ChangeLog.2, [...]: Fix spelling errors.
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95.
29
30 */
31
32
33 #include "config.h"
34 #include "system.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50
51 /* Random guesstimation given names. */
52 #define PROB_NEVER (0)
53 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 10 - 1)
54 #define PROB_UNLIKELY (REG_BR_PROB_BASE * 4 / 10 - 1)
55 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
56 #define PROB_LIKELY (REG_BR_PROB_BASE - PROB_UNLIKELY)
57 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
58 #define PROB_ALWAYS (REG_BR_PROB_BASE)
59
60 static void combine_predictions_for_insn PARAMS ((rtx, basic_block));
61 static void dump_prediction PARAMS ((enum br_predictor, int,
62 basic_block, int));
63 static void estimate_loops_at_level PARAMS ((struct loop *loop));
64 static void propagate_freq PARAMS ((basic_block));
65 static void estimate_bb_frequencies PARAMS ((struct loops *));
66 static void counts_to_freqs PARAMS ((void));
67
68 /* Information we hold about each branch predictor.
69 Filled using information from predict.def. */
70 struct predictor_info
71 {
72 const char *const name; /* Name used in the debugging dumps. */
73 const int hitrate; /* Expected hitrate used by
74 predict_insn_def call. */
75 const int flags;
76 };
77
78 /* Use given predictor without Dempster-Shaffer theory if it matches
79 using first_match heuristics. */
80 #define PRED_FLAG_FIRST_MATCH 1
81
82 /* Recompute hitrate in percent to our representation. */
83
84 #define HITRATE(VAL) ((int)((VAL) * REG_BR_PROB_BASE + 50) / 100)
85
86 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
87 static const struct predictor_info predictor_info[] = {
88 #include "predict.def"
89
90 /* Upper bound on predictors. */
91 {NULL, 0, 0}
92 };
93 #undef DEF_PREDICTOR
94
95 void
96 predict_insn (insn, predictor, probability)
97 rtx insn;
98 int probability;
99 enum br_predictor predictor;
100 {
101 if (!any_condjump_p (insn))
102 abort ();
103 REG_NOTES (insn)
104 = gen_rtx_EXPR_LIST (REG_BR_PRED,
105 gen_rtx_CONCAT (VOIDmode,
106 GEN_INT ((int) predictor),
107 GEN_INT ((int) probability)),
108 REG_NOTES (insn));
109 }
110
111 /* Predict insn by given predictor. */
112 void
113 predict_insn_def (insn, predictor, taken)
114 rtx insn;
115 enum br_predictor predictor;
116 enum prediction taken;
117 {
118 int probability = predictor_info[(int) predictor].hitrate;
119 if (taken != TAKEN)
120 probability = REG_BR_PROB_BASE - probability;
121 predict_insn (insn, predictor, probability);
122 }
123
124 /* Predict edge E with given probability if possible. */
125 void
126 predict_edge (e, predictor, probability)
127 edge e;
128 int probability;
129 enum br_predictor predictor;
130 {
131 rtx last_insn;
132 last_insn = e->src->end;
133
134 /* We can store the branch prediction information only about
135 conditional jumps. */
136 if (!any_condjump_p (last_insn))
137 return;
138
139 /* We always store probability of branching. */
140 if (e->flags & EDGE_FALLTHRU)
141 probability = REG_BR_PROB_BASE - probability;
142
143 predict_insn (last_insn, predictor, probability);
144 }
145
146 /* Predict edge E by given predictor if possible. */
147 void
148 predict_edge_def (e, predictor, taken)
149 edge e;
150 enum br_predictor predictor;
151 enum prediction taken;
152 {
153 int probability = predictor_info[(int) predictor].hitrate;
154
155 if (taken != TAKEN)
156 probability = REG_BR_PROB_BASE - probability;
157 predict_edge (e, predictor, probability);
158 }
159
160 /* Invert all branch predictions or probability notes in the INSN. This needs
161 to be done each time we invert the condition used by the jump. */
162 void
163 invert_br_probabilities (insn)
164 rtx insn;
165 {
166 rtx note = REG_NOTES (insn);
167
168 while (note)
169 {
170 if (REG_NOTE_KIND (note) == REG_BR_PROB)
171 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
172 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
173 XEXP (XEXP (note, 0), 1)
174 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
175 note = XEXP (note, 1);
