hash-table.h: support non-zero empty values in empty_slow (v2)
[gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4 based on some ideas from Dain Samples of UC Berkeley.
5 Further mangling by Bob Manson, Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Generate basic block profile instrumentation and auxiliary files.
24 Profile generation is optimized, so that not all arcs in the basic
25 block graph need instrumenting. First, the BB graph is closed with
26 one entry (function start), and one exit (function exit). Any
27 ABNORMAL_EDGE cannot be instrumented (because there is no control
28 path to place the code). We close the graph by inserting fake
29 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30 edges that do not go to the exit_block. We ignore such abnormal
31 edges. Naturally these fake edges are never directly traversed,
32 and so *cannot* be directly instrumented. Some other graph
33 massaging is done. To optimize the instrumentation we generate the
34 BB minimal span tree, only edges that are not on the span tree
35 (plus the entry point) need instrumenting. From that information
36 all other edge counts can be deduced. By construction all fake
37 edges must be on the spanning tree. We also attempt to place
38 EDGE_CRITICAL edges on the spanning tree.
39
40 The auxiliary files generated are <dumpbase>.gcno (at compile time)
41 and <dumpbase>.gcda (at run time). The format is
42 described in full in gcov-io.h. */
43
44 /* ??? Register allocation should use basic block execution counts to
45 give preference to the most commonly executed blocks. */
46
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48 then we can use arc counts to help decide which arcs to instrument. */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "backend.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "gimple.h"
57 #include "cfghooks.h"
58 #include "cgraph.h"
59 #include "coverage.h"
60 #include "diagnostic-core.h"
61 #include "cfganal.h"
62 #include "value-prof.h"
63 #include "gimple-iterator.h"
64 #include "tree-cfg.h"
65 #include "dumpfile.h"
66 #include "cfgloop.h"
67
68 #include "profile.h"
69
70 /* Map from BBs/edges to gcov counters. */
71 vec<gcov_type> bb_gcov_counts;
72 hash_map<edge,gcov_type> *edge_gcov_counts;
73
74 struct bb_profile_info {
75 unsigned int count_valid : 1;
76
77 /* Number of successor and predecessor edges. */
78 gcov_type succ_count;
79 gcov_type pred_count;
80 };
81
82 #define BB_INFO(b) ((struct bb_profile_info *) (b)->aux)
83
84
85 /* Counter summary from the last set of coverage counts read. */
86
87 gcov_summary *profile_info;
88
89 /* Collect statistics on the performance of this pass for the entire source
90 file. */
91
92 static int total_num_blocks;
93 static int total_num_edges;
94 static int total_num_edges_ignored;
95 static int total_num_edges_instrumented;
96 static int total_num_blocks_created;
97 static int total_num_passes;
98 static int total_num_times_called;
99 static int total_hist_br_prob[20];
100 static int total_num_branches;
101
102 /* Forward declarations. */
103 static void find_spanning_tree (struct edge_list *);
104
105 /* Add edge instrumentation code to the entire insn chain.
106
107 F is the first insn of the chain.
108 NUM_BLOCKS is the number of basic blocks found in F. */
109
110 static unsigned
111 instrument_edges (struct edge_list *el)
112 {
113 unsigned num_instr_edges = 0;
114 int num_edges = NUM_EDGES (el);
115 basic_block bb;
116
117 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
118 {
119 edge e;
120 edge_iterator ei;
121
122 FOR_EACH_EDGE (e, ei, bb->succs)
123 {
124 struct edge_profile_info *inf = EDGE_INFO (e);
125
126 if (!inf->ignore && !inf->on_tree)
127 {
128 gcc_assert (!(e->flags & EDGE_ABNORMAL));
129 if (dump_file)
130 fprintf (dump_file, "Edge %d to %d instrumented%s\n",
131 e->src->index, e->dest->index,
132 EDGE_CRITICAL_P (e) ? " (and split)" : "");
133 gimple_gen_edge_profiler (num_instr_edges++, e);
134 }
135 }
136 }
137
138 total_num_blocks_created += num_edges;
139 if (dump_file)
140 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
141 return num_instr_edges;
142 }
143
144 /* Add code to measure histograms for values in list VALUES. */
145 static void
146 instrument_values (histogram_values values)
147 {
148 unsigned i;
149
150 /* Emit code to generate the histograms before the insns. */
151
152 for (i = 0; i < values.length (); i++)
153 {
154 histogram_value hist = values[i];
155 unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
156
157 if (!coverage_counter_alloc (t, hist->n_counters))
158 continue;
159
160 switch (hist->type)
161 {
162 case HIST_TYPE_INTERVAL:
163 gimple_gen_interval_profiler (hist, t);
164 break;
165
166 case HIST_TYPE_POW2:
167 gimple_gen_pow2_profiler (hist, t);
168 break;
169
170 case HIST_TYPE_TOPN_VALUES:
171 gimple_gen_topn_values_profiler (hist, t);
172 break;
173
174 case HIST_TYPE_INDIR_CALL:
175 gimple_gen_ic_profiler (hist, t);
176 break;
177
178 case HIST_TYPE_AVERAGE:
179 gimple_gen_average_profiler (hist, t);
180 break;
181
182 case HIST_TYPE_IOR:
183 gimple_gen_ior_profiler (hist, t);
184 break;
185
186 case HIST_TYPE_TIME_PROFILE:
187 gimple_gen_time_profiler (t);
188 break;
189
190 default:
191 gcc_unreachable ();
192 }
193 }
194 }
195 \f
196
197 /* Computes hybrid profile for all matching entries in da_file.
