Major cutover to using system.h:
[gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990, 91-94, 97, 1998 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4 based on some ideas from Dain Samples of UC Berkeley.
5 Further mangling by Bob Manson, Cygnus Support.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 /* ??? Really should not put insns inside of LIBCALL sequences, when putting
24 insns after a call, should look for the insn setting the retval, and
25 insert the insns after that one. */
26
27 /* ??? Register allocation should use basic block execution counts to
28 give preference to the most commonly executed blocks. */
29
30 /* ??? The .da files are not safe. Changing the program after creating .da
31 files or using different options when compiling with -fbranch-probabilities
32 can result the arc data not matching the program. Maybe add instrumented
33 arc count to .bbg file? Maybe check whether PFG matches the .bbg file? */
34
35 /* ??? Should calculate branch probabilities before instrumenting code, since
36 then we can use arc counts to help decide which arcs to instrument. */
37
38 /* ??? Rearrange code so that the most frequently executed arcs become from
39 one block to the next block (i.e. a fall through), move seldom executed
40 code outside of loops even at the expense of adding a few branches to
41 achieve this, see Dain Sample's UC Berkeley thesis. */
42
43 #include "config.h"
44 #include "system.h"
45 #include "rtl.h"
46 #include "flags.h"
47 #include "insn-flags.h"
48 #include "insn-config.h"
49 #include "output.h"
50 #include "regs.h"
51 #include "tree.h"
52 #include "output.h"
53 #include "gcov-io.h"
54
55 extern char * xmalloc ();
56
57 /* One of these is dynamically created whenever we identify an arc in the
58 function. */
59
60 struct adj_list
61 {
62 int source;
63 int target;
64 int arc_count;
65 unsigned int count_valid : 1;
66 unsigned int on_tree : 1;
67 unsigned int fake : 1;
68 unsigned int fall_through : 1;
69 rtx branch_insn;
70 struct adj_list *pred_next;
71 struct adj_list *succ_next;
72 };
73
74 #define ARC_TARGET(ARCPTR) (ARCPTR->target)
75 #define ARC_SOURCE(ARCPTR) (ARCPTR->source)
76 #define ARC_COUNT(ARCPTR) (ARCPTR->arc_count)
77
78 /* Count the number of basic blocks, and create an array of these structures,
79 one for each bb in the function. */
80
81 struct bb_info
82 {
83 struct adj_list *succ;
84 struct adj_list *pred;
85 int succ_count;
86 int pred_count;
87 int exec_count;
88 unsigned int count_valid : 1;
89 unsigned int on_tree : 1;
90 rtx first_insn;
91 };
92
93 /* Indexed by label number, gives the basic block number containing that
94 label. */
95
96 static int *label_to_bb;
97
98 /* Number of valid entries in the label_to_bb array. */
99
100 static int label_to_bb_size;
101
102 /* Indexed by block index, holds the basic block graph. */
103
104 static struct bb_info *bb_graph;
105
106 /* Name and file pointer of the output file for the basic block graph. */
107
108 static char *bbg_file_name;
109 static FILE *bbg_file;
110
111 /* Name and file pointer of the input file for the arc count data. */
112
113 static char *da_file_name;
114 static FILE *da_file;
115
116 /* Pointer of the output file for the basic block/line number map. */
117 static FILE *bb_file;
118
119 /* Last source file name written to bb_file. */
120
121 static char *last_bb_file_name;
122
123 /* Indicates whether the next line number note should be output to
124 bb_file or not. Used to eliminate a redundant note after an
125 expanded inline function call. */
126
127 static int ignore_next_note;
128
129 /* Used by final, for allocating the proper amount of storage for the
130 instrumented arc execution counts. */
131
132 int count_instrumented_arcs;
133
134 /* Number of executions for the return label. */
135
136 int return_label_execution_count;
137
138 /* Collect statistics on the performance of this pass for the entire source
139 file. */
140
141 static int total_num_blocks;
142 static int total_num_arcs;
143 static int total_num_arcs_instrumented;
144 static int total_num_blocks_created;
145 static int total_num_passes;
146 static int total_num_times_called;
147 static int total_hist_br_prob[20];
148 static int total_num_never_executed;
149 static int total_num_branches;
150
151 /* Forward declarations. */
152 static void init_arc PROTO((struct adj_list *, int, int, rtx));
153 static void find_spanning_tree PROTO((int));
154 static void expand_spanning_tree PROTO((int));
155 static void fill_spanning_tree PROTO((int));
156 static void init_arc_profiler PROTO((void));
157 static void output_arc_profiler PROTO((int, rtx));
158
159 #ifndef LONG_TYPE_SIZE
160 #define LONG_TYPE_SIZE BITS_PER_WORD
161 #endif
162
163 /* If non-zero, we need to output a constructor to set up the
164 per-object-file data. */
165 static int need_func_profiler = 0;
166
167 \f
168 /* Add arc instrumentation code to the entire insn chain.
169
170 F is the first insn of the chain.
171 NUM_BLOCKS is the number of basic blocks found in F.
172 DUMP_FILE, if nonzero, is an rtl dump file we can write to. */
173
174 static void
175 instrument_arcs (f, num_blocks, dump_file)
176 rtx f;
177 int num_blocks;
178 FILE *dump_file;
179 {
180 register int i;
181 register struct adj_list *arcptr, *backptr;
182 int num_arcs = 0;
183 int num_instr_arcs = 0;
184 rtx insn;
185
186 /* Instrument the program start. */
187 /* Handle block 0 specially, since it will always be instrumented,
188 but it doesn't have a valid first_insn or branch_insn. We must
189 put the instructions before the NOTE_INSN_FUNCTION_BEG note, so
190 that they don't clobber any of the parameters of the current
191 function. */
192 for (insn = f; insn; insn = NEXT_INSN (insn))
193 if (GET_CODE (insn) == NOTE
194 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
195 break;
196 insn = PREV_INSN (insn);
197 need_func_profiler = 1;
198 output_arc_profiler (total_num_arcs_instrumented + num_instr_arcs++, insn);
199
200 for (i = 1; i < num_blocks; i++)
201 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
202 if (! arcptr->on_tree)
203 {
204 if (dump_file)
205 fprintf (dump_file, "Arc %d to %d instrumented\n", i,
206 ARC_TARGET (arcptr));
207
208 /* Check to see if this arc is the only exit from its source block,
209 or the only entrance to its target block. In either case,
210 we don't need to create a new block to instrument the arc. */
211
212 if (bb_graph[i].succ == arcptr && arcptr->succ_next == 0)
213 {
214 /* Instrument the source block. */
215 output_arc_profiler (total_num_arcs_instrumented
216 + num_instr_arcs++,
217 PREV_INSN (bb_graph[i].first_insn));
218 }
219 else if (arcptr == bb_graph[ARC_TARGET (arcptr)].pred
220 && arcptr->pred_next == 0)
221 {
222 /* Instrument the target block. */
223 output_arc_profiler (total_num_arcs_instrumented
224 + num_instr_arcs++,
225 PREV_INSN (bb_graph[ARC_TARGET (arcptr)].first_insn));
226 }
227 else if (arcptr->fall_through)
228 {
229 /* This is a fall-through; put the instrumentation code after
230 the branch that ends this block. */
231
232 for (backptr = bb_graph[i].succ; backptr;
233 backptr = backptr->succ_next)
234 if (backptr != arcptr)
235 break;
236
237 output_arc_profiler (total_num_arcs_instrumented
238 + num_instr_arcs++,
239 backptr->branch_insn);
240 }
241 else
242 {
243 /* Must emit a new basic block to hold the arc counting code. */
244 enum rtx_code code = GET_CODE (PATTERN (arcptr->branch_insn));
245
246 if (code == SET)
247 {
248 /* Create the new basic block right after the branch.