176 }
177 }
178
179 /* Dump information about the branch prediction to the output file. */
180 static void
181 dump_prediction (predictor, probability, bb, used)
182 enum br_predictor predictor;
183 int probability;
184 basic_block bb;
185 int used;
186 {
187 edge e = bb->succ;
188
189 if (!rtl_dump_file)
190 return;
191
192 while (e->flags & EDGE_FALLTHRU)
193 e = e->succ_next;
194
195 fprintf (rtl_dump_file, " %s heuristics%s: %.1f%%",
196 predictor_info[predictor].name,
197 used ? "" : " (ignored)",
198 probability * 100.0 / REG_BR_PROB_BASE);
199
200 if (bb->count)
201 {
202 fprintf (rtl_dump_file, " exec ");
203 fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC,
204 (HOST_WIDEST_INT) bb->count);
205 fprintf (rtl_dump_file, " hit ");
206 fprintf (rtl_dump_file, HOST_WIDEST_INT_PRINT_DEC,
207 (HOST_WIDEST_INT) e->count);
208 fprintf (rtl_dump_file, " (%.1f%%)",
209 e->count * 100.0 / bb->count);
210 }
211 fprintf (rtl_dump_file, "\n");
212 }
213
214 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
215 note if not already present. Remove now useless REG_BR_PRED notes. */
216 static void
217 combine_predictions_for_insn (insn, bb)
218 rtx insn;
219 basic_block bb;
220 {
221 rtx prob_note = find_reg_note (insn, REG_BR_PROB, 0);
222 rtx *pnote = &REG_NOTES (insn);
223 rtx note = REG_NOTES (insn);
224 int best_probability = PROB_EVEN;
225 int best_predictor = END_PREDICTORS;
226 int combined_probability = REG_BR_PROB_BASE / 2;
227 int d;
228 bool first_match = false;
229 bool found = false;
230
231 if (rtl_dump_file)
232 fprintf (rtl_dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
233 bb->index);
234
235 /* We implement "first match" heuristics and use probability guessed
236 by predictor with smallest index. In the future we will use better
237 probability combination techniques. */
238 while (note)
239 {
240 if (REG_NOTE_KIND (note) == REG_BR_PRED)
241 {
242 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
243 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
244
245 found = true;
246 if (best_predictor > predictor)
247 best_probability = probability, best_predictor = predictor;
248
249 d = (combined_probability * probability
250 + (REG_BR_PROB_BASE - combined_probability)
251 * (REG_BR_PROB_BASE - probability));
252 /* An FP math to avoid overflows of 32bit integers. */
253 combined_probability = (((double)combined_probability) * probability
254 * REG_BR_PROB_BASE / d + 0.5);
255 }
256 note = XEXP (note, 1);
257 }
258
259 /* Decide heuristic to use. In case we didn't match anything, use
260 no_prediction heuristic, in case we did match, use either
261 first match or Dempster-Shaffer theory depending on the flags. */
262
263 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
264 first_match = true;
265
266 if (!found)
267 dump_prediction (PRED_NO_PREDICTION, combined_probability, bb, true);
268 else
269 {
270 dump_prediction (PRED_DS_THEORY, combined_probability, bb,
271 !first_match);
272 dump_prediction (PRED_FIRST_MATCH, best_probability, bb, first_match);
273 }
274
275 if (first_match)
276 combined_probability = best_probability;
277 dump_prediction (PRED_COMBINED, combined_probability, bb, true);
278
279 while (*pnote)
280 {
281 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
282 {
283 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
284 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
285
286 dump_prediction (predictor, probability, bb,
287 !first_match || best_predictor == predictor);
288 *pnote = XEXP (*pnote, 1);
289 }
290 else
291 pnote = &XEXP (*pnote, 1);
292 }
293 if (!prob_note)
294 {
295 REG_NOTES (insn)
296 = gen_rtx_EXPR_LIST (REG_BR_PROB,
297 GEN_INT (combined_probability), REG_NOTES (insn));
298 /* Save the prediction into CFG in case we are seeing non-degenerated
299 conditional jump. */
300 if (bb->succ->succ_next)
301 {
302 BRANCH_EDGE (bb)->probability = combined_probability;
303 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - combined_probability;
304 }
305 }
306 }
307
308 /* Statically estimate the probability that a branch will be taken.
