834 if ((e->dest == EXIT_BLOCK_PTR
835 || (single_succ_p (e->dest)
836 && single_succ (e->dest) == EXIT_BLOCK_PTR))
837 && !predicted_by_p (bb, PRED_NULL_RETURN)
838 && !predicted_by_p (bb, PRED_CONST_RETURN)
839 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
840 && !last_basic_block_p (e->dest))
841 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
842
843 /* Look for block we are guarding (i.e. we dominate it,
844 but it doesn't postdominate us). */
845 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
846 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
847 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
848 {
849 rtx insn;
850
851 /* The call heuristic claims that a guarded function call
852 is improbable. This is because such calls are often used
853 to signal exceptional situations such as printing error
854 messages. */
855 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
856 insn = NEXT_INSN (insn))
857 if (CALL_P (insn)
858 /* Constant and pure calls are hardly used to signalize
859 something exceptional. */
860 && ! CONST_OR_PURE_CALL_P (insn))
861 {
862 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
863 break;
864 }
865 }
866 }
867 bb_estimate_probability_locally (bb);
868 }
869
870 /* Attach the combined probability to each conditional jump. */
871 FOR_EACH_BB (bb)
872 combine_predictions_for_insn (BB_END (bb), bb);
873
874 remove_fake_edges ();
875 estimate_bb_frequencies (loops_info);
876 free_dominance_info (CDI_POST_DOMINATORS);
877 if (profile_status == PROFILE_ABSENT)
878 profile_status = PROFILE_GUESSED;
879 }
880
881 /* Set edge->probability for each successor edge of BB. */
882 void
883 guess_outgoing_edge_probabilities (basic_block bb)
884 {
885 bb_estimate_probability_locally (bb);
886 combine_predictions_for_insn (BB_END (bb), bb);
887 }
888 \f
889 /* Return constant EXPR will likely have at execution time, NULL if unknown.
890 The function is used by builtin_expect branch predictor so the evidence
891 must come from this construct and additional possible constant folding.
892
893 We may want to implement more involved value guess (such as value range
894 propagation based prediction), but such tricks shall go to new
895 implementation. */
896
897 static tree
898 expr_expected_value (tree expr, bitmap visited)
899 {
900 if (TREE_CONSTANT (expr))
901 return expr;
902 else if (TREE_CODE (expr) == SSA_NAME)
903 {
904 tree def = SSA_NAME_DEF_STMT (expr);
905
906 /* If we were already here, break the infinite cycle. */
907 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
908 return NULL;
909 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
910
911 if (TREE_CODE (def) == PHI_NODE)
912 {
913 /* All the arguments of the PHI node must have the same constant
914 length. */
915 int i;
916 tree val = NULL, new_val;
917
918 for (i = 0; i < PHI_NUM_ARGS (def); i++)
919 {
920 tree arg = PHI_ARG_DEF (def, i);
921
922 /* If this PHI has itself as an argument, we cannot
923 determine the string length of this argument. However,
924 if we can find an expected constant value for the other
925 PHI args then we can still be sure that this is
926 likely a constant. So be optimistic and just
927 continue with the next argument. */
928 if (arg == PHI_RESULT (def))
929 continue;
930
931 new_val = expr_expected_value (arg, visited);
932 if (!new_val)
933 return NULL;
934 if (!val)
935 val = new_val;
936 else if (!operand_equal_p (val, new_val, false))
937 return NULL;
938 }
939 return val;
940 }
941 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
942 return NULL;
943 return expr_expected_value (TREE_OPERAND (def, 1), visited);
944 }
945 else if (TREE_CODE (expr) == CALL_EXPR)
946 {
947 tree decl = get_callee_fndecl (expr);
948 if (!decl)
949 return NULL;
950 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
951 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
952 {
953 tree arglist = TREE_OPERAND (expr, 1);
954 tree val;
955
956 if (arglist == NULL_TREE
957 || TREE_CHAIN (arglist) == NULL_TREE)
958 return NULL;
959 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
960 if (TREE_CONSTANT (val))
961 return val;
962 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
963 }
964 }
965 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
966 {
967 tree op0, op1, res;
968 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
969 if (!op0)
970 return NULL;
