value-prof.c (gimple_ic): Use stmt_ends_bb_p to detect the case we need to split...
[gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
6 based on some ideas from Dain Samples of UC Berkeley.
7 Further mangling by Bob Manson, Cygnus Support.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* Generate basic block profile instrumentation and auxiliary files.
26 Profile generation is optimized, so that not all arcs in the basic
27 block graph need instrumenting. First, the BB graph is closed with
28 one entry (function start), and one exit (function exit). Any
29 ABNORMAL_EDGE cannot be instrumented (because there is no control
30 path to place the code). We close the graph by inserting fake
31 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
32 edges that do not go to the exit_block. We ignore such abnormal
33 edges. Naturally these fake edges are never directly traversed,
34 and so *cannot* be directly instrumented. Some other graph
35 massaging is done. To optimize the instrumentation we generate the
36 BB minimal span tree, only edges that are not on the span tree
37 (plus the entry point) need instrumenting. From that information
38 all other edge counts can be deduced. By construction all fake
39 edges must be on the spanning tree. We also attempt to place
40 EDGE_CRITICAL edges on the spanning tree.
41
42 The auxiliary files generated are <dumpbase>.gcno (at compile time)
43 and <dumpbase>.gcda (at run time). The format is
44 described in full in gcov-io.h. */
45
46 /* ??? Register allocation should use basic block execution counts to
47 give preference to the most commonly executed blocks. */
48
49 /* ??? Should calculate branch probabilities before instrumenting code, since
50 then we can use arc counts to help decide which arcs to instrument. */
51
52 #include "config.h"
53 #include "system.h"
54 #include "coretypes.h"
55 #include "tm.h"
56 #include "rtl.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "regs.h"
60 #include "expr.h"
61 #include "function.h"
62 #include "basic-block.h"
63 #include "diagnostic-core.h"
64 #include "coverage.h"
65 #include "value-prof.h"
66 #include "tree.h"
67 #include "cfghooks.h"
68 #include "tree-flow.h"
69 #include "timevar.h"
70 #include "cfgloop.h"
71 #include "tree-pass.h"
72
73 #include "profile.h"
74
75 /* Hooks for profiling. */
76 static struct profile_hooks* profile_hooks;
77
78 struct bb_info {
79 unsigned int count_valid : 1;
80
81 /* Number of successor and predecessor edges. */
82 gcov_type succ_count;
83 gcov_type pred_count;
84 };
85
86 #define BB_INFO(b) ((struct bb_info *) (b)->aux)
87
88
89 /* Counter summary from the last set of coverage counts read. */
90
91 const struct gcov_ctr_summary *profile_info;
92
93 /* Collect statistics on the performance of this pass for the entire source
94 file. */
95
96 static int total_num_blocks;
97 static int total_num_edges;
98 static int total_num_edges_ignored;
99 static int total_num_edges_instrumented;
100 static int total_num_blocks_created;
101 static int total_num_passes;
102 static int total_num_times_called;
103 static int total_hist_br_prob[20];
104 static int total_num_branches;
105
106 /* Forward declarations. */
107 static void find_spanning_tree (struct edge_list *);
108 static unsigned instrument_edges (struct edge_list *);
109 static void instrument_values (histogram_values);
110 static void compute_branch_probabilities (void);
111 static void compute_value_histograms (histogram_values);
112 static gcov_type * get_exec_counts (void);
113 static basic_block find_group (basic_block);
114 static void union_groups (basic_block, basic_block);
115
116 /* Add edge instrumentation code to the entire insn chain.
117
118 F is the first insn of the chain.
119 NUM_BLOCKS is the number of basic blocks found in F. */
120
121 static unsigned
122 instrument_edges (struct edge_list *el)
123 {
124 unsigned num_instr_edges = 0;
125 int num_edges = NUM_EDGES (el);
126 basic_block bb;
127
128 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
129 {
130 edge e;
131 edge_iterator ei;
132
