system.h (USE_MAPPED_LOCATION): Poison.
[gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
6 based on some ideas from Dain Samples of UC Berkeley.
7 Further mangling by Bob Manson, Cygnus Support.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* Generate basic block profile instrumentation and auxiliary files.
26 Profile generation is optimized, so that not all arcs in the basic
27 block graph need instrumenting. First, the BB graph is closed with
28 one entry (function start), and one exit (function exit). Any
29 ABNORMAL_EDGE cannot be instrumented (because there is no control
30 path to place the code). We close the graph by inserting fake
31 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
32 edges that do not go to the exit_block. We ignore such abnormal
33 edges. Naturally these fake edges are never directly traversed,
34 and so *cannot* be directly instrumented. Some other graph
35 massaging is done. To optimize the instrumentation we generate the
36 BB minimal span tree, only edges that are not on the span tree
37 (plus the entry point) need instrumenting. From that information
38 all other edge counts can be deduced. By construction all fake
39 edges must be on the spanning tree. We also attempt to place
40 EDGE_CRITICAL edges on the spanning tree.
41
42 The auxiliary files generated are <dumpbase>.gcno (at compile time)
43 and <dumpbase>.gcda (at run time). The format is
44 described in full in gcov-io.h. */
45
46 /* ??? Register allocation should use basic block execution counts to
47 give preference to the most commonly executed blocks. */
48
49 /* ??? Should calculate branch probabilities before instrumenting code, since
50 then we can use arc counts to help decide which arcs to instrument. */
51
52 #include "config.h"
53 #include "system.h"
54 #include "coretypes.h"
55 #include "tm.h"
56 #include "rtl.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "regs.h"
60 #include "expr.h"
61 #include "function.h"
62 #include "toplev.h"
63 #include "coverage.h"
64 #include "value-prof.h"
65 #include "tree.h"
66 #include "cfghooks.h"
67 #include "tree-flow.h"
68 #include "timevar.h"
69 #include "cfgloop.h"
70 #include "tree-pass.h"
71
72 /* Hooks for profiling. */
73 static struct profile_hooks* profile_hooks;
74
75 /* Additional information about the edges we need. */
76 struct edge_info {
77 unsigned int count_valid : 1;
78
79 /* Is on the spanning tree. */
80 unsigned int on_tree : 1;
81
82 /* Pretend this edge does not exist (it is abnormal and we've
83 inserted a fake to compensate). */
84 unsigned int ignore : 1;
85 };
86
87 struct bb_info {
88 unsigned int count_valid : 1;
89
90 /* Number of successor and predecessor edges. */
91 gcov_type succ_count;
92 gcov_type pred_count;
93 };
94
95 #define EDGE_INFO(e) ((struct edge_info *) (e)->aux)
96 #define BB_INFO(b) ((struct bb_info *) (b)->aux)
97
98 /* Counter summary from the last set of coverage counts read. */
99
100 const struct gcov_ctr_summary *profile_info;
101
102 /* Collect statistics on the performance of this pass for the entire source
103 file. */
104
105 static int total_num_blocks;
106 static int total_num_edges;
107 static int total_num_edges_ignored;
108 static int total_num_edges_instrumented;
109 static int total_num_blocks_created;
110 static int total_num_passes;
111 static int total_num_times_called;
112 static int total_hist_br_prob[20];
113 static int total_num_never_executed;
114 static int total_num_branches;
115
116 /* Forward declarations. */
117 static void find_spanning_tree (struct edge_list *);
118 static unsigned instrument_edges (struct edge_list *);
119 static void instrument_values (histogram_values);
120 static void compute_branch_probabilities (void);
121 static void compute_value_histograms (histogram_values);
122 static gcov_type * get_exec_counts (void);
123 static basic_block find_group (basic_block);
124 static void union_groups (basic_block, basic_block);
125
126 \f
127 /* Add edge instrumentation code to the entire insn chain.
