re PR rtl-optimization/19210 (not using do-loop for some loops)
[gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* References:
23
24 [1] "Branch Prediction for Free"
25 Ball and Larus; PLDI '93.
26 [2] "Static Branch Frequency and Program Profile Analysis"
27 Wu and Larus; MICRO-27.
28 [3] "Corpus-based Static Branch Prediction"
29 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "tree.h"
37 #include "rtl.h"
38 #include "tm_p.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "insn-config.h"
42 #include "regs.h"
43 #include "flags.h"
44 #include "output.h"
45 #include "function.h"
46 #include "except.h"
47 #include "toplev.h"
48 #include "recog.h"
49 #include "expr.h"
50 #include "predict.h"
51 #include "coverage.h"
52 #include "sreal.h"
53 #include "params.h"
54 #include "target.h"
55 #include "cfgloop.h"
56 #include "tree-flow.h"
57 #include "ggc.h"
58 #include "tree-dump.h"
59 #include "tree-pass.h"
60 #include "timevar.h"
61 #include "tree-scalar-evolution.h"
62 #include "cfgloop.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names. */
70 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 100 - 1)
71 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
72 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
73 #define PROB_ALWAYS (REG_BR_PROB_BASE)
74
75 static void combine_predictions_for_insn (rtx, basic_block);
76 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
77 static void estimate_loops_at_level (struct loop *, bitmap);
78 static void propagate_freq (struct loop *, bitmap);
79 static void estimate_bb_frequencies (struct loops *);
80 static void predict_paths_leading_to (basic_block, int *, enum br_predictor, enum prediction);
81 static bool last_basic_block_p (basic_block);
82 static void compute_function_frequency (void);
83 static void choose_function_section (void);
84 static bool can_predict_insn_p (rtx);
85
86 /* Information we hold about each branch predictor.
87 Filled using information from predict.def. */
88
89 struct predictor_info
90 {
91 const char *const name; /* Name used in the debugging dumps. */
92 const int hitrate; /* Expected hitrate used by
93 predict_insn_def call. */
94 const int flags;
95 };
96
97 /* Use given predictor without Dempster-Shaffer theory if it matches
98 using first_match heuristics. */
99 #define PRED_FLAG_FIRST_MATCH 1
100
101 /* Recompute hitrate in percent to our representation. */
102
103 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
104
105 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
106 static const struct predictor_info predictor_info[]= {
107 #include "predict.def"
108
109 /* Upper bound on predictors. */
110 {NULL, 0, 0}
111 };
112 #undef DEF_PREDICTOR
113
114 /* Return true in case BB can be CPU intensive and should be optimized
115 for maximal performance. */
116
117 bool
118 maybe_hot_bb_p (basic_block bb)
119 {
120 if (profile_info && flag_branch_probabilities
121 && (bb->count
122 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
123 return false;
124 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
125 return false;
126 return true;
127 }
128
129 /* Return true in case BB is cold and should be optimized for size. */
130
131 bool
132 probably_cold_bb_p (basic_block bb)
133 {
134 if (profile_info && flag_branch_probabilities
135 && (bb->count
136 < profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
137 return true;
138 if (bb->frequency < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
139 return true;
140 return false;
141 }
142
143 /* Return true in case BB is probably never executed. */
144 bool
145 probably_never_executed_bb_p (basic_block bb)
146 {
147 if (profile_info && flag_branch_probabilities)
148 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
149 return false;
150 }
151
152 /* Return true if the one of outgoing edges is already predicted by
153 PREDICTOR. */
154
155 bool
156 rtl_predicted_by_p (basic_block bb, enum br_predictor predictor)
157 {
158 rtx note;
159 if (!INSN_P (BB_END (bb)))
160 return false;
161 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
162 if (REG_NOTE_KIND (note) == REG_BR_PRED
163 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
164 return true;
165 return false;
166 }
167
168 /* Return true if the one of outgoing edges is already predicted by
169 PREDICTOR. */
170
171 bool
172 tree_predicted_by_p (basic_block bb, enum br_predictor predictor)
173 {
174 struct edge_prediction *i;
175 for (i = bb->predictions; i; i = i->next)
176 if (i->predictor == predictor)
177 return true;
178 return false;
179 }
180
181 static void
182 predict_insn (rtx insn, enum br_predictor predictor, int probability)
183 {
184 gcc_assert (any_condjump_p (insn));
185 if (!flag_guess_branch_prob)
186 return;
187
188 REG_NOTES (insn)
189 = gen_rtx_EXPR_LIST (REG_BR_PRED,
190 gen_rtx_CONCAT (VOIDmode,
191 GEN_INT ((int) predictor),
192 GEN_INT ((int) probability)),
193 REG_NOTES (insn));
194 }
195
196 /* Predict insn by given predictor. */
197
198 void
199 predict_insn_def (rtx insn, enum br_predictor predictor,
200 enum prediction taken)
201 {
202 int probability = predictor_info[(int) predictor].hitrate;
203
204 if (taken != TAKEN)
205 probability = REG_BR_PROB_BASE - probability;
206
207 predict_insn (insn, predictor, probability);
208 }
209
210 /* Predict edge E with given probability if possible. */
211
212 void
213 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
214 {
215 rtx last_insn;
216 last_insn = BB_END (e->src);
217
218 /* We can store the branch prediction information only about
219 conditional jumps. */
220 if (!any_condjump_p (last_insn))
221 return;
222
223 /* We always store probability of branching. */
224 if (e->flags & EDGE_FALLTHRU)
225 probability = REG_BR_PROB_BASE - probability;
226
227 predict_insn (last_insn, predictor, probability);
228 }
229
230 /* Predict edge E with the given PROBABILITY. */
231 void
232 tree_predict_edge (edge e, enum br_predictor predictor, int probability)
233 {
234 gcc_assert (profile_status != PROFILE_GUESSED);
235 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
236 && flag_guess_branch_prob && optimize)
237 {
238 struct edge_prediction *i = ggc_alloc (sizeof (struct edge_prediction));
239
240 i->next = e->src->predictions;
241 e->src->predictions = i;
242 i->probability = probability;
243 i->predictor = predictor;
244 i->edge = e;
245 }
246 }
247
248 /* Remove all predictions on given basic block that are attached
249 to edge E. */
250 void
251 remove_predictions_associated_with_edge (edge e)
252 {
253 if (e->src->predictions)
254 {
255 struct edge_prediction **prediction = &e->src->predictions;
256 while (*prediction)
257 {
258 if ((*prediction)->edge == e)
259 *prediction = (*prediction)->next;
260 else
261 prediction = &((*prediction)->next);
262 }
263 }
264 }
265
266 /* Return true when we can store prediction on insn INSN.