133 FOR_EACH_EDGE (e, ei, bb->succs)
134 {
135 struct edge_info *inf = EDGE_INFO (e);
136
137 if (!inf->ignore && !inf->on_tree)
138 {
139 gcc_assert (!(e->flags & EDGE_ABNORMAL));
140 if (dump_file)
141 fprintf (dump_file, "Edge %d to %d instrumented%s\n",
142 e->src->index, e->dest->index,
143 EDGE_CRITICAL_P (e) ? " (and split)" : "");
144 (profile_hooks->gen_edge_profiler) (num_instr_edges++, e);
145 }
146 }
147 }
148
149 total_num_blocks_created += num_edges;
150 if (dump_file)
151 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
152 return num_instr_edges;
153 }
154
155 /* Add code to measure histograms for values in list VALUES. */
156 static void
157 instrument_values (histogram_values values)
158 {
159 unsigned i, t;
160
161 /* Emit code to generate the histograms before the insns. */
162
163 for (i = 0; i < VEC_length (histogram_value, values); i++)
164 {
165 histogram_value hist = VEC_index (histogram_value, values, i);
166 switch (hist->type)
167 {
168 case HIST_TYPE_INTERVAL:
169 t = GCOV_COUNTER_V_INTERVAL;
170 break;
171
172 case HIST_TYPE_POW2:
173 t = GCOV_COUNTER_V_POW2;
174 break;
175
176 case HIST_TYPE_SINGLE_VALUE:
177 t = GCOV_COUNTER_V_SINGLE;
178 break;
179
180 case HIST_TYPE_CONST_DELTA:
181 t = GCOV_COUNTER_V_DELTA;
182 break;
183
184 case HIST_TYPE_INDIR_CALL:
185 t = GCOV_COUNTER_V_INDIR;
186 break;
187
188 case HIST_TYPE_AVERAGE:
189 t = GCOV_COUNTER_AVERAGE;
190 break;
191
192 case HIST_TYPE_IOR:
193 t = GCOV_COUNTER_IOR;
194 break;
195
196 default:
197 gcc_unreachable ();
198 }
199 if (!coverage_counter_alloc (t, hist->n_counters))
200 continue;
201
202 switch (hist->type)
203 {
204 case HIST_TYPE_INTERVAL:
205 (profile_hooks->gen_interval_profiler) (hist, t, 0);
206 break;
207
208 case HIST_TYPE_POW2:
209 (profile_hooks->gen_pow2_profiler) (hist, t, 0);
210 break;
211
212 case HIST_TYPE_SINGLE_VALUE:
213 (profile_hooks->gen_one_value_profiler) (hist, t, 0);
214 break;
215
216 case HIST_TYPE_CONST_DELTA:
217 (profile_hooks->gen_const_delta_profiler) (hist, t, 0);
218 break;
219
220 case HIST_TYPE_INDIR_CALL:
221 (profile_hooks->gen_ic_profiler) (hist, t, 0);
222 break;
223
224 case HIST_TYPE_AVERAGE:
225 (profile_hooks->gen_average_profiler) (hist, t, 0);
226 break;
227
228 case HIST_TYPE_IOR:
229 (profile_hooks->gen_ior_profiler) (hist, t, 0);
230 break;
231
232 default:
233 gcc_unreachable ();
234 }
235 }
236 }
237 \f
238
239 /* Computes hybrid profile for all matching entries in da_file. */
240
241 static gcov_type *
242 get_exec_counts (void)
243 {
244 unsigned num_edges = 0;
245 basic_block bb;
246 gcov_type *counts;
247
248 /* Count the edges to be (possibly) instrumented. */
249 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
250 {
251 edge e;
252 edge_iterator ei;
253
254 FOR_EACH_EDGE (e, ei, bb->succs)
255 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
256 num_edges++;
257 }
258
259 counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, &profile_info);
260 if (!counts)
261 return NULL;
262
263 if (dump_file && profile_info)
264 fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
265 profile_info->runs, (unsigned) profile_info->sum_max);
266
267 return counts;
268 }
269
270
271 static bool
272 is_edge_inconsistent (VEC(edge,gc) *edges)
273 {
274 edge e;
275 edge_iterator ei;
276 FOR_EACH_EDGE (e, ei, edges)
277 {
278 if (!EDGE_INFO (e)->ignore)
279 {
280 if (e->count < 0
281 && (!(e->flags & EDGE_FAKE)
282 || !block_ends_with_call_p (e->src)))
283 {
284 if (dump_file)
285 {
286 fprintf (dump_file,
287 "Edge %i->%i is inconsistent, count"HOST_WIDEST_INT_PRINT_DEC,
288 e->src->index, e->dest->index, e->count);
289 dump_bb (e->src, dump_file, 0);
290 dump_bb (e->dest, dump_file, 0);
291 }
292 return true;
293 }
294 }
295 }
296 return false;
297 }
298
299 static void
300 correct_negative_edge_counts (void)
301 {
302 basic_block bb;
303 edge e;
304 edge_iterator ei;
305
306 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
307 {
308 FOR_EACH_EDGE (e, ei, bb->succs)
309 {
310 if (e->count < 0)
311 e->count = 0;
312 }
313 }
314 }
315
316 /* Check consistency.