971 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
972 if (!op1)
973 return NULL;
974 res = fold (build (TREE_CODE (expr), TREE_TYPE (expr), op0, op1));
975 if (TREE_CONSTANT (res))
976 return res;
977 return NULL;
978 }
979 if (UNARY_CLASS_P (expr))
980 {
981 tree op0, res;
982 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
983 if (!op0)
984 return NULL;
985 res = fold (build1 (TREE_CODE (expr), TREE_TYPE (expr), op0));
986 if (TREE_CONSTANT (res))
987 return res;
988 return NULL;
989 }
990 return NULL;
991 }
992 \f
993 /* Get rid of all builtin_expect calls we no longer need. */
994 static void
995 strip_builtin_expect (void)
996 {
997 basic_block bb;
998 FOR_EACH_BB (bb)
999 {
1000 block_stmt_iterator bi;
1001 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1002 {
1003 tree stmt = bsi_stmt (bi);
1004 tree fndecl;
1005 tree arglist;
1006
1007 if (TREE_CODE (stmt) == MODIFY_EXPR
1008 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1009 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1010 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1011 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1012 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1013 && TREE_CHAIN (arglist))
1014 {
1015 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1016 modify_stmt (stmt);
1017 }
1018 }
1019 }
1020 }
1021 \f
1022 /* Predict using opcode of the last statement in basic block. */
1023 static void
1024 tree_predict_by_opcode (basic_block bb)
1025 {
1026 tree stmt = last_stmt (bb);
1027 edge then_edge;
1028 tree cond;
1029 tree op0;
1030 tree type;
1031 tree val;
1032 bitmap visited;
1033 edge_iterator ei;
1034
1035 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1036 return;
1037 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1038 if (then_edge->flags & EDGE_TRUE_VALUE)
1039 break;
1040 cond = TREE_OPERAND (stmt, 0);
1041 if (!COMPARISON_CLASS_P (cond))
1042 return;
1043 op0 = TREE_OPERAND (cond, 0);
1044 type = TREE_TYPE (op0);
1045 visited = BITMAP_ALLOC (NULL);
1046 val = expr_expected_value (cond, visited);
1047 BITMAP_FREE (visited);
1048 if (val)
1049 {
1050 if (integer_zerop (val))
1051 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1052 else
1053 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1054 return;
1055 }
1056 /* Try "pointer heuristic."
1057 A comparison ptr == 0 is predicted as false.
1058 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1059 if (POINTER_TYPE_P (type))
1060 {
1061 if (TREE_CODE (cond) == EQ_EXPR)
1062 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1063 else if (TREE_CODE (cond) == NE_EXPR)
1064 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1065 }
1066 else
1067
1068 /* Try "opcode heuristic."
1069 EQ tests are usually false and NE tests are usually true. Also,
1070 most quantities are positive, so we can make the appropriate guesses
1071 about signed comparisons against zero. */
1072 switch (TREE_CODE (cond))
1073 {
1074 case EQ_EXPR:
1075 case UNEQ_EXPR:
1076 /* Floating point comparisons appears to behave in a very
1077 unpredictable way because of special role of = tests in
1078 FP code. */
1079 if (FLOAT_TYPE_P (type))
1080 ;
1081 /* Comparisons with 0 are often used for booleans and there is
1082 nothing useful to predict about them. */
1083 else if (integer_zerop (op0)
1084 || integer_zerop (TREE_OPERAND (cond, 1)))
1085 ;
1086 else
1087 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1088 break;
1089
1090 case NE_EXPR:
1091 case LTGT_EXPR:
1092 /* Floating point comparisons appears to behave in a very
1093 unpredictable way because of special role of = tests in
1094 FP code. */
1095 if (FLOAT_TYPE_P (type))
1096 ;
1097 /* Comparisons with 0 are often used for booleans and there is
1098 nothing useful to predict about them. */
1099 else if (integer_zerop (op0)
1100 || integer_zerop (TREE_OPERAND (cond, 1)))
1101 ;
1102 else
1103 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1104 break;
1105
1106 case ORDERED_EXPR:
1107 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1108 break;
1109
1110 case UNORDERED_EXPR:
1111 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1112 break;
1113
1114 case LE_EXPR:
1115 case LT_EXPR:
1116 if (integer_zerop (TREE_OPERAND (cond, 1))
1117 || integer_onep (TREE_OPERAND (cond, 1))
1118 || integer_all_onesp (TREE_OPERAND (cond, 1))
1119 || real_zerop (TREE_OPERAND (cond, 1))
1120 || real_onep (TREE_OPERAND (cond, 1))