267 At the moment we represent predictions only on conditional
268 jumps, not at computed jump or other complicated cases. */
269 static bool
270 can_predict_insn_p (rtx insn)
271 {
272 return (JUMP_P (insn)
273 && any_condjump_p (insn)
274 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
275 }
276
277 /* Predict edge E by given predictor if possible. */
278
279 void
280 predict_edge_def (edge e, enum br_predictor predictor,
281 enum prediction taken)
282 {
283 int probability = predictor_info[(int) predictor].hitrate;
284
285 if (taken != TAKEN)
286 probability = REG_BR_PROB_BASE - probability;
287
288 predict_edge (e, predictor, probability);
289 }
290
291 /* Invert all branch predictions or probability notes in the INSN. This needs
292 to be done each time we invert the condition used by the jump. */
293
294 void
295 invert_br_probabilities (rtx insn)
296 {
297 rtx note;
298
299 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
300 if (REG_NOTE_KIND (note) == REG_BR_PROB)
301 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
302 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
303 XEXP (XEXP (note, 0), 1)
304 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
305 }
306
307 /* Dump information about the branch prediction to the output file. */
308
309 static void
310 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
311 basic_block bb, int used)
312 {
313 edge e;
314 edge_iterator ei;
315
316 if (!file)
317 return;
318
319 FOR_EACH_EDGE (e, ei, bb->succs)
320 if (! (e->flags & EDGE_FALLTHRU))
321 break;
322
323 fprintf (file, " %s heuristics%s: %.1f%%",
324 predictor_info[predictor].name,
325 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
326
327 if (bb->count)
328 {
329 fprintf (file, " exec ");
330 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
331 if (e)
332 {
333 fprintf (file, " hit ");
334 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
335 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
336 }
337 }
338
339 fprintf (file, "\n");
340 }
341
342 /* We can not predict the probabilities of outgoing edges of bb. Set them
343 evenly and hope for the best. */
344 static void
345 set_even_probabilities (basic_block bb)
346 {
347 int nedges = 0;
348 edge e;
349 edge_iterator ei;
350
351 FOR_EACH_EDGE (e, ei, bb->succs)
352 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
353 nedges ++;
354 FOR_EACH_EDGE (e, ei, bb->succs)
355 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
356 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
357 else
358 e->probability = 0;
359 }
360
361 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
362 note if not already present. Remove now useless REG_BR_PRED notes. */
363
364 static void
365 combine_predictions_for_insn (rtx insn, basic_block bb)
366 {
367 rtx prob_note;
368 rtx *pnote;
369 rtx note;
370 int best_probability = PROB_EVEN;
371 int best_predictor = END_PREDICTORS;
372 int combined_probability = REG_BR_PROB_BASE / 2;
373 int d;
374 bool first_match = false;
375 bool found = false;
376
377 if (!can_predict_insn_p (insn))
378 {
379 set_even_probabilities (bb);
380 return;
381 }
382
383 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
384 pnote = &REG_NOTES (insn);
385 if (dump_file)
386 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
387 bb->index);
388
389 /* We implement "first match" heuristics and use probability guessed
390 by predictor with smallest index. */
391 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
392 if (REG_NOTE_KIND (note) == REG_BR_PRED)
393 {
394 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
395 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
396
397 found = true;
398 if (best_predictor > predictor)
399 best_probability = probability, best_predictor = predictor;
400
401 d = (combined_probability * probability
402 + (REG_BR_PROB_BASE - combined_probability)
403 * (REG_BR_PROB_BASE - probability));
404
405 /* Use FP math to avoid overflows of 32bit integers. */
406 if (d == 0)
407 /* If one probability is 0% and one 100%, avoid division by zero. */
408 combined_probability = REG_BR_PROB_BASE / 2;
409 else
410 combined_probability = (((double) combined_probability) * probability
411 * REG_BR_PROB_BASE / d + 0.5);
412 }
413
414 /* Decide which heuristic to use. In case we didn't match anything,
415 use no_prediction heuristic, in case we did match, use either
416 first match or Dempster-Shaffer theory depending on the flags. */
417
418 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
419 first_match = true;
420
421 if (!found)
422 dump_prediction (dump_file, PRED_NO_PREDICTION,
423 combined_probability, bb, true);
424 else
425 {
426 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
427 bb, !first_match);
428 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
429 bb, first_match);
430 }
431
432 if (first_match)
433 combined_probability = best_probability;
434 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
435
436 while (*pnote)
437 {
438 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
439 {
440 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
441 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
442
443 dump_prediction (dump_file, predictor, probability, bb,
444 !first_match || best_predictor == predictor);
445 *pnote = XEXP (*pnote, 1);
446 }
447 else
448 pnote = &XEXP (*pnote, 1);
449 }
450
451 if (!prob_note)
452 {
453 REG_NOTES (insn)
454 = gen_rtx_EXPR_LIST (REG_BR_PROB,
455 GEN_INT (combined_probability), REG_NOTES (insn));
456
457 /* Save the prediction into CFG in case we are seeing non-degenerated
458 conditional jump. */
459 if (!single_succ_p (bb))
460 {
461 BRANCH_EDGE (bb)->probability = combined_probability;
462 FALLTHRU_EDGE (bb)->probability
463 = REG_BR_PROB_BASE - combined_probability;
464 }
465 }
466 else if (!single_succ_p (bb))
467 {
468 int prob = INTVAL (XEXP (prob_note, 0));
469
470 BRANCH_EDGE (bb)->probability = prob;
471 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
472 }
473 else
474 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
475 }
476
477 /* Combine predictions into single probability and store them into CFG.
478 Remove now useless prediction entries. */
479
480 static void
481 combine_predictions_for_bb (FILE *file, basic_block bb)
482 {
483 int best_probability = PROB_EVEN;
484 int best_predictor = END_PREDICTORS;
485 int combined_probability = REG_BR_PROB_BASE / 2;
486 int d;
487 bool first_match = false;
488 bool found = false;
489 struct edge_prediction *pred;
490 int nedges = 0;
491 edge e, first = NULL, second = NULL;
492 edge_iterator ei;
493
494 FOR_EACH_EDGE (e, ei, bb->succs)
495 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
496 {
497 nedges ++;
498 if (first && !second)
499 second = e;
500 if (!first)
501 first = e;
502 }
503
504 /* When there is no successor or only one choice, prediction is easy.
505
506 We are lazy for now and predict only basic blocks with two outgoing
507 edges. It is possible to predict generic case too, but we have to
508 ignore first match heuristics and do more involved combining. Implement
509 this later. */
510 if (nedges != 2)
511 {
512 if (!bb->count)
513 set_even_probabilities (bb);
514 bb->predictions = NULL;
515 if (file)
516 fprintf (file, "%i edges in bb %i predicted to even probabilities\n",
517 nedges, bb->index);
518 return;
519 }
520
521 if (file)
522 fprintf (file, "Predictions for bb %i\n", bb->index);
523
524 /* We implement "first match" heuristics and use probability guessed
525 by predictor with smallest index. */
526 for (pred = bb->predictions; pred; pred = pred->next)
527 {
528 int predictor = pred->predictor;
529 int probability = pred->probability;
530
531 if (pred->edge != first)
532 probability = REG_BR_PROB_BASE - probability;
533
534 found = true;
535 if (best_predictor > predictor)
536 best_probability = probability, best_predictor = predictor;
537
538 d = (combined_probability * probability
539 + (REG_BR_PROB_BASE - combined_probability)
540 * (REG_BR_PROB_BASE - probability));
541
542 /* Use FP math to avoid overflows of 32bit integers. */
543 if (d == 0)
544 /* If one probability is 0% and one 100%, avoid division by zero. */
545 combined_probability = REG_BR_PROB_BASE / 2;
546 else
547 combined_probability = (((double) combined_probability) * probability
548 * REG_BR_PROB_BASE / d + 0.5);
549 }
550
551 /* Decide which heuristic to use. In case we didn't match anything,
552 use no_prediction heuristic, in case we did match, use either
553 first match or Dempster-Shaffer theory depending on the flags. */
554
555 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
556 first_match = true;
557
558 if (!found)
559 dump_prediction (file, PRED_NO_PREDICTION, combined_probability, bb, true);
560 else
561 {
562 dump_prediction (file, PRED_DS_THEORY, combined_probability, bb,
563 !first_match);
564 dump_prediction (file, PRED_FIRST_MATCH, best_probability, bb,
565 first_match);
566 }
567
568 if (first_match)
569 combined_probability = best_probability;
570 dump_prediction (file, PRED_COMBINED, combined_probability, bb, true);
571
572 for (pred = bb->predictions; pred; pred = pred->next)
573 {
574 int predictor = pred->predictor;
575 int probability = pred->probability;
576
577 if (pred->edge != EDGE_SUCC (bb, 0))
578 probability = REG_BR_PROB_BASE - probability;
579 dump_prediction (file, predictor, probability, bb,
580 !first_match || best_predictor == predictor);
581 }
582 bb->predictions = NULL;
583
584 if (!bb->count)
585 {
586 first->probability = combined_probability;
587 second->probability = REG_BR_PROB_BASE - combined_probability;
588 }
589 }
590
591 /* Predict edge probabilities by exploiting loop structure.