317 Return true if inconsistency is found. */
318 static bool
319 is_inconsistent (void)
320 {
321 basic_block bb;
322 bool inconsistent = false;
323 FOR_EACH_BB (bb)
324 {
325 inconsistent |= is_edge_inconsistent (bb->preds);
326 if (!dump_file && inconsistent)
327 return true;
328 inconsistent |= is_edge_inconsistent (bb->succs);
329 if (!dump_file && inconsistent)
330 return true;
331 if (bb->count < 0)
332 {
333 if (dump_file)
334 {
335 fprintf (dump_file, "BB %i count is negative "
336 HOST_WIDEST_INT_PRINT_DEC,
337 bb->index,
338 bb->count);
339 dump_bb (bb, dump_file, 0);
340 }
341 inconsistent = true;
342 }
343 if (bb->count != sum_edge_counts (bb->preds))
344 {
345 if (dump_file)
346 {
347 fprintf (dump_file, "BB %i count does not match sum of incoming edges "
348 HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
349 bb->index,
350 bb->count,
351 sum_edge_counts (bb->preds));
352 dump_bb (bb, dump_file, 0);
353 }
354 inconsistent = true;
355 }
356 if (bb->count != sum_edge_counts (bb->succs) &&
357 ! (find_edge (bb, EXIT_BLOCK_PTR) != NULL && block_ends_with_call_p (bb)))
358 {
359 if (dump_file)
360 {
361 fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
362 HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
363 bb->index,
364 bb->count,
365 sum_edge_counts (bb->succs));
366 dump_bb (bb, dump_file, 0);
367 }
368 inconsistent = true;
369 }
370 if (!dump_file && inconsistent)
371 return true;
372 }
373
374 return inconsistent;
375 }
376
377 /* Set each basic block count to the sum of its outgoing edge counts */
378 static void
379 set_bb_counts (void)
380 {
381 basic_block bb;
382 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
383 {
384 bb->count = sum_edge_counts (bb->succs);
385 gcc_assert (bb->count >= 0);
386 }
387 }
388
389 /* Reads profile data and returns total number of edge counts read */
390 static int
391 read_profile_edge_counts (gcov_type *exec_counts)
392 {
393 basic_block bb;
394 int num_edges = 0;
395 int exec_counts_pos = 0;
396 /* For each edge not on the spanning tree, set its execution count from
397 the .da file. */
398 /* The first count in the .da file is the number of times that the function
399 was entered. This is the exec_count for block zero. */
400
401 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
402 {
403 edge e;
404 edge_iterator ei;
405
406 FOR_EACH_EDGE (e, ei, bb->succs)
407 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
408 {
409 num_edges++;
410 if (exec_counts)
411 {
412 e->count = exec_counts[exec_counts_pos++];
413 if (e->count > profile_info->sum_max)
414 {
415 error ("corrupted profile info: edge from %i to %i exceeds maximal count",
416 bb->index, e->dest->index);
417 }
418 }
419 else
420 e->count = 0;
421
422 EDGE_INFO (e)->count_valid = 1;
423 BB_INFO (bb)->succ_count--;
424 BB_INFO (e->dest)->pred_count--;
425 if (dump_file)
426 {
427 fprintf (dump_file, "\nRead edge from %i to %i, count:",
428 bb->index, e->dest->index);
429 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
430 (HOST_WIDEST_INT) e->count);
431 }
432 }
433 }
434
435 return num_edges;
436 }
437
438 /* Compute the branch probabilities for the various branches.
439 Annotate them accordingly. */
440
441 static void
442 compute_branch_probabilities (void)
443 {
444 basic_block bb;
445 int i;
446 int num_edges = 0;
447 int changes;
448 int passes;
449 int hist_br_prob[20];
450 int num_branches;
451 gcov_type *exec_counts = get_exec_counts ();
452 int inconsistent = 0;
453
454 /* Very simple sanity checks so we catch bugs in our profiling code. */
455 if (!profile_info)
456 return;
457 if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
458 {
459 error ("corrupted profile info: run_max * runs < sum_max");
460 exec_counts = NULL;
461 }
462
463 if (profile_info->sum_all < profile_info->sum_max)
464 {
465 error ("corrupted profile info: sum_all is smaller than sum_max");
466 exec_counts = NULL;
467 }
468
469 /* Attach extra info block to each bb. */
470 alloc_aux_for_blocks (sizeof (struct bb_info));
471 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
472 {
473 edge e;
474 edge_iterator ei;
475
476 FOR_EACH_EDGE (e, ei, bb->succs)
477 if (!EDGE_INFO (e)->ignore)
478 BB_INFO (bb)->succ_count++;
479 FOR_EACH_EDGE (e, ei, bb->preds)
480 if (!EDGE_INFO (e)->ignore)
481 BB_INFO (bb)->pred_count++;
482 }
483
484 /* Avoid predicting entry on exit nodes. */
485 BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
486 BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
487
488 num_edges = read_profile_edge_counts (exec_counts);
489
490 if (dump_file)
491 fprintf (dump_file, "\n%d edge counts read\n", num_edges);
492
493 /* For every block in the file,
494 - if every exit/entrance edge has a known count, then set the block count
495 - if the block count is known, and every exit/entrance edge but one has
496 a known execution count, then set the count of the remaining edge
497
498 As edge counts are set, decrement the succ/pred count, but don't delete
499 the edge, that way we can easily tell when all edges are known, or only
500 one edge is unknown. */
501
502 /* The order that the basic blocks are iterated through is important.
503 Since the code that finds spanning trees starts with block 0, low numbered
504 edges are put on the spanning tree in preference to high numbered edges.
505 Hence, most instrumented edges are at the end. Graph solving works much
506 faster if we propagate numbers from the end to the start.