1121 || real_minus_onep (TREE_OPERAND (cond, 1)))
1122 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1123 break;
1124
1125 case GE_EXPR:
1126 case GT_EXPR:
1127 if (integer_zerop (TREE_OPERAND (cond, 1))
1128 || integer_onep (TREE_OPERAND (cond, 1))
1129 || integer_all_onesp (TREE_OPERAND (cond, 1))
1130 || real_zerop (TREE_OPERAND (cond, 1))
1131 || real_onep (TREE_OPERAND (cond, 1))
1132 || real_minus_onep (TREE_OPERAND (cond, 1)))
1133 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1134 break;
1135
1136 default:
1137 break;
1138 }
1139 }
1140
1141 /* Try to guess whether the value of return means error code. */
1142 static enum br_predictor
1143 return_prediction (tree val, enum prediction *prediction)
1144 {
1145 /* VOID. */
1146 if (!val)
1147 return PRED_NO_PREDICTION;
1148 /* Different heuristics for pointers and scalars. */
1149 if (POINTER_TYPE_P (TREE_TYPE (val)))
1150 {
1151 /* NULL is usually not returned. */
1152 if (integer_zerop (val))
1153 {
1154 *prediction = NOT_TAKEN;
1155 return PRED_NULL_RETURN;
1156 }
1157 }
1158 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1159 {
1160 /* Negative return values are often used to indicate
1161 errors. */
1162 if (TREE_CODE (val) == INTEGER_CST
1163 && tree_int_cst_sgn (val) < 0)
1164 {
1165 *prediction = NOT_TAKEN;
1166 return PRED_NEGATIVE_RETURN;
1167 }
1168 /* Constant return values seems to be commonly taken.
1169 Zero/one often represent booleans so exclude them from the
1170 heuristics. */
1171 if (TREE_CONSTANT (val)
1172 && (!integer_zerop (val) && !integer_onep (val)))
1173 {
1174 *prediction = TAKEN;
1175 return PRED_NEGATIVE_RETURN;
1176 }
1177 }
1178 return PRED_NO_PREDICTION;
1179 }
1180
1181 /* Find the basic block with return expression and look up for possible
1182 return value trying to apply RETURN_PREDICTION heuristics. */
1183 static void
1184 apply_return_prediction (int *heads)
1185 {
1186 tree return_stmt;
1187 tree return_val;
1188 edge e;
1189 tree phi;
1190 int phi_num_args, i;
1191 enum br_predictor pred;
1192 enum prediction direction;
1193 edge_iterator ei;
1194
1195 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1196 {
1197 return_stmt = last_stmt (e->src);
1198 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1199 break;
1200 }
1201 if (!e)
1202 return;
1203 return_val = TREE_OPERAND (return_stmt, 0);
1204 if (!return_val)
1205 return;
1206 if (TREE_CODE (return_val) == MODIFY_EXPR)
1207 return_val = TREE_OPERAND (return_val, 1);
1208 if (TREE_CODE (return_val) != SSA_NAME
1209 || !SSA_NAME_DEF_STMT (return_val)
1210 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1211 return;
1212 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1213 if (PHI_RESULT (phi) == return_val)
1214 break;
1215 if (!phi)
1216 return;
1217 phi_num_args = PHI_NUM_ARGS (phi);
1218 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1219
1220 /* Avoid the degenerate case where all return values form the function
1221 belongs to same category (ie they are all positive constants)
1222 so we can hardly say something about them. */
1223 for (i = 1; i < phi_num_args; i++)
1224 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1225 break;
1226 if (i != phi_num_args)
1227 for (i = 0; i < phi_num_args; i++)
1228 {
1229 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1230 if (pred != PRED_NO_PREDICTION)
1231 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1232 direction);
1233 }
1234 }
1235
1236 /* Look for basic block that contains unlikely to happen events
1237 (such as noreturn calls) and mark all paths leading to execution
1238 of this basic blocks as unlikely. */
1239
1240 static void
1241 tree_bb_level_predictions (void)
1242 {
1243 basic_block bb;
1244 int *heads;
1245
1246 heads = xmalloc (sizeof (int) * last_basic_block);
1247 memset (heads, -1, sizeof (int) * last_basic_block);
1248 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1249
1250 apply_return_prediction (heads);
1251
1252 FOR_EACH_BB (bb)
1253 {
1254 block_stmt_iterator bsi = bsi_last (bb);
1255
1256 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1257 {
1258 tree stmt = bsi_stmt (bsi);
1259 switch (TREE_CODE (stmt))
1260 {
1261 case MODIFY_EXPR:
1262 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1263 {
1264 stmt = TREE_OPERAND (stmt, 1);
1265 goto call_expr;
1266 }
1267 break;
1268 case CALL_EXPR:
1269 call_expr:;
1270 if (call_expr_flags (stmt) & ECF_NORETURN)