128
129 F is the first insn of the chain.
130 NUM_BLOCKS is the number of basic blocks found in F. */
131
132 static unsigned
133 instrument_edges (struct edge_list *el)
134 {
135 unsigned num_instr_edges = 0;
136 int num_edges = NUM_EDGES (el);
137 basic_block bb;
138
139 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
140 {
141 edge e;
142 edge_iterator ei;
143
144 FOR_EACH_EDGE (e, ei, bb->succs)
145 {
146 struct edge_info *inf = EDGE_INFO (e);
147
148 if (!inf->ignore && !inf->on_tree)
149 {
150 gcc_assert (!(e->flags & EDGE_ABNORMAL));
151 if (dump_file)
152 fprintf (dump_file, "Edge %d to %d instrumented%s\n",
153 e->src->index, e->dest->index,
154 EDGE_CRITICAL_P (e) ? " (and split)" : "");
155 (profile_hooks->gen_edge_profiler) (num_instr_edges++, e);
156 }
157 }
158 }
159
160 total_num_blocks_created += num_edges;
161 if (dump_file)
162 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
163 return num_instr_edges;
164 }
165
166 /* Add code to measure histograms for values in list VALUES. */
167 static void
168 instrument_values (histogram_values values)
169 {
170 unsigned i, t;
171
172 /* Emit code to generate the histograms before the insns. */
173
174 for (i = 0; i < VEC_length (histogram_value, values); i++)
175 {
176 histogram_value hist = VEC_index (histogram_value, values, i);
177 switch (hist->type)
178 {
179 case HIST_TYPE_INTERVAL:
180 t = GCOV_COUNTER_V_INTERVAL;
181 break;
182
183 case HIST_TYPE_POW2:
184 t = GCOV_COUNTER_V_POW2;
185 break;
186
187 case HIST_TYPE_SINGLE_VALUE:
188 t = GCOV_COUNTER_V_SINGLE;
189 break;
190
191 case HIST_TYPE_CONST_DELTA:
192 t = GCOV_COUNTER_V_DELTA;
193 break;
194
195 case HIST_TYPE_INDIR_CALL:
196 t = GCOV_COUNTER_V_INDIR;
197 break;
198
199 case HIST_TYPE_AVERAGE:
200 t = GCOV_COUNTER_AVERAGE;
201 break;
202
203 case HIST_TYPE_IOR:
204 t = GCOV_COUNTER_IOR;
205 break;
206
207 default:
208 gcc_unreachable ();
209 }
210 if (!coverage_counter_alloc (t, hist->n_counters))
211 continue;
212
213 switch (hist->type)
214 {
215 case HIST_TYPE_INTERVAL:
216 (profile_hooks->gen_interval_profiler) (hist, t, 0);
217 break;
218
219 case HIST_TYPE_POW2:
220 (profile_hooks->gen_pow2_profiler) (hist, t, 0);
221 break;
222
223 case HIST_TYPE_SINGLE_VALUE:
224 (profile_hooks->gen_one_value_profiler) (hist, t, 0);
225 break;
226
227 case HIST_TYPE_CONST_DELTA:
228 (profile_hooks->gen_const_delta_profiler) (hist, t, 0);
229 break;
230
231 case HIST_TYPE_INDIR_CALL:
232 (profile_hooks->gen_ic_profiler) (hist, t, 0);
233 break;
234
235 case HIST_TYPE_AVERAGE:
236 (profile_hooks->gen_average_profiler) (hist, t, 0);
237 break;
238
239 case HIST_TYPE_IOR:
240 (profile_hooks->gen_ior_profiler) (hist, t, 0);
241 break;
242
243 default:
244 gcc_unreachable ();
245 }
246 }
247 }
248 \f
249
250 /* Computes hybrid profile for all matching entries in da_file. */
251
252 static gcov_type *
253 get_exec_counts (void)
254 {
255 unsigned num_edges = 0;
256 basic_block bb;
257 gcov_type *counts;
258
259 /* Count the edges to be (possibly) instrumented. */
260 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
261 {
262 edge e;
263 edge_iterator ei;
264
265 FOR_EACH_EDGE (e, ei, bb->succs)
266 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
267 num_edges++;
268 }
269
270 counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, &profile_info);
271 if (!counts)
272 return NULL;
273
274 if (dump_file && profile_info)
275 fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
276 profile_info->runs, (unsigned) profile_info->sum_max);
277
278 return counts;
279 }
280 \f
281
282 /* Compute the branch probabilities for the various branches.