249 Invert the branch so that it jumps past the end of the new
250 block. The new block will consist of the instrumentation
251 code, and a jump to the target of this arc. */
252 int this_is_simplejump = simplejump_p (arcptr->branch_insn);
253 rtx new_label = gen_label_rtx ();
254 rtx old_label, set_src;
255 rtx after = arcptr->branch_insn;
256
257 /* Simplejumps can't reach here. */
258 if (this_is_simplejump)
259 abort ();
260
261 /* We can't use JUMP_LABEL, because it won't be set if we
262 are compiling without optimization. */
263
264 set_src = SET_SRC (single_set (arcptr->branch_insn));
265 if (GET_CODE (set_src) == LABEL_REF)
266 old_label = set_src;
267 else if (GET_CODE (set_src) != IF_THEN_ELSE)
268 abort ();
269 else if (XEXP (set_src, 1) == pc_rtx)
270 old_label = XEXP (XEXP (set_src, 2), 0);
271 else
272 old_label = XEXP (XEXP (set_src, 1), 0);
273
274 /* Set the JUMP_LABEL so that redirect_jump will work. */
275 JUMP_LABEL (arcptr->branch_insn) = old_label;
276
277 /* Add a use for OLD_LABEL that will be needed when we emit
278 the JUMP_INSN below. If we don't do this here,
279 `invert_jump' might delete it for us. We must add two
280 when not optimizing, because the NUSES is zero now,
281 but must be at least two to prevent the label from being
282 deleted. */
283 LABEL_NUSES (old_label) += 2;
284
285 /* Emit the insns for the new block in reverse order,
286 since that is most convenient. */
287
288 if (this_is_simplejump)
289 {
290 after = NEXT_INSN (arcptr->branch_insn);
291 if (! redirect_jump (arcptr->branch_insn, new_label))
292 /* Don't know what to do if this branch won't
293 redirect. */
294 abort ();
295 }
296 else
297 {
298 if (! invert_jump (arcptr->branch_insn, new_label))
299 /* Don't know what to do if this branch won't invert. */
300 abort ();
301
302 emit_label_after (new_label, after);
303 LABEL_NUSES (new_label)++;
304 }
305 emit_barrier_after (after);
306 emit_jump_insn_after (gen_jump (old_label), after);
307 JUMP_LABEL (NEXT_INSN (after)) = old_label;
308
309 /* Instrument the source arc. */
310 output_arc_profiler (total_num_arcs_instrumented
311 + num_instr_arcs++,
312 after);
313 if (this_is_simplejump)
314 {
315 emit_label_after (new_label, after);
316 LABEL_NUSES (new_label)++;
317 }
318 }
319 else if (code == ADDR_VEC || code == ADDR_DIFF_VEC)
320 {
321 /* A table jump. Create a new basic block immediately
322 after the table, by emitting a barrier, a label, a
323 counting note, and a jump to the old label. Put the
324 new label in the table. */
325
326 rtx new_label = gen_label_rtx ();
327 rtx old_lref, new_lref;
328 int index;
329
330 /* Must determine the old_label reference, do this
331 by counting the arcs after this one, which will
332 give the index of our label in the table. */
333
334 index = 0;
335 for (backptr = arcptr->succ_next; backptr;
336 backptr = backptr->succ_next)
337 index++;
338
339 old_lref = XVECEXP (PATTERN (arcptr->branch_insn),
340 (code == ADDR_DIFF_VEC), index);
341
342 /* Emit the insns for the new block in reverse order,
343 since that is most convenient. */
344 emit_jump_insn_after (gen_jump (XEXP (old_lref, 0)),
345 arcptr->branch_insn);
346 JUMP_LABEL (NEXT_INSN (arcptr->branch_insn))
347 = XEXP (old_lref, 0);
348
349 /* Instrument the source arc. */
350 output_arc_profiler (total_num_arcs_instrumented
351 + num_instr_arcs++,
352 arcptr->branch_insn);
353
354 emit_label_after (new_label, arcptr->branch_insn);
355 LABEL_NUSES (NEXT_INSN (arcptr->branch_insn))++;
356 emit_barrier_after (arcptr->branch_insn);
357
358 /* Fix up the table jump. */
359 new_lref = gen_rtx_LABEL_REF (Pmode, new_label);
360 XVECEXP (PATTERN (arcptr->branch_insn),
361 (code == ADDR_DIFF_VEC), index) = new_lref;
362 }
363 else
364 abort ();
365
366 num_arcs += 1;
367 if (dump_file)
368 fprintf (dump_file,
369 "Arc %d to %d needed new basic block\n", i,
370 ARC_TARGET (arcptr));
371 }
372 }
373
374 total_num_arcs_instrumented += num_instr_arcs;
375 count_instrumented_arcs = total_num_arcs_instrumented;
376
377 total_num_blocks_created += num_arcs;
378 if (dump_file)
379 {
380 fprintf (dump_file, "%d arcs instrumented\n", num_instr_arcs);
381 fprintf (dump_file, "%d extra basic blocks created\n", num_arcs);
382 }
383 }
384
385 /* Output STRING to bb_file, surrounded by DELIMITER. */
386
387 static void
388 output_gcov_string (string, delimiter)
389 char *string;
390 long delimiter;
391 {
392 long temp;
393
394 /* Write a delimiter to indicate that a file name follows. */
395 __write_long (delimiter, bb_file, 4);
396
397 /* Write the string. */
398 temp = strlen (string) + 1;
399 fwrite (string, temp, 1, bb_file);
400
401 /* Append a few zeros, to align the output to a 4 byte boundary. */
402 temp = temp & 0x3;
403 if (temp)
404 {
405 char c[4];
406
407 c[0] = c[1] = c[2] = c[3] = 0;
408 fwrite (c, sizeof (char), 4 - temp, bb_file);
409 }
410
411 /* Store another delimiter in the .bb file, just to make it easy to find the
412 end of the file name. */
413 __write_long (delimiter, bb_file, 4);
414 }
415 \f
416 /* Instrument and/or analyze program behavior based on program flow graph.
417 In either case, this function builds a flow graph for the function being
418 compiled. The flow graph is stored in BB_GRAPH.
419
420 When FLAG_PROFILE_ARCS is nonzero, this function instruments the arcs in
421 the flow graph that are needed to reconstruct the dynamic behavior of the
422 flow graph.
423
424 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
425 information from a data file containing arc count information from previous
426 executions of the function being compiled. In this case, the flow graph is
427 annotated with actual execution counts, which are later propagated into the
428 rtl for optimization purposes.