592 When RTLSIMPLELOOPS is set, attempt to count number of iterations by analyzing
593 RTL otherwise use tree based approach. */
594 static void
595 predict_loops (struct loops *loops_info, bool rtlsimpleloops)
596 {
597 unsigned i;
598
599 if (!rtlsimpleloops)
600 scev_initialize (loops_info);
601
602 /* Try to predict out blocks in a loop that are not part of a
603 natural loop. */
604 for (i = 1; i < loops_info->num; i++)
605 {
606 basic_block bb, *bbs;
607 unsigned j;
608 unsigned n_exits;
609 struct loop *loop = loops_info->parray[i];
610 struct niter_desc desc;
611 unsigned HOST_WIDE_INT niter;
612 edge *exits;
613
614 exits = get_loop_exit_edges (loop, &n_exits);
615
616 if (rtlsimpleloops)
617 {
618 iv_analysis_loop_init (loop);
619 find_simple_exit (loop, &desc);
620
621 if (desc.simple_p && desc.const_iter)
622 {
623 int prob;
624 niter = desc.niter + 1;
625 if (niter == 0) /* We might overflow here. */
626 niter = desc.niter;
627
628 prob = (REG_BR_PROB_BASE
629 - (REG_BR_PROB_BASE + niter /2) / niter);
630 /* Branch prediction algorithm gives 0 frequency for everything
631 after the end of loop for loop having 0 probability to finish. */
632 if (prob == REG_BR_PROB_BASE)
633 prob = REG_BR_PROB_BASE - 1;
634 predict_edge (desc.in_edge, PRED_LOOP_ITERATIONS,
635 prob);
636 }
637 }
638 else
639 {
640 struct tree_niter_desc niter_desc;
641
642 for (j = 0; j < n_exits; j++)
643 {
644 tree niter = NULL;
645
646 if (number_of_iterations_exit (loop, exits[j], &niter_desc, false))
647 niter = niter_desc.niter;
648 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
649 niter = loop_niter_by_eval (loop, exits[j]);
650
651 if (TREE_CODE (niter) == INTEGER_CST)
652 {
653 int probability;
654 if (host_integerp (niter, 1)
655 && tree_int_cst_lt (niter,
656 build_int_cstu (NULL_TREE,
657 REG_BR_PROB_BASE - 1)))
658 {
659 HOST_WIDE_INT nitercst = tree_low_cst (niter, 1) + 1;
660 probability = (REG_BR_PROB_BASE + nitercst / 2) / nitercst;
661 }
662 else
663 probability = 1;
664
665 predict_edge (exits[j], PRED_LOOP_ITERATIONS, probability);
666 }
667 }
668
669 }
670 free (exits);
671
672 bbs = get_loop_body (loop);
673
674 for (j = 0; j < loop->num_nodes; j++)
675 {
676 int header_found = 0;
677 edge e;
678 edge_iterator ei;
679
680 bb = bbs[j];
681
682 /* Bypass loop heuristics on continue statement. These
683 statements construct loops via "non-loop" constructs
684 in the source language and are better to be handled
685 separately. */
686 if ((rtlsimpleloops && !can_predict_insn_p (BB_END (bb)))
687 || predicted_by_p (bb, PRED_CONTINUE))
688 continue;
689
690 /* Loop branch heuristics - predict an edge back to a
691 loop's head as taken. */
692 if (bb == loop->latch)
693 {
694 e = find_edge (loop->latch, loop->header);
695 if (e)
696 {
697 header_found = 1;
698 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
699 }
700 }
701
702 /* Loop exit heuristics - predict an edge exiting the loop if the
703 conditional has no loop header successors as not taken. */
704 if (!header_found)
705 FOR_EACH_EDGE (e, ei, bb->succs)
706 if (e->dest->index < 0
707 || !flow_bb_inside_loop_p (loop, e->dest))
708 predict_edge
709 (e, PRED_LOOP_EXIT,
710 (REG_BR_PROB_BASE
711 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
712 / n_exits);
713 }
714
715 /* Free basic blocks from get_loop_body. */
716 free (bbs);
717 }
718
719 if (!rtlsimpleloops)
720 {
721 scev_finalize ();
722 current_loops = NULL;
723 }
724 }
725
726 /* Attempt to predict probabilities of BB outgoing edges using local
727 properties. */
728 static void
729 bb_estimate_probability_locally (basic_block bb)
730 {
731 rtx last_insn = BB_END (bb);
732 rtx cond;
733
734 if (! can_predict_insn_p (last_insn))
735 return;
736 cond = get_condition (last_insn, NULL, false, false);
737 if (! cond)
738 return;
739
740 /* Try "pointer heuristic."
741 A comparison ptr == 0 is predicted as false.
742 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
743 if (COMPARISON_P (cond)
744 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
745 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
746 {
747 if (GET_CODE (cond) == EQ)
748 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
749 else if (GET_CODE (cond) == NE)
750 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
751 }
752 else
753
754 /* Try "opcode heuristic."