309 ??? In the next revision there will be a number of other predictors added
310 from the above references. Further, each heuristic will be factored out
311 into its own function for clarity (and to facilitate the combination of
312 predictions). */
313
314 void
315 estimate_probability (loops_info)
316 struct loops *loops_info;
317 {
318 sbitmap *dominators, *post_dominators;
319 int i;
320 int found_noreturn = 0;
321
322 dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
323 post_dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
324 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
325 calculate_dominance_info (NULL, post_dominators, CDI_POST_DOMINATORS);
326
327 /* Try to predict out blocks in a loop that are not part of a
328 natural loop. */
329 for (i = 0; i < loops_info->num; i++)
330 {
331 int j;
332
333 for (j = loops_info->array[i].first->index;
334 j <= loops_info->array[i].last->index;
335 ++j)
336 {
337 if (TEST_BIT (loops_info->array[i].nodes, j))
338 {
339 int header_found = 0;
340 edge e;
341
342 /* Loop branch heuristics - predict as taken an edge back to
343 a loop's head. */
344 for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
345 if (e->dest == loops_info->array[i].header
346 && e->src == loops_info->array[i].latch)
347 {
348 header_found = 1;
349 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
350 }
351 /* Loop exit heuristics - predict as not taken an edge
352 exiting the loop if the conditinal has no loop header
353 successors. */
354 if (!header_found)
355 for (e = BASIC_BLOCK(j)->succ; e; e = e->succ_next)
356 if (e->dest->index <= 0
357 || !TEST_BIT (loops_info->array[i].nodes, e->dest->index))
358 predict_edge_def (e, PRED_LOOP_EXIT, NOT_TAKEN);
359 }
360 }
361 }
362
363 /* Attempt to predict conditional jumps using a number of heuristics. */
364 for (i = 0; i < n_basic_blocks; i++)
365 {
366 basic_block bb = BASIC_BLOCK (i);
367 rtx last_insn = bb->end;
368 rtx cond, earliest;
369 edge e;
370
371 /* If block has no successor, predict all possible paths to
372 it as improbable, as the block contains a call to a noreturn
373 function and thus can be executed only once. */
374 if (bb->succ == NULL && !found_noreturn)
375 {
376 int y;
377
378 /* ??? Postdominator claims each noreturn block to be postdominated
379 by each, so we need to run only once. This needs to be changed
380 once postdominace algorithm is updated to say something more sane.
381 */
382 found_noreturn = 1;
383 for (y = 0; y < n_basic_blocks; y++)
384 if (!TEST_BIT (post_dominators[y], i))
385 {
386 for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
387 if (e->dest->index >= 0
388 && TEST_BIT (post_dominators[e->dest->index], i))
389 predict_edge_def (e, PRED_NORETURN, NOT_TAKEN);
390 }
391 }
392
393 if (GET_CODE (last_insn) != JUMP_INSN
394 || ! any_condjump_p (last_insn))
395 continue;
396
397 for (e = bb->succ; e; e = e->succ_next)
398 {
399 /* Predict edges to blocks that return immediately to be
400 improbable. These are usually used to signal error states. */
401 if (e->dest == EXIT_BLOCK_PTR
402 || (e->dest->succ && !e->dest->succ->succ_next
403 && e->dest->succ->dest == EXIT_BLOCK_PTR))
404 predict_edge_def (e, PRED_ERROR_RETURN, NOT_TAKEN);
405
406 /* Look for block we are guarding (ie we dominate it,
407 but it doesn't postdominate us). */
408 if (e->dest != EXIT_BLOCK_PTR
409 && e->dest != bb
410 && TEST_BIT (dominators[e->dest->index], e->src->index)
411 && !TEST_BIT (post_dominators[e->src->index], e->dest->index))
412 {
413 rtx insn;
414 /* The call heuristic claims that a guarded function call
415 is improbable. This is because such calls are often used
416 to signal exceptional situations such as printing error
417 messages. */
418 for (insn = e->dest->head; insn != NEXT_INSN (e->dest->end);
419 insn = NEXT_INSN (insn))
420 if (GET_CODE (insn) == CALL_INSN
421 /* Constant and pure calls are hardly used to signalize
422 something exceptional. */
423 && ! CONST_OR_PURE_CALL_P (insn))
424 {
425 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
426 break;
427 }
428 }
429 }
430
431 cond = get_condition (last_insn, &earliest);
432 if (! cond)
433 continue;
434
435 /* Try "pointer heuristic."