283 Annotate them accordingly. */
284
285 static void
286 compute_branch_probabilities (void)
287 {
288 basic_block bb;
289 int i;
290 int num_edges = 0;
291 int changes;
292 int passes;
293 int hist_br_prob[20];
294 int num_never_executed;
295 int num_branches;
296 gcov_type *exec_counts = get_exec_counts ();
297 int exec_counts_pos = 0;
298
299 /* Very simple sanity checks so we catch bugs in our profiling code. */
300 if (profile_info)
301 {
302 if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
303 {
304 error ("corrupted profile info: run_max * runs < sum_max");
305 exec_counts = NULL;
306 }
307
308 if (profile_info->sum_all < profile_info->sum_max)
309 {
310 error ("corrupted profile info: sum_all is smaller than sum_max");
311 exec_counts = NULL;
312 }
313 }
314
315 /* Attach extra info block to each bb. */
316
317 alloc_aux_for_blocks (sizeof (struct bb_info));
318 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
319 {
320 edge e;
321 edge_iterator ei;
322
323 FOR_EACH_EDGE (e, ei, bb->succs)
324 if (!EDGE_INFO (e)->ignore)
325 BB_INFO (bb)->succ_count++;
326 FOR_EACH_EDGE (e, ei, bb->preds)
327 if (!EDGE_INFO (e)->ignore)
328 BB_INFO (bb)->pred_count++;
329 }
330
331 /* Avoid predicting entry on exit nodes. */
332 BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
333 BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
334
335 /* For each edge not on the spanning tree, set its execution count from
336 the .da file. */
337
338 /* The first count in the .da file is the number of times that the function
339 was entered. This is the exec_count for block zero. */
340
341 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
342 {
343 edge e;
344 edge_iterator ei;
345
346 FOR_EACH_EDGE (e, ei, bb->succs)
347 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
348 {
349 num_edges++;
350 if (exec_counts)
351 {
352 e->count = exec_counts[exec_counts_pos++];
353 if (e->count > profile_info->sum_max)
354 {
355 error ("corrupted profile info: edge from %i to %i exceeds maximal count",
356 bb->index, e->dest->index);
357 }
358 }
359 else
360 e->count = 0;
361
362 EDGE_INFO (e)->count_valid = 1;
363 BB_INFO (bb)->succ_count--;
364 BB_INFO (e->dest)->pred_count--;
365 if (dump_file)
366 {
367 fprintf (dump_file, "\nRead edge from %i to %i, count:",
368 bb->index, e->dest->index);
369 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
370 (HOST_WIDEST_INT) e->count);
371 }
372 }
373 }
374
375 if (dump_file)
376 fprintf (dump_file, "\n%d edge counts read\n", num_edges);
377
378 /* For every block in the file,
379 - if every exit/entrance edge has a known count, then set the block count
380 - if the block count is known, and every exit/entrance edge but one has
381 a known execution count, then set the count of the remaining edge
382
383 As edge counts are set, decrement the succ/pred count, but don't delete
384 the edge, that way we can easily tell when all edges are known, or only
385 one edge is unknown. */
386
387 /* The order that the basic blocks are iterated through is important.
388 Since the code that finds spanning trees starts with block 0, low numbered
389 edges are put on the spanning tree in preference to high numbered edges.
390 Hence, most instrumented edges are at the end. Graph solving works much
391 faster if we propagate numbers from the end to the start.
392
393 This takes an average of slightly more than 3 passes. */
394
395 changes = 1;
396 passes = 0;
397 while (changes)
398 {
399 passes++;
400 changes = 0;
401 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
402 {
403 struct bb_info *bi = BB_INFO (bb);
404 if (! bi->count_valid)
405 {
406 if (bi->succ_count == 0)
407 {
408 edge e;
409 edge_iterator ei;
410 gcov_type total = 0;
411
412 FOR_EACH_EDGE (e, ei, bb->succs)
413 total += e->count;
414 bb->count = total;
415 bi->count_valid = 1;
416 changes = 1;
417 }
418 else if (bi->pred_count == 0)
419 {
420 edge e;
421 edge_iterator ei;
422 gcov_type total = 0;
423
424 FOR_EACH_EDGE (e, ei, bb->preds)
425 total += e->count;
426 bb->count = total;
427 bi->count_valid = 1;
428 changes = 1;
429 }
430 }
431 if (bi->count_valid)
432 {
433 if (bi->succ_count == 1)
434 {
435 edge e;
436 edge_iterator ei;
437 gcov_type total = 0;
438
439 /* One of the counts will be invalid, but it is zero,
440 so adding it in also doesn't hurt. */
441 FOR_EACH_EDGE (e, ei, bb->succs)
442 total += e->count;
443
444 /* Seedgeh for the invalid edge, and set its count. */
445 FOR_EACH_EDGE (e, ei, bb->succs)
446 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
447 break;
448
449 /* Calculate count for remaining edge by conservation. */
450 total = bb->count - total;
451
452 gcc_assert (e);
453 EDGE_INFO (e)->count_valid = 1;
454 e->count = total;
455 bi->succ_count--;
456
457 BB_INFO (e->dest)->pred_count--;
458 changes = 1;
459 }
460 if (bi->pred_count == 1)
461 {
462 edge e;
463 edge_iterator ei;
464 gcov_type total = 0;
465
466 /* One of the counts will be invalid, but it is zero,
467 so adding it in also doesn't hurt. */
468 FOR_EACH_EDGE (e, ei, bb->preds)
469 total += e->count;
470
471 /* Search for the invalid edge, and set its count. */
472 FOR_EACH_EDGE (e, ei, bb->preds)
473 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
474 break;
475
476 /* Calculate count for remaining edge by conservation. */
477 total = bb->count - total + e->count;
478
479 gcc_assert (e);
480 EDGE_INFO (e)->count_valid = 1;
481 e->count = total;
482 bi->pred_count--;
483
484 BB_INFO (e->src)->succ_count--;
485 changes = 1;
486 }
487 }
488 }
489 }
490 if (dump_file)
491 dump_flow_info (dump_file, dump_flags);
492
493 total_num_passes += passes;
494 if (dump_file)
495 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