198
199 CFG_CHECKSUM is the precomputed checksum for the CFG. */
200
201 static gcov_type *
202 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
203 {
204 unsigned num_edges = 0;
205 basic_block bb;
206 gcov_type *counts;
207
208 /* Count the edges to be (possibly) instrumented. */
209 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
210 {
211 edge e;
212 edge_iterator ei;
213
214 FOR_EACH_EDGE (e, ei, bb->succs)
215 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
216 num_edges++;
217 }
218
219 counts = get_coverage_counts (GCOV_COUNTER_ARCS, cfg_checksum,
220 lineno_checksum, num_edges);
221 if (!counts)
222 return NULL;
223
224 return counts;
225 }
226
227 static bool
228 is_edge_inconsistent (vec<edge, va_gc> *edges)
229 {
230 edge e;
231 edge_iterator ei;
232 FOR_EACH_EDGE (e, ei, edges)
233 {
234 if (!EDGE_INFO (e)->ignore)
235 {
236 if (edge_gcov_count (e) < 0
237 && (!(e->flags & EDGE_FAKE)
238 || !block_ends_with_call_p (e->src)))
239 {
240 if (dump_file)
241 {
242 fprintf (dump_file,
243 "Edge %i->%i is inconsistent, count%" PRId64,
244 e->src->index, e->dest->index, edge_gcov_count (e));
245 dump_bb (dump_file, e->src, 0, TDF_DETAILS);
246 dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
247 }
248 return true;
249 }
250 }
251 }
252 return false;
253 }
254
255 static void
256 correct_negative_edge_counts (void)
257 {
258 basic_block bb;
259 edge e;
260 edge_iterator ei;
261
262 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
263 {
264 FOR_EACH_EDGE (e, ei, bb->succs)
265 {
266 if (edge_gcov_count (e) < 0)
267 edge_gcov_count (e) = 0;
268 }
269 }
270 }
271
272 /* Check consistency.
273 Return true if inconsistency is found. */
274 static bool
275 is_inconsistent (void)
276 {
277 basic_block bb;
278 bool inconsistent = false;
279 FOR_EACH_BB_FN (bb, cfun)
280 {
281 inconsistent |= is_edge_inconsistent (bb->preds);
282 if (!dump_file && inconsistent)
283 return true;
284 inconsistent |= is_edge_inconsistent (bb->succs);
285 if (!dump_file && inconsistent)
286 return true;
287 if (bb_gcov_count (bb) < 0)
288 {
289 if (dump_file)
290 {
291 fprintf (dump_file, "BB %i count is negative "
292 "%" PRId64,
293 bb->index,
294 bb_gcov_count (bb));
295 dump_bb (dump_file, bb, 0, TDF_DETAILS);
296 }
297 inconsistent = true;
298 }
299 if (bb_gcov_count (bb) != sum_edge_counts (bb->preds))
300 {
301 if (dump_file)
302 {
303 fprintf (dump_file, "BB %i count does not match sum of incoming edges "
304 "%" PRId64" should be %" PRId64,
305 bb->index,
306 bb_gcov_count (bb),
307 sum_edge_counts (bb->preds));
308 dump_bb (dump_file, bb, 0, TDF_DETAILS);
309 }
310 inconsistent = true;
311 }
312 if (bb_gcov_count (bb) != sum_edge_counts (bb->succs) &&
313 ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL
314 && block_ends_with_call_p (bb)))
315 {
316 if (dump_file)
317 {
318 fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
319 "%" PRId64" should be %" PRId64,
320 bb->index,
321 bb_gcov_count (bb),
322 sum_edge_counts (bb->succs));
323 dump_bb (dump_file, bb, 0, TDF_DETAILS);
324 }
325 inconsistent = true;
326 }
327 if (!dump_file && inconsistent)
328 return true;
329 }
330
331 return inconsistent;
332 }
333
334 /* Set each basic block count to the sum of its outgoing edge counts */
335 static void
336 set_bb_counts (void)
337 {
338 basic_block bb;
339 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
340 {
341 bb_gcov_count (bb) = sum_edge_counts (bb->succs);
342 gcc_assert (bb_gcov_count (bb) >= 0);
343 }
344 }
345
346 /* Reads profile data and returns total number of edge counts read */
347 static int
348 read_profile_edge_counts (gcov_type *exec_counts)
349 {
350 basic_block bb;
351 int num_edges = 0;
352 int exec_counts_pos = 0;
353 /* For each edge not on the spanning tree, set its execution count from
354 the .da file. */
355 /* The first count in the .da file is the number of times that the function
356 was entered. This is the exec_count for block zero. */
357
358 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
359 {
360 edge e;
361 edge_iterator ei;
362
363 FOR_EACH_EDGE (e, ei, bb->succs)
364 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
365 {
366 num_edges++;
367 if (exec_counts)
368 edge_gcov_count (e) = exec_counts[exec_counts_pos++];
369 else
370 edge_gcov_count (e) = 0;
371
372 EDGE_INFO (e)->count_valid = 1;
373 BB_INFO (bb)->succ_count--;
374 BB_INFO (e->dest)->pred_count--;
375 if (dump_file)
376 {
377 fprintf (dump_file, "\nRead edge from %i to %i, count:",
378 bb->index, e->dest->index);
379 fprintf (dump_file, "%" PRId64,
380 (int64_t) edge_gcov_count (e));
381 }
382 }
383 }
384
385 return num_edges;
386 }
387
388
389 /* Compute the branch probabilities for the various branches.
390 Annotate them accordingly.
391
392 CFG_CHECKSUM is the precomputed checksum for the CFG. */
393
394 static void
395 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
396 {
397 basic_block bb;
398 int i;
399 int num_edges = 0;
400 int changes;
401 int passes;
402 int hist_br_prob[20];
403 int num_branches;
404 gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
405 int inconsistent = 0;
406
407 /* Very simple sanity checks so we catch bugs in our profiling code. */
408 if (!profile_info)
409 {
410 if (dump_file)
411 fprintf (dump_file, "Profile info is missing; giving up\n");
412 return;
413 }
414
415 bb_gcov_counts.safe_grow_cleared (last_basic_block_for_fn (cfun));
416 edge_gcov_counts = new hash_map<edge,gcov_type>;
417
418 /* Attach extra info block to each bb. */
419 alloc_aux_for_blocks (sizeof (struct bb_profile_info));
420 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
421 {
422 edge e;
423 edge_iterator ei;
424
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 if (!EDGE_INFO (e)->ignore)
427 BB_INFO (bb)->succ_count++;
428 FOR_EACH_EDGE (e, ei, bb->preds)
429 if (!EDGE_INFO (e)->ignore)
430 BB_INFO (bb)->pred_count++;
431 }
432
433 /* Avoid predicting entry on exit nodes. */
434 BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2;
435 BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2;
436
437 num_edges = read_profile_edge_counts (exec_counts);
438
439 if (dump_file)
440 fprintf (dump_file, "\n%d edge counts read\n", num_edges);
441
442 /* For every block in the file,
443 - if every exit/entrance edge has a known count, then set the block count
444 - if the block count is known, and every exit/entrance edge but one has
445 a known execution count, then set the count of the remaining edge
446
447 As edge counts are set, decrement the succ/pred count, but don't delete
448 the edge, that way we can easily tell when all edges are known, or only
449 one edge is unknown. */
450
451 /* The order that the basic blocks are iterated through is important.