755 EQ tests are usually false and NE tests are usually true. Also,
756 most quantities are positive, so we can make the appropriate guesses
757 about signed comparisons against zero. */
758 switch (GET_CODE (cond))
759 {
760 case CONST_INT:
761 /* Unconditional branch. */
762 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
763 cond == const0_rtx ? NOT_TAKEN : TAKEN);
764 break;
765
766 case EQ:
767 case UNEQ:
768 /* Floating point comparisons appears to behave in a very
769 unpredictable way because of special role of = tests in
770 FP code. */
771 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
772 ;
773 /* Comparisons with 0 are often used for booleans and there is
774 nothing useful to predict about them. */
775 else if (XEXP (cond, 1) == const0_rtx
776 || XEXP (cond, 0) == const0_rtx)
777 ;
778 else
779 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
780 break;
781
782 case NE:
783 case LTGT:
784 /* Floating point comparisons appears to behave in a very
785 unpredictable way because of special role of = tests in
786 FP code. */
787 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
788 ;
789 /* Comparisons with 0 are often used for booleans and there is
790 nothing useful to predict about them. */
791 else if (XEXP (cond, 1) == const0_rtx
792 || XEXP (cond, 0) == const0_rtx)
793 ;
794 else
795 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
796 break;
797
798 case ORDERED:
799 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
800 break;
801
802 case UNORDERED:
803 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
804 break;
805
806 case LE:
807 case LT:
808 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
809 || XEXP (cond, 1) == constm1_rtx)
810 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
811 break;
812
813 case GE:
814 case GT:
815 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
816 || XEXP (cond, 1) == constm1_rtx)
817 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
818 break;
819
820 default:
821 break;
822 }
823 }
824
825 /* Statically estimate the probability that a branch will be taken and produce
826 estimated profile. When profile feedback is present never executed portions
827 of function gets estimated. */
828
829 void
830 estimate_probability (struct loops *loops_info)
831 {
832 basic_block bb;
833
834 connect_infinite_loops_to_exit ();
835 calculate_dominance_info (CDI_DOMINATORS);
836 calculate_dominance_info (CDI_POST_DOMINATORS);
837
838 predict_loops (loops_info, true);
839
840 iv_analysis_done ();
841
842 /* Attempt to predict conditional jumps using a number of heuristics. */
843 FOR_EACH_BB (bb)
844 {
845 rtx last_insn = BB_END (bb);
846 edge e;
847 edge_iterator ei;
848
849 if (! can_predict_insn_p (last_insn))
850 continue;
851
852 FOR_EACH_EDGE (e, ei, bb->succs)
853 {
854 /* Predict early returns to be probable, as we've already taken
855 care for error returns and other are often used for fast paths
856 trought function. */
857 if ((e->dest == EXIT_BLOCK_PTR
858 || (single_succ_p (e->dest)
859 && single_succ (e->dest) == EXIT_BLOCK_PTR))
860 && !predicted_by_p (bb, PRED_NULL_RETURN)
861 && !predicted_by_p (bb, PRED_CONST_RETURN)
862 && !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
863 && !last_basic_block_p (e->dest))
864 predict_edge_def (e, PRED_EARLY_RETURN, TAKEN);
865
866 /* Look for block we are guarding (i.e. we dominate it,
867 but it doesn't postdominate us). */
868 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
869 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
870 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
871 {
872 rtx insn;
873
874 /* The call heuristic claims that a guarded function call
875 is improbable. This is because such calls are often used
876 to signal exceptional situations such as printing error
877 messages. */
878 for (insn = BB_HEAD (e->dest); insn != NEXT_INSN (BB_END (e->dest));
879 insn = NEXT_INSN (insn))
880 if (CALL_P (insn)
881 /* Constant and pure calls are hardly used to signalize
882 something exceptional. */
883 && ! CONST_OR_PURE_CALL_P (insn))
884 {
885 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
886 break;
887 }
888 }
889 }
890 bb_estimate_probability_locally (bb);
891 }
892
893 /* Attach the combined probability to each conditional jump. */
894 FOR_EACH_BB (bb)
895 combine_predictions_for_insn (BB_END (bb), bb);
896
897 remove_fake_edges ();
898 estimate_bb_frequencies (loops_info);
899 free_dominance_info (CDI_POST_DOMINATORS);
900 if (profile_status == PROFILE_ABSENT)
901 profile_status = PROFILE_GUESSED;
902 }
903
904 /* Set edge->probability for each successor edge of BB. */
905 void
906 guess_outgoing_edge_probabilities (basic_block bb)
907 {
908 bb_estimate_probability_locally (bb);
909 combine_predictions_for_insn (BB_END (bb), bb);
910 }
911 \f
912 /* Return constant EXPR will likely have at execution time, NULL if unknown.
913 The function is used by builtin_expect branch predictor so the evidence
914 must come from this construct and additional possible constant folding.
915
916 We may want to implement more involved value guess (such as value range
917 propagation based prediction), but such tricks shall go to new
918 implementation. */
919
920 static tree
921 expr_expected_value (tree expr, bitmap visited)
922 {
923 if (TREE_CONSTANT (expr))
924 return expr;
925 else if (TREE_CODE (expr) == SSA_NAME)
926 {
927 tree def = SSA_NAME_DEF_STMT (expr);
928
929 /* If we were already here, break the infinite cycle. */
930 if (bitmap_bit_p (visited, SSA_NAME_VERSION (expr)))
931 return NULL;
932 bitmap_set_bit (visited, SSA_NAME_VERSION (expr));
933
934 if (TREE_CODE (def) == PHI_NODE)
935 {
936 /* All the arguments of the PHI node must have the same constant
937 length. */
938 int i;
939 tree val = NULL, new_val;
940
941 for (i = 0; i < PHI_NUM_ARGS (def); i++)
942 {
943 tree arg = PHI_ARG_DEF (def, i);
944
945 /* If this PHI has itself as an argument, we cannot
946 determine the string length of this argument. However,
947 if we can find an expected constant value for the other
948 PHI args then we can still be sure that this is
949 likely a constant. So be optimistic and just
950 continue with the next argument. */
951 if (arg == PHI_RESULT (def))
952 continue;
953
954 new_val = expr_expected_value (arg, visited);
955 if (!new_val)
956 return NULL;
957 if (!val)
958 val = new_val;
959 else if (!operand_equal_p (val, new_val, false))
960 return NULL;
961 }
962 return val;
963 }
964 if (TREE_CODE (def) != MODIFY_EXPR || TREE_OPERAND (def, 0) != expr)
965 return NULL;
966 return expr_expected_value (TREE_OPERAND (def, 1), visited);
967 }
968 else if (TREE_CODE (expr) == CALL_EXPR)
969 {
970 tree decl = get_callee_fndecl (expr);
971 if (!decl)
972 return NULL;
973 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
974 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
975 {
976 tree arglist = TREE_OPERAND (expr, 1);
977 tree val;
978
979 if (arglist == NULL_TREE
980 || TREE_CHAIN (arglist) == NULL_TREE)
981 return NULL;
982 val = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
983 if (TREE_CONSTANT (val))
984 return val;
985 return TREE_VALUE (TREE_CHAIN (TREE_OPERAND (expr, 1)));
986 }
987 }
988 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
989 {
990 tree op0, op1, res;
991 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
992 if (!op0)
993 return NULL;
994 op1 = expr_expected_value (TREE_OPERAND (expr, 1), visited);
995 if (!op1)
996 return NULL;
997 res = fold_build2 (TREE_CODE (expr), TREE_TYPE (expr), op0, op1);
998 if (TREE_CONSTANT (res))
999 return res;
1000 return NULL;
1001 }
1002 if (UNARY_CLASS_P (expr))
1003 {
1004 tree op0, res;
1005 op0 = expr_expected_value (TREE_OPERAND (expr, 0), visited);
1006 if (!op0)
1007 return NULL;
1008 res = fold_build1 (TREE_CODE (expr), TREE_TYPE (expr), op0);
1009 if (TREE_CONSTANT (res))
1010 return res;
1011 return NULL;
1012 }
1013 return NULL;
1014 }
1015 \f
1016 /* Get rid of all builtin_expect calls we no longer need. */
1017 static void
1018 strip_builtin_expect (void)
1019 {
1020 basic_block bb;
1021 FOR_EACH_BB (bb)
1022 {
1023 block_stmt_iterator bi;
1024 for (bi = bsi_start (bb); !bsi_end_p (bi); bsi_next (&bi))
1025 {
1026 tree stmt = bsi_stmt (bi);
1027 tree fndecl;
1028 tree arglist;
1029
1030 if (TREE_CODE (stmt) == MODIFY_EXPR
1031 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
1032 && (fndecl = get_callee_fndecl (TREE_OPERAND (stmt, 1)))
1033 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1034 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1035 && (arglist = TREE_OPERAND (TREE_OPERAND (stmt, 1), 1))
1036 && TREE_CHAIN (arglist))
1037 {
1038 TREE_OPERAND (stmt, 1) = TREE_VALUE (arglist);
1039 update_stmt (stmt);
1040 }
1041 }
1042 }
1043 }
1044 \f
1045 /* Predict using opcode of the last statement in basic block. */
1046 static void
1047 tree_predict_by_opcode (basic_block bb)
1048 {
1049 tree stmt = last_stmt (bb);
1050 edge then_edge;
1051 tree cond;
1052 tree op0;
1053 tree type;
1054 tree val;
1055 bitmap visited;
1056 edge_iterator ei;
1057
1058 if (!stmt || TREE_CODE (stmt) != COND_EXPR)
1059 return;
1060 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1061 if (then_edge->flags & EDGE_TRUE_VALUE)
1062 break;
1063 cond = TREE_OPERAND (stmt, 0);
1064 if (!COMPARISON_CLASS_P (cond))
1065 return;
1066 op0 = TREE_OPERAND (cond, 0);
1067 type = TREE_TYPE (op0);
1068 visited = BITMAP_ALLOC (NULL);
1069 val = expr_expected_value (cond, visited);
1070 BITMAP_FREE (visited);
1071 if (val)
1072 {
1073 if (integer_zerop (val))
1074 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1075 else
1076 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1077 return;
1078 }
1079 /* Try "pointer heuristic."