507
508 This takes an average of slightly more than 3 passes. */
509
510 changes = 1;
511 passes = 0;
512 while (changes)
513 {
514 passes++;
515 changes = 0;
516 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
517 {
518 struct bb_info *bi = BB_INFO (bb);
519 if (! bi->count_valid)
520 {
521 if (bi->succ_count == 0)
522 {
523 edge e;
524 edge_iterator ei;
525 gcov_type total = 0;
526
527 FOR_EACH_EDGE (e, ei, bb->succs)
528 total += e->count;
529 bb->count = total;
530 bi->count_valid = 1;
531 changes = 1;
532 }
533 else if (bi->pred_count == 0)
534 {
535 edge e;
536 edge_iterator ei;
537 gcov_type total = 0;
538
539 FOR_EACH_EDGE (e, ei, bb->preds)
540 total += e->count;
541 bb->count = total;
542 bi->count_valid = 1;
543 changes = 1;
544 }
545 }
546 if (bi->count_valid)
547 {
548 if (bi->succ_count == 1)
549 {
550 edge e;
551 edge_iterator ei;
552 gcov_type total = 0;
553
554 /* One of the counts will be invalid, but it is zero,
555 so adding it in also doesn't hurt. */
556 FOR_EACH_EDGE (e, ei, bb->succs)
557 total += e->count;
558
559 /* Search for the invalid edge, and set its count. */
560 FOR_EACH_EDGE (e, ei, bb->succs)
561 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
562 break;
563
564 /* Calculate count for remaining edge by conservation. */
565 total = bb->count - total;
566
567 gcc_assert (e);
568 EDGE_INFO (e)->count_valid = 1;
569 e->count = total;
570 bi->succ_count--;
571
572 BB_INFO (e->dest)->pred_count--;
573 changes = 1;
574 }
575 if (bi->pred_count == 1)
576 {
577 edge e;
578 edge_iterator ei;
579 gcov_type total = 0;
580
581 /* One of the counts will be invalid, but it is zero,
582 so adding it in also doesn't hurt. */
583 FOR_EACH_EDGE (e, ei, bb->preds)
584 total += e->count;
585
586 /* Search for the invalid edge, and set its count. */
587 FOR_EACH_EDGE (e, ei, bb->preds)
588 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
589 break;
590
591 /* Calculate count for remaining edge by conservation. */
592 total = bb->count - total + e->count;
593
594 gcc_assert (e);
595 EDGE_INFO (e)->count_valid = 1;
596 e->count = total;
597 bi->pred_count--;
598
599 BB_INFO (e->src)->succ_count--;
600 changes = 1;
601 }
602 }
603 }
604 }
605 if (dump_file)
606 dump_flow_info (dump_file, dump_flags);
607
608 total_num_passes += passes;
609 if (dump_file)
610 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
611
612 /* If the graph has been correctly solved, every block will have a
613 succ and pred count of zero. */
614 FOR_EACH_BB (bb)
615 {
616 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
617 }
618
619 /* Check for inconsistent basic block counts */
620 inconsistent = is_inconsistent ();
621
622 if (inconsistent)
623 {
624 if (flag_profile_correction)
625 {
626 /* Inconsistency detected. Make it flow-consistent. */
627 static int informed = 0;
628 if (informed == 0)
629 {
630 informed = 1;
631 inform (input_location, "correcting inconsistent profile data");
632 }
633 correct_negative_edge_counts ();
634 /* Set bb counts to the sum of the outgoing edge counts */
635 set_bb_counts ();
636 if (dump_file)
637 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
638 mcf_smooth_cfg ();
639 }
640 else
641 error ("corrupted profile info: profile data is not flow-consistent");
642 }
643
644 /* For every edge, calculate its branch probability and add a reg_note
645 to the branch insn to indicate this. */
646
647 for (i = 0; i < 20; i++)
648 hist_br_prob[i] = 0;
649 num_branches = 0;
650
651 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
652 {
653 edge e;
654 edge_iterator ei;
655
656 if (bb->count < 0)
657 {
658 error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
659 bb->index, (int)bb->count);
660 bb->count = 0;
661 }
662 FOR_EACH_EDGE (e, ei, bb->succs)
663 {
664 /* Function may return twice in the cased the called function is
665 setjmp or calls fork, but we can't represent this by extra
666 edge from the entry, since extra edge from the exit is
667 already present. We get negative frequency from the entry
668 point. */
669 if ((e->count < 0
670 && e->dest == EXIT_BLOCK_PTR)
671 || (e->count > bb->count
672 && e->dest != EXIT_BLOCK_PTR))
673 {
674 if (block_ends_with_call_p (bb))
675 e->count = e->count < 0 ? 0 : bb->count;
676 }
677 if (e->count < 0 || e->count > bb->count)
678 {
679 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
680 e->src->index, e->dest->index,
681 (int)e->count);
682 e->count = bb->count / 2;
683 }
684 }
685 if (bb->count)
686 {
687 FOR_EACH_EDGE (e, ei, bb->succs)
688 e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
689 if (bb->index >= NUM_FIXED_BLOCKS
690 && block_ends_with_condjump_p (bb)
691 && EDGE_COUNT (bb->succs) >= 2)
692 {
693 int prob;
694 edge e;
695 int index;
696
697 /* Find the branch edge. It is possible that we do have fake
698 edges here. */
699 FOR_EACH_EDGE (e, ei, bb->succs)
700 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
701 break;
702
703 prob = e->probability;
704 index = prob * 20 / REG_BR_PROB_BASE;
705
706 if (index == 20)
707 index = 19;
708 hist_br_prob[index]++;
709
710 num_branches++;
711 }
712 }
713 /* As a last resort, distribute the probabilities evenly.