452 Since the code that finds spanning trees starts with block 0, low numbered
453 edges are put on the spanning tree in preference to high numbered edges.
454 Hence, most instrumented edges are at the end. Graph solving works much
455 faster if we propagate numbers from the end to the start.
456
457 This takes an average of slightly more than 3 passes. */
458
459 changes = 1;
460 passes = 0;
461 while (changes)
462 {
463 passes++;
464 changes = 0;
465 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb)
466 {
467 struct bb_profile_info *bi = BB_INFO (bb);
468 if (! bi->count_valid)
469 {
470 if (bi->succ_count == 0)
471 {
472 edge e;
473 edge_iterator ei;
474 gcov_type total = 0;
475
476 FOR_EACH_EDGE (e, ei, bb->succs)
477 total += edge_gcov_count (e);
478 bb_gcov_count (bb) = total;
479 bi->count_valid = 1;
480 changes = 1;
481 }
482 else if (bi->pred_count == 0)
483 {
484 edge e;
485 edge_iterator ei;
486 gcov_type total = 0;
487
488 FOR_EACH_EDGE (e, ei, bb->preds)
489 total += edge_gcov_count (e);
490 bb_gcov_count (bb) = total;
491 bi->count_valid = 1;
492 changes = 1;
493 }
494 }
495 if (bi->count_valid)
496 {
497 if (bi->succ_count == 1)
498 {
499 edge e;
500 edge_iterator ei;
501 gcov_type total = 0;
502
503 /* One of the counts will be invalid, but it is zero,
504 so adding it in also doesn't hurt. */
505 FOR_EACH_EDGE (e, ei, bb->succs)
506 total += edge_gcov_count (e);
507
508 /* Search for the invalid edge, and set its count. */
509 FOR_EACH_EDGE (e, ei, bb->succs)
510 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
511 break;
512
513 /* Calculate count for remaining edge by conservation. */
514 total = bb_gcov_count (bb) - total;
515
516 gcc_assert (e);
517 EDGE_INFO (e)->count_valid = 1;
518 edge_gcov_count (e) = total;
519 bi->succ_count--;
520
521 BB_INFO (e->dest)->pred_count--;
522 changes = 1;
523 }
524 if (bi->pred_count == 1)
525 {
526 edge e;
527 edge_iterator ei;
528 gcov_type total = 0;
529
530 /* One of the counts will be invalid, but it is zero,
531 so adding it in also doesn't hurt. */
532 FOR_EACH_EDGE (e, ei, bb->preds)
533 total += edge_gcov_count (e);
534
535 /* Search for the invalid edge, and set its count. */
536 FOR_EACH_EDGE (e, ei, bb->preds)
537 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
538 break;
539
540 /* Calculate count for remaining edge by conservation. */
541 total = bb_gcov_count (bb) - total + edge_gcov_count (e);
542
543 gcc_assert (e);
544 EDGE_INFO (e)->count_valid = 1;
545 edge_gcov_count (e) = total;
546 bi->pred_count--;
547
548 BB_INFO (e->src)->succ_count--;
549 changes = 1;
550 }
551 }
552 }
553 }
554
555 total_num_passes += passes;
556 if (dump_file)
557 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
558
559 /* If the graph has been correctly solved, every block will have a
560 succ and pred count of zero. */
561 FOR_EACH_BB_FN (bb, cfun)
562 {
563 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
564 }
565
566 /* Check for inconsistent basic block counts */
567 inconsistent = is_inconsistent ();
568
569 if (inconsistent)
570 {
571 if (flag_profile_correction)
572 {
573 /* Inconsistency detected. Make it flow-consistent. */
574 static int informed = 0;
575 if (dump_enabled_p () && informed == 0)
576 {
577 informed = 1;
578 dump_printf_loc (MSG_NOTE,
579 dump_user_location_t::from_location_t (input_location),
580 "correcting inconsistent profile data\n");
581 }
582 correct_negative_edge_counts ();
583 /* Set bb counts to the sum of the outgoing edge counts */
584 set_bb_counts ();
585 if (dump_file)
586 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
587 mcf_smooth_cfg ();
588 }
589 else
590 error ("corrupted profile info: profile data is not flow-consistent");
591 }
592
593 /* For every edge, calculate its branch probability and add a reg_note
594 to the branch insn to indicate this. */
595
596 for (i = 0; i < 20; i++)
597 hist_br_prob[i] = 0;
598 num_branches = 0;
599
600 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
601 {
602 edge e;
603 edge_iterator ei;
604
605 if (bb_gcov_count (bb) < 0)
606 {
607 error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
608 bb->index, (int)bb_gcov_count (bb));
609 bb_gcov_count (bb) = 0;
610 }
611 FOR_EACH_EDGE (e, ei, bb->succs)
612 {
613 /* Function may return twice in the cased the called function is
614 setjmp or calls fork, but we can't represent this by extra
615 edge from the entry, since extra edge from the exit is
616 already present. We get negative frequency from the entry
617 point. */
618 if ((edge_gcov_count (e) < 0
619 && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
620 || (edge_gcov_count (e) > bb_gcov_count (bb)
621 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
622 {
623 if (block_ends_with_call_p (bb))
624 edge_gcov_count (e) = edge_gcov_count (e) < 0
625 ? 0 : bb_gcov_count (bb);
626 }
627 if (edge_gcov_count (e) < 0
628 || edge_gcov_count (e) > bb_gcov_count (bb))
629 {
630 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
631 e->src->index, e->dest->index,
632 (int)edge_gcov_count (e));
633 edge_gcov_count (e) = bb_gcov_count (bb) / 2;
634 }
635 }
636 if (bb_gcov_count (bb))
637 {
638 bool set_to_guessed = false;
639 FOR_EACH_EDGE (e, ei, bb->succs)
640 {
641 bool prev_never = e->probability == profile_probability::never ();
642 e->probability = profile_probability::probability_in_gcov_type
643 (edge_gcov_count (e), bb_gcov_count (bb));
644 if (e->probability == profile_probability::never ()
645 && !prev_never
646 && flag_profile_partial_training)
647 set_to_guessed = true;
648 }
649 if (set_to_guessed)
650 FOR_EACH_EDGE (e, ei, bb->succs)
651 e->probability = e->probability.guessed ();
652 if (bb->index >= NUM_FIXED_BLOCKS
653 && block_ends_with_condjump_p (bb)
654 && EDGE_COUNT (bb->succs) >= 2)
655 {
656 int prob;
657 edge e;
658 int index;
659
660 /* Find the branch edge. It is possible that we do have fake
661 edges here. */
662 FOR_EACH_EDGE (e, ei, bb->succs)
663 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
664 break;
665
666 prob = e->probability.to_reg_br_prob_base ();
667 index = prob * 20 / REG_BR_PROB_BASE;
668
669 if (index == 20)
670 index = 19;
671 hist_br_prob[index]++;
672
673 num_branches++;
674 }
675 }
676 /* As a last resort, distribute the probabilities evenly.