429
430 Main entry point of this file. */
431
432 void
433 branch_prob (f, dump_file)
434 rtx f;
435 FILE *dump_file;
436 {
437 int i, num_blocks;
438 struct adj_list *arcptr;
439 int num_arcs, changes, passes;
440 int total, prob;
441 int hist_br_prob[20], num_never_executed, num_branches;
442 /* Set to non-zero if we got bad count information. */
443 int bad_counts = 0;
444
445 /* start of a function. */
446 if (flag_test_coverage)
447 output_gcov_string (current_function_name, (long) -2);
448
449 /* Execute this only if doing arc profiling or branch probabilities. */
450 if (! profile_arc_flag && ! flag_branch_probabilities
451 && ! flag_test_coverage)
452 abort ();
453
454 total_num_times_called++;
455
456 /* Create an array label_to_bb of ints of size max_label_num. */
457 label_to_bb_size = max_label_num ();
458 label_to_bb = (int *) oballoc (label_to_bb_size * sizeof (int));
459 bzero ((char *) label_to_bb, label_to_bb_size * sizeof (int));
460
461 /* Scan the insns in the function, count the number of basic blocks
462 present. When a code label is passed, set label_to_bb[label] = bb
463 number. */
464
465 /* The first block found will be block 1, so that function entry can be
466 block 0. */
467
468 {
469 register RTX_CODE prev_code = JUMP_INSN;
470 register RTX_CODE code;
471 register rtx insn;
472 register int i;
473 int block_separator_emitted = 0;
474
475 ignore_next_note = 0;
476
477 for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
478 {
479 code = GET_CODE (insn);
480
481 if (code == BARRIER)
482 ;
483 else if (code == CODE_LABEL)
484 /* This label is part of the next block, but we can't increment
485 block number yet since there might be multiple labels. */
486 label_to_bb[CODE_LABEL_NUMBER (insn)] = i + 1;
487 /* We make NOTE_INSN_SETJMP notes into a block of their own, so that
488 they can be the target of the fake arc for the setjmp call.
489 This avoids creating cycles of fake arcs, which would happen if
490 the block after the setjmp call contained a call insn. */
491 else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
492 || prev_code == CODE_LABEL || prev_code == BARRIER)
493 && (GET_RTX_CLASS (code) == 'i'
494 || (code == NOTE
495 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
496 {
497 i += 1;
498
499 /* Emit the block separator if it hasn't already been emitted. */
500 if (flag_test_coverage && ! block_separator_emitted)
501 {
502 /* Output a zero to the .bb file to indicate that a new
503 block list is starting. */
504 __write_long (0, bb_file, 4);
505 }
506 block_separator_emitted = 0;
507 }
508 /* If flag_test_coverage is true, then we must add an entry to the
509 .bb file for every note. */
510 else if (code == NOTE && flag_test_coverage)
511 {
512 /* Must ignore the line number notes that immediately follow the
513 end of an inline function to avoid counting it twice. There
514 is a note before the call, and one after the call. */
515 if (NOTE_LINE_NUMBER (insn) == NOTE_REPEATED_LINE_NUMBER)
516 ignore_next_note = 1;
517 else if (NOTE_LINE_NUMBER (insn) > 0)
518 {
519 if (ignore_next_note)
520 ignore_next_note = 0;
521 else
522 {
523 /* Emit a block separator here to ensure that a NOTE
524 immediately following a JUMP_INSN or CALL_INSN will end
525 up in the right basic block list. */
526 if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
527 || prev_code == CODE_LABEL || prev_code == BARRIER)
528 && ! block_separator_emitted)
529 {
530 /* Output a zero to the .bb file to indicate that
531 a new block list is starting. */
532 __write_long (0, bb_file, 4);
533
534 block_separator_emitted = 1;
535 }
536
537 /* If this is a new source file, then output the file's
538 name to the .bb file. */
539 if (! last_bb_file_name
540 || strcmp (NOTE_SOURCE_FILE (insn),
541 last_bb_file_name))
542 {
543 if (last_bb_file_name)
544 free (last_bb_file_name);
545 last_bb_file_name
546 = xmalloc (strlen (NOTE_SOURCE_FILE (insn)) + 1);
547 strcpy (last_bb_file_name, NOTE_SOURCE_FILE (insn));
548 output_gcov_string (NOTE_SOURCE_FILE (insn), (long)-1);
549 }
550
551 /* Output the line number to the .bb file. Must be done
552 after the output_bb_profile_data() call, and after the
553 file name is written, to ensure that it is correctly
554 handled by gcov. */
555 __write_long (NOTE_LINE_NUMBER (insn), bb_file, 4);
556 }
557 }
558 }
559
560 if (code != NOTE)
561 prev_code = code;
562 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
563 prev_code = CALL_INSN;
564 }
565
566 /* Allocate last `normal' entry for bb_graph. */
567
568 /* The last insn was a jump, call, or label. In that case we have
569 a block at the end of the function with no insns. */
570 if (prev_code == JUMP_INSN || prev_code == CALL_INSN
571 || prev_code == CODE_LABEL || prev_code == BARRIER)
572 {
573 i++;
574
575 /* Emit the block separator if it hasn't already been emitted. */
576 if (flag_test_coverage && ! block_separator_emitted)
577 {
578 /* Output a zero to the .bb file to indicate that a new
579 block list is starting. */
580 __write_long (0, bb_file, 4);
581 }
582 }
583
584 /* Create another block to stand for EXIT, and make all return insns, and
585 the last basic block point here. Add one more to account for block
586 zero. */
587 num_blocks = i + 2;
588 }
589
590 total_num_blocks += num_blocks;
591 if (dump_file)
592 fprintf (dump_file, "%d basic blocks\n", num_blocks);
593
594 /* If we are only doing test coverage here, then return now. */
595 if (! profile_arc_flag && ! flag_branch_probabilities)
596 return;
597
598 /* Create and initialize the arrays that will hold bb_graph
599 and execution count info. */
600
601 bb_graph = (struct bb_info *) alloca (num_blocks * sizeof (struct bb_info));
602 bzero ((char *) bb_graph, (sizeof (struct bb_info) * num_blocks));
603
604 {
605 /* Scan the insns again:
606 - at the entry to each basic block, increment the predecessor count
607 (and successor of previous block) if it is a fall through entry,
608 create adj_list entries for this and the previous block
609 - at each jump insn, increment predecessor/successor counts for
610 target/source basic blocks, add this insn to pred/succ lists.
611
612 This also cannot be broken out as a separate subroutine
613 because it uses `alloca'. */
614
615 register RTX_CODE prev_code = JUMP_INSN;
616 register RTX_CODE code;
617 register rtx insn;
618 register int i;
619 int fall_through = 0;
620 struct adj_list *arcptr;
621 int dest;
622
623 /* Block 0 always falls through to block 1. */
624 num_arcs = 0;
625 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
626 init_arc (arcptr, 0, 1, 0);
627 arcptr->fall_through = 1;
628 num_arcs++;
629
630 /* Add a fake fall through arc from the last block to block 0, to make the
631 graph complete. */
632 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
633 init_arc (arcptr, num_blocks - 1, 0, 0);
634 arcptr->fake = 1;
635 num_arcs++;
636
637 /* Exit must be one node of the graph, and all exits from the function
638 must point there. When see a return branch, must point the arc to the
639 exit node. */
640
641 /* Must start scan with second insn in function as above. */
642 for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
643 {
644 code = GET_CODE (insn);
645
646 if (code == BARRIER)
647 fall_through = 0;
648 else if (code == CODE_LABEL)
649 ;
650 /* We make NOTE_INSN_SETJMP notes into a block of their own, so that
651 they can be the target of the fake arc for the setjmp call.