436 A comparison ptr == 0 is predicted as false.
437 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
438 switch (GET_CODE (cond))
439 {
440 case EQ:
441 if (GET_CODE (XEXP (cond, 0)) == REG
442 && REG_POINTER (XEXP (cond, 0))
443 && (XEXP (cond, 1) == const0_rtx
444 || (GET_CODE (XEXP (cond, 1)) == REG
445 && REG_POINTER (XEXP (cond, 1)))))
446
447 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
448 break;
449 case NE:
450 if (GET_CODE (XEXP (cond, 0)) == REG
451 && REG_POINTER (XEXP (cond, 0))
452 && (XEXP (cond, 1) == const0_rtx
453 || (GET_CODE (XEXP (cond, 1)) == REG
454 && REG_POINTER (XEXP (cond, 1)))))
455 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
456 break;
457
458 default:
459 break;
460 }
461
462 /* Try "opcode heuristic."
463 EQ tests are usually false and NE tests are usually true. Also,
464 most quantities are positive, so we can make the appropriate guesses
465 about signed comparisons against zero. */
466 switch (GET_CODE (cond))
467 {
468 case CONST_INT:
469 /* Unconditional branch. */
470 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
471 cond == const0_rtx ? NOT_TAKEN : TAKEN);
472 break;
473
474 case EQ:
475 case UNEQ:
476 predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
477 break;
478 case NE:
479 case LTGT:
480 predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
481 break;
482 case ORDERED:
483 predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
484 break;
485 case UNORDERED:
486 predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
487 break;
488 case LE:
489 case LT:
490 if (XEXP (cond, 1) == const0_rtx
491 || (GET_CODE (XEXP (cond, 1)) == CONST_INT
492 && INTVAL (XEXP (cond, 1)) == -1))
493 predict_insn_def (last_insn, PRED_OPCODE, NOT_TAKEN);
494 break;
495 case GE:
496 case GT:
497 if (XEXP (cond, 1) == const0_rtx
498 || (GET_CODE (XEXP (cond, 1)) == CONST_INT
499 && INTVAL (XEXP (cond, 1)) == -1))
500 predict_insn_def (last_insn, PRED_OPCODE, TAKEN);
501 break;
502
503 default:
504 break;
505 }
506 }
507
508 /* Attach the combined probability to each conditional jump. */
509 for (i = 0; i < n_basic_blocks; i++)
510 {
511 rtx last_insn = BLOCK_END (i);
512
513 if (GET_CODE (last_insn) != JUMP_INSN
514 || ! any_condjump_p (last_insn))
515 continue;
516 combine_predictions_for_insn (last_insn, BASIC_BLOCK (i));
517 }
518 sbitmap_vector_free (post_dominators);
519 sbitmap_vector_free (dominators);
520
521 estimate_bb_frequencies (loops_info);
522 }
523 \f
524 /* __builtin_expect dropped tokens into the insn stream describing
525 expected values of registers. Generate branch probabilities
526 based off these values. */
527
528 void
529 expected_value_to_br_prob ()
530 {
531 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
532
533 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
534 {
535 switch (GET_CODE (insn))
536 {
537 case NOTE:
538 /* Look for expected value notes. */
539 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
540 {
541 ev = NOTE_EXPECTED_VALUE (insn);
542 ev_reg = XEXP (ev, 0);
543 }
544 continue;
545
546 case CODE_LABEL:
547 /* Never propagate across labels. */
548 ev = NULL_RTX;
549 continue;
550
551 default:
552 /* Look for insns that clobber the EV register. */
553 if (ev && reg_set_p (ev_reg, insn))
554 ev = NULL_RTX;
555 continue;
556
557 case JUMP_INSN:
558 /* Look for simple conditional branches. If we havn't got an
559 expected value yet, no point going further. */
560 if (GET_CODE (insn) != JUMP_INSN || ev == NULL_RTX)
561 continue;
562 if (! any_condjump_p (insn))
563 continue;
564 break;
565 }
566
567 /* Collect the branch condition, hopefully relative to EV_REG. */
568 /* ??? At present we'll miss things like
569 (expected_value (eq r70 0))
570 (set r71 -1)
571 (set r80 (lt r70 r71))
572 (set pc (if_then_else (ne r80 0) ...))
