Merge from gcc-2.8
[gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990, 91, 92, 93, 94, 96, 1997 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4 based on some ideas from Dain Samples of UC Berkeley.
5 Further mangling by Bob Manson, Cygnus Support.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 /* ??? Really should not put insns inside of LIBCALL sequences, when putting
24 insns after a call, should look for the insn setting the retval, and
25 insert the insns after that one. */
26
27 /* ??? Register allocation should use basic block execution counts to
28 give preference to the most commonly executed blocks. */
29
30 /* ??? The .da files are not safe. Changing the program after creating .da
31 files or using different options when compiling with -fbranch-probabilities
32 can result the arc data not matching the program. Maybe add instrumented
33 arc count to .bbg file? Maybe check whether PFG matches the .bbg file? */
34
35 /* ??? Should calculate branch probabilities before instrumenting code, since
36 then we can use arc counts to help decide which arcs to instrument. */
37
38 /* ??? Rearrange code so that the most frequently executed arcs become from
39 one block to the next block (i.e. a fall through), move seldom executed
40 code outside of loops even at the expense of adding a few branches to
41 achieve this, see Dain Sample's UC Berkeley thesis. */
42
43 #include "config.h"
44 #include <stdio.h>
45 #include "rtl.h"
46 #include "flags.h"
47 #include "insn-flags.h"
48 #include "insn-config.h"
49 #include "output.h"
50 #include "regs.h"
51 #include "tree.h"
52 #include "output.h"
53 #include "gcov-io.h"
54
55 extern char * xmalloc ();
56 extern void free ();
57
58 /* One of these is dynamically created whenever we identify an arc in the
59 function. */
60
61 struct adj_list
62 {
63 int source;
64 int target;
65 int arc_count;
66 unsigned int count_valid : 1;
67 unsigned int on_tree : 1;
68 unsigned int fake : 1;
69 unsigned int fall_through : 1;
70 rtx branch_insn;
71 struct adj_list *pred_next;
72 struct adj_list *succ_next;
73 };
74
75 #define ARC_TARGET(ARCPTR) (ARCPTR->target)
76 #define ARC_SOURCE(ARCPTR) (ARCPTR->source)
77 #define ARC_COUNT(ARCPTR) (ARCPTR->arc_count)
78
79 /* Count the number of basic blocks, and create an array of these structures,
80 one for each bb in the function. */
81
82 struct bb_info
83 {
84 struct adj_list *succ;
85 struct adj_list *pred;
86 int succ_count;
87 int pred_count;
88 int exec_count;
89 unsigned int count_valid : 1;
90 unsigned int on_tree : 1;
91 rtx first_insn;
92 };
93
94 /* Indexed by label number, gives the basic block number containing that
95 label. */
96
97 static int *label_to_bb;
98
99 /* Number of valid entries in the label_to_bb array. */
100
101 static int label_to_bb_size;
102
103 /* Indexed by block index, holds the basic block graph. */
104
105 static struct bb_info *bb_graph;
106
107 /* Name and file pointer of the output file for the basic block graph. */
108
109 static char *bbg_file_name;
110 static FILE *bbg_file;
111
112 /* Name and file pointer of the input file for the arc count data. */
113
114 static char *da_file_name;
115 static FILE *da_file;
116
117 /* Pointer of the output file for the basic block/line number map. */
118 static FILE *bb_file;
119
120 /* Last source file name written to bb_file. */
121
122 static char *last_bb_file_name;
123
124 /* Indicates whether the next line number note should be output to
125 bb_file or not. Used to eliminate a redundant note after an
126 expanded inline function call. */
127
128 static int ignore_next_note;
129
130 /* Used by final, for allocating the proper amount of storage for the
131 instrumented arc execution counts. */
132
133 int count_instrumented_arcs;
134
135 /* Number of executions for the return label. */
136
137 int return_label_execution_count;
138
139 /* Collect statistics on the performance of this pass for the entire source
140 file. */
141
142 static int total_num_blocks;
143 static int total_num_arcs;
144 static int total_num_arcs_instrumented;
145 static int total_num_blocks_created;
146 static int total_num_passes;
147 static int total_num_times_called;
148 static int total_hist_br_prob[20];
149 static int total_num_never_executed;
150 static int total_num_branches;
151
152 /* Forward declarations. */
153 static void init_arc PROTO((struct adj_list *, int, int, rtx));
154 static void find_spanning_tree PROTO((int));
155 static void expand_spanning_tree PROTO((int));
156 static void fill_spanning_tree PROTO((int));
157 static void init_arc_profiler PROTO((void));
158 static void output_arc_profiler PROTO((int, rtx));
159
160 #ifndef LONG_TYPE_SIZE
161 #define LONG_TYPE_SIZE BITS_PER_WORD
162 #endif
163
164 /* If non-zero, we need to output a constructor to set up the
165 per-object-file data. */
166 static int need_func_profiler = 0;
167
168 \f
169 /* Add arc instrumentation code to the entire insn chain.