1080 A comparison ptr == 0 is predicted as false.
1081 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1082 if (POINTER_TYPE_P (type))
1083 {
1084 if (TREE_CODE (cond) == EQ_EXPR)
1085 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1086 else if (TREE_CODE (cond) == NE_EXPR)
1087 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1088 }
1089 else
1090
1091 /* Try "opcode heuristic."
1092 EQ tests are usually false and NE tests are usually true. Also,
1093 most quantities are positive, so we can make the appropriate guesses
1094 about signed comparisons against zero. */
1095 switch (TREE_CODE (cond))
1096 {
1097 case EQ_EXPR:
1098 case UNEQ_EXPR:
1099 /* Floating point comparisons appears to behave in a very
1100 unpredictable way because of special role of = tests in
1101 FP code. */
1102 if (FLOAT_TYPE_P (type))
1103 ;
1104 /* Comparisons with 0 are often used for booleans and there is
1105 nothing useful to predict about them. */
1106 else if (integer_zerop (op0)
1107 || integer_zerop (TREE_OPERAND (cond, 1)))
1108 ;
1109 else
1110 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1111 break;
1112
1113 case NE_EXPR:
1114 case LTGT_EXPR:
1115 /* Floating point comparisons appears to behave in a very
1116 unpredictable way because of special role of = tests in
1117 FP code. */
1118 if (FLOAT_TYPE_P (type))
1119 ;
1120 /* Comparisons with 0 are often used for booleans and there is
1121 nothing useful to predict about them. */
1122 else if (integer_zerop (op0)
1123 || integer_zerop (TREE_OPERAND (cond, 1)))
1124 ;
1125 else
1126 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1127 break;
1128
1129 case ORDERED_EXPR:
1130 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1131 break;
1132
1133 case UNORDERED_EXPR:
1134 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1135 break;
1136
1137 case LE_EXPR:
1138 case LT_EXPR:
1139 if (integer_zerop (TREE_OPERAND (cond, 1))
1140 || integer_onep (TREE_OPERAND (cond, 1))
1141 || integer_all_onesp (TREE_OPERAND (cond, 1))
1142 || real_zerop (TREE_OPERAND (cond, 1))
1143 || real_onep (TREE_OPERAND (cond, 1))
1144 || real_minus_onep (TREE_OPERAND (cond, 1)))
1145 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1146 break;
1147
1148 case GE_EXPR:
1149 case GT_EXPR:
1150 if (integer_zerop (TREE_OPERAND (cond, 1))
1151 || integer_onep (TREE_OPERAND (cond, 1))
1152 || integer_all_onesp (TREE_OPERAND (cond, 1))
1153 || real_zerop (TREE_OPERAND (cond, 1))
1154 || real_onep (TREE_OPERAND (cond, 1))
1155 || real_minus_onep (TREE_OPERAND (cond, 1)))
1156 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1157 break;
1158
1159 default:
1160 break;
1161 }
1162 }
1163
1164 /* Try to guess whether the value of return means error code. */
1165 static enum br_predictor
1166 return_prediction (tree val, enum prediction *prediction)
1167 {
1168 /* VOID. */
1169 if (!val)
1170 return PRED_NO_PREDICTION;
1171 /* Different heuristics for pointers and scalars. */
1172 if (POINTER_TYPE_P (TREE_TYPE (val)))
1173 {
1174 /* NULL is usually not returned. */
1175 if (integer_zerop (val))
1176 {
1177 *prediction = NOT_TAKEN;
1178 return PRED_NULL_RETURN;
1179 }
1180 }
1181 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1182 {
1183 /* Negative return values are often used to indicate
1184 errors. */
1185 if (TREE_CODE (val) == INTEGER_CST
1186 && tree_int_cst_sgn (val) < 0)
1187 {
1188 *prediction = NOT_TAKEN;
1189 return PRED_NEGATIVE_RETURN;
1190 }
1191 /* Constant return values seems to be commonly taken.
1192 Zero/one often represent booleans so exclude them from the
1193 heuristics. */
1194 if (TREE_CONSTANT (val)
1195 && (!integer_zerop (val) && !integer_onep (val)))
1196 {
1197 *prediction = TAKEN;
1198 return PRED_NEGATIVE_RETURN;
1199 }
1200 }
1201 return PRED_NO_PREDICTION;
1202 }
1203
1204 /* Find the basic block with return expression and look up for possible
1205 return value trying to apply RETURN_PREDICTION heuristics. */
1206 static void
1207 apply_return_prediction (int *heads)
1208 {
1209 tree return_stmt = NULL;
1210 tree return_val;
1211 edge e;
1212 tree phi;
1213 int phi_num_args, i;
1214 enum br_predictor pred;
1215 enum prediction direction;
1216 edge_iterator ei;
1217
1218 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1219 {
1220 return_stmt = last_stmt (e->src);
1221 if (TREE_CODE (return_stmt) == RETURN_EXPR)
1222 break;
1223 }
1224 if (!e)
1225 return;
1226 return_val = TREE_OPERAND (return_stmt, 0);
1227 if (!return_val)
1228 return;
1229 if (TREE_CODE (return_val) == MODIFY_EXPR)
1230 return_val = TREE_OPERAND (return_val, 1);
1231 if (TREE_CODE (return_val) != SSA_NAME
1232 || !SSA_NAME_DEF_STMT (return_val)
1233 || TREE_CODE (SSA_NAME_DEF_STMT (return_val)) != PHI_NODE)
1234 return;
1235 for (phi = SSA_NAME_DEF_STMT (return_val); phi; phi = PHI_CHAIN (phi))
1236 if (PHI_RESULT (phi) == return_val)
1237 break;
1238 if (!phi)
1239 return;
1240 phi_num_args = PHI_NUM_ARGS (phi);
1241 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1242
1243 /* Avoid the degenerate case where all return values form the function
1244 belongs to same category (ie they are all positive constants)
1245 so we can hardly say something about them. */
1246 for (i = 1; i < phi_num_args; i++)
1247 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1248 break;
1249 if (i != phi_num_args)
1250 for (i = 0; i < phi_num_args; i++)
1251 {
1252 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1253 if (pred != PRED_NO_PREDICTION)
1254 predict_paths_leading_to (PHI_ARG_EDGE (phi, i)->src, heads, pred,