1271 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1272 NOT_TAKEN);
1273 break;
1274 default:
1275 break;
1276 }
1277 }
1278 }
1279
1280 free (heads);
1281 }
1282
1283 /* Predict branch probabilities and estimate profile of the tree CFG. */
1284 static void
1285 tree_estimate_probability (void)
1286 {
1287 basic_block bb;
1288 struct loops loops_info;
1289
1290 flow_loops_find (&loops_info);
1291 if (dump_file && (dump_flags & TDF_DETAILS))
1292 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1293
1294 add_noreturn_fake_exit_edges ();
1295 connect_infinite_loops_to_exit ();
1296 calculate_dominance_info (CDI_DOMINATORS);
1297 calculate_dominance_info (CDI_POST_DOMINATORS);
1298
1299 tree_bb_level_predictions ();
1300
1301 mark_irreducible_loops (&loops_info);
1302 predict_loops (&loops_info, false);
1303
1304 FOR_EACH_BB (bb)
1305 {
1306 edge e;
1307 edge_iterator ei;
1308
1309 FOR_EACH_EDGE (e, ei, bb->succs)
1310 {
1311 /* Predict early returns to be probable, as we've already taken
1312 care for error returns and other cases are often used for
1313 fast paths trought function. */
1314 if (e->dest == EXIT_BLOCK_PTR
1315 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1316 && !single_pred_p (bb))
1317 {
1318 edge e1;
1319 edge_iterator ei1;
1320
1321 FOR_EACH_EDGE (e1, ei1, bb->preds)
1322 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1323 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1324 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1325 && !last_basic_block_p (e1->src))
1326 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1327 }
1328
1329 /* Look for block we are guarding (ie we dominate it,
1330 but it doesn't postdominate us). */
1331 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1332 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1333 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1334 {
1335 block_stmt_iterator bi;
1336
1337 /* The call heuristic claims that a guarded function call
1338 is improbable. This is because such calls are often used
1339 to signal exceptional situations such as printing error
1340 messages. */
1341 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1342 bsi_next (&bi))
1343 {
1344 tree stmt = bsi_stmt (bi);
1345 if ((TREE_CODE (stmt) == CALL_EXPR
1346 || (TREE_CODE (stmt) == MODIFY_EXPR
1347 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1348 /* Constant and pure calls are hardly used to signalize
1349 something exceptional. */
1350 && TREE_SIDE_EFFECTS (stmt))
1351 {
1352 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1353 break;
1354 }
1355 }
1356 }
1357 }
1358 tree_predict_by_opcode (bb);
1359 }
1360 FOR_EACH_BB (bb)
1361 combine_predictions_for_bb (dump_file, bb);
1362
1363 if (0) /* FIXME: Enable once we are pass down the profile to RTL level. */
1364 strip_builtin_expect ();
1365 estimate_bb_frequencies (&loops_info);
1366 free_dominance_info (CDI_POST_DOMINATORS);
1367 remove_fake_exit_edges ();
1368 flow_loops_free (&loops_info);
1369 if (dump_file && (dump_flags & TDF_DETAILS))
1370 dump_tree_cfg (dump_file, dump_flags);
1371 if (profile_status == PROFILE_ABSENT)
1372 profile_status = PROFILE_GUESSED;
1373 }
1374 \f
1375 /* __builtin_expect dropped tokens into the insn stream describing expected
1376 values of registers. Generate branch probabilities based off these
1377 values. */
1378
1379 void
1380 expected_value_to_br_prob (void)
1381 {
1382 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1383
1384 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1385 {
1386 switch (GET_CODE (insn))
1387 {
1388 case NOTE:
1389 /* Look for expected value notes. */
1390 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1391 {
1392 ev = NOTE_EXPECTED_VALUE (insn);
1393 ev_reg = XEXP (ev, 0);
1394 delete_insn (insn);
1395 }
1396 continue;
1397
1398 case CODE_LABEL:
1399 /* Never propagate across labels. */
1400 ev = NULL_RTX;
1401 continue;
1402
1403 case JUMP_INSN:
1404 /* Look for simple conditional branches. If we haven't got an
1405 expected value yet, no point going further. */
1406 if (!JUMP_P (insn) || ev == NULL_RTX
1407 || ! any_condjump_p (insn))
1408 continue;
1409 break;
1410
1411 default:
1412 /* Look for insns that clobber the EV register. */
1413 if (ev && reg_set_p (ev_reg, insn))
1414 ev = NULL_RTX;
1415 continue;
1416 }
1417
1418 /* Collect the branch condition, hopefully relative to EV_REG. */