496
497 /* If the graph has been correctly solved, every block will have a
498 succ and pred count of zero. */
499 FOR_EACH_BB (bb)
500 {
501 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
502 }
503
504 /* For every edge, calculate its branch probability and add a reg_note
505 to the branch insn to indicate this. */
506
507 for (i = 0; i < 20; i++)
508 hist_br_prob[i] = 0;
509 num_never_executed = 0;
510 num_branches = 0;
511
512 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
513 {
514 edge e;
515 edge_iterator ei;
516
517 if (bb->count < 0)
518 {
519 error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
520 bb->index, (int)bb->count);
521 bb->count = 0;
522 }
523 FOR_EACH_EDGE (e, ei, bb->succs)
524 {
525 /* Function may return twice in the cased the called function is
526 setjmp or calls fork, but we can't represent this by extra
527 edge from the entry, since extra edge from the exit is
528 already present. We get negative frequency from the entry
529 point. */
530 if ((e->count < 0
531 && e->dest == EXIT_BLOCK_PTR)
532 || (e->count > bb->count
533 && e->dest != EXIT_BLOCK_PTR))
534 {
535 if (block_ends_with_call_p (bb))
536 e->count = e->count < 0 ? 0 : bb->count;
537 }
538 if (e->count < 0 || e->count > bb->count)
539 {
540 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
541 e->src->index, e->dest->index,
542 (int)e->count);
543 e->count = bb->count / 2;
544 }
545 }
546 if (bb->count)
547 {
548 FOR_EACH_EDGE (e, ei, bb->succs)
549 e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
550 if (bb->index >= NUM_FIXED_BLOCKS
551 && block_ends_with_condjump_p (bb)
552 && EDGE_COUNT (bb->succs) >= 2)
553 {
554 int prob;
555 edge e;
556 int index;
557
558 /* Find the branch edge. It is possible that we do have fake
559 edges here. */
560 FOR_EACH_EDGE (e, ei, bb->succs)
561 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
562 break;
563
564 prob = e->probability;
565 index = prob * 20 / REG_BR_PROB_BASE;
566
567 if (index == 20)
568 index = 19;
569 hist_br_prob[index]++;
570
571 num_branches++;
572 }
573 }
574 /* As a last resort, distribute the probabilities evenly.
575 Use simple heuristics that if there are normal edges,
576 give all abnormals frequency of 0, otherwise distribute the
577 frequency over abnormals (this is the case of noreturn
578 calls). */
579 else if (profile_status == PROFILE_ABSENT)
580 {
581 int total = 0;
582
583 FOR_EACH_EDGE (e, ei, bb->succs)
584 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
585 total ++;
586 if (total)
587 {
588 FOR_EACH_EDGE (e, ei, bb->succs)
589 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
590 e->probability = REG_BR_PROB_BASE / total;
591 else
592 e->probability = 0;
593 }
594 else
595 {
596 total += EDGE_COUNT (bb->succs);
597 FOR_EACH_EDGE (e, ei, bb->succs)
598 e->probability = REG_BR_PROB_BASE / total;
599 }
600 if (bb->index >= NUM_FIXED_BLOCKS
601 && block_ends_with_condjump_p (bb)
602 && EDGE_COUNT (bb->succs) >= 2)
603 num_branches++, num_never_executed;
604 }
605 }
606 counts_to_freqs ();
607
608 if (dump_file)
609 {
610 fprintf (dump_file, "%d branches\n", num_branches);
611 fprintf (dump_file, "%d branches never executed\n",
612 num_never_executed);
613 if (num_branches)
614 for (i = 0; i < 10; i++)
615 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
616 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
617 5 * i, 5 * i + 5);
618
619 total_num_branches += num_branches;
620 total_num_never_executed += num_never_executed;
621 for (i = 0; i < 20; i++)
622 total_hist_br_prob[i] += hist_br_prob[i];
623
624 fputc ('\n', dump_file);
625 fputc ('\n', dump_file);
626 }
627
628 free_aux_for_blocks ();
629 }
630
631 /* Load value histograms values whose description is stored in VALUES array
632 from .gcda file. */
633
634 static void
635 compute_value_histograms (histogram_values values)
636 {
637 unsigned i, j, t, any;
638 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
639 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
640 gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
641 gcov_type *aact_count;
642
643 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
644 n_histogram_counters[t] = 0;
645
646 for (i = 0; i < VEC_length (histogram_value, values); i++)
647 {
648 histogram_value hist = VEC_index (histogram_value, values, i);
649 n_histogram_counters[(int) hist->type] += hist->n_counters;
650 }
651
652 any = 0;
653 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
654 {
655 if (!n_histogram_counters[t])
656 {
657 histogram_counts[t] = NULL;
658 continue;
659 }
660
661 histogram_counts[t] =
662 get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
663 n_histogram_counters[t], NULL);
664 if (histogram_counts[t])
665 any = 1;
666 act_count[t] = histogram_counts[t];
667 }
668 if (!any)
669 return;
670
671 for (i = 0; i < VEC_length (histogram_value, values); i++)
672 {
673 histogram_value hist = VEC_index (histogram_value, values, i);
674 tree stmt = hist->hvalue.stmt;
675
676 t = (int) hist->type;
677
678 aact_count = act_count[t];
679 act_count[t] += hist->n_counters;
680
681 gimple_add_histogram_value (cfun, stmt, hist);
682 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
683 for (j = 0; j < hist->n_counters; j++)
684 hist->hvalue.counters[j] = aact_count[j];
685 }
686
687 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
688 if (histogram_counts[t])
689 free (histogram_counts[t]);
690 }
691
692 /* The entry basic block will be moved around so that it has index=1,
693 there is nothing at index 0 and the exit is at n_basic_block. */
694 #define BB_TO_GCOV_INDEX(bb) ((bb)->index - 1)
695 /* When passed NULL as file_name, initialize.