714 Use simple heuristics that if there are normal edges,
715 give all abnormals frequency of 0, otherwise distribute the
716 frequency over abnormals (this is the case of noreturn
717 calls). */
718 else if (profile_status == PROFILE_ABSENT)
719 {
720 int total = 0;
721
722 FOR_EACH_EDGE (e, ei, bb->succs)
723 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
724 total ++;
725 if (total)
726 {
727 FOR_EACH_EDGE (e, ei, bb->succs)
728 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
729 e->probability = REG_BR_PROB_BASE / total;
730 else
731 e->probability = 0;
732 }
733 else
734 {
735 total += EDGE_COUNT (bb->succs);
736 FOR_EACH_EDGE (e, ei, bb->succs)
737 e->probability = REG_BR_PROB_BASE / total;
738 }
739 if (bb->index >= NUM_FIXED_BLOCKS
740 && block_ends_with_condjump_p (bb)
741 && EDGE_COUNT (bb->succs) >= 2)
742 num_branches++;
743 }
744 }
745 counts_to_freqs ();
746 profile_status = PROFILE_READ;
747
748 if (dump_file)
749 {
750 fprintf (dump_file, "%d branches\n", num_branches);
751 if (num_branches)
752 for (i = 0; i < 10; i++)
753 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
754 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
755 5 * i, 5 * i + 5);
756
757 total_num_branches += num_branches;
758 for (i = 0; i < 20; i++)
759 total_hist_br_prob[i] += hist_br_prob[i];
760
761 fputc ('\n', dump_file);
762 fputc ('\n', dump_file);
763 }
764
765 free_aux_for_blocks ();
766 }
767
768 /* Load value histograms values whose description is stored in VALUES array
769 from .gcda file. */
770
771 static void
772 compute_value_histograms (histogram_values values)
773 {
774 unsigned i, j, t, any;
775 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
776 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
777 gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
778 gcov_type *aact_count;
779
780 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
781 n_histogram_counters[t] = 0;
782
783 for (i = 0; i < VEC_length (histogram_value, values); i++)
784 {
785 histogram_value hist = VEC_index (histogram_value, values, i);
786 n_histogram_counters[(int) hist->type] += hist->n_counters;
787 }
788
789 any = 0;
790 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
791 {
792 if (!n_histogram_counters[t])
793 {
794 histogram_counts[t] = NULL;
795 continue;
796 }
797
798 histogram_counts[t] =
799 get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
800 n_histogram_counters[t], NULL);
801 if (histogram_counts[t])
802 any = 1;
803 act_count[t] = histogram_counts[t];
804 }
805 if (!any)
806 return;
807
808 for (i = 0; i < VEC_length (histogram_value, values); i++)
809 {
810 histogram_value hist = VEC_index (histogram_value, values, i);
811 gimple stmt = hist->hvalue.stmt;
812
813 t = (int) hist->type;
814
815 aact_count = act_count[t];
816 act_count[t] += hist->n_counters;
817
818 gimple_add_histogram_value (cfun, stmt, hist);
819 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
820 for (j = 0; j < hist->n_counters; j++)
821 hist->hvalue.counters[j] = aact_count[j];
822 }
823
824 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
825 if (histogram_counts[t])
826 free (histogram_counts[t]);
827 }
828
829 /* The entry basic block will be moved around so that it has index=1,
830 there is nothing at index 0 and the exit is at n_basic_block. */
831 #define BB_TO_GCOV_INDEX(bb) ((bb)->index - 1)
832 /* When passed NULL as file_name, initialize.
833 When passed something else, output the necessary commands to change
834 line to LINE and offset to FILE_NAME. */
835 static void
836 output_location (char const *file_name, int line,
837 gcov_position_t *offset, basic_block bb)
838 {
839 static char const *prev_file_name;
840 static int prev_line;
841 bool name_differs, line_differs;
842
843 if (!file_name)
844 {
845 prev_file_name = NULL;
846 prev_line = -1;
847 return;
848 }
849
850 name_differs = !prev_file_name || strcmp (file_name, prev_file_name);
851 line_differs = prev_line != line;
852
853 if (name_differs || line_differs)
854 {
855 if (!*offset)
856 {
857 *offset = gcov_write_tag (GCOV_TAG_LINES);
858 gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
859 name_differs = line_differs=true;
860 }
861
862 /* If this is a new source file, then output the
863 file's name to the .bb file. */
864 if (name_differs)
865 {
866 prev_file_name = file_name;
867 gcov_write_unsigned (0);
868 gcov_write_string (prev_file_name);
869 }
870 if (line_differs)
871 {
872 gcov_write_unsigned (line);
873 prev_line = line;
874 }
875 }
876 }
877
878 /* Instrument and/or analyze program behavior based on program flow graph.
879 In either case, this function builds a flow graph for the function being
880 compiled. The flow graph is stored in BB_GRAPH.
881
882 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
883 the flow graph that are needed to reconstruct the dynamic behavior of the
884 flow graph.
885
886 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
887 information from a data file containing edge count information from previous
888 executions of the function being compiled. In this case, the flow graph is
889 annotated with actual execution counts, which are later propagated into the
890 rtl for optimization purposes.