1419 /* ??? At present we'll miss things like
1420 (expected_value (eq r70 0))
1421 (set r71 -1)
1422 (set r80 (lt r70 r71))
1423 (set pc (if_then_else (ne r80 0) ...))
1424 as canonicalize_condition will render this to us as
1425 (lt r70, r71)
1426 Could use cselib to try and reduce this further. */
1427 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1428 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1429 false, false);
1430 if (! cond || XEXP (cond, 0) != ev_reg
1431 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1432 continue;
1433
1434 /* Substitute and simplify. Given that the expression we're
1435 building involves two constants, we should wind up with either
1436 true or false. */
1437 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1438 XEXP (ev, 1), XEXP (cond, 1));
1439 cond = simplify_rtx (cond);
1440
1441 /* Turn the condition into a scaled branch probability. */
1442 gcc_assert (cond == const_true_rtx || cond == const0_rtx);
1443 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1444 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1445 }
1446 }
1447 \f
1448 /* Check whether this is the last basic block of function. Commonly
1449 there is one extra common cleanup block. */
1450 static bool
1451 last_basic_block_p (basic_block bb)
1452 {
1453 if (bb == EXIT_BLOCK_PTR)
1454 return false;
1455
1456 return (bb->next_bb == EXIT_BLOCK_PTR
1457 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1458 && single_succ_p (bb)
1459 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1460 }
1461
1462 /* Sets branch probabilities according to PREDiction and
1463 FLAGS. HEADS[bb->index] should be index of basic block in that we
1464 need to alter branch predictions (i.e. the first of our dominators
1465 such that we do not post-dominate it) (but we fill this information
1466 on demand, so -1 may be there in case this was not needed yet). */
1467
1468 static void
1469 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1470 enum prediction taken)
1471 {
1472 edge e;
1473 edge_iterator ei;
1474 int y;
1475
1476 if (heads[bb->index] < 0)
1477 {
1478 /* This is first time we need this field in heads array; so
1479 find first dominator that we do not post-dominate (we are
1480 using already known members of heads array). */
1481 basic_block ai = bb;
1482 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1483 int head;
1484
1485 while (heads[next_ai->index] < 0)
1486 {
1487 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1488 break;
1489 heads[next_ai->index] = ai->index;
1490 ai = next_ai;
1491 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1492 }
1493 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1494 head = next_ai->index;
1495 else
1496 head = heads[next_ai->index];
1497 while (next_ai != bb)
1498 {
1499 next_ai = ai;
1500 if (heads[ai->index] == ENTRY_BLOCK)
1501 ai = ENTRY_BLOCK_PTR;
1502 else
1503 ai = BASIC_BLOCK (heads[ai->index]);
1504 heads[next_ai->index] = head;
1505 }
1506 }
1507 y = heads[bb->index];
1508
1509 /* Now find the edge that leads to our branch and aply the prediction. */
1510
1511 if (y == last_basic_block)
1512 return;
1513 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1514 if (e->dest->index >= 0
1515 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1516 predict_edge_def (e, pred, taken);
1517 }
1518 \f
1519 /* This is used to carry information about basic blocks. It is
1520 attached to the AUX field of the standard CFG block. */
1521
1522 typedef struct block_info_def
1523 {
1524 /* Estimated frequency of execution of basic_block. */
1525 sreal frequency;
1526
1527 /* To keep queue of basic blocks to process. */
1528 basic_block next;
1529
1530 /* Number of predecessors we need to visit first. */
1531 int npredecessors;
1532 } *block_info;
1533
1534 /* Similar information for edges. */
1535 typedef struct edge_info_def
1536 {
1537 /* In case edge is an loopback edge, the probability edge will be reached
1538 in case header is. Estimated number of iterations of the loop can be
1539 then computed as 1 / (1 - back_edge_prob). */
1540 sreal back_edge_prob;
1541 /* True if the edge is an loopback edge in the natural loop. */
1542 unsigned int back_edge:1;
1543 } *edge_info;
1544
1545 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1546 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1547
1548 /* Helper function for estimate_bb_frequencies.