170
171 F is the first insn of the chain.
172 NUM_BLOCKS is the number of basic blocks found in F.
173 DUMP_FILE, if nonzero, is an rtl dump file we can write to. */
174
175 static void
176 instrument_arcs (f, num_blocks, dump_file)
177 rtx f;
178 int num_blocks;
179 FILE *dump_file;
180 {
181 register int i;
182 register struct adj_list *arcptr, *backptr;
183 int num_arcs = 0;
184 int num_instr_arcs = 0;
185 rtx insn;
186
187 int neg_one = -1;
188 int zero = 0;
189 int inverted;
190 rtx note;
191
192 /* Instrument the program start. */
193 /* Handle block 0 specially, since it will always be instrumented,
194 but it doesn't have a valid first_insn or branch_insn. We must
195 put the instructions before the NOTE_INSN_FUNCTION_BEG note, so
196 that they don't clobber any of the parameters of the current
197 function. */
198 for (insn = f; insn; insn = NEXT_INSN (insn))
199 if (GET_CODE (insn) == NOTE
200 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
201 break;
202 insn = PREV_INSN (insn);
203 need_func_profiler = 1;
204 output_arc_profiler (total_num_arcs_instrumented + num_instr_arcs++, insn);
205
206 for (i = 1; i < num_blocks; i++)
207 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
208 if (! arcptr->on_tree)
209 {
210 if (dump_file)
211 fprintf (dump_file, "Arc %d to %d instrumented\n", i,
212 ARC_TARGET (arcptr));
213
214 /* Check to see if this arc is the only exit from its source block,
215 or the only entrance to its target block. In either case,
216 we don't need to create a new block to instrument the arc. */
217
218 if (bb_graph[i].succ == arcptr && arcptr->succ_next == 0)
219 {
220 /* Instrument the source block. */
221 output_arc_profiler (total_num_arcs_instrumented
222 + num_instr_arcs++,
223 PREV_INSN (bb_graph[i].first_insn));
224 }
225 else if (arcptr == bb_graph[ARC_TARGET (arcptr)].pred
226 && arcptr->pred_next == 0)
227 {
228 /* Instrument the target block. */
229 output_arc_profiler (total_num_arcs_instrumented
230 + num_instr_arcs++,
231 PREV_INSN (bb_graph[ARC_TARGET (arcptr)].first_insn));
232 }
233 else if (arcptr->fall_through)
234 {
235 /* This is a fall-through; put the instrumentation code after
236 the branch that ends this block. */
237
238 for (backptr = bb_graph[i].succ; backptr;
239 backptr = backptr->succ_next)
240 if (backptr != arcptr)
241 break;
242
243 output_arc_profiler (total_num_arcs_instrumented
244 + num_instr_arcs++,
245 backptr->branch_insn);
246 }
247 else
248 {
249 /* Must emit a new basic block to hold the arc counting code. */
250 enum rtx_code code = GET_CODE (PATTERN (arcptr->branch_insn));
251
252 if (code == SET)
253 {
254 /* Create the new basic block right after the branch.