1255 direction);
1256 }
1257 }
1258
1259 /* Look for basic block that contains unlikely to happen events
1260 (such as noreturn calls) and mark all paths leading to execution
1261 of this basic blocks as unlikely. */
1262
1263 static void
1264 tree_bb_level_predictions (void)
1265 {
1266 basic_block bb;
1267 int *heads;
1268
1269 heads = xmalloc (sizeof (int) * last_basic_block);
1270 memset (heads, -1, sizeof (int) * last_basic_block);
1271 heads[ENTRY_BLOCK_PTR->next_bb->index] = last_basic_block;
1272
1273 apply_return_prediction (heads);
1274
1275 FOR_EACH_BB (bb)
1276 {
1277 block_stmt_iterator bsi = bsi_last (bb);
1278
1279 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1280 {
1281 tree stmt = bsi_stmt (bsi);
1282 switch (TREE_CODE (stmt))
1283 {
1284 case MODIFY_EXPR:
1285 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
1286 {
1287 stmt = TREE_OPERAND (stmt, 1);
1288 goto call_expr;
1289 }
1290 break;
1291 case CALL_EXPR:
1292 call_expr:;
1293 if (call_expr_flags (stmt) & ECF_NORETURN)
1294 predict_paths_leading_to (bb, heads, PRED_NORETURN,
1295 NOT_TAKEN);
1296 break;
1297 default:
1298 break;
1299 }
1300 }
1301 }
1302
1303 free (heads);
1304 }
1305
1306 /* Predict branch probabilities and estimate profile of the tree CFG. */
1307 static void
1308 tree_estimate_probability (void)
1309 {
1310 basic_block bb;
1311 struct loops loops_info;
1312
1313 flow_loops_find (&loops_info);
1314 if (dump_file && (dump_flags & TDF_DETAILS))
1315 flow_loops_dump (&loops_info, dump_file, NULL, 0);
1316
1317 add_noreturn_fake_exit_edges ();
1318 connect_infinite_loops_to_exit ();
1319 calculate_dominance_info (CDI_DOMINATORS);
1320 calculate_dominance_info (CDI_POST_DOMINATORS);
1321
1322 tree_bb_level_predictions ();
1323
1324 mark_irreducible_loops (&loops_info);
1325 predict_loops (&loops_info, false);
1326
1327 FOR_EACH_BB (bb)
1328 {
1329 edge e;
1330 edge_iterator ei;
1331
1332 FOR_EACH_EDGE (e, ei, bb->succs)
1333 {
1334 /* Predict early returns to be probable, as we've already taken
1335 care for error returns and other cases are often used for
1336 fast paths trought function. */
1337 if (e->dest == EXIT_BLOCK_PTR
1338 && TREE_CODE (last_stmt (bb)) == RETURN_EXPR
1339 && !single_pred_p (bb))
1340 {
1341 edge e1;
1342 edge_iterator ei1;
1343
1344 FOR_EACH_EDGE (e1, ei1, bb->preds)
1345 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1346 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1347 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
1348 && !last_basic_block_p (e1->src))
1349 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1350 }
1351
1352 /* Look for block we are guarding (ie we dominate it,
1353 but it doesn't postdominate us). */
1354 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1355 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1356 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1357 {
1358 block_stmt_iterator bi;
1359
1360 /* The call heuristic claims that a guarded function call
1361 is improbable. This is because such calls are often used
1362 to signal exceptional situations such as printing error
1363 messages. */
1364 for (bi = bsi_start (e->dest); !bsi_end_p (bi);
1365 bsi_next (&bi))
1366 {
1367 tree stmt = bsi_stmt (bi);
1368 if ((TREE_CODE (stmt) == CALL_EXPR
1369 || (TREE_CODE (stmt) == MODIFY_EXPR
1370 && TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR))
1371 /* Constant and pure calls are hardly used to signalize
1372 something exceptional. */
1373 && TREE_SIDE_EFFECTS (stmt))
1374 {
1375 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1376 break;
1377 }
1378 }
1379 }
1380 }
1381 tree_predict_by_opcode (bb);
1382 }
1383 FOR_EACH_BB (bb)
1384 combine_predictions_for_bb (dump_file, bb);
1385
1386 if (!flag_loop_optimize)
1387 strip_builtin_expect ();
1388 estimate_bb_frequencies (&loops_info);
1389 free_dominance_info (CDI_POST_DOMINATORS);
1390 remove_fake_exit_edges ();
1391 flow_loops_free (&loops_info);
1392 if (dump_file && (dump_flags & TDF_DETAILS))
1393 dump_tree_cfg (dump_file, dump_flags);
1394 if (profile_status == PROFILE_ABSENT)
1395 profile_status = PROFILE_GUESSED;
1396 }
1397 \f
1398 /* __builtin_expect dropped tokens into the insn stream describing expected
1399 values of registers. Generate branch probabilities based off these
1400 values. */
1401
1402 void
1403 expected_value_to_br_prob (void)
1404 {
1405 rtx insn, cond, ev = NULL_RTX, ev_reg = NULL_RTX;
1406
1407 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1408 {
1409 switch (GET_CODE (insn))
1410 {
1411 case NOTE:
1412 /* Look for expected value notes. */
1413 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EXPECTED_VALUE)
1414 {
1415 ev = NOTE_EXPECTED_VALUE (insn);
1416 ev_reg = XEXP (ev, 0);
1417 delete_insn (insn);
1418 }
1419 continue;
1420
1421 case CODE_LABEL:
1422 /* Never propagate across labels. */
1423 ev = NULL_RTX;
1424 continue;
1425
1426 case JUMP_INSN:
1427 /* Look for simple conditional branches. If we haven't got an
1428 expected value yet, no point going further. */
1429 if (!JUMP_P (insn) || ev == NULL_RTX
1430 || ! any_condjump_p (insn))
1431 continue;
1432 break;
1433
1434 default:
1435 /* Look for insns that clobber the EV register. */
1436 if (ev && reg_set_p (ev_reg, insn))
1437 ev = NULL_RTX;
1438 continue;
1439 }
1440
1441 /* Collect the branch condition, hopefully relative to EV_REG. */
1442 /* ??? At present we'll miss things like
1443 (expected_value (eq r70 0))
1444 (set r71 -1)
1445 (set r80 (lt r70 r71))
1446 (set pc (if_then_else (ne r80 0) ...))