652 This avoids creating cycles of fake arcs, which would happen if
653 the block after the setjmp call ended with a call. */
654 else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
655 || prev_code == CODE_LABEL || prev_code == BARRIER)
656 && (GET_RTX_CLASS (code) == 'i'
657 || (code == NOTE
658 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
659 {
660 /* This is the first insn of the block. */
661 i += 1;
662 if (fall_through)
663 {
664 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
665 init_arc (arcptr, i - 1, i, 0);
666 arcptr->fall_through = 1;
667
668 num_arcs++;
669 }
670 fall_through = 1;
671 bb_graph[i].first_insn = insn;
672 }
673 else if (code == NOTE)
674 {;}
675
676 if (code == CALL_INSN)
677 {
678 /* In the normal case, the call returns, and this is just like
679 a branch fall through. */
680 fall_through = 1;
681
682 /* Setjmp may return more times than called, so to make the graph
683 solvable, add a fake arc from the function entrance to the
684 next block.
685
686 All other functions may return fewer times than called (if
687 a descendent call longjmp or exit), so to make the graph
688 solvable, add a fake arc to the function exit from the
689 current block.
690
691 Distinguish the cases by checking for a SETJUMP note.
692 A call_insn can be the last ins of a function, so must check
693 to see if next insn actually exists. */
694 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
695 if (NEXT_INSN (insn)
696 && GET_CODE (NEXT_INSN (insn)) == NOTE
697 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
698 init_arc (arcptr, 0, i+1, insn);
699 else
700 init_arc (arcptr, i, num_blocks-1, insn);
701 arcptr->fake = 1;
702 num_arcs++;
703 }
704 else if (code == JUMP_INSN)
705 {
706 rtx tem, pattern = PATTERN (insn);
707 rtx tablejump = 0;
708
709 /* If running without optimization, then jump label won't be valid,
710 so we must search for the destination label in that case.
711 We have to handle tablejumps and returns specially anyways, so
712 we don't check the JUMP_LABEL at all here. */
713
714 if (GET_CODE (pattern) == PARALLEL)
715 {
716 /* This assumes that PARALLEL jumps are tablejump entry
717 jumps. */
718 /* Make an arc from this jump to the label of the
719 jump table. This will instrument the number of
720 times the switch statement is executed. */
721 if (GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
722 {
723 tem = XEXP (XVECEXP (pattern, 0, 1), 0);
724 if (GET_CODE (tem) != LABEL_REF)
725 abort ();
726 dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
727 }
728 else if (GET_CODE (XVECEXP (pattern, 0, 0)) == SET
729 && SET_DEST (XVECEXP (pattern, 0, 0)) == pc_rtx)
730 {
731 tem = SET_SRC (XVECEXP (pattern, 0, 0));
732 if (GET_CODE (tem) == PLUS
733 && GET_CODE (XEXP (tem, 1)) == LABEL_REF)
734 {
735 tem = XEXP (tem, 1);
736 dest = label_to_bb [CODE_LABEL_NUMBER (XEXP (tem, 0))];
737 }
738 }
739 else
740 abort ();
741 }
742 else if (GET_CODE (pattern) == ADDR_VEC
743 || GET_CODE (pattern) == ADDR_DIFF_VEC)
744 tablejump = pattern;
745 else if (GET_CODE (pattern) == RETURN)
746 dest = num_blocks - 1;
747 else if ((tem = SET_SRC (pattern))
748 && GET_CODE (tem) == LABEL_REF)
749 dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
750 else
751 {
752 rtx label_ref;
753
754 /* Must be an IF_THEN_ELSE branch. If it isn't, assume it
755 is a computed goto, which aren't supported yet. */
756 if (GET_CODE (tem) != IF_THEN_ELSE)
757 fatal ("-fprofile-arcs does not support computed gotos");
758 if (XEXP (tem, 1) != pc_rtx)
759 label_ref = XEXP (tem, 1);
760 else
761 label_ref = XEXP (tem, 2);
762 dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (label_ref, 0))];
763 }
764
765 if (tablejump)
766 {
767 int diff_vec_p = GET_CODE (tablejump) == ADDR_DIFF_VEC;
768 int len = XVECLEN (tablejump, diff_vec_p);
769 int k;
770
771 for (k = 0; k < len; k++)
772 {
773 rtx tem = XEXP (XVECEXP (tablejump, diff_vec_p, k), 0);
774 dest = label_to_bb[CODE_LABEL_NUMBER (tem)];
775
776 arcptr = (struct adj_list *) alloca (sizeof(struct adj_list));
777 init_arc (arcptr, i, dest, insn);
778
779 num_arcs++;
780 }
781 }
782 else
783 {
784 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
785 init_arc (arcptr, i, dest, insn);
786
787 num_arcs++;
788 }
789
790 /* Determine whether or not this jump will fall through.
791 Unconditional jumps and returns are not always followed by
792 barriers. */
793 pattern = PATTERN (insn);
794 if (GET_CODE (pattern) == PARALLEL
795 || GET_CODE (pattern) == RETURN)
796 fall_through = 0;
797 else if (GET_CODE (pattern) == ADDR_VEC
798 || GET_CODE (pattern) == ADDR_DIFF_VEC)
799 /* These aren't actually jump insns, but they never fall
800 through, so... */
801 fall_through = 0;
802 else
803 {
804 if (GET_CODE (pattern) != SET || SET_DEST (pattern) != pc_rtx)
805 abort ();
806 if (GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE)
807 fall_through = 0;
808 }
809 }
810
811 if (code != NOTE)
812 prev_code = code;
813 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
814 {
815 /* Make a fake insn to tag our notes on. */
816 bb_graph[i].first_insn = insn
817 = emit_insn_after (gen_rtx_USE (VOIDmode, stack_pointer_rtx),
818 insn);
819 prev_code = CALL_INSN;
820 }
821 }
822
823 /* If the code at the end of the function would give a new block, then
824 do the following. */
825
826 if (prev_code == JUMP_INSN || prev_code == CALL_INSN
827 || prev_code == CODE_LABEL || prev_code == BARRIER)
828 {
829 if (fall_through)
830 {
831 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
832 init_arc (arcptr, i, i + 1, 0);
833 arcptr->fall_through = 1;
834
835 num_arcs++;
836 }
837
838 /* This may not be a real insn, but that should not cause a problem. */
839 bb_graph[i+1].first_insn = get_last_insn ();
840 }
841
842 /* There is always a fake arc from the last block of the function
843 to the function exit block. */
844 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
845 init_arc (arcptr, num_blocks-2, num_blocks-1, 0);
846 arcptr->fake = 1;
847 num_arcs++;
848 }
849
850 total_num_arcs += num_arcs;
851 if (dump_file)
852 fprintf (dump_file, "%d arcs\n", num_arcs);
853
854 /* Create spanning tree from basic block graph, mark each arc that is
855 on the spanning tree. */
856
857 /* To reduce the instrumentation cost, make two passes over the tree.