255 Invert the branch so that it jumps past the end of the new
256 block. The new block will consist of the instrumentation
257 code, and a jump to the target of this arc. */
258 int this_is_simplejump = simplejump_p (arcptr->branch_insn);
259 rtx new_label = gen_label_rtx ();
260 rtx old_label, set_src;
261 rtx after = arcptr->branch_insn;
262
263 /* Simplejumps can't reach here. */
264 if (this_is_simplejump)
265 abort ();
266
267 /* We can't use JUMP_LABEL, because it won't be set if we
268 are compiling without optimization. */
269
270 set_src = SET_SRC (single_set (arcptr->branch_insn));
271 if (GET_CODE (set_src) == LABEL_REF)
272 old_label = set_src;
273 else if (GET_CODE (set_src) != IF_THEN_ELSE)
274 abort ();
275 else if (XEXP (set_src, 1) == pc_rtx)
276 old_label = XEXP (XEXP (set_src, 2), 0);
277 else
278 old_label = XEXP (XEXP (set_src, 1), 0);
279
280 /* Set the JUMP_LABEL so that redirect_jump will work. */
281 JUMP_LABEL (arcptr->branch_insn) = old_label;
282
283 /* Add a use for OLD_LABEL that will be needed when we emit
284 the JUMP_INSN below. If we don't do this here,
285 `invert_jump' might delete it for us. We must add two
286 when not optimizing, because the NUSES is zero now,
287 but must be at least two to prevent the label from being
288 deleted. */
289 LABEL_NUSES (old_label) += 2;
290
291 /* Emit the insns for the new block in reverse order,
292 since that is most convenient. */
293
294 if (this_is_simplejump)
295 {
296 after = NEXT_INSN (arcptr->branch_insn);
297 if (! redirect_jump (arcptr->branch_insn, new_label))
298 /* Don't know what to do if this branch won't
299 redirect. */
300 abort ();
301 }
302 else
303 {
304 if (! invert_jump (arcptr->branch_insn, new_label))
305 /* Don't know what to do if this branch won't invert. */
306 abort ();
307
308 emit_label_after (new_label, after);
309 LABEL_NUSES (new_label)++;
310 }
311 emit_barrier_after (after);
312 emit_jump_insn_after (gen_jump (old_label), after);
313 JUMP_LABEL (NEXT_INSN (after)) = old_label;
314
315 /* Instrument the source arc. */
316 output_arc_profiler (total_num_arcs_instrumented
317 + num_instr_arcs++,
318 after);
319 if (this_is_simplejump)
320 {
321 emit_label_after (new_label, after);
322 LABEL_NUSES (new_label)++;
323 }
324 }
325 else if (code == ADDR_VEC || code == ADDR_DIFF_VEC)
326 {
327 /* A table jump. Create a new basic block immediately
328 after the table, by emitting a barrier, a label, a
329 counting note, and a jump to the old label. Put the
330 new label in the table. */
331
332 rtx new_label = gen_label_rtx ();
333 rtx old_lref, new_lref;
334 int index;
335
336 /* Must determine the old_label reference, do this
337 by counting the arcs after this one, which will
338 give the index of our label in the table. */
339
340 index = 0;
341 for (backptr = arcptr->succ_next; backptr;
342 backptr = backptr->succ_next)
343 index++;
344
345 old_lref = XVECEXP (PATTERN (arcptr->branch_insn),
346 (code == ADDR_DIFF_VEC), index);
347
348 /* Emit the insns for the new block in reverse order,
349 since that is most convenient. */
350 emit_jump_insn_after (gen_jump (XEXP (old_lref, 0)),
351 arcptr->branch_insn);
352 JUMP_LABEL (NEXT_INSN (arcptr->branch_insn))
353 = XEXP (old_lref, 0);
354
355 /* Instrument the source arc. */