1549 Propagate the frequencies for LOOP. */
1550
1551 static void
1552 propagate_freq (struct loop *loop, bitmap tovisit)
1553 {
1554 basic_block head = loop->header;
1555 basic_block bb;
1556 basic_block last;
1557 unsigned i;
1558 edge e;
1559 basic_block nextbb;
1560 bitmap_iterator bi;
1561
1562 /* For each basic block we need to visit count number of his predecessors
1563 we need to visit first. */
1564 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1565 {
1566 edge_iterator ei;
1567 int count = 0;
1568
1569 /* The outermost "loop" includes the exit block, which we can not
1570 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1571 directly. Do the same for the entry block. */
1572 if (i == (unsigned)ENTRY_BLOCK)
1573 bb = ENTRY_BLOCK_PTR;
1574 else if (i == (unsigned)EXIT_BLOCK)
1575 bb = EXIT_BLOCK_PTR;
1576 else
1577 bb = BASIC_BLOCK (i);
1578
1579 FOR_EACH_EDGE (e, ei, bb->preds)
1580 {
1581 bool visit = bitmap_bit_p (tovisit, e->src->index);
1582
1583 if (visit && !(e->flags & EDGE_DFS_BACK))
1584 count++;
1585 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1586 fprintf (dump_file,
1587 "Irreducible region hit, ignoring edge to %i->%i\n",
1588 e->src->index, bb->index);
1589 }
1590 BLOCK_INFO (bb)->npredecessors = count;
1591 }
1592
1593 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1594 last = head;
1595 for (bb = head; bb; bb = nextbb)
1596 {
1597 edge_iterator ei;
1598 sreal cyclic_probability, frequency;
1599
1600 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1601 memcpy (&frequency, &real_zero, sizeof (real_zero));
1602
1603 nextbb = BLOCK_INFO (bb)->next;
1604 BLOCK_INFO (bb)->next = NULL;
1605
1606 /* Compute frequency of basic block. */
1607 if (bb != head)
1608 {
1609 #ifdef ENABLE_CHECKING
1610 FOR_EACH_EDGE (e, ei, bb->preds)
1611 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1612 || (e->flags & EDGE_DFS_BACK));
1613 #endif
1614
1615 FOR_EACH_EDGE (e, ei, bb->preds)
1616 if (EDGE_INFO (e)->back_edge)
1617 {
1618 sreal_add (&cyclic_probability, &cyclic_probability,
1619 &EDGE_INFO (e)->back_edge_prob);
1620 }
1621 else if (!(e->flags & EDGE_DFS_BACK))
1622 {
1623 sreal tmp;
1624
1625 /* frequency += (e->probability
1626 * BLOCK_INFO (e->src)->frequency /
1627 REG_BR_PROB_BASE); */
1628
1629 sreal_init (&tmp, e->probability, 0);
1630 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1631 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1632 sreal_add (&frequency, &frequency, &tmp);
1633 }
1634
1635 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1636 {
1637 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1638 sizeof (frequency));
1639 }
1640 else
1641 {
1642 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1643 {
1644 memcpy (&cyclic_probability, &real_almost_one,
1645 sizeof (real_almost_one));
1646 }
1647
1648 /* BLOCK_INFO (bb)->frequency = frequency
1649 / (1 - cyclic_probability) */
1650
1651 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1652 sreal_div (&BLOCK_INFO (bb)->frequency,
1653 &frequency, &cyclic_probability);
1654 }
1655 }
1656
1657 bitmap_clear_bit (tovisit, bb->index);
1658
1659 e = find_edge (bb, head);
1660 if (e)
1661 {
1662 sreal tmp;
1663
1664 /* EDGE_INFO (e)->back_edge_prob
1665 = ((e->probability * BLOCK_INFO (bb)->frequency)
1666 / REG_BR_PROB_BASE); */
1667
1668 sreal_init (&tmp, e->probability, 0);
1669 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1670 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1671 &tmp, &real_inv_br_prob_base);
1672 }
1673
1674 /* Propagate to successor blocks. */
1675 FOR_EACH_EDGE (e, ei, bb->succs)
1676 if (!(e->flags & EDGE_DFS_BACK)
1677 && BLOCK_INFO (e->dest)->npredecessors)