858 First, put as many must-split (crowded and fake) arcs on the tree as
859 possible, then on the second pass fill in the rest of the tree.
860 Note that the spanning tree is considered undirected, so that as many
861 must-split arcs as possible can be put on it.
862
863 Fallthrough arcs which are crowded should not be chosen on the first
864 pass, since they do not require creating a new basic block. These
865 arcs will have fall_through set. */
866
867 find_spanning_tree (num_blocks);
868
869 /* Create a .bbg file from which gcov can reconstruct the basic block
870 graph. First output the number of basic blocks, and then for every
871 arc output the source and target basic block numbers.
872 NOTE: The format of this file must be compatible with gcov. */
873
874 if (flag_test_coverage)
875 {
876 int flag_bits;
877
878 __write_long (num_blocks, bbg_file, 4);
879 __write_long (num_arcs, bbg_file, 4);
880
881 for (i = 0; i < num_blocks; i++)
882 {
883 long count = 0;
884 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
885 count++;
886 __write_long (count, bbg_file, 4);
887
888 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
889 {
890 flag_bits = 0;
891 if (arcptr->on_tree)
892 flag_bits |= 0x1;
893 if (arcptr->fake)
894 flag_bits |= 0x2;
895 if (arcptr->fall_through)
896 flag_bits |= 0x4;
897
898 __write_long (ARC_TARGET (arcptr), bbg_file, 4);
899 __write_long (flag_bits, bbg_file, 4);
900 }
901 }
902
903 /* Emit a -1 to separate the list of all arcs from the list of
904 loop back edges that follows. */
905 __write_long (-1, bbg_file, 4);
906 }
907
908 /* For each arc not on the spanning tree, add counting code as rtl. */
909
910 if (profile_arc_flag)
911 instrument_arcs (f, num_blocks, dump_file);
912
913 /* Execute the rest only if doing branch probabilities. */
914 if (! flag_branch_probabilities)
915 return;
916
917 /* For each arc not on the spanning tree, set its execution count from
918 the .da file. */
919
920 /* The first count in the .da file is the number of times that the function
921 was entered. This is the exec_count for block zero. */
922
923 num_arcs = 0;
924 for (i = 0; i < num_blocks; i++)
925 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
926 if (! arcptr->on_tree)
927 {
928 num_arcs++;
929 if (da_file)
930 {
931 long value;
932 __read_long (&value, da_file, 8);
933 ARC_COUNT (arcptr) = value;
934 }
935 else
936 ARC_COUNT (arcptr) = 0;
937 arcptr->count_valid = 1;
938 bb_graph[i].succ_count--;
939 bb_graph[ARC_TARGET (arcptr)].pred_count--;
940 }
941
942 if (dump_file)
943 fprintf (dump_file, "%d arc counts read\n", num_arcs);
944
945 /* For every block in the file,
946 - if every exit/entrance arc has a known count, then set the block count
947 - if the block count is known, and every exit/entrance arc but one has
948 a known execution count, then set the count of the remaining arc
949
950 As arc counts are set, decrement the succ/pred count, but don't delete
951 the arc, that way we can easily tell when all arcs are known, or only
952 one arc is unknown. */
953
954 /* The order that the basic blocks are iterated through is important.
955 Since the code that finds spanning trees starts with block 0, low numbered
956 arcs are put on the spanning tree in preference to high numbered arcs.
957 Hence, most instrumented arcs are at the end. Graph solving works much
958 faster if we propagate numbers from the end to the start.
959
960 This takes an average of slightly more than 3 passes. */
961
962 changes = 1;
963 passes = 0;
964 while (changes)
965 {
966 passes++;
967 changes = 0;
968
969 for (i = num_blocks - 1; i >= 0; i--)
970 {
971 struct bb_info *binfo = &bb_graph[i];
972 if (! binfo->count_valid)
973 {
974 if (binfo->succ_count == 0)
975 {
976 total = 0;
977 for (arcptr = binfo->succ; arcptr;
978 arcptr = arcptr->succ_next)
979 total += ARC_COUNT (arcptr);
980 binfo->exec_count = total;
981 binfo->count_valid = 1;
982 changes = 1;
983 }
984 else if (binfo->pred_count == 0)
985 {
986 total = 0;
987 for (arcptr = binfo->pred; arcptr;
988 arcptr = arcptr->pred_next)
989 total += ARC_COUNT (arcptr);
990 binfo->exec_count = total;
991 binfo->count_valid = 1;
992 changes = 1;
993 }
994 }
995 if (binfo->count_valid)
996 {
997 if (binfo->succ_count == 1)
998 {
999 total = 0;
1000 /* One of the counts will be invalid, but it is zero,
1001 so adding it in also doesn't hurt. */
1002 for (arcptr = binfo->succ; arcptr;
1003 arcptr = arcptr->succ_next)
1004 total += ARC_COUNT (arcptr);
1005 /* Calculate count for remaining arc by conservation. */
1006 total = binfo->exec_count - total;
1007 /* Search for the invalid arc, and set its count. */
1008 for (arcptr = binfo->succ; arcptr;
1009 arcptr = arcptr->succ_next)
1010 if (! arcptr->count_valid)
1011 break;
1012 if (! arcptr)
1013 abort ();
1014 arcptr->count_valid = 1;
1015 ARC_COUNT (arcptr) = total;
1016 binfo->succ_count--;
1017
1018 bb_graph[ARC_TARGET (arcptr)].pred_count--;
1019 changes = 1;
1020 }
1021 if (binfo->pred_count == 1)
1022 {
1023 total = 0;
1024 /* One of the counts will be invalid, but it is zero,
1025 so adding it in also doesn't hurt. */
1026 for (arcptr = binfo->pred; arcptr;
1027 arcptr = arcptr->pred_next)
1028 total += ARC_COUNT (arcptr);
1029 /* Calculate count for remaining arc by conservation. */
1030 total = binfo->exec_count - total;
1031 /* Search for the invalid arc, and set its count. */
1032 for (arcptr = binfo->pred; arcptr;
1033 arcptr = arcptr->pred_next)
1034 if (! arcptr->count_valid)
1035 break;
1036 if (! arcptr)
1037 abort ();
1038 arcptr->count_valid = 1;
1039 ARC_COUNT (arcptr) = total;
1040 binfo->pred_count--;
1041
1042 bb_graph[ARC_SOURCE (arcptr)].succ_count--;
1043 changes = 1;
1044 }
1045 }
1046 }
1047 }
1048
1049 total_num_passes += passes;
1050 if (dump_file)
1051 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
1052
1053 /* If the graph has been correctly solved, every block will have a
1054 succ and pred count of zero. */
1055 for (i = 0; i < num_blocks; i++)
1056 {
1057 struct bb_info *binfo = &bb_graph[i];
1058 if (binfo->succ_count || binfo->pred_count)
1059 abort ();
1060 }
1061
1062 /* For every arc, calculate its branch probability and add a reg_note
1063 to the branch insn to indicate this. */
1064
1065 for (i = 0; i < 20; i++)
1066 hist_br_prob[i] = 0;
1067 num_never_executed = 0;
1068 num_branches = 0;
1069
1070 for (i = 0; i < num_blocks; i++)
1071 {
1072 struct bb_info *binfo = &bb_graph[i];
1073
1074 total = binfo->exec_count;
1075 for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
1076 {
1077 if (arcptr->branch_insn)
1078 {
1079 /* This calculates the branch probability as an integer between
1080 0 and REG_BR_PROB_BASE, properly rounded to the nearest
1081 integer. Perform the arithmetic in double to avoid