677 Use simple heuristics that if there are normal edges,
678 give all abnormals frequency of 0, otherwise distribute the
679 frequency over abnormals (this is the case of noreturn
680 calls). */
681 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
682 {
683 int total = 0;
684
685 FOR_EACH_EDGE (e, ei, bb->succs)
686 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
687 total ++;
688 if (total)
689 {
690 FOR_EACH_EDGE (e, ei, bb->succs)
691 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
692 e->probability
693 = profile_probability::guessed_always ().apply_scale (1, total);
694 else
695 e->probability = profile_probability::never ();
696 }
697 else
698 {
699 total += EDGE_COUNT (bb->succs);
700 FOR_EACH_EDGE (e, ei, bb->succs)
701 e->probability
702 = profile_probability::guessed_always ().apply_scale (1, total);
703 }
704 if (bb->index >= NUM_FIXED_BLOCKS
705 && block_ends_with_condjump_p (bb)
706 && EDGE_COUNT (bb->succs) >= 2)
707 num_branches++;
708 }
709 }
710
711 if (exec_counts
712 && (bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun))
713 || !flag_profile_partial_training))
714 profile_status_for_fn (cfun) = PROFILE_READ;
715
716 /* If we have real data, use them! */
717 if (bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun))
718 || !flag_guess_branch_prob)
719 FOR_ALL_BB_FN (bb, cfun)
720 if (bb_gcov_count (bb) || !flag_profile_partial_training)
721 bb->count = profile_count::from_gcov_type (bb_gcov_count (bb));
722 else
723 bb->count = profile_count::guessed_zero ();
724 /* If function was not trained, preserve local estimates including statically
725 determined zero counts. */
726 else if (profile_status_for_fn (cfun) == PROFILE_READ
727 && !flag_profile_partial_training)
728 FOR_ALL_BB_FN (bb, cfun)
729 if (!(bb->count == profile_count::zero ()))
730 bb->count = bb->count.global0 ();
731
732 bb_gcov_counts.release ();
733 delete edge_gcov_counts;
734 edge_gcov_counts = NULL;
735
736 update_max_bb_count ();
737
738 if (dump_file)
739 {
740 fprintf (dump_file, " Profile feedback for function");
741 fprintf (dump_file, ((profile_status_for_fn (cfun) == PROFILE_READ)
742 ? " is available \n"
743 : " is not available \n"));
744
745 fprintf (dump_file, "%d branches\n", num_branches);
746 if (num_branches)
747 for (i = 0; i < 10; i++)
748 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
749 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
750 5 * i, 5 * i + 5);
751
752 total_num_branches += num_branches;
753 for (i = 0; i < 20; i++)
754 total_hist_br_prob[i] += hist_br_prob[i];
755
756 fputc ('\n', dump_file);
757 fputc ('\n', dump_file);
758 }
759
760 free_aux_for_blocks ();
761 }
762
763 /* Sort the histogram value and count for TOPN and INDIR_CALL type. */
764
765 static void
766 sort_hist_values (histogram_value hist)
767 {
768 /* counters[2] equal to -1 means that all counters are invalidated. */
769 if (hist->hvalue.counters[2] == -1)
770 return;
771
772 gcc_assert (hist->type == HIST_TYPE_TOPN_VALUES
773 || hist->type == HIST_TYPE_INDIR_CALL);
774
775 gcc_assert (hist->n_counters == GCOV_TOPN_VALUES_COUNTERS);
776
777 /* Hist value is organized as:
778 [total_executions, value1, counter1, ..., value4, counter4]
779 Use decrease bubble sort to rearrange it. The sort starts from <value1,
780 counter1> and compares counter first. If counter is same, compares the
781 value, exchange it if small to keep stable. */
782 for (unsigned i = 0; i < GCOV_TOPN_VALUES - 1; i++)
783 {
784 bool swapped = false;
785 for (unsigned j = 0; j < GCOV_TOPN_VALUES - 1 - i; j++)
786 {
787 gcov_type *p = &hist->hvalue.counters[2 * j + 1];
788 if (p[1] < p[3] || (p[1] == p[3] && p[0] < p[2]))
789 {
790 std::swap (p[0], p[2]);
791 std::swap (p[1], p[3]);
792 swapped = true;
793 }
794 }
795 if (!swapped)
796 break;
797 }
798 }
799 /* Load value histograms values whose description is stored in VALUES array
800 from .gcda file.