696 When passed something else, output the necessary commands to change
697 line to LINE and offset to FILE_NAME. */
698 static void
699 output_location (char const *file_name, int line,
700 gcov_position_t *offset, basic_block bb)
701 {
702 static char const *prev_file_name;
703 static int prev_line;
704 bool name_differs, line_differs;
705
706 if (!file_name)
707 {
708 prev_file_name = NULL;
709 prev_line = -1;
710 return;
711 }
712
713 name_differs = !prev_file_name || strcmp (file_name, prev_file_name);
714 line_differs = prev_line != line;
715
716 if (name_differs || line_differs)
717 {
718 if (!*offset)
719 {
720 *offset = gcov_write_tag (GCOV_TAG_LINES);
721 gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
722 name_differs = line_differs=true;
723 }
724
725 /* If this is a new source file, then output the
726 file's name to the .bb file. */
727 if (name_differs)
728 {
729 prev_file_name = file_name;
730 gcov_write_unsigned (0);
731 gcov_write_string (prev_file_name);
732 }
733 if (line_differs)
734 {
735 gcov_write_unsigned (line);
736 prev_line = line;
737 }
738 }
739 }
740
741 /* Instrument and/or analyze program behavior based on program flow graph.
742 In either case, this function builds a flow graph for the function being
743 compiled. The flow graph is stored in BB_GRAPH.
744
745 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
746 the flow graph that are needed to reconstruct the dynamic behavior of the
747 flow graph.
748
749 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
750 information from a data file containing edge count information from previous
751 executions of the function being compiled. In this case, the flow graph is
752 annotated with actual execution counts, which are later propagated into the
753 rtl for optimization purposes.
754
755 Main entry point of this file. */
756
757 void
758 branch_prob (void)
759 {
760 basic_block bb;
761 unsigned i;
762 unsigned num_edges, ignored_edges;
763 unsigned num_instrumented;
764 struct edge_list *el;
765 histogram_values values = NULL;
766
767 total_num_times_called++;
768
769 flow_call_edges_add (NULL);
770 add_noreturn_fake_exit_edges ();
771
772 /* We can't handle cyclic regions constructed using abnormal edges.
773 To avoid these we replace every source of abnormal edge by a fake
774 edge from entry node and every destination by fake edge to exit.
775 This keeps graph acyclic and our calculation exact for all normal
776 edges except for exit and entrance ones.
777
778 We also add fake exit edges for each call and asm statement in the
779 basic, since it may not return. */
780
781 FOR_EACH_BB (bb)
782 {
783 int need_exit_edge = 0, need_entry_edge = 0;
784 int have_exit_edge = 0, have_entry_edge = 0;
785 edge e;
786 edge_iterator ei;
787
788 /* Functions returning multiple times are not handled by extra edges.
789 Instead we simply allow negative counts on edges from exit to the
790 block past call and corresponding probabilities. We can't go
791 with the extra edges because that would result in flowgraph that
792 needs to have fake edges outside the spanning tree. */
793
794 FOR_EACH_EDGE (e, ei, bb->succs)
795 {
796 block_stmt_iterator bsi;
797 tree last = NULL;
798
799 /* It may happen that there are compiler generated statements
800 without a locus at all. Go through the basic block from the
801 last to the first statement looking for a locus. */
802 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
803 {
804 last = bsi_stmt (bsi);
805 if (EXPR_LOCUS (last))
806 break;
807 }
808
809 /* Edge with goto locus might get wrong coverage info unless
810 it is the only edge out of BB.