1082 overflowing the range of ints. */
1083
1084 if (total == 0)
1085 prob = -1;
1086 else
1087 {
1088 rtx pat = PATTERN (arcptr->branch_insn);
1089
1090 prob = (((double)ARC_COUNT (arcptr) * REG_BR_PROB_BASE)
1091 + (total >> 1)) / total;
1092 if (prob < 0 || prob > REG_BR_PROB_BASE)
1093 {
1094 if (dump_file)
1095 fprintf (dump_file, "bad count: prob for %d-%d thought to be %d (forcibly normalized)\n",
1096 ARC_SOURCE (arcptr), ARC_TARGET (arcptr),
1097 prob);
1098
1099 bad_counts = 1;
1100 prob = REG_BR_PROB_BASE / 2;
1101 }
1102
1103 /* Match up probability with JUMP pattern. */
1104
1105 if (GET_CODE (pat) == SET
1106 && GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
1107 {
1108 if (ARC_TARGET (arcptr) == ARC_SOURCE (arcptr) + 1)
1109 {
1110 /* A fall through arc should never have a
1111 branch insn. */
1112 abort ();
1113 }
1114 else
1115 {
1116 /* This is the arc for the taken branch. */
1117 if (GET_CODE (XEXP (SET_SRC (pat), 2)) != PC)
1118 prob = REG_BR_PROB_BASE - prob;
1119 }
1120 }
1121 }
1122
1123 if (prob == -1)
1124 num_never_executed++;
1125 else
1126 {
1127 int index = prob * 20 / REG_BR_PROB_BASE;
1128 if (index == 20)
1129 index = 19;
1130 hist_br_prob[index]++;
1131 }
1132 num_branches++;
1133
1134 REG_NOTES (arcptr->branch_insn)
1135 = gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
1136 REG_NOTES (arcptr->branch_insn));
1137 }
1138 }
1139
1140 /* Add a REG_EXEC_COUNT note to the first instruction of this block. */
1141 if (! binfo->first_insn
1142 || GET_RTX_CLASS (GET_CODE (binfo->first_insn)) != 'i')
1143 {
1144 /* Block 0 is a fake block representing function entry, and does
1145 not have a real first insn. The second last block might not
1146 begin with a real insn. */
1147 if (i == num_blocks - 1)
1148 return_label_execution_count = total;
1149 else if (i != 0 && i != num_blocks - 2)
1150 abort ();
1151 }
1152 else
1153 {
1154 REG_NOTES (binfo->first_insn)
1155 = gen_rtx_EXPR_LIST (REG_EXEC_COUNT, GEN_INT (total),
1156 REG_NOTES (binfo->first_insn));
1157 if (i == num_blocks - 1)
1158 return_label_execution_count = total;
1159 }
1160 }
1161
1162 /* This should never happen. */
1163 if (bad_counts)
1164 warning ("Arc profiling: some arc counts were bad.");
1165
1166 if (dump_file)
1167 {
1168 fprintf (dump_file, "%d branches\n", num_branches);
1169 fprintf (dump_file, "%d branches never executed\n",
1170 num_never_executed);
1171 if (num_branches)
1172 for (i = 0; i < 10; i++)
1173 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1174 (hist_br_prob[i]+hist_br_prob[19-i])*100/num_branches,
1175 5*i, 5*i+5);
1176
1177 total_num_branches += num_branches;
1178 total_num_never_executed += num_never_executed;
1179 for (i = 0; i < 20; i++)
1180 total_hist_br_prob[i] += hist_br_prob[i];
1181 }
1182
1183 }
1184 \f
1185 /* Initialize a new arc.
1186 ARCPTR is the empty adj_list this function fills in.
1187 SOURCE is the block number of the source block.
1188 TARGET is the block number of the target block.
1189 INSN is the insn which transfers control from SOURCE to TARGET,
1190 or zero if the transfer is implicit. */
1191
1192 static void
1193 init_arc (arcptr, source, target, insn)
1194 struct adj_list *arcptr;
1195 int source, target;
1196 rtx insn;
1197 {
1198 ARC_TARGET (arcptr) = target;
1199 ARC_SOURCE (arcptr) = source;
1200
1201 ARC_COUNT (arcptr) = 0;
1202 arcptr->count_valid = 0;
1203 arcptr->on_tree = 0;
1204 arcptr->fake = 0;
1205 arcptr->fall_through = 0;
1206 arcptr->branch_insn = insn;
1207
1208 arcptr->succ_next = bb_graph[source].succ;
1209 bb_graph[source].succ = arcptr;
1210 bb_graph[source].succ_count++;
1211
1212 arcptr->pred_next = bb_graph[target].pred;
1213 bb_graph[target].pred = arcptr;
1214 bb_graph[target].pred_count++;
1215 }
1216
1217 /* This function searches all of the arcs in the program flow graph, and puts
1218 as many bad arcs as possible onto the spanning tree. Bad arcs include
1219 fake arcs (needed for setjmp(), longjmp(), exit()) which MUST be on the
1220 spanning tree as they can't be instrumented. Also, arcs which must be
1221 split when instrumented should be part of the spanning tree if possible. */
1222
1223 static void
1224 find_spanning_tree (num_blocks)
1225 int num_blocks;
1226 {
1227 int i;
1228 struct adj_list *arcptr;
1229 struct bb_info *binfo = &bb_graph[0];
1230
1231 /* Fake arcs must be part of the spanning tree, and are always safe to put
1232 on the spanning tree. Fake arcs will either be a successor of node 0,
1233 a predecessor of the last node, or from the last node to node 0. */
1234
1235 for (arcptr = bb_graph[0].succ; arcptr; arcptr = arcptr->succ_next)
1236 if (arcptr->fake)
1237 {
1238 /* Adding this arc should never cause a cycle. This is a fatal
1239 error if it would. */
1240 if (bb_graph[ARC_TARGET (arcptr)].on_tree && binfo->on_tree)
1241 abort();
1242 else
1243 {
1244 arcptr->on_tree = 1;
1245 bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
1246 binfo->on_tree = 1;
1247 }
1248 }
1249
1250 binfo = &bb_graph[num_blocks-1];
1251 for (arcptr = binfo->pred; arcptr; arcptr = arcptr->pred_next)
1252 if (arcptr->fake)
1253 {
1254 /* Adding this arc should never cause a cycle. This is a fatal
1255 error if it would. */
1256 if (bb_graph[ARC_SOURCE (arcptr)].on_tree && binfo->on_tree)
1257 abort();
1258 else
1259 {
1260 arcptr->on_tree = 1;
1261 bb_graph[ARC_SOURCE (arcptr)].on_tree = 1;
1262 binfo->on_tree = 1;
1263 }
1264 }
1265 /* The only entrace to node zero is a fake arc. */
1266 bb_graph[0].pred->on_tree = 1;
1267
1268 /* Arcs which are crowded at both the source and target should be put on
1269 the spanning tree if possible, except for fall_throuch arcs which never
1270 require adding a new block even if crowded, add arcs with the same source
1271 and dest which must always be instrumented. */
1272 for (i = 0; i < num_blocks; i++)
1273 {
1274 binfo = &bb_graph[i];
1275
1276 for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
1277 if (! ((binfo->succ == arcptr && arcptr->succ_next == 0)
1278 || (bb_graph[ARC_TARGET (arcptr)].pred
1279 && arcptr->pred_next == 0))
1280 && ! arcptr->fall_through
1281 && ARC_TARGET (arcptr) != i)
1282 {
1283 /* This is a crowded arc at both source and target. Try to put
1284 in on the spanning tree. Can do this if either the source or
1285 target block is not yet on the tree. */
1286 if (! bb_graph[ARC_TARGET (arcptr)].on_tree || ! binfo->on_tree)
1287 {
1288 arcptr->on_tree = 1;
1289 bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
1290 binfo->on_tree = 1;
1291 }
1292 }
1293 }
1294
1295 /* Clear all of the basic block on_tree bits, so that we can use them to
1296 create the spanning tree. */
1297 for (i = 0; i < num_blocks; i++)
1298 bb_graph[i].on_tree = 0;
1299
1300 /* Now fill in the spanning tree until every basic block is on it.