891
892 Main entry point of this file. */
893
894 void
895 branch_prob (void)
896 {
897 basic_block bb;
898 unsigned i;
899 unsigned num_edges, ignored_edges;
900 unsigned num_instrumented;
901 struct edge_list *el;
902 histogram_values values = NULL;
903
904 total_num_times_called++;
905
906 flow_call_edges_add (NULL);
907 add_noreturn_fake_exit_edges ();
908
909 /* We can't handle cyclic regions constructed using abnormal edges.
910 To avoid these we replace every source of abnormal edge by a fake
911 edge from entry node and every destination by fake edge to exit.
912 This keeps graph acyclic and our calculation exact for all normal
913 edges except for exit and entrance ones.
914
915 We also add fake exit edges for each call and asm statement in the
916 basic, since it may not return. */
917
918 FOR_EACH_BB (bb)
919 {
920 int need_exit_edge = 0, need_entry_edge = 0;
921 int have_exit_edge = 0, have_entry_edge = 0;
922 edge e;
923 edge_iterator ei;
924
925 /* Functions returning multiple times are not handled by extra edges.
926 Instead we simply allow negative counts on edges from exit to the
927 block past call and corresponding probabilities. We can't go
928 with the extra edges because that would result in flowgraph that
929 needs to have fake edges outside the spanning tree. */
930
931 FOR_EACH_EDGE (e, ei, bb->succs)
932 {
933 gimple_stmt_iterator gsi;
934 gimple last = NULL;
935
936 /* It may happen that there are compiler generated statements
937 without a locus at all. Go through the basic block from the
938 last to the first statement looking for a locus. */
939 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
940 {
941 last = gsi_stmt (gsi);
942 if (!is_gimple_debug (last)
943 && gimple_has_location (last))
944 break;
945 }
946
947 /* Edge with goto locus might get wrong coverage info unless
948 it is the only edge out of BB.
949 Don't do that when the locuses match, so
950 if (blah) goto something;
951 is not computed twice. */
952 if (last
953 && gimple_has_location (last)
954 && e->goto_locus != UNKNOWN_LOCATION
955 && !single_succ_p (bb)
956 && (LOCATION_FILE (e->goto_locus)
957 != LOCATION_FILE (gimple_location (last))
958 || (LOCATION_LINE (e->goto_locus)
959 != LOCATION_LINE (gimple_location (last)))))
960 {
961 basic_block new_bb = split_edge (e);
962 edge ne = single_succ_edge (new_bb);
963 ne->goto_locus = e->goto_locus;
964 ne->goto_block = e->goto_block;
965 }
966 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
967 && e->dest != EXIT_BLOCK_PTR)
968 need_exit_edge = 1;
969 if (e->dest == EXIT_BLOCK_PTR)
970 have_exit_edge = 1;
971 }
972 FOR_EACH_EDGE (e, ei, bb->preds)
973 {
974 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
975 && e->src != ENTRY_BLOCK_PTR)
976 need_entry_edge = 1;
977 if (e->src == ENTRY_BLOCK_PTR)
978 have_entry_edge = 1;
979 }
980
981 if (need_exit_edge && !have_exit_edge)
982 {
983 if (dump_file)
984 fprintf (dump_file, "Adding fake exit edge to bb %i\n",
985 bb->index);
986 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
987 }
988 if (need_entry_edge && !have_entry_edge)
989 {
990 if (dump_file)
991 fprintf (dump_file, "Adding fake entry edge to bb %i\n",
992 bb->index);
993 make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
994 }
995 }
996
997 el = create_edge_list ();
998 num_edges = NUM_EDGES (el);
999 alloc_aux_for_edges (sizeof (struct edge_info));
1000
1001 /* The basic blocks are expected to be numbered sequentially. */
1002 compact_blocks ();
1003
1004 ignored_edges = 0;
1005 for (i = 0 ; i < num_edges ; i++)
1006 {
1007 edge e = INDEX_EDGE (el, i);
1008 e->count = 0;
1009
1010 /* Mark edges we've replaced by fake edges above as ignored. */
1011 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1012 && e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
1013 {
1014 EDGE_INFO (e)->ignore = 1;
1015 ignored_edges++;
1016 }
1017 }
1018
1019 /* Create spanning tree from basic block graph, mark each edge that is
1020 on the spanning tree. We insert as many abnormal and critical edges
1021 as possible to minimize number of edge splits necessary. */
1022
1023 find_spanning_tree (el);
1024
1025 /* Fake edges that are not on the tree will not be instrumented, so
1026 mark them ignored. */
1027 for (num_instrumented = i = 0; i < num_edges; i++)
1028 {
1029 edge e = INDEX_EDGE (el, i);
1030 struct edge_info *inf = EDGE_INFO (e);
1031
1032 if (inf->ignore || inf->on_tree)
1033 /*NOP*/;
1034 else if (e->flags & EDGE_FAKE)
1035 {
1036 inf->ignore = 1;
1037 ignored_edges++;
1038 }
1039 else
1040 num_instrumented++;
1041 }
1042
1043 total_num_blocks += n_basic_blocks;
1044 if (dump_file)
1045 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);
1046
1047 total_num_edges += num_edges;
1048 if (dump_file)
1049 fprintf (dump_file, "%d edges\n", num_edges);
1050
1051 total_num_edges_ignored += ignored_edges;
1052 if (dump_file)
1053 fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1054
1055 /* Write the data from which gcov can reconstruct the basic block
1056 graph. */
1057
1058 /* Basic block flags */
1059 if (coverage_begin_output ())
1060 {
1061 gcov_position_t offset;
1062
1063 offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1064 for (i = 0; i != (unsigned) (n_basic_blocks); i++)
1065 gcov_write_unsigned (0);
1066 gcov_write_length (offset);
1067 }
1068
1069 /* Keep all basic block indexes nonnegative in the gcov output.