811 Don't do that when the locuses match, so
812 if (blah) goto something;
813 is not computed twice. */
814 if (last && EXPR_LOCUS (last)
815 && e->goto_locus
816 && !single_succ_p (bb)
817 && (LOCATION_FILE (e->goto_locus)
818 != LOCATION_FILE (EXPR_LOCATION (last))
819 || (LOCATION_LINE (e->goto_locus)
820 != LOCATION_LINE (EXPR_LOCATION (last)))))
821 {
822 basic_block new = split_edge (e);
823 single_succ_edge (new)->goto_locus = e->goto_locus;
824 }
825 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
826 && e->dest != EXIT_BLOCK_PTR)
827 need_exit_edge = 1;
828 if (e->dest == EXIT_BLOCK_PTR)
829 have_exit_edge = 1;
830 }
831 FOR_EACH_EDGE (e, ei, bb->preds)
832 {
833 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
834 && e->src != ENTRY_BLOCK_PTR)
835 need_entry_edge = 1;
836 if (e->src == ENTRY_BLOCK_PTR)
837 have_entry_edge = 1;
838 }
839
840 if (need_exit_edge && !have_exit_edge)
841 {
842 if (dump_file)
843 fprintf (dump_file, "Adding fake exit edge to bb %i\n",
844 bb->index);
845 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
846 }
847 if (need_entry_edge && !have_entry_edge)
848 {
849 if (dump_file)
850 fprintf (dump_file, "Adding fake entry edge to bb %i\n",
851 bb->index);
852 make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
853 }
854 }
855
856 el = create_edge_list ();
857 num_edges = NUM_EDGES (el);
858 alloc_aux_for_edges (sizeof (struct edge_info));
859
860 /* The basic blocks are expected to be numbered sequentially. */
861 compact_blocks ();
862
863 ignored_edges = 0;
864 for (i = 0 ; i < num_edges ; i++)
865 {
866 edge e = INDEX_EDGE (el, i);
867 e->count = 0;
868
869 /* Mark edges we've replaced by fake edges above as ignored. */
870 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
871 && e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
872 {
873 EDGE_INFO (e)->ignore = 1;
874 ignored_edges++;
875 }
876 }
877
878 /* Create spanning tree from basic block graph, mark each edge that is
879 on the spanning tree. We insert as many abnormal and critical edges
880 as possible to minimize number of edge splits necessary. */
881
882 find_spanning_tree (el);
883
884 /* Fake edges that are not on the tree will not be instrumented, so
885 mark them ignored. */
886 for (num_instrumented = i = 0; i < num_edges; i++)
887 {
888 edge e = INDEX_EDGE (el, i);
889 struct edge_info *inf = EDGE_INFO (e);
890
891 if (inf->ignore || inf->on_tree)
892 /*NOP*/;
893 else if (e->flags & EDGE_FAKE)
894 {
895 inf->ignore = 1;
896 ignored_edges++;
897 }
898 else
899 num_instrumented++;
900 }
901
902 total_num_blocks += n_basic_blocks;
903 if (dump_file)
904 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);
905
906 total_num_edges += num_edges;
907 if (dump_file)
908 fprintf (dump_file, "%d edges\n", num_edges);
909
910 total_num_edges_ignored += ignored_edges;
911 if (dump_file)
912 fprintf (dump_file, "%d ignored edges\n", ignored_edges);
913
914 /* Write the data from which gcov can reconstruct the basic block
915 graph. */
916
917 /* Basic block flags */
918 if (coverage_begin_output ())
919 {
920 gcov_position_t offset;
921
922 offset = gcov_write_tag (GCOV_TAG_BLOCKS);
923 for (i = 0; i != (unsigned) (n_basic_blocks); i++)
924 gcov_write_unsigned (0);
925 gcov_write_length (offset);
926 }
927
928 /* Keep all basic block indexes nonnegative in the gcov output.