1678 {
1679 BLOCK_INFO (e->dest)->npredecessors--;
1680 if (!BLOCK_INFO (e->dest)->npredecessors)
1681 {
1682 if (!nextbb)
1683 nextbb = e->dest;
1684 else
1685 BLOCK_INFO (last)->next = e->dest;
1686
1687 last = e->dest;
1688 }
1689 }
1690 }
1691 }
1692
1693 /* Estimate probabilities of loopback edges in loops at same nest level. */
1694
1695 static void
1696 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1697 {
1698 struct loop *loop;
1699
1700 for (loop = first_loop; loop; loop = loop->next)
1701 {
1702 edge e;
1703 basic_block *bbs;
1704 unsigned i;
1705
1706 estimate_loops_at_level (loop->inner, tovisit);
1707
1708 /* Do not do this for dummy function loop. */
1709 if (EDGE_COUNT (loop->latch->succs) > 0)
1710 {
1711 /* Find current loop back edge and mark it. */
1712 e = loop_latch_edge (loop);
1713 EDGE_INFO (e)->back_edge = 1;
1714 }
1715
1716 bbs = get_loop_body (loop);
1717 for (i = 0; i < loop->num_nodes; i++)
1718 bitmap_set_bit (tovisit, bbs[i]->index);
1719 free (bbs);
1720 propagate_freq (loop, tovisit);
1721 }
1722 }
1723
1724 /* Convert counts measured by profile driven feedback to frequencies.
1725 Return nonzero iff there was any nonzero execution count. */
1726
1727 int
1728 counts_to_freqs (void)
1729 {
1730 gcov_type count_max, true_count_max = 0;
1731 basic_block bb;
1732
1733 FOR_EACH_BB (bb)
1734 true_count_max = MAX (bb->count, true_count_max);
1735
1736 count_max = MAX (true_count_max, 1);
1737 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1738 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1739 return true_count_max;
1740 }
1741
1742 /* Return true if function is likely to be expensive, so there is no point to
1743 optimize performance of prologue, epilogue or do inlining at the expense
1744 of code size growth. THRESHOLD is the limit of number of instructions
1745 function can execute at average to be still considered not expensive. */
1746
1747 bool
1748 expensive_function_p (int threshold)
1749 {
1750 unsigned int sum = 0;
1751 basic_block bb;
1752 unsigned int limit;
1753
1754 /* We can not compute accurately for large thresholds due to scaled
1755 frequencies. */
1756 gcc_assert (threshold <= BB_FREQ_MAX);
1757
1758 /* Frequencies are out of range. This either means that function contains
1759 internal loop executing more than BB_FREQ_MAX times or profile feedback
1760 is available and function has not been executed at all. */
1761 if (ENTRY_BLOCK_PTR->frequency == 0)
1762 return true;
1763
1764 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1765 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1766 FOR_EACH_BB (bb)
1767 {
1768 rtx insn;
1769
1770 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1771 insn = NEXT_INSN (insn))
1772 if (active_insn_p (insn))
1773 {
1774 sum += bb->frequency;
1775 if (sum > limit)
1776 return true;
1777 }
1778 }
1779
1780 return false;
1781 }
1782
1783 /* Estimate basic blocks frequency by given branch probabilities. */
1784
1785 static void
1786 estimate_bb_frequencies (struct loops *loops)
1787 {
1788 basic_block bb;
1789 sreal freq_max;
1790
1791 if (!flag_branch_probabilities || !counts_to_freqs ())
1792 {
1793 static int real_values_initialized = 0;
1794 bitmap tovisit;
1795
1796 if (!real_values_initialized)
1797 {
1798 real_values_initialized = 1;
1799 sreal_init (&real_zero, 0, 0);
1800 sreal_init (&real_one, 1, 0);
1801 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1802 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1803 sreal_init (&real_one_half, 1, -1);
1804 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1805 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1806 }
1807
1808 mark_dfs_back_edges ();
1809