801
802 CFG_CHECKSUM is the precomputed checksum for the CFG. */
803
804 static void
805 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
806 unsigned lineno_checksum)
807 {
808 unsigned i, j, t, any;
809 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
810 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
811 gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
812 gcov_type *aact_count;
813 struct cgraph_node *node;
814
815 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
816 n_histogram_counters[t] = 0;
817
818 for (i = 0; i < values.length (); i++)
819 {
820 histogram_value hist = values[i];
821 n_histogram_counters[(int) hist->type] += hist->n_counters;
822 }
823
824 any = 0;
825 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
826 {
827 if (!n_histogram_counters[t])
828 {
829 histogram_counts[t] = NULL;
830 continue;
831 }
832
833 histogram_counts[t] = get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
834 cfg_checksum,
835 lineno_checksum,
836 n_histogram_counters[t]);
837 if (histogram_counts[t])
838 any = 1;
839 act_count[t] = histogram_counts[t];
840 }
841 if (!any)
842 return;
843
844 for (i = 0; i < values.length (); i++)
845 {
846 histogram_value hist = values[i];
847 gimple *stmt = hist->hvalue.stmt;
848
849 t = (int) hist->type;
850
851 aact_count = act_count[t];
852
853 if (act_count[t])
854 act_count[t] += hist->n_counters;
855
856 gimple_add_histogram_value (cfun, stmt, hist);
857 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
858 for (j = 0; j < hist->n_counters; j++)
859 if (aact_count)
860 hist->hvalue.counters[j] = aact_count[j];
861 else
862 hist->hvalue.counters[j] = 0;
863
864 if (hist->type == HIST_TYPE_TOPN_VALUES
865 || hist->type == HIST_TYPE_INDIR_CALL)
866 sort_hist_values (hist);
867
868 /* Time profiler counter is not related to any statement,
869 so that we have to read the counter and set the value to
870 the corresponding call graph node. */
871 if (hist->type == HIST_TYPE_TIME_PROFILE)
872 {
873 node = cgraph_node::get (hist->fun->decl);
874 if (hist->hvalue.counters[0] >= 0
875 && hist->hvalue.counters[0] < INT_MAX / 2)
876 node->tp_first_run = hist->hvalue.counters[0];
877 else
878 {
879 if (flag_profile_correction)
880 error ("corrupted profile info: invalid time profile");
881 node->tp_first_run = 0;
882 }
883
884 if (dump_file)
885 fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run);
886 }
887 }
888
889 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
890 free (histogram_counts[t]);
891 }
892
893 /* Location triplet which records a location. */
894 struct location_triplet
895 {
896 const char *filename;
897 int lineno;
898 int bb_index;
899 };
900
901 /* Traits class for streamed_locations hash set below. */
902
903 struct location_triplet_hash : typed_noop_remove <location_triplet>
904 {
905 typedef location_triplet value_type;
906 typedef location_triplet compare_type;
907
908 static hashval_t
909 hash (const location_triplet &ref)
910 {
911 inchash::hash hstate (0);
912 if (ref.filename)
913 hstate.add_int (strlen (ref.filename));
914 hstate.add_int (ref.lineno);
915 hstate.add_int (ref.bb_index);
916 return hstate.end ();
917 }
918
919 static bool
920 equal (const location_triplet &ref1, const location_triplet &ref2)
921 {
922 return ref1.lineno == ref2.lineno
923 && ref1.bb_index == ref2.bb_index
924 && ref1.filename != NULL
925 && ref2.filename != NULL
926 && strcmp (ref1.filename, ref2.filename) == 0;
927 }
928
929 static void
930 mark_deleted (location_triplet &ref)
931 {
932 ref.lineno = -1;
933 }
934
935 static const bool empty_zero_p = false;
936
937 static void
938 mark_empty (location_triplet &ref)
939 {
940 ref.lineno = -2;
941 }
942
943 static bool
944 is_deleted (const location_triplet &ref)
945 {
946 return ref.lineno == -1;
947 }
948
949 static bool
950 is_empty (const location_triplet &ref)
951 {
952 return ref.lineno == -2;
953 }
954 };
955
956
957
958
959 /* When passed NULL as file_name, initialize.
960 When passed something else, output the necessary commands to change
961 line to LINE and offset to FILE_NAME. */
962 static void
963 output_location (hash_set<location_triplet_hash> *streamed_locations,
964 char const *file_name, int line,
965 gcov_position_t *offset, basic_block bb)
966 {
967 static char const *prev_file_name;
968 static int prev_line;
969 bool name_differs, line_differs;
970
971 location_triplet triplet;
972 triplet.filename = file_name;
973 triplet.lineno = line;
974 triplet.bb_index = bb ? bb->index : 0;
975
976 if (streamed_locations->add (triplet))
977 return;
978
979 if (!file_name)
980 {
981 prev_file_name = NULL;
982 prev_line = -1;
983 return;
984 }
985
986 name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
987 line_differs = prev_line != line;
988
989 if (!*offset)
990 {
991 *offset = gcov_write_tag (GCOV_TAG_LINES);
992 gcov_write_unsigned (bb->index);
993 name_differs = line_differs = true;
994 }
995
996 /* If this is a new source file, then output the
997 file's name to the .bb file. */
998 if (name_differs)
999 {
1000 prev_file_name = file_name;
1001 gcov_write_unsigned (0);
1002 gcov_write_filename (prev_file_name);
1003 }
1004 if (line_differs)
1005 {
1006 gcov_write_unsigned (line);
1007 prev_line = line;
1008 }
1009 }
1010
1011 /* Helper for qsort so edges get sorted from highest frequency to smallest.
1012 This controls the weight for minimal spanning tree algorithm */
1013 static int
1014 compare_freqs (const void *p1, const void *p2)
1015 {
1016 const_edge e1 = *(const const_edge *)p1;
1017 const_edge e2 = *(const const_edge *)p2;
1018
1019 /* Critical edges needs to be split which introduce extra control flow.
1020 Make them more heavy. */
1021 int m1 = EDGE_CRITICAL_P (e1) ? 2 : 1;
1022 int m2 = EDGE_CRITICAL_P (e2) ? 2 : 1;
1023
1024 if (EDGE_FREQUENCY (e1) * m1 + m1 != EDGE_FREQUENCY (e2) * m2 + m2)
1025 return EDGE_FREQUENCY (e2) * m2 + m2 - EDGE_FREQUENCY (e1) * m1 - m1;
1026 /* Stabilize sort. */
1027 if (e1->src->index != e2->src->index)
1028 return e2->src->index - e1->src->index;
1029 return e2->dest->index - e1->dest->index;
1030 }
1031
1032 /* Only read execution count for thunks. */
1033
1034 void
1035 read_thunk_profile (struct cgraph_node *node)
1036 {
1037 tree old = current_function_decl;
1038 current_function_decl = node->decl;
1039 gcov_type *counts = get_coverage_counts (GCOV_COUNTER_ARCS, 0, 0, 1);
1040 if (counts)
1041 {
1042 node->callees->count = node->count
1043 = profile_count::from_gcov_type (counts[0]);
1044 free (counts);
1045 }
1046 current_function_decl = old;
1047 return;
1048 }
1049
1050
1051 /* Instrument and/or analyze program behavior based on program the CFG.