573 as canonicalize_condition will render this to us as
574 (lt r70, r71)
575 Could use cselib to try and reduce this further. */
576 cond = XEXP (SET_SRC (pc_set (insn)), 0);
577 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg);
578 if (! cond
579 || XEXP (cond, 0) != ev_reg
580 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
581 continue;
582
583 /* Substitute and simplify. Given that the expression we're
584 building involves two constants, we should wind up with either
585 true or false. */
586 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
587 XEXP (ev, 1), XEXP (cond, 1));
588 cond = simplify_rtx (cond);
589
590 /* Turn the condition into a scaled branch probability. */
591 if (cond != const_true_rtx && cond != const0_rtx)
592 abort ();
593 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
594 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
595 }
596 }
597 \f
598 /* This is used to carry information about basic blocks. It is
599 attached to the AUX field of the standard CFG block. */
600
601 typedef struct block_info_def
602 {
603 /* Estimated frequency of execution of basic_block. */
604 double frequency;
605
606 /* To keep queue of basic blocks to process. */
607 basic_block next;
608
609 /* True if block needs to be visited in prop_freqency. */
610 int tovisit:1;
611
612 /* Number of predecessors we need to visit first. */
613 int npredecesors;
614 } *block_info;
615
616 /* Similar information for edges. */
617 typedef struct edge_info_def
618 {
619 /* In case edge is an loopback edge, the probability edge will be reached
620 in case header is. Estimated number of iterations of the loop can be
621 then computed as 1 / (1 - back_edge_prob). */
622 double back_edge_prob;
623 /* True if the edge is an loopback edge in the natural loop. */
624 int back_edge:1;
625 } *edge_info;
626
627 #define BLOCK_INFO(B) ((block_info) (B)->aux)
628 #define EDGE_INFO(E) ((edge_info) (E)->aux)
629
630 /* Helper function for estimate_bb_frequencies.
631 Propagate the frequencies for loops headed by HEAD. */
632 static void
633 propagate_freq (head)
634 basic_block head;
635 {
636 basic_block bb = head;
637 basic_block last = bb;
638 edge e;
639 basic_block nextbb;
640 int n;
641
642 /* For each basic block we need to visit count number of his predecessors
643 we need to visit first. */
644 for (n = 0; n < n_basic_blocks; n++)
645 {
646 basic_block bb = BASIC_BLOCK (n);
647 if (BLOCK_INFO (bb)->tovisit)
648 {
649 int count = 0;
650 for (e = bb->pred; e; e = e->pred_next)
651 if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
652 count++;
653 else if (BLOCK_INFO (e->src)->tovisit
654 && rtl_dump_file && !EDGE_INFO (e)->back_edge)
655 fprintf (rtl_dump_file,
656 "Irreducible region hit, ignoring edge to %i->%i\n",
657 e->src->index, bb->index);
658 BLOCK_INFO (bb)->npredecesors = count;
659 }
660 }
661
662 BLOCK_INFO (head)->frequency = 1;
663 for (; bb; bb = nextbb)
664 {
665 double cyclic_probability = 0, frequency = 0;
666
667 nextbb = BLOCK_INFO (bb)->next;
668 BLOCK_INFO (bb)->next = NULL;
669
670 /* Compute frequency of basic block. */
671 if (bb != head)
672 {
673 #ifdef ENABLE_CHECKING
674 for (e = bb->pred; e; e = e->pred_next)
675 if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
676 abort ();
677 #endif
678
679 for (e = bb->pred; e; e = e->pred_next)
680 if (EDGE_INFO (e)->back_edge)
681 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
682 else if (!(e->flags & EDGE_DFS_BACK))
683 frequency += (e->probability
684 * BLOCK_INFO (e->src)->frequency /
685 REG_BR_PROB_BASE);
686
687 if (cyclic_probability > 1.0 - 1.0 / REG_BR_PROB_BASE)
688 cyclic_probability = 1.0 - 1.0 / REG_BR_PROB_BASE;
689
690 BLOCK_INFO (bb)->frequency = frequency / (1 - cyclic_probability);
691 }
692
693 BLOCK_INFO (bb)->tovisit = 0;
694
695 /* Compute back edge frequencies. */
696 for (e = bb->succ; e; e = e->succ_next)
697 if (e->dest == head)
698 EDGE_INFO (e)->back_edge_prob = (e->probability
699 * BLOCK_INFO (bb)->frequency
700 / REG_BR_PROB_BASE);
701
702 /* Propagate to successor blocks. */
703 for (e = bb->succ; e; e = e->succ_next)