1301 Don't put the 0 to 1 fall through arc on the tree, since it is
1302 always cheap to instrument, so start filling the tree from node 1. */
1303
1304 for (i = 1; i < num_blocks; i++)
1305 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
1306 if (! arcptr->on_tree
1307 && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1308 {
1309 fill_spanning_tree (i);
1310 break;
1311 }
1312 }
1313
1314 /* Add arcs reached from BLOCK to the spanning tree if they are needed and
1315 not already there. */
1316
1317 static void
1318 fill_spanning_tree (block)
1319 int block;
1320 {
1321 struct adj_list *arcptr;
1322
1323 expand_spanning_tree (block);
1324
1325 for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
1326 if (! arcptr->on_tree
1327 && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1328 {
1329 arcptr->on_tree = 1;
1330 fill_spanning_tree (ARC_TARGET (arcptr));
1331 }
1332 }
1333
1334 /* When first visit a block, must add all blocks that are already connected
1335 to this block via tree arcs to the spanning tree. */
1336
1337 static void
1338 expand_spanning_tree (block)
1339 int block;
1340 {
1341 struct adj_list *arcptr;
1342
1343 bb_graph[block].on_tree = 1;
1344
1345 for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
1346 if (arcptr->on_tree && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1347 expand_spanning_tree (ARC_TARGET (arcptr));
1348
1349 for (arcptr = bb_graph[block].pred;
1350 arcptr; arcptr = arcptr->pred_next)
1351 if (arcptr->on_tree && ! bb_graph[ARC_SOURCE (arcptr)].on_tree)
1352 expand_spanning_tree (ARC_SOURCE (arcptr));
1353 }
1354 \f
1355 /* Perform file-level initialization for branch-prob processing. */
1356
1357 void
1358 init_branch_prob (filename)
1359 char *filename;
1360 {
1361 long len;
1362 int i;
1363
1364 if (flag_test_coverage)
1365 {
1366 /* Open an output file for the basic block/line number map. */
1367 int len = strlen (filename);
1368 char *data_file = (char *) alloca (len + 4);
1369 strcpy (data_file, filename);
1370 strip_off_ending (data_file, len);
1371 strcat (data_file, ".bb");
1372 if ((bb_file = fopen (data_file, "w")) == 0)
1373 pfatal_with_name (data_file);
1374
1375 /* Open an output file for the program flow graph. */
1376 len = strlen (filename);
1377 bbg_file_name = (char *) alloca (len + 5);
1378 strcpy (bbg_file_name, filename);
1379 strip_off_ending (bbg_file_name, len);
1380 strcat (bbg_file_name, ".bbg");
1381 if ((bbg_file = fopen (bbg_file_name, "w")) == 0)
1382 pfatal_with_name (bbg_file_name);
1383
1384 /* Initialize to zero, to ensure that the first file name will be
1385 written to the .bb file. */
1386 last_bb_file_name = 0;
1387 }
1388
1389 if (flag_branch_probabilities)
1390 {
1391 len = strlen (filename);
1392 da_file_name = (char *) alloca (len + 4);
1393 strcpy (da_file_name, filename);
1394 strip_off_ending (da_file_name, len);
1395 strcat (da_file_name, ".da");
1396 if ((da_file = fopen (da_file_name, "r")) == 0)
1397 warning ("file %s not found, execution counts assumed to be zero.",
1398 da_file_name);
1399
1400 /* The first word in the .da file gives the number of instrumented arcs,
1401 which is not needed for our purposes. */
1402
1403 if (da_file)
1404 __read_long (&len, da_file, 8);
1405 }
1406
1407 if (profile_arc_flag)
1408 init_arc_profiler ();
1409
1410 total_num_blocks = 0;
1411 total_num_arcs = 0;
1412 total_num_arcs_instrumented = 0;
1413 total_num_blocks_created = 0;
1414 total_num_passes = 0;
1415 total_num_times_called = 0;
1416 total_num_branches = 0;
1417 total_num_never_executed = 0;
1418 for (i = 0; i < 20; i++)
1419 total_hist_br_prob[i] = 0;
1420 }
1421
1422 /* Performs file-level cleanup after branch-prob processing
1423 is completed. */
1424
1425 void
1426 end_branch_prob (dump_file)
1427 FILE *dump_file;
1428 {
1429 if (flag_test_coverage)
1430 {
1431 fclose (bb_file);
1432 fclose (bbg_file);
1433 }
1434
1435 if (flag_branch_probabilities)
1436 {
1437 if (da_file)
1438 {
1439 long temp;
1440 /* This seems slightly dangerous, as it presumes the EOF
1441 flag will not be set until an attempt is made to read
1442 past the end of the file. */
1443 if (feof (da_file))
1444 warning (".da file contents exhausted too early\n");
1445 /* Should be at end of file now. */
1446 if (__read_long (&temp, da_file, 8) == 0)
1447 warning (".da file contents not exhausted\n");
1448 fclose (da_file);
1449 }
1450 }
1451
1452 if (dump_file)
1453 {
1454 fprintf (dump_file, "\n");
1455 fprintf (dump_file, "Total number of blocks: %d\n", total_num_blocks);
1456 fprintf (dump_file, "Total number of arcs: %d\n", total_num_arcs);
1457 fprintf (dump_file, "Total number of instrumented arcs: %d\n",
1458 total_num_arcs_instrumented);
1459 fprintf (dump_file, "Total number of blocks created: %d\n",
1460 total_num_blocks_created);
1461 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1462 total_num_passes);
1463 if (total_num_times_called != 0)
1464 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1465 (total_num_passes + (total_num_times_called >> 1))
1466 / total_num_times_called);
1467 fprintf (dump_file, "Total number of branches: %d\n", total_num_branches);
1468 fprintf (dump_file, "Total number of branches never executed: %d\n",
1469 total_num_never_executed);
1470 if (total_num_branches)
1471 {
1472 int i;
1473
1474 for (i = 0; i < 10; i++)
1475 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1476 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1477 / total_num_branches, 5*i, 5*i+5);
1478 }
1479 }
1480 }
1481 \f
1482 /* The label used by the arc profiling code. */
1483
1484 static rtx profiler_label;
1485
1486 /* Initialize the profiler_label. */
1487
1488 static void
1489 init_arc_profiler ()
1490 {
1491 /* Generate and save a copy of this so it can be shared. */
1492 char *name = xmalloc (20);
1493 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
1494 profiler_label = gen_rtx_SYMBOL_REF (Pmode, name);
1495 }
1496
1497 /* Output instructions as RTL to increment the arc execution count. */
1498
1499 static void
1500 output_arc_profiler (arcno, insert_after)
1501 int arcno;
1502 rtx insert_after;
1503 {
1504 rtx profiler_target_addr
1505 = (arcno
1506 ? gen_rtx_CONST (Pmode,
1507 gen_rtx_PLUS (Pmode, profiler_label,
1508 GEN_INT (LONG_TYPE_SIZE / BITS_PER_UNIT * arcno)))
1509 : profiler_label);
1510 enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
1511 rtx profiler_reg = gen_reg_rtx (mode);
1512 rtx address_reg = gen_reg_rtx (Pmode);
1513 rtx mem_ref, add_ref;
1514 rtx sequence;
1515
1516 /* In this case, reload can use explicitly mentioned hard registers for
1517 reloads. It is not safe to output profiling code between a call
1518 and the instruction that copies the result to a pseudo-reg. This
1519 is because reload may allocate one of the profiling code pseudo-regs
1520 to the return value reg, thus clobbering the return value. So we
1521 must check for calls here, and emit the profiling code after the
1522 instruction that uses the return value, if any.