1052
1053 This function creates a representation of the control flow graph (of
1054 the function being compiled) that is suitable for the instrumentation
1055 of edges and/or converting measured edge counts to counts on the
1056 complete CFG.
1057
1058 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
1059 the flow graph that are needed to reconstruct the dynamic behavior of the
1060 flow graph. This data is written to the gcno file for gcov.
1061
1062 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
1063 information from the gcda file containing edge count information from
1064 previous executions of the function being compiled. In this case, the
1065 control flow graph is annotated with actual execution counts by
1066 compute_branch_probabilities().
1067
1068 Main entry point of this file. */
1069
1070 void
1071 branch_prob (bool thunk)
1072 {
1073 basic_block bb;
1074 unsigned i;
1075 unsigned num_edges, ignored_edges;
1076 unsigned num_instrumented;
1077 struct edge_list *el;
1078 histogram_values values = histogram_values ();
1079 unsigned cfg_checksum, lineno_checksum;
1080
1081 total_num_times_called++;
1082
1083 flow_call_edges_add (NULL);
1084 add_noreturn_fake_exit_edges ();
1085
1086 hash_set <location_triplet_hash> streamed_locations;
1087
1088 if (!thunk)
1089 {
1090 /* We can't handle cyclic regions constructed using abnormal edges.
1091 To avoid these we replace every source of abnormal edge by a fake
1092 edge from entry node and every destination by fake edge to exit.
1093 This keeps graph acyclic and our calculation exact for all normal
1094 edges except for exit and entrance ones.
1095
1096 We also add fake exit edges for each call and asm statement in the
1097 basic, since it may not return. */
1098
1099 FOR_EACH_BB_FN (bb, cfun)
1100 {
1101 int need_exit_edge = 0, need_entry_edge = 0;
1102 int have_exit_edge = 0, have_entry_edge = 0;
1103 edge e;
1104 edge_iterator ei;
1105
1106 /* Functions returning multiple times are not handled by extra edges.
1107 Instead we simply allow negative counts on edges from exit to the
1108 block past call and corresponding probabilities. We can't go
1109 with the extra edges because that would result in flowgraph that
1110 needs to have fake edges outside the spanning tree. */
1111
1112 FOR_EACH_EDGE (e, ei, bb->succs)
1113 {
1114 gimple_stmt_iterator gsi;
1115 gimple *last = NULL;
1116
1117 /* It may happen that there are compiler generated statements
1118 without a locus at all. Go through the basic block from the
1119 last to the first statement looking for a locus. */
1120 for (gsi = gsi_last_nondebug_bb (bb);
1121 !gsi_end_p (gsi);
1122 gsi_prev_nondebug (&gsi))
1123 {
1124 last = gsi_stmt (gsi);
1125 if (!RESERVED_LOCATION_P (gimple_location (last)))
1126 break;
1127 }
1128
1129 /* Edge with goto locus might get wrong coverage info unless
1130 it is the only edge out of BB.
1131 Don't do that when the locuses match, so
1132 if (blah) goto something;
1133 is not computed twice. */
1134 if (last
1135 && gimple_has_location (last)
1136 && !RESERVED_LOCATION_P (e->goto_locus)
1137 && !single_succ_p (bb)
1138 && (LOCATION_FILE (e->goto_locus)
1139 != LOCATION_FILE (gimple_location (last))
1140 || (LOCATION_LINE (e->goto_locus)
1141 != LOCATION_LINE (gimple_location (last)))))
1142 {
1143 basic_block new_bb = split_edge (e);
1144 edge ne = single_succ_edge (new_bb);
1145 ne->goto_locus = e->goto_locus;
1146 }
1147 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1148 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1149 need_exit_edge = 1;
1150 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1151 have_exit_edge = 1;
1152 }
1153 FOR_EACH_EDGE (e, ei, bb->preds)
1154 {
1155 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1156 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1157 need_entry_edge = 1;
1158 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1159 have_entry_edge = 1;
1160 }
1161
1162 if (need_exit_edge && !have_exit_edge)
1163 {
1164 if (dump_file)
1165 fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1166 bb->index);
1167 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
1168 }
1169 if (need_entry_edge && !have_entry_edge)
1170 {
1171 if (dump_file)
1172 fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1173 bb->index);
1174 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE);
1175 /* Avoid bbs that have both fake entry edge and also some
1176 exit edge. One of those edges wouldn't be added to the
1177 spanning tree, but we can't instrument any of them. */
1178 if (have_exit_edge || need_exit_edge)
1179 {
1180 gimple_stmt_iterator gsi;
1181 gimple *first;
1182
1183 gsi = gsi_start_nondebug_after_labels_bb (bb);
1184 gcc_checking_assert (!gsi_end_p (gsi));
1185 first = gsi_stmt (gsi);
1186 /* Don't split the bbs containing __builtin_setjmp_receiver
1187 or ABNORMAL_DISPATCHER calls. These are very
1188 special and don't expect anything to be inserted before
1189 them. */
1190 if (is_gimple_call (first)
1191 && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER)
1192 || (gimple_call_flags (first) & ECF_RETURNS_TWICE)
1193 || (gimple_call_internal_p (first)
1194 && (gimple_call_internal_fn (first)
1195 == IFN_ABNORMAL_DISPATCHER))))
1196 continue;
1197
1198 if (dump_file)
1199 fprintf (dump_file, "Splitting bb %i after labels\n",
1200 bb->index);
1201 split_block_after_labels (bb);
1202 }
1203 }
1204 }
1205 }
1206
1207 el = create_edge_list ();
1208 num_edges = NUM_EDGES (el);
1209 qsort (el->index_to_edge, num_edges, sizeof (edge), compare_freqs);
1210 alloc_aux_for_edges (sizeof (struct edge_profile_info));
1211
1212 /* The basic blocks are expected to be numbered sequentially. */
1213 compact_blocks ();
1214
1215 ignored_edges = 0;
1216 for (i = 0 ; i < num_edges ; i++)
1217 {
1218 edge e = INDEX_EDGE (el, i);
1219
1220 /* Mark edges we've replaced by fake edges above as ignored. */
1221 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1222 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1223 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1224 {
1225 EDGE_INFO (e)->ignore = 1;
1226 ignored_edges++;
1227 }
1228 }
1229
1230 /* Create spanning tree from basic block graph, mark each edge that is
1231 on the spanning tree. We insert as many abnormal and critical edges