1447 as canonicalize_condition will render this to us as
1448 (lt r70, r71)
1449 Could use cselib to try and reduce this further. */
1450 cond = XEXP (SET_SRC (pc_set (insn)), 0);
1451 cond = canonicalize_condition (insn, cond, 0, NULL, ev_reg,
1452 false, false);
1453 if (! cond || XEXP (cond, 0) != ev_reg
1454 || GET_CODE (XEXP (cond, 1)) != CONST_INT)
1455 continue;
1456
1457 /* Substitute and simplify. Given that the expression we're
1458 building involves two constants, we should wind up with either
1459 true or false. */
1460 cond = gen_rtx_fmt_ee (GET_CODE (cond), VOIDmode,
1461 XEXP (ev, 1), XEXP (cond, 1));
1462 cond = simplify_rtx (cond);
1463
1464 /* Turn the condition into a scaled branch probability. */
1465 gcc_assert (cond == const_true_rtx || cond == const0_rtx);
1466 predict_insn_def (insn, PRED_BUILTIN_EXPECT,
1467 cond == const_true_rtx ? TAKEN : NOT_TAKEN);
1468 }
1469 }
1470 \f
1471 /* Check whether this is the last basic block of function. Commonly
1472 there is one extra common cleanup block. */
1473 static bool
1474 last_basic_block_p (basic_block bb)
1475 {
1476 if (bb == EXIT_BLOCK_PTR)
1477 return false;
1478
1479 return (bb->next_bb == EXIT_BLOCK_PTR
1480 || (bb->next_bb->next_bb == EXIT_BLOCK_PTR
1481 && single_succ_p (bb)
1482 && single_succ (bb)->next_bb == EXIT_BLOCK_PTR));
1483 }
1484
1485 /* Sets branch probabilities according to PREDiction and
1486 FLAGS. HEADS[bb->index] should be index of basic block in that we
1487 need to alter branch predictions (i.e. the first of our dominators
1488 such that we do not post-dominate it) (but we fill this information
1489 on demand, so -1 may be there in case this was not needed yet). */
1490
1491 static void
1492 predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
1493 enum prediction taken)
1494 {
1495 edge e;
1496 edge_iterator ei;
1497 int y;
1498
1499 if (heads[bb->index] < 0)
1500 {
1501 /* This is first time we need this field in heads array; so
1502 find first dominator that we do not post-dominate (we are
1503 using already known members of heads array). */
1504 basic_block ai = bb;
1505 basic_block next_ai = get_immediate_dominator (CDI_DOMINATORS, bb);
1506 int head;
1507
1508 while (heads[next_ai->index] < 0)
1509 {
1510 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1511 break;
1512 heads[next_ai->index] = ai->index;
1513 ai = next_ai;
1514 next_ai = get_immediate_dominator (CDI_DOMINATORS, next_ai);
1515 }
1516 if (!dominated_by_p (CDI_POST_DOMINATORS, next_ai, bb))
1517 head = next_ai->index;
1518 else
1519 head = heads[next_ai->index];
1520 while (next_ai != bb)
1521 {
1522 next_ai = ai;
1523 if (heads[ai->index] == ENTRY_BLOCK)
1524 ai = ENTRY_BLOCK_PTR;
1525 else
1526 ai = BASIC_BLOCK (heads[ai->index]);
1527 heads[next_ai->index] = head;
1528 }
1529 }
1530 y = heads[bb->index];
1531
1532 /* Now find the edge that leads to our branch and aply the prediction. */
1533
1534 if (y == last_basic_block)
1535 return;
1536 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
1537 if (e->dest->index >= 0
1538 && dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
1539 predict_edge_def (e, pred, taken);
1540 }
1541 \f
1542 /* This is used to carry information about basic blocks. It is
1543 attached to the AUX field of the standard CFG block. */
1544
1545 typedef struct block_info_def
1546 {
1547 /* Estimated frequency of execution of basic_block. */
1548 sreal frequency;
1549
1550 /* To keep queue of basic blocks to process. */
1551 basic_block next;
1552
1553 /* Number of predecessors we need to visit first. */
1554 int npredecessors;
1555 } *block_info;
1556
1557 /* Similar information for edges. */
1558 typedef struct edge_info_def
1559 {
1560 /* In case edge is an loopback edge, the probability edge will be reached
1561 in case header is. Estimated number of iterations of the loop can be
1562 then computed as 1 / (1 - back_edge_prob). */
1563 sreal back_edge_prob;
1564 /* True if the edge is an loopback edge in the natural loop. */
1565 unsigned int back_edge:1;
1566 } *edge_info;
1567
1568 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1569 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1570
1571 /* Helper function for estimate_bb_frequencies.
1572 Propagate the frequencies for LOOP. */
1573
1574 static void
1575 propagate_freq (struct loop *loop, bitmap tovisit)
1576 {
1577 basic_block head = loop->header;
1578 basic_block bb;
1579 basic_block last;
1580 unsigned i;
1581 edge e;
1582 basic_block nextbb;
1583 bitmap_iterator bi;
1584
1585 /* For each basic block we need to visit count number of his predecessors
1586 we need to visit first. */
1587 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1588 {
1589 edge_iterator ei;
1590 int count = 0;
1591
1592 /* The outermost "loop" includes the exit block, which we can not
1593 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1594 directly. Do the same for the entry block. */
1595 if (i == (unsigned)ENTRY_BLOCK)
1596 bb = ENTRY_BLOCK_PTR;
1597 else if (i == (unsigned)EXIT_BLOCK)
1598 bb = EXIT_BLOCK_PTR;
1599 else
1600 bb = BASIC_BLOCK (i);
1601
1602 FOR_EACH_EDGE (e, ei, bb->preds)
1603 {
1604 bool visit = bitmap_bit_p (tovisit, e->src->index);
1605
1606 if (visit && !(e->flags & EDGE_DFS_BACK))
1607 count++;
1608 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1609 fprintf (dump_file,
1610 "Irreducible region hit, ignoring edge to %i->%i\n",
1611 e->src->index, bb->index);
1612 }
1613 BLOCK_INFO (bb)->npredecessors = count;
1614 }
1615
1616 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1617 last = head;
1618 for (bb = head; bb; bb = nextbb)
1619 {
1620 edge_iterator ei;
1621 sreal cyclic_probability, frequency;
1622
1623 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1624 memcpy (&frequency, &real_zero, sizeof (real_zero));
1625
1626 nextbb = BLOCK_INFO (bb)->next;
1627 BLOCK_INFO (bb)->next = NULL;
1628
1629 /* Compute frequency of basic block. */
1630 if (bb != head)
1631 {
1632 #ifdef ENABLE_CHECKING
1633 FOR_EACH_EDGE (e, ei, bb->preds)
1634 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1635 || (e->flags & EDGE_DFS_BACK));
1636 #endif
1637
1638 FOR_EACH_EDGE (e, ei, bb->preds)
1639 if (EDGE_INFO (e)->back_edge)
1640 {
1641 sreal_add (&cyclic_probability, &cyclic_probability,
1642 &EDGE_INFO (e)->back_edge_prob);
1643 }
1644 else if (!(e->flags & EDGE_DFS_BACK))
1645 {
1646 sreal tmp;
1647
1648 /* frequency += (e->probability
1649 * BLOCK_INFO (e->src)->frequency /
1650 REG_BR_PROB_BASE); */
1651
1652 sreal_init (&tmp, e->probability, 0);
1653 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1654 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1655 sreal_add (&frequency, &frequency, &tmp);
1656 }
1657
1658 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1659 {
1660 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1661 sizeof (frequency));
1662 }
1663 else
1664 {
1665 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1666 {
1667 memcpy (&cyclic_probability, &real_almost_one,
1668 sizeof (real_almost_one));
1669 }
1670
1671 /* BLOCK_INFO (bb)->frequency = frequency
1672 / (1 - cyclic_probability) */
1673
1674 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1675 sreal_div (&BLOCK_INFO (bb)->frequency,
1676 &frequency, &cyclic_probability);
1677 }
1678 }
1679
1680 bitmap_clear_bit (tovisit, bb->index);
1681
1682 e = find_edge (bb, head);
1683 if (e)
1684 {
1685 sreal tmp;
1686
1687 /* EDGE_INFO (e)->back_edge_prob
1688 = ((e->probability * BLOCK_INFO (bb)->frequency)
1689 / REG_BR_PROB_BASE); */
1690
1691 sreal_init (&tmp, e->probability, 0);
1692 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1693 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1694 &tmp, &real_inv_br_prob_base);
1695 }
1696
1697 /* Propagate to successor blocks. */
1698 FOR_EACH_EDGE (e, ei, bb->succs)
1699 if (!(e->flags & EDGE_DFS_BACK)
1700 && BLOCK_INFO (e->dest)->npredecessors)
1701 {
1702 BLOCK_INFO (e->dest)->npredecessors--;
1703 if (!BLOCK_INFO (e->dest)->npredecessors)
1704 {
1705 if (!nextbb)
1706 nextbb = e->dest;
1707 else
1708 BLOCK_INFO (last)->next = e->dest;
1709
1710 last = e->dest;
1711 }
1712 }
1713 }
1714 }
1715
1716 /* Estimate probabilities of loopback edges in loops at same nest level. */
1717
1718 static void
1719 estimate_loops_at_level (struct loop *first_loop, bitmap tovisit)
1720 {
1721 struct loop *loop;
1722
1723 for (loop = first_loop; loop; loop = loop->next)
1724 {
1725 edge e;
1726 basic_block *bbs;
1727 unsigned i;
1728
1729 estimate_loops_at_level (loop->inner, tovisit);
1730
1731 /* Do not do this for dummy function loop. */
1732 if (EDGE_COUNT (loop->latch->succs) > 0)
1733 {
1734 /* Find current loop back edge and mark it. */
1735 e = loop_latch_edge (loop);
1736 EDGE_INFO (e)->back_edge = 1;
1737 }
1738
1739 bbs = get_loop_body (loop);
1740 for (i = 0; i < loop->num_nodes; i++)
1741 bitmap_set_bit (tovisit, bbs[i]->index);
1742 free (bbs);
1743 propagate_freq (loop, tovisit);
1744 }
1745 }
1746
1747 /* Convert counts measured by profile driven feedback to frequencies.