1070 Index 0 is used for entry block, last index is for exit block.
1071 */
1072 ENTRY_BLOCK_PTR->index = 1;
1073 EXIT_BLOCK_PTR->index = last_basic_block;
1074
1075 /* Arcs */
1076 if (coverage_begin_output ())
1077 {
1078 gcov_position_t offset;
1079
1080 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1081 {
1082 edge e;
1083 edge_iterator ei;
1084
1085 offset = gcov_write_tag (GCOV_TAG_ARCS);
1086 gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
1087
1088 FOR_EACH_EDGE (e, ei, bb->succs)
1089 {
1090 struct edge_info *i = EDGE_INFO (e);
1091 if (!i->ignore)
1092 {
1093 unsigned flag_bits = 0;
1094
1095 if (i->on_tree)
1096 flag_bits |= GCOV_ARC_ON_TREE;
1097 if (e->flags & EDGE_FAKE)
1098 flag_bits |= GCOV_ARC_FAKE;
1099 if (e->flags & EDGE_FALLTHRU)
1100 flag_bits |= GCOV_ARC_FALLTHROUGH;
1101 /* On trees we don't have fallthru flags, but we can
1102 recompute them from CFG shape. */
1103 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1104 && e->src->next_bb == e->dest)
1105 flag_bits |= GCOV_ARC_FALLTHROUGH;
1106
1107 gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest));
1108 gcov_write_unsigned (flag_bits);
1109 }
1110 }
1111
1112 gcov_write_length (offset);
1113 }
1114 }
1115
1116 /* Line numbers. */
1117 if (coverage_begin_output ())
1118 {
1119 gcov_position_t offset;
1120
1121 /* Initialize the output. */
1122 output_location (NULL, 0, NULL, NULL);
1123
1124 FOR_EACH_BB (bb)
1125 {
1126 gimple_stmt_iterator gsi;
1127
1128 offset = 0;
1129
1130 if (bb == ENTRY_BLOCK_PTR->next_bb)
1131 {
1132 expanded_location curr_location =
1133 expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1134 output_location (curr_location.file, curr_location.line,
1135 &offset, bb);
1136 }
1137
1138 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1139 {
1140 gimple stmt = gsi_stmt (gsi);
1141 if (gimple_has_location (stmt))
1142 output_location (gimple_filename (stmt), gimple_lineno (stmt),
1143 &offset, bb);
1144 }
1145
1146 /* Notice GOTO expressions we eliminated while constructing the
1147 CFG. */
1148 if (single_succ_p (bb)
1149 && single_succ_edge (bb)->goto_locus != UNKNOWN_LOCATION)
1150 {
1151 location_t curr_location = single_succ_edge (bb)->goto_locus;
1152 /* ??? The FILE/LINE API is inconsistent for these cases. */
1153 output_location (LOCATION_FILE (curr_location),
1154 LOCATION_LINE (curr_location), &offset, bb);
1155 }
1156
1157 if (offset)
1158 {
1159 /* A file of NULL indicates the end of run. */
1160 gcov_write_unsigned (0);
1161 gcov_write_string (NULL);
1162 gcov_write_length (offset);
1163 }
1164 }
1165 }
1166
1167 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
1168 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
1169 #undef BB_TO_GCOV_INDEX
1170
1171 if (flag_profile_values)
1172 find_values_to_profile (&values);
1173
1174 if (flag_branch_probabilities)
1175 {
1176 compute_branch_probabilities ();
1177 if (flag_profile_values)
1178 compute_value_histograms (values);
1179 }
1180
1181 remove_fake_edges ();
1182
1183 /* For each edge not on the spanning tree, add counting code. */
1184 if (profile_arc_flag
1185 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1186 {
1187 unsigned n_instrumented;
1188
1189 profile_hooks->init_edge_profiler ();
1190
1191 n_instrumented = instrument_edges (el);
1192
1193 gcc_assert (n_instrumented == num_instrumented);
1194
1195 if (flag_profile_values)
1196 instrument_values (values);
1197
1198 /* Commit changes done by instrumentation. */
1199 gsi_commit_edge_inserts ();
1200 }
1201
1202 free_aux_for_edges ();
1203
1204 VEC_free (histogram_value, heap, values);
1205 free_edge_list (el);
1206 coverage_end_function ();
1207 }
1208 \f
1209 /* Union find algorithm implementation for the basic blocks using
1210 aux fields. */
1211
1212 static basic_block
1213 find_group (basic_block bb)
1214 {
1215 basic_block group = bb, bb1;
1216
1217 while ((basic_block) group->aux != group)
1218 group = (basic_block) group->aux;
1219
1220 /* Compress path. */
1221 while ((basic_block) bb->aux != group)
1222 {
1223 bb1 = (basic_block) bb->aux;
1224 bb->aux = (void *) group;
1225 bb = bb1;
1226 }
1227 return group;
1228 }
1229
1230 static void
1231 union_groups (basic_block bb1, basic_block bb2)
1232 {
1233 basic_block bb1g = find_group (bb1);
1234 basic_block bb2g = find_group (bb2);
1235
1236 /* ??? I don't have a place for the rank field. OK. Lets go w/o it,
1237 this code is unlikely going to be performance problem anyway. */