1232 as possible to minimize number of edge splits necessary. */
1233
1234 if (!thunk)
1235 find_spanning_tree (el);
1236 else
1237 {
1238 edge e;
1239 edge_iterator ei;
1240 /* Keep only edge from entry block to be instrumented. */
1241 FOR_EACH_BB_FN (bb, cfun)
1242 FOR_EACH_EDGE (e, ei, bb->succs)
1243 EDGE_INFO (e)->ignore = true;
1244 }
1245
1246
1247 /* Fake edges that are not on the tree will not be instrumented, so
1248 mark them ignored. */
1249 for (num_instrumented = i = 0; i < num_edges; i++)
1250 {
1251 edge e = INDEX_EDGE (el, i);
1252 struct edge_profile_info *inf = EDGE_INFO (e);
1253
1254 if (inf->ignore || inf->on_tree)
1255 /*NOP*/;
1256 else if (e->flags & EDGE_FAKE)
1257 {
1258 inf->ignore = 1;
1259 ignored_edges++;
1260 }
1261 else
1262 num_instrumented++;
1263 }
1264
1265 total_num_blocks += n_basic_blocks_for_fn (cfun);
1266 if (dump_file)
1267 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun));
1268
1269 total_num_edges += num_edges;
1270 if (dump_file)
1271 fprintf (dump_file, "%d edges\n", num_edges);
1272
1273 total_num_edges_ignored += ignored_edges;
1274 if (dump_file)
1275 fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1276
1277 total_num_edges_instrumented += num_instrumented;
1278 if (dump_file)
1279 fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1280
1281 /* Compute two different checksums. Note that we want to compute
1282 the checksum in only once place, since it depends on the shape
1283 of the control flow which can change during
1284 various transformations. */
1285 if (thunk)
1286 {
1287 /* At stream in time we do not have CFG, so we cannot do checksums. */
1288 cfg_checksum = 0;
1289 lineno_checksum = 0;
1290 }
1291 else
1292 {
1293 cfg_checksum = coverage_compute_cfg_checksum (cfun);
1294 lineno_checksum = coverage_compute_lineno_checksum ();
1295 }
1296
1297 /* Write the data from which gcov can reconstruct the basic block
1298 graph and function line numbers (the gcno file). */
1299 if (coverage_begin_function (lineno_checksum, cfg_checksum))
1300 {
1301 gcov_position_t offset;
1302
1303 /* Basic block flags */
1304 offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1305 gcov_write_unsigned (n_basic_blocks_for_fn (cfun));
1306 gcov_write_length (offset);
1307
1308 /* Arcs */
1309 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1310 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1311 {
1312 edge e;
1313 edge_iterator ei;
1314
1315 offset = gcov_write_tag (GCOV_TAG_ARCS);
1316 gcov_write_unsigned (bb->index);
1317
1318 FOR_EACH_EDGE (e, ei, bb->succs)
1319 {
1320 struct edge_profile_info *i = EDGE_INFO (e);
1321 if (!i->ignore)
1322 {
1323 unsigned flag_bits = 0;
1324
1325 if (i->on_tree)
1326 flag_bits |= GCOV_ARC_ON_TREE;
1327 if (e->flags & EDGE_FAKE)
1328 flag_bits |= GCOV_ARC_FAKE;
1329 if (e->flags & EDGE_FALLTHRU)
1330 flag_bits |= GCOV_ARC_FALLTHROUGH;
1331 /* On trees we don't have fallthru flags, but we can
1332 recompute them from CFG shape. */
1333 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1334 && e->src->next_bb == e->dest)
1335 flag_bits |= GCOV_ARC_FALLTHROUGH;
1336
1337 gcov_write_unsigned (e->dest->index);
1338 gcov_write_unsigned (flag_bits);
1339 }
1340 }
1341
1342 gcov_write_length (offset);
1343 }
1344
1345 /* Line numbers. */
1346 /* Initialize the output. */
1347 output_location (&streamed_locations, NULL, 0, NULL, NULL);
1348
1349 hash_set<int_hash <location_t, 0, 2> > seen_locations;
1350
1351 FOR_EACH_BB_FN (bb, cfun)
1352 {
1353 gimple_stmt_iterator gsi;
1354 gcov_position_t offset = 0;
1355
1356 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
1357 {
1358 location_t loc = DECL_SOURCE_LOCATION (current_function_decl);
1359 seen_locations.add (loc);
1360 expanded_location curr_location = expand_location (loc);
1361 output_location (&streamed_locations, curr_location.file,
1362 curr_location.line, &offset, bb);
1363 }
1364
1365 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1366 {
1367 gimple *stmt = gsi_stmt (gsi);
1368 location_t loc = gimple_location (stmt);
1369 if (!RESERVED_LOCATION_P (loc))
1370 {
1371 seen_locations.add (loc);
1372 output_location (&streamed_locations, gimple_filename (stmt),
1373 gimple_lineno (stmt), &offset, bb);
1374 }
1375 }
1376
1377 /* Notice GOTO expressions eliminated while constructing the CFG.
1378 It's hard to distinguish such expression, but goto_locus should
1379 not be any of already seen location. */
1380 location_t loc;
1381 if (single_succ_p (bb)
1382 && (loc = single_succ_edge (bb)->goto_locus)
1383 && !RESERVED_LOCATION_P (loc)
1384 && !seen_locations.contains (loc))
1385 {
1386 expanded_location curr_location = expand_location (loc);
1387 output_location (&streamed_locations, curr_location.file,
1388 curr_location.line, &offset, bb);
1389 }
1390
1391 if (offset)
1392 {
1393 /* A file of NULL indicates the end of run. */
1394 gcov_write_unsigned (0);
1395 gcov_write_string (NULL);
1396 gcov_write_length (offset);
1397 }
1398 }
1399 }
1400
1401 if (flag_profile_values)
1402 gimple_find_values_to_profile (&values);
1403
1404 if (flag_branch_probabilities)
1405 {
1406 compute_branch_probabilities (cfg_checksum, lineno_checksum);
1407 if (flag_profile_values)
1408 compute_value_histograms (values, cfg_checksum, lineno_checksum);
1409 }
1410
1411 remove_fake_edges ();
1412
1413 /* For each edge not on the spanning tree, add counting code. */
1414 if (profile_arc_flag
1415 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1416 {
1417 unsigned n_instrumented;
1418
1419 gimple_init_gcov_profiler ();
1420
1421 n_instrumented = instrument_edges (el);
1422
1423 gcc_assert (n_instrumented == num_instrumented);
1424
1425 if (flag_profile_values)
1426 instrument_values (values);
1427
1428 /* Commit changes done by instrumentation. */
1429 gsi_commit_edge_inserts ();
1430 }
1431
1432 free_aux_for_edges ();
1433
1434 values.release ();
1435 free_edge_list (el);
1436 coverage_end_function (lineno_checksum, cfg_checksum);
1437 if (flag_branch_probabilities
1438 && (profile_status_for_fn (cfun) == PROFILE_READ))
1439 {
1440 class loop *loop;
1441 if (dump_file && (dump_flags & TDF_DETAILS))
1442 report_predictor_hitrates ();
1443
1444 /* At this moment we have precise loop iteration count estimates.