929 Index 0 is used for entry block, last index is for exit block.
930 */
931 ENTRY_BLOCK_PTR->index = 1;
932 EXIT_BLOCK_PTR->index = last_basic_block;
933
934 /* Arcs */
935 if (coverage_begin_output ())
936 {
937 gcov_position_t offset;
938
939 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
940 {
941 edge e;
942 edge_iterator ei;
943
944 offset = gcov_write_tag (GCOV_TAG_ARCS);
945 gcov_write_unsigned (BB_TO_GCOV_INDEX (bb));
946
947 FOR_EACH_EDGE (e, ei, bb->succs)
948 {
949 struct edge_info *i = EDGE_INFO (e);
950 if (!i->ignore)
951 {
952 unsigned flag_bits = 0;
953
954 if (i->on_tree)
955 flag_bits |= GCOV_ARC_ON_TREE;
956 if (e->flags & EDGE_FAKE)
957 flag_bits |= GCOV_ARC_FAKE;
958 if (e->flags & EDGE_FALLTHRU)
959 flag_bits |= GCOV_ARC_FALLTHROUGH;
960 /* On trees we don't have fallthru flags, but we can
961 recompute them from CFG shape. */
962 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
963 && e->src->next_bb == e->dest)
964 flag_bits |= GCOV_ARC_FALLTHROUGH;
965
966 gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest));
967 gcov_write_unsigned (flag_bits);
968 }
969 }
970
971 gcov_write_length (offset);
972 }
973 }
974
975 /* Line numbers. */
976 if (coverage_begin_output ())
977 {
978 gcov_position_t offset;
979
980 /* Initialize the output. */
981 output_location (NULL, 0, NULL, NULL);
982
983 FOR_EACH_BB (bb)
984 {
985 block_stmt_iterator bsi;
986
987 offset = 0;
988
989 if (bb == ENTRY_BLOCK_PTR->next_bb)
990 {
991 expanded_location curr_location =
992 expand_location (DECL_SOURCE_LOCATION (current_function_decl));
993 output_location (curr_location.file, curr_location.line,
994 &offset, bb);
995 }
996
997 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
998 {
999 tree stmt = bsi_stmt (bsi);
1000 if (EXPR_HAS_LOCATION (stmt))
1001 output_location (EXPR_FILENAME (stmt), EXPR_LINENO (stmt),
1002 &offset, bb);
1003 /* Take into account modify statements nested in return
1004 produced by C++ NRV transformation. */
1005 if (TREE_CODE (stmt) == RETURN_EXPR
1006 && TREE_OPERAND (stmt, 0)
1007 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
1008 && EXPR_HAS_LOCATION (TREE_OPERAND (stmt, 0)))
1009 output_location (EXPR_FILENAME (TREE_OPERAND (stmt, 0)),
1010 EXPR_LINENO (TREE_OPERAND (stmt, 0)),
1011 &offset, bb);
1012 }
1013
1014 /* Notice GOTO expressions we eliminated while constructing the
1015 CFG. */
1016 if (single_succ_p (bb) && single_succ_edge (bb)->goto_locus)
1017 {
1018 location_t curr_location = single_succ_edge (bb)->goto_locus;
1019 /* ??? The FILE/LINE API is inconsistent for these cases. */
1020 output_location (LOCATION_FILE (curr_location),
1021 LOCATION_LINE (curr_location), &offset, bb);
1022 }
1023
1024 if (offset)
1025 {
1026 /* A file of NULL indicates the end of run. */
1027 gcov_write_unsigned (0);
1028 gcov_write_string (NULL);
1029 gcov_write_length (offset);
1030 }
1031 }
1032 }
1033
1034 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
1035 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
1036 #undef BB_TO_GCOV_INDEX
1037
1038 if (flag_profile_values)
1039 find_values_to_profile (&values);
1040
1041 if (flag_branch_probabilities)
1042 {
1043 compute_branch_probabilities ();
1044 if (flag_profile_values)
1045 compute_value_histograms (values);
1046 }
1047
1048 remove_fake_edges ();
1049
1050 /* For each edge not on the spanning tree, add counting code. */
1051 if (profile_arc_flag
1052 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1053 {
1054 unsigned n_instrumented;
1055
1056 profile_hooks->init_edge_profiler ();
1057
1058 n_instrumented = instrument_edges (el);
1059
1060 gcc_assert (n_instrumented == num_instrumented);
1061
1062 if (flag_profile_values)
1063 instrument_values (values);
1064
1065 /* Commit changes done by instrumentation. */
1066 bsi_commit_edge_inserts ();
1067 }
1068
1069 free_aux_for_edges ();
1070
1071 VEC_free (histogram_value, heap, values);
1072 free_edge_list (el);
1073 if (flag_branch_probabilities)
1074 profile_status = PROFILE_READ;
1075 coverage_end_function ();
1076 }
1077 \f
1078 /* Union find algorithm implementation for the basic blocks using
1079 aux fields. */
1080
1081 static basic_block
1082 find_group (basic_block bb)
1083 {
1084 basic_block group = bb, bb1;
1085
1086 while ((basic_block) group->aux != group)
1087 group = (basic_block) group->aux;
1088
1089 /* Compress path. */
1090 while ((basic_block) bb->aux != group)
1091 {
1092 bb1 = (basic_block) bb->aux;
1093 bb->aux = (void *) group;
1094 bb = bb1;
1095 }
1096 return group;
1097 }
1098
1099 static void
1100 union_groups (basic_block bb1, basic_block bb2)
1101 {
1102 basic_block bb1g = find_group (bb1);
1103 basic_block bb2g = find_group (bb2);
1104