704 if (!(e->flags & EDGE_DFS_BACK)
705 && BLOCK_INFO (e->dest)->npredecesors)
706 {
707 BLOCK_INFO (e->dest)->npredecesors--;
708 if (!BLOCK_INFO (e->dest)->npredecesors)
709 {
710 if (!nextbb)
711 nextbb = e->dest;
712 else
713 BLOCK_INFO (last)->next = e->dest;
714 last = e->dest;
715 }
716 }
717 }
718 }
719
720 /* Estimate probabilities of loopback edges in loops at same nest level. */
721 static void
722 estimate_loops_at_level (first_loop)
723 struct loop *first_loop;
724 {
725 struct loop *l, *loop = first_loop;
726
727 for (loop = first_loop; loop; loop = loop->next)
728 {
729 int n;
730 edge e;
731
732 estimate_loops_at_level (loop->inner);
733
734 /* Find current loop back edge and mark it. */
735 for (e = loop->latch->succ; e->dest != loop->header; e = e->succ_next);
736
737 EDGE_INFO (e)->back_edge = 1;
738
739 /* In case the loop header is shared, ensure that it is the last
740 one sharing the same header, so we avoid redundant work. */
741 if (loop->shared)
742 {
743 for (l = loop->next; l; l = l->next)
744 if (l->header == loop->header)
745 break;
746 if (l)
747 continue;
748 }
749
750 /* Now merge all nodes of all loops with given header as not visited. */
751 for (l = loop->shared ? first_loop : loop; l != loop->next; l = l->next)
752 if (loop->header == l->header)
753 EXECUTE_IF_SET_IN_SBITMAP (l->nodes, 0, n,
754 BLOCK_INFO (BASIC_BLOCK (n))->tovisit = 1
755 );
756 propagate_freq (loop->header);
757 }
758 }
759
760 /* Convert counts measured by profile driven feedback to frequencies. */
761 static void
762 counts_to_freqs ()
763 {
764 HOST_WIDEST_INT count_max = 1;
765 int i;
766
767 for (i = 0; i < n_basic_blocks; i++)
768 if (BASIC_BLOCK (i)->count > count_max)
769 count_max = BASIC_BLOCK (i)->count;
770
771 for (i = -2; i < n_basic_blocks; i++)
772 {
773 basic_block bb;
774 if (i == -2)
775 bb = ENTRY_BLOCK_PTR;
776 else if (i == -1)
777 bb = EXIT_BLOCK_PTR;
778 else
779 bb = BASIC_BLOCK (i);
780 bb->frequency = ((bb->count * BB_FREQ_MAX + count_max / 2)
781 / count_max);
782 }
783 }
784
785 /* Return true if function is likely to be expensive, so there is no point
786 to optimizer performance of prologue, epilogue or do inlining at the
787 expense of code size growth. THRESHOLD is the limit of number
788 of isntructions function can execute at average to be still considered
789 not expensive. */
790 bool
791 expensive_function_p (threshold)
792 int threshold;
793 {
794 unsigned int sum = 0;
795 int i;
796 unsigned int limit;
797
798 /* We can not compute accurately for large thresholds due to scaled
799 frequencies. */
800 if (threshold > BB_FREQ_MAX)
801 abort ();
802
803 /* Frequencies are out of range. This either means that function contains
804 internal loop executing more than BB_FREQ_MAX times or profile feedback
805 is available and function has not been executed at all. */
806 if (ENTRY_BLOCK_PTR->frequency == 0)
807 return true;
808
809 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
810 limit = ENTRY_BLOCK_PTR->frequency * threshold;
811 for (i = 0; i < n_basic_blocks; i++)
812 {
813 basic_block bb = BASIC_BLOCK (i);
814 rtx insn;
815
816 for (insn = bb->head; insn != NEXT_INSN (bb->end);
817 insn = NEXT_INSN (insn))
818 {
819 if (active_insn_p (insn))
820 {
821 sum += bb->frequency;
822 if (sum > limit)
823 return true;
824 }
825 }
826 }
827 return false;
828 }
829
830 /* Estimate basic blocks frequency by given branch probabilities. */
831 static void
832 estimate_bb_frequencies (loops)
833 struct loops *loops;
834 {
835 int i;
836 double freq_max = 0;
837
838 mark_dfs_back_edges ();
839 if (flag_branch_probabilities)
840 {
841 counts_to_freqs ();
842 return;
843 }
844
845 /* Fill in the probability values in flowgraph based on the REG_BR_PROB
846 notes. */
847 for (i = 0; i < n_basic_blocks; i++)
848 {
849 rtx last_insn = BLOCK_END (i);
850 int probability;
851 edge fallthru, branch;
852
853 if (GET_CODE (last_insn) != JUMP_INSN || !any_condjump_p (last_insn)
854 /* Avoid handling of conditional jumps jumping to fallthru edge. */
855 || BASIC_BLOCK (i)->succ->succ_next == NULL)
856 {
857 /* We can predict only conditional jumps at the moment.