1445 Record them to loop structure before the profile gets out of date. */
1446 FOR_EACH_LOOP (loop, 0)
1447 if (loop->header->count > 0 && loop->header->count.reliable_p ())
1448 {
1449 gcov_type nit = expected_loop_iterations_unbounded (loop);
1450 widest_int bound = gcov_type_to_wide_int (nit);
1451 loop->any_estimate = false;
1452 record_niter_bound (loop, bound, true, false);
1453 }
1454 compute_function_frequency ();
1455 }
1456 }
1457 \f
1458 /* Union find algorithm implementation for the basic blocks using
1459 aux fields. */
1460
1461 static basic_block
1462 find_group (basic_block bb)
1463 {
1464 basic_block group = bb, bb1;
1465
1466 while ((basic_block) group->aux != group)
1467 group = (basic_block) group->aux;
1468
1469 /* Compress path. */
1470 while ((basic_block) bb->aux != group)
1471 {
1472 bb1 = (basic_block) bb->aux;
1473 bb->aux = (void *) group;
1474 bb = bb1;
1475 }
1476 return group;
1477 }
1478
1479 static void
1480 union_groups (basic_block bb1, basic_block bb2)
1481 {
1482 basic_block bb1g = find_group (bb1);
1483 basic_block bb2g = find_group (bb2);
1484
1485 /* ??? I don't have a place for the rank field. OK. Lets go w/o it,
1486 this code is unlikely going to be performance problem anyway. */
1487 gcc_assert (bb1g != bb2g);
1488
1489 bb1g->aux = bb2g;
1490 }
1491 \f
1492 /* This function searches all of the edges in the program flow graph, and puts
1493 as many bad edges as possible onto the spanning tree. Bad edges include
1494 abnormals edges, which can't be instrumented at the moment. Since it is
1495 possible for fake edges to form a cycle, we will have to develop some
1496 better way in the future. Also put critical edges to the tree, since they
1497 are more expensive to instrument. */
1498
1499 static void
1500 find_spanning_tree (struct edge_list *el)
1501 {
1502 int i;
1503 int num_edges = NUM_EDGES (el);
1504 basic_block bb;
1505
1506 /* We use aux field for standard union-find algorithm. */
1507 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
1508 bb->aux = bb;
1509
1510 /* Add fake edge exit to entry we can't instrument. */
1511 union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun));
1512
1513 /* First add all abnormal edges to the tree unless they form a cycle. Also
1514 add all edges to the exit block to avoid inserting profiling code behind
1515 setting return value from function. */
1516 for (i = 0; i < num_edges; i++)
1517 {
1518 edge e = INDEX_EDGE (el, i);
1519 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1520 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1521 && !EDGE_INFO (e)->ignore
1522 && (find_group (e->src) != find_group (e->dest)))
1523 {
1524 if (dump_file)
1525 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1526 e->src->index, e->dest->index);
1527 EDGE_INFO (e)->on_tree = 1;
1528 union_groups (e->src, e->dest);
1529 }
1530 }
1531
1532 /* And now the rest. Edge list is sorted according to frequencies and
1533 thus we will produce minimal spanning tree. */
1534 for (i = 0; i < num_edges; i++)
1535 {
1536 edge e = INDEX_EDGE (el, i);
1537 if (!EDGE_INFO (e)->ignore
1538 && find_group (e->src) != find_group (e->dest))
1539 {
1540 if (dump_file)
1541 fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1542 e->src->index, e->dest->index);
1543 EDGE_INFO (e)->on_tree = 1;
1544 union_groups (e->src, e->dest);
1545 }
1546 }
1547
1548 clear_aux_for_blocks ();
1549 }
1550 \f
1551 /* Perform file-level initialization for branch-prob processing. */
1552
1553 void
1554 init_branch_prob (void)
1555 {
1556 int i;
1557
1558 total_num_blocks = 0;
1559 total_num_edges = 0;
1560 total_num_edges_ignored = 0;
1561 total_num_edges_instrumented = 0;
1562 total_num_blocks_created = 0;
1563 total_num_passes = 0;
1564 total_num_times_called = 0;
1565 total_num_branches = 0;
1566 for (i = 0; i < 20; i++)
1567 total_hist_br_prob[i] = 0;
1568 }
1569
1570 /* Performs file-level cleanup after branch-prob processing
1571 is completed. */
1572
1573 void
1574 end_branch_prob (void)
1575 {
1576 if (dump_file)
1577 {
1578 fprintf (dump_file, "\n");
1579 fprintf (dump_file, "Total number of blocks: %d\n",
1580 total_num_blocks);
1581 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1582 fprintf (dump_file, "Total number of ignored edges: %d\n",
1583 total_num_edges_ignored);
1584 fprintf (dump_file, "Total number of instrumented edges: %d\n",
1585 total_num_edges_instrumented);
1586 fprintf (dump_file, "Total number of blocks created: %d\n",
1587 total_num_blocks_created);
1588 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1589 total_num_passes);
1590 if (total_num_times_called != 0)
1591 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1592 (total_num_passes + (total_num_times_called >> 1))
1593 / total_num_times_called);
1594 fprintf (dump_file, "Total number of branches: %d\n",
1595 total_num_branches);
1596 if (total_num_branches)
1597 {
1598 int i;
1599
1600 for (i = 0; i < 10; i++)
1601 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1602 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1603 / total_num_branches, 5*i, 5*i+5);
1604 }
1605 }
1606 }