1523
1524 ??? The code here performs the same tests that reload does so hopefully
1525 all the bases are covered. */
1526
1527 if (SMALL_REGISTER_CLASSES
1528 && GET_CODE (insert_after) == CALL_INSN
1529 && (GET_CODE (PATTERN (insert_after)) == SET
1530 || (GET_CODE (PATTERN (insert_after)) == PARALLEL
1531 && GET_CODE (XVECEXP (PATTERN (insert_after), 0, 0)) == SET)))
1532 {
1533 rtx return_reg;
1534 rtx next_insert_after = next_nonnote_insn (insert_after);
1535
1536 /* The first insn after the call may be a stack pop, skip it. */
1537 if (next_insert_after
1538 && GET_CODE (next_insert_after) == INSN
1539 && GET_CODE (PATTERN (next_insert_after)) == SET
1540 && SET_DEST (PATTERN (next_insert_after)) == stack_pointer_rtx)
1541 next_insert_after = next_nonnote_insn (next_insert_after);
1542
1543 if (next_insert_after
1544 && GET_CODE (next_insert_after) == INSN)
1545 {
1546 if (GET_CODE (PATTERN (insert_after)) == SET)
1547 return_reg = SET_DEST (PATTERN (insert_after));
1548 else
1549 return_reg = SET_DEST (XVECEXP (PATTERN (insert_after), 0, 0));
1550
1551 /* Now, NEXT_INSERT_AFTER may be an instruction that uses the
1552 return value. However, it could also be something else,
1553 like a CODE_LABEL, so check that the code is INSN. */
1554 if (next_insert_after != 0
1555 && GET_RTX_CLASS (GET_CODE (next_insert_after)) == 'i'
1556 && reg_referenced_p (return_reg, PATTERN (next_insert_after)))
1557 insert_after = next_insert_after;
1558 }
1559 }
1560
1561 start_sequence ();
1562
1563 emit_move_insn (address_reg, profiler_target_addr);
1564 mem_ref = gen_rtx_MEM (mode, address_reg);
1565 emit_move_insn (profiler_reg, mem_ref);
1566
1567 add_ref = gen_rtx_PLUS (mode, profiler_reg, GEN_INT (1));
1568 emit_move_insn (profiler_reg, add_ref);
1569
1570 /* This is the same rtx as above, but it is not legal to share this rtx. */
1571 mem_ref = gen_rtx_MEM (mode, address_reg);
1572 emit_move_insn (mem_ref, profiler_reg);
1573
1574 sequence = gen_sequence ();
1575 end_sequence ();
1576 emit_insn_after (sequence, insert_after);
1577 }
1578
1579 /* Output code for a constructor that will invoke __bb_init_func, if
1580 this has not already been done. */
1581
1582 void
1583 output_func_start_profiler ()
1584 {
1585 tree fnname, fndecl;
1586 char *name, *cfnname;
1587 rtx table_address;
1588 enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
1589 int save_flag_inline_functions = flag_inline_functions;
1590
1591 /* It's either already been output, or we don't need it because we're
1592 not doing profile-arcs. */
1593 if (! need_func_profiler)
1594 return;
1595
1596 need_func_profiler = 0;
1597
1598 /* Synthesize a constructor function to invoke __bb_init_func with a
1599 pointer to this object file's profile block. */
1600 start_sequence ();
1601
1602 /* Try and make a unique name given the "file function name".
1603
1604 And no, I don't like this either. */
1605
1606 fnname = get_file_function_name ('I');
1607 cfnname = IDENTIFIER_POINTER (fnname);
1608 name = xmalloc (strlen (cfnname) + 5);
1609 sprintf (name, "%sGCOV",cfnname);
1610 fnname = get_identifier (name);
1611 free (name);
1612
1613 fndecl = build_decl (FUNCTION_DECL, fnname,
1614 build_function_type (void_type_node, NULL_TREE));
1615 DECL_EXTERNAL (fndecl) = 0;
1616 TREE_PUBLIC (fndecl) = 1;
1617 DECL_ASSEMBLER_NAME (fndecl) = fnname;
1618 DECL_RESULT (fndecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
1619 current_function_decl = fndecl;
1620 pushlevel (0);
1621 make_function_rtl (fndecl);
1622 init_function_start (fndecl, input_filename, lineno);
1623 expand_function_start (fndecl, 0);
1624
1625 /* Actually generate the code to call __bb_init_func. */
1626 name = xmalloc (20);
1627 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
1628 table_address = force_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, name));
1629 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__bb_init_func"), 0,
1630 mode, 1, table_address, Pmode);
1631
1632 expand_function_end (input_filename, lineno, 0);
1633 poplevel (1, 0, 1);
1634
1635 /* Since fndecl isn't in the list of globals, it would never be emitted
1636 when it's considered to be 'safe' for inlining, so turn off
1637 flag_inline_functions. */
1638 flag_inline_functions = 0;
1639
1640 rest_of_compilation (fndecl);
1641
1642 /* Reset flag_inline_functions to its original value. */
1643 flag_inline_functions = save_flag_inline_functions;
1644
1645 fflush (asm_out_file);
1646 current_function_decl = NULL_TREE;
1647
1648 assemble_constructor (IDENTIFIER_POINTER (DECL_NAME (fndecl)));
1649 }