1238 gcc_assert (bb1g != bb2g);
1239
1240 bb1g->aux = bb2g;
1241 }
1242 \f
1243 /* This function searches all of the edges in the program flow graph, and puts
1244 as many bad edges as possible onto the spanning tree. Bad edges include
1245 abnormals edges, which can't be instrumented at the moment. Since it is
1246 possible for fake edges to form a cycle, we will have to develop some
1247 better way in the future. Also put critical edges to the tree, since they
1248 are more expensive to instrument. */
1249
1250 static void
1251 find_spanning_tree (struct edge_list *el)
1252 {
1253 int i;
1254 int num_edges = NUM_EDGES (el);
1255 basic_block bb;
1256
1257 /* We use aux field for standard union-find algorithm. */
1258 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1259 bb->aux = bb;
1260
1261 /* Add fake edge exit to entry we can't instrument. */
1262 union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
1263
1264 /* First add all abnormal edges to the tree unless they form a cycle. Also
1265 add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
1266 setting return value from function. */
1267 for (i = 0; i < num_edges; i++)
1268 {
1269 edge e = INDEX_EDGE (el, i);
1270 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1271 || e->dest == EXIT_BLOCK_PTR)
1272 && !EDGE_INFO (e)->ignore
1273 && (find_group (e->src) != find_group (e->dest)))
1274 {
1275 if (dump_file)
1276 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1277 e->src->index, e->dest->index);
1278 EDGE_INFO (e)->on_tree = 1;
1279 union_groups (e->src, e->dest);
1280 }
1281 }
1282
1283 /* Now insert all critical edges to the tree unless they form a cycle. */
1284 for (i = 0; i < num_edges; i++)
1285 {
1286 edge e = INDEX_EDGE (el, i);
1287 if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1288 && find_group (e->src) != find_group (e->dest))
1289 {
1290 if (dump_file)
1291 fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1292 e->src->index, e->dest->index);
1293 EDGE_INFO (e)->on_tree = 1;
1294 union_groups (e->src, e->dest);
1295 }
1296 }
1297
1298 /* And now the rest. */
1299 for (i = 0; i < num_edges; i++)
1300 {
1301 edge e = INDEX_EDGE (el, i);
1302 if (!EDGE_INFO (e)->ignore
1303 && find_group (e->src) != find_group (e->dest))
1304 {
1305 if (dump_file)
1306 fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1307 e->src->index, e->dest->index);
1308 EDGE_INFO (e)->on_tree = 1;
1309 union_groups (e->src, e->dest);
1310 }
1311 }
1312
1313 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1314 bb->aux = NULL;
1315 }
1316 \f
1317 /* Perform file-level initialization for branch-prob processing. */
1318
1319 void
1320 init_branch_prob (void)
1321 {
1322 int i;
1323
1324 total_num_blocks = 0;
1325 total_num_edges = 0;
1326 total_num_edges_ignored = 0;
1327 total_num_edges_instrumented = 0;
1328 total_num_blocks_created = 0;
1329 total_num_passes = 0;
1330 total_num_times_called = 0;
1331 total_num_branches = 0;
1332 for (i = 0; i < 20; i++)
1333 total_hist_br_prob[i] = 0;
1334 }
1335
1336 /* Performs file-level cleanup after branch-prob processing
1337 is completed. */
1338
1339 void
1340 end_branch_prob (void)
1341 {
1342 if (dump_file)
1343 {
1344 fprintf (dump_file, "\n");
1345 fprintf (dump_file, "Total number of blocks: %d\n",
1346 total_num_blocks);
1347 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1348 fprintf (dump_file, "Total number of ignored edges: %d\n",
1349 total_num_edges_ignored);
1350 fprintf (dump_file, "Total number of instrumented edges: %d\n",
1351 total_num_edges_instrumented);
1352 fprintf (dump_file, "Total number of blocks created: %d\n",
1353 total_num_blocks_created);
1354 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1355 total_num_passes);
1356 if (total_num_times_called != 0)
1357 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1358 (total_num_passes + (total_num_times_called >> 1))
1359 / total_num_times_called);
1360 fprintf (dump_file, "Total number of branches: %d\n",
1361 total_num_branches);
1362 if (total_num_branches)
1363 {
1364 int i;
1365
1366 for (i = 0; i < 10; i++)
1367 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1368 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1369 / total_num_branches, 5*i, 5*i+5);
1370 }
1371 }
1372 }
1373
1374 /* Set up hooks to enable tree-based profiling. */
1375
1376 void
1377 tree_register_profile_hooks (void)
1378 {
1379 gcc_assert (current_ir_type () == IR_GIMPLE);
1380 profile_hooks = &tree_profile_hooks;
1381 }