1105 /* ??? I don't have a place for the rank field. OK. Lets go w/o it,
1106 this code is unlikely going to be performance problem anyway. */
1107 gcc_assert (bb1g != bb2g);
1108
1109 bb1g->aux = bb2g;
1110 }
1111 \f
1112 /* This function searches all of the edges in the program flow graph, and puts
1113 as many bad edges as possible onto the spanning tree. Bad edges include
1114 abnormals edges, which can't be instrumented at the moment. Since it is
1115 possible for fake edges to form a cycle, we will have to develop some
1116 better way in the future. Also put critical edges to the tree, since they
1117 are more expensive to instrument. */
1118
1119 static void
1120 find_spanning_tree (struct edge_list *el)
1121 {
1122 int i;
1123 int num_edges = NUM_EDGES (el);
1124 basic_block bb;
1125
1126 /* We use aux field for standard union-find algorithm. */
1127 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1128 bb->aux = bb;
1129
1130 /* Add fake edge exit to entry we can't instrument. */
1131 union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
1132
1133 /* First add all abnormal edges to the tree unless they form a cycle. Also
1134 add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
1135 setting return value from function. */
1136 for (i = 0; i < num_edges; i++)
1137 {
1138 edge e = INDEX_EDGE (el, i);
1139 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1140 || e->dest == EXIT_BLOCK_PTR)
1141 && !EDGE_INFO (e)->ignore
1142 && (find_group (e->src) != find_group (e->dest)))
1143 {
1144 if (dump_file)
1145 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1146 e->src->index, e->dest->index);
1147 EDGE_INFO (e)->on_tree = 1;
1148 union_groups (e->src, e->dest);
1149 }
1150 }
1151
1152 /* Now insert all critical edges to the tree unless they form a cycle. */
1153 for (i = 0; i < num_edges; i++)
1154 {
1155 edge e = INDEX_EDGE (el, i);
1156 if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1157 && find_group (e->src) != find_group (e->dest))
1158 {
1159 if (dump_file)
1160 fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1161 e->src->index, e->dest->index);
1162 EDGE_INFO (e)->on_tree = 1;
1163 union_groups (e->src, e->dest);
1164 }
1165 }
1166
1167 /* And now the rest. */
1168 for (i = 0; i < num_edges; i++)
1169 {
1170 edge e = INDEX_EDGE (el, i);
1171 if (!EDGE_INFO (e)->ignore
1172 && find_group (e->src) != find_group (e->dest))
1173 {
1174 if (dump_file)
1175 fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1176 e->src->index, e->dest->index);
1177 EDGE_INFO (e)->on_tree = 1;
1178 union_groups (e->src, e->dest);
1179 }
1180 }
1181
1182 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1183 bb->aux = NULL;
1184 }
1185 \f
1186 /* Perform file-level initialization for branch-prob processing. */
1187
1188 void
1189 init_branch_prob (void)
1190 {
1191 int i;
1192
1193 total_num_blocks = 0;
1194 total_num_edges = 0;
1195 total_num_edges_ignored = 0;
1196 total_num_edges_instrumented = 0;
1197 total_num_blocks_created = 0;
1198 total_num_passes = 0;
1199 total_num_times_called = 0;
1200 total_num_branches = 0;
1201 total_num_never_executed = 0;
1202 for (i = 0; i < 20; i++)
1203 total_hist_br_prob[i] = 0;
1204 }
1205
1206 /* Performs file-level cleanup after branch-prob processing
1207 is completed. */
1208
1209 void
1210 end_branch_prob (void)
1211 {
1212 if (dump_file)
1213 {
1214 fprintf (dump_file, "\n");
1215 fprintf (dump_file, "Total number of blocks: %d\n",
1216 total_num_blocks);
1217 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1218 fprintf (dump_file, "Total number of ignored edges: %d\n",
1219 total_num_edges_ignored);
1220 fprintf (dump_file, "Total number of instrumented edges: %d\n",
1221 total_num_edges_instrumented);
1222 fprintf (dump_file, "Total number of blocks created: %d\n",
1223 total_num_blocks_created);
1224 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1225 total_num_passes);
1226 if (total_num_times_called != 0)
1227 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1228 (total_num_passes + (total_num_times_called >> 1))
1229 / total_num_times_called);
1230 fprintf (dump_file, "Total number of branches: %d\n",
1231 total_num_branches);
1232 fprintf (dump_file, "Total number of branches never executed: %d\n",
1233 total_num_never_executed);
1234 if (total_num_branches)
1235 {
1236 int i;
1237
1238 for (i = 0; i < 10; i++)
1239 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1240 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1241 / total_num_branches, 5*i, 5*i+5);
1242 }
1243 }
1244 }
1245
1246 /* Set up hooks to enable tree-based profiling. */
1247
1248 void
1249 tree_register_profile_hooks (void)
1250 {
1251 gcc_assert (current_ir_type () == IR_GIMPLE);
1252 profile_hooks = &tree_profile_hooks;
1253 }
1254