1748 Return nonzero iff there was any nonzero execution count. */
1749
1750 int
1751 counts_to_freqs (void)
1752 {
1753 gcov_type count_max, true_count_max = 0;
1754 basic_block bb;
1755
1756 FOR_EACH_BB (bb)
1757 true_count_max = MAX (bb->count, true_count_max);
1758
1759 count_max = MAX (true_count_max, 1);
1760 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1761 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
1762 return true_count_max;
1763 }
1764
1765 /* Return true if function is likely to be expensive, so there is no point to
1766 optimize performance of prologue, epilogue or do inlining at the expense
1767 of code size growth. THRESHOLD is the limit of number of instructions
1768 function can execute at average to be still considered not expensive. */
1769
1770 bool
1771 expensive_function_p (int threshold)
1772 {
1773 unsigned int sum = 0;
1774 basic_block bb;
1775 unsigned int limit;
1776
1777 /* We can not compute accurately for large thresholds due to scaled
1778 frequencies. */
1779 gcc_assert (threshold <= BB_FREQ_MAX);
1780
1781 /* Frequencies are out of range. This either means that function contains
1782 internal loop executing more than BB_FREQ_MAX times or profile feedback
1783 is available and function has not been executed at all. */
1784 if (ENTRY_BLOCK_PTR->frequency == 0)
1785 return true;
1786
1787 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
1788 limit = ENTRY_BLOCK_PTR->frequency * threshold;
1789 FOR_EACH_BB (bb)
1790 {
1791 rtx insn;
1792
1793 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
1794 insn = NEXT_INSN (insn))
1795 if (active_insn_p (insn))
1796 {
1797 sum += bb->frequency;
1798 if (sum > limit)
1799 return true;
1800 }
1801 }
1802
1803 return false;
1804 }
1805
1806 /* Estimate basic blocks frequency by given branch probabilities. */
1807
1808 static void
1809 estimate_bb_frequencies (struct loops *loops)
1810 {
1811 basic_block bb;
1812 sreal freq_max;
1813
1814 if (!flag_branch_probabilities || !counts_to_freqs ())
1815 {
1816 static int real_values_initialized = 0;
1817 bitmap tovisit;
1818
1819 if (!real_values_initialized)
1820 {
1821 real_values_initialized = 1;
1822 sreal_init (&real_zero, 0, 0);
1823 sreal_init (&real_one, 1, 0);
1824 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
1825 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
1826 sreal_init (&real_one_half, 1, -1);
1827 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
1828 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
1829 }
1830
1831 mark_dfs_back_edges ();
1832
1833 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
1834
1835 /* Set up block info for each basic block. */
1836 tovisit = BITMAP_ALLOC (NULL);
1837 alloc_aux_for_blocks (sizeof (struct block_info_def));
1838 alloc_aux_for_edges (sizeof (struct edge_info_def));
1839 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1840 {
1841 edge e;
1842 edge_iterator ei;
1843
1844 FOR_EACH_EDGE (e, ei, bb->succs)
1845 {
1846 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
1847 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1848 &EDGE_INFO (e)->back_edge_prob,
1849 &real_inv_br_prob_base);
1850 }
1851 }
1852
1853 /* First compute probabilities locally for each loop from innermost
1854 to outermost to examine probabilities for back edges. */
1855 estimate_loops_at_level (loops->tree_root, tovisit);
1856
1857 memcpy (&freq_max, &real_zero, sizeof (real_zero));
1858 FOR_EACH_BB (bb)
1859 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
1860 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
1861
1862 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
1863 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1864 {
1865 sreal tmp;
1866
1867 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
1868 sreal_add (&tmp, &tmp, &real_one_half);
1869 bb->frequency = sreal_to_int (&tmp);
1870 }
1871
1872 free_aux_for_blocks ();
1873 free_aux_for_edges ();
1874 BITMAP_FREE (tovisit);
1875 }
1876 compute_function_frequency ();
1877 if (flag_reorder_functions)
1878 choose_function_section ();
1879 }
1880
1881 /* Decide whether function is hot, cold or unlikely executed. */
1882 static void
1883 compute_function_frequency (void)
1884 {
1885 basic_block bb;
1886
1887 if (!profile_info || !flag_branch_probabilities)
1888 return;
1889 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
1890 FOR_EACH_BB (bb)
1891 {
1892 if (maybe_hot_bb_p (bb))
1893 {
1894 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
1895 return;
1896 }
1897 if (!probably_never_executed_bb_p (bb))
1898 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
1899 }
1900 }
1901
1902 /* Choose appropriate section for the function. */
1903 static void
1904 choose_function_section (void)
1905 {
1906 if (DECL_SECTION_NAME (current_function_decl)
1907 || !targetm.have_named_sections
1908 /* Theoretically we can split the gnu.linkonce text section too,
1909 but this requires more work as the frequency needs to match
1910 for all generated objects so we need to merge the frequency
1911 of all instances. For now just never set frequency for these. */
1912 || DECL_ONE_ONLY (current_function_decl))
1913 return;
1914
1915 /* If we are doing the partitioning optimization, let the optimization
1916 choose the correct section into which to put things. */
1917
1918 if (flag_reorder_blocks_and_partition)
1919 return;
1920
1921 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
1922 DECL_SECTION_NAME (current_function_decl) =
1923 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
1924 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
1925 DECL_SECTION_NAME (current_function_decl) =
1926 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
1927 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
1928 }
1929
1930 static bool
1931 gate_estimate_probability (void)
1932 {
1933 return flag_guess_branch_prob;
1934 }
1935
1936 struct tree_opt_pass pass_profile =
1937 {
1938 "profile", /* name */
1939 gate_estimate_probability, /* gate */
1940 tree_estimate_probability, /* execute */
1941 NULL, /* sub */
1942 NULL, /* next */
1943 0, /* static_pass_number */
1944 TV_BRANCH_PROB, /* tv_id */
1945 PROP_cfg, /* properties_required */
1946 0, /* properties_provided */
1947 0, /* properties_destroyed */
1948 0, /* todo_flags_start */
1949 TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
1950 0 /* letter */
1951 };