858 Expect each edge to be equally probable.
859 ?? In the future we want to make abnormal edges improbable. */
860 int nedges = 0;
861 edge e;
862
863 for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
864 {
865 nedges++;
866 if (e->probability != 0)
867 break;
868 }
869 if (!e)
870 for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next)
871 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
872 }
873 else
874 {
875 probability = INTVAL (XEXP (find_reg_note (last_insn,
876 REG_BR_PROB, 0), 0));
877 fallthru = BASIC_BLOCK (i)->succ;
878 if (!fallthru->flags & EDGE_FALLTHRU)
879 fallthru = fallthru->succ_next;
880 branch = BASIC_BLOCK (i)->succ;
881 if (branch->flags & EDGE_FALLTHRU)
882 branch = branch->succ_next;
883
884 branch->probability = probability;
885 fallthru->probability = REG_BR_PROB_BASE - probability;
886 }
887 }
888 ENTRY_BLOCK_PTR->succ->probability = REG_BR_PROB_BASE;
889
890 /* Set up block info for each basic block. */
891 alloc_aux_for_blocks (sizeof (struct block_info_def));
892 alloc_aux_for_edges (sizeof (struct edge_info_def));
893 for (i = -2; i < n_basic_blocks; i++)
894 {
895 edge e;
896 basic_block bb;
897
898 if (i == -2)
899 bb = ENTRY_BLOCK_PTR;
900 else if (i == -1)
901 bb = EXIT_BLOCK_PTR;
902 else
903 bb = BASIC_BLOCK (i);
904 BLOCK_INFO (bb)->tovisit = 0;
905 for (e = bb->succ; e; e = e->succ_next)
906 EDGE_INFO (e)->back_edge_prob = ((double) e->probability
907 / REG_BR_PROB_BASE);
908 }
909 /* First compute probabilities locally for each loop from innermost
910 to outermost to examine probabilities for back edges. */
911 estimate_loops_at_level (loops->tree_root);
912
913 /* Now fake loop around whole function to finalize probabilities. */
914 for (i = 0; i < n_basic_blocks; i++)
915 BLOCK_INFO (BASIC_BLOCK (i))->tovisit = 1;
916 BLOCK_INFO (ENTRY_BLOCK_PTR)->tovisit = 1;
917 BLOCK_INFO (EXIT_BLOCK_PTR)->tovisit = 1;
918 propagate_freq (ENTRY_BLOCK_PTR);
919
920 for (i = 0; i < n_basic_blocks; i++)
921 if (BLOCK_INFO (BASIC_BLOCK (i))->frequency > freq_max)
922 freq_max = BLOCK_INFO (BASIC_BLOCK (i))->frequency;
923 for (i = -2; i < n_basic_blocks; i++)
924 {
925 basic_block bb;
926 if (i == -2)
927 bb = ENTRY_BLOCK_PTR;
928 else if (i == -1)
929 bb = EXIT_BLOCK_PTR;
930 else
931 bb = BASIC_BLOCK (i);
932 bb->frequency = (BLOCK_INFO (bb)->frequency * BB_FREQ_MAX / freq_max
933 + 0.5);
934 }
935
936 free_aux_for_blocks ();
937 free_aux_for_edges ();
938 }