1810 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1811
1812 /* Set up block info for each basic block. */
1813 tovisit = BITMAP_ALLOC (NULL);
1814 alloc_aux_for_blocks (sizeof (struct block_info_def));
1815 alloc_aux_for_edges (sizeof (struct edge_info_def));
1816 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1817 {
1818 edge e;
1819 edge_iterator ei;
1820
1821 FOR_EACH_EDGE (e, ei, bb->succs)
1822 {
1823 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1824 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1825 &EDGE_INFO (e)->back_edge_prob,
1826 &real_inv_br_prob_base);
1827 }
1828 }
1829
1830 /* First compute probabilities locally for each loop from innermost
1831 to outermost to examine probabilities for back edges. */
1832 estimate_loops_at_level (loops->tree_root, tovisit);
1833
1834 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1835 FOR_EACH_BB (bb)
1836 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1837 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1838
1839 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1840 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1841 {
1842 sreal tmp;
1843
1844 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1845 sreal_add (&tmp, &tmp, &real_one_half);
1846 bb->frequency = sreal_to_int (&tmp);
1847 }
1848
1849 free_aux_for_blocks ();
1850 free_aux_for_edges ();
1851 BITMAP_FREE (tovisit);
1852 }
1853 compute_function_frequency ();
1854 if (flag_reorder_functions)
1855 choose_function_section ();
1856 }
1857
1858 /* Decide whether function is hot, cold or unlikely executed. */
1859 static void
1860 compute_function_frequency (void)
1861 {
1862 basic_block bb;
1863
1864 if (!profile_info || !flag_branch_probabilities)
1865 return;
1866 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1867 FOR_EACH_BB (bb)
1868 {
1869 if (maybe_hot_bb_p (bb))
1870 {
1871 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1872 return;
1873 }
1874 if (!probably_never_executed_bb_p (bb))
1875 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1876 }
1877 }
1878
1879 /* Choose appropriate section for the function. */
1880 static void
1881 choose_function_section (void)
1882 {
1883 if (DECL_SECTION_NAME (current_function_decl)
1884 || !targetm.have_named_sections
1885 /* Theoretically we can split the gnu.linkonce text section too,
1886 but this requires more work as the frequency needs to match
1887 for all generated objects so we need to merge the frequency
1888 of all instances. For now just never set frequency for these. */
1889 || DECL_ONE_ONLY (current_function_decl))
1890 return;
1891
1892 /* If we are doing the partitioning optimization, let the optimization
1893 choose the correct section into which to put things. */
1894
1895 if (flag_reorder_blocks_and_partition)
1896 return;
1897
1898 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1899 DECL_SECTION_NAME (current_function_decl) =
1900 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1901 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1902 DECL_SECTION_NAME (current_function_decl) =
1903 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1904 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1905 }
1906
1907
1908 struct tree_opt_pass pass_profile =
1909 {
1910 "profile", /* name */
1911 NULL, /* gate */
1912 tree_estimate_probability, /* execute */
1913 NULL, /* sub */
1914 NULL, /* next */
1915 0, /* static_pass_number */
1916 TV_BRANCH_PROB, /* tv_id */
1917 PROP_cfg, /* properties_required */
1918 0, /* properties_provided */
1919 0, /* properties_destroyed */
1920 0, /* todo_flags_start */
1921 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1922 0 /* letter */
1923 };