356 output_arc_profiler (total_num_arcs_instrumented
357 + num_instr_arcs++,
358 arcptr->branch_insn);
359
360 emit_label_after (new_label, arcptr->branch_insn);
361 LABEL_NUSES (NEXT_INSN (arcptr->branch_insn))++;
362 emit_barrier_after (arcptr->branch_insn);
363
364 /* Fix up the table jump. */
365 new_lref = gen_rtx (LABEL_REF, Pmode, new_label);
366 XVECEXP (PATTERN (arcptr->branch_insn),
367 (code == ADDR_DIFF_VEC), index) = new_lref;
368 }
369 else
370 abort ();
371
372 num_arcs += 1;
373 if (dump_file)
374 fprintf (dump_file,
375 "Arc %d to %d needed new basic block\n", i,
376 ARC_TARGET (arcptr));
377 }
378 }
379
380 total_num_arcs_instrumented += num_instr_arcs;
381 count_instrumented_arcs = total_num_arcs_instrumented;
382
383 total_num_blocks_created += num_arcs;
384 if (dump_file)
385 {
386 fprintf (dump_file, "%d arcs instrumented\n", num_instr_arcs);
387 fprintf (dump_file, "%d extra basic blocks created\n", num_arcs);
388 }
389 }
390
391 /* Output STRING to bb_file, surrounded by DELIMITER. */
392
393 static void
394 output_gcov_string (string, delimiter)
395 char *string;
396 long delimiter;
397 {
398 long temp;
399
400 /* Write a delimiter to indicate that a file name follows. */
401 __write_long (delimiter, bb_file, 4);
402
403 /* Write the string. */
404 temp = strlen (string) + 1;
405 fwrite (string, temp, 1, bb_file);
406
407 /* Append a few zeros, to align the output to a 4 byte boundary. */
408 temp = temp & 0x3;
409 if (temp)
410 {
411 char c[4];
412
413 c[0] = c[1] = c[2] = c[3] = 0;
414 fwrite (c, sizeof (char), 4 - temp, bb_file);
415 }
416
417 /* Store another delimiter in the .bb file, just to make it easy to find the
418 end of the file name. */
419 __write_long (delimiter, bb_file, 4);
420 }
421 \f
422 /* Instrument and/or analyze program behavior based on program flow graph.
423 In either case, this function builds a flow graph for the function being
424 compiled. The flow graph is stored in BB_GRAPH.
425
426 When FLAG_PROFILE_ARCS is nonzero, this function instruments the arcs in
427 the flow graph that are needed to reconstruct the dynamic behavior of the
428 flow graph.
429
430 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
431 information from a data file containing arc count information from previous
432 executions of the function being compiled. In this case, the flow graph is
433 annotated with actual execution counts, which are later propagated into the
434 rtl for optimization purposes.
435
436 Main entry point of this file. */
437
438 void
439 branch_prob (f, dump_file)
440 rtx f;
441 FILE *dump_file;
442 {
443 int i, num_blocks;
444 int dest;
445 rtx insn;
446 struct adj_list *arcptr;
447 int num_arcs, changes, passes;
448 int total, prob;
449 int hist_br_prob[20], num_never_executed, num_branches;
450 /* Set to non-zero if we got bad count information. */
451 int bad_counts = 0;
452
453 /* start of a function. */
454 if (flag_test_coverage)
455 output_gcov_string (current_function_name, (long) -2);
456
457 /* Execute this only if doing arc profiling or branch probabilities. */
458 if (! profile_arc_flag && ! flag_branch_probabilities
459 && ! flag_test_coverage)
460 abort ();
461
462 total_num_times_called++;
463
464 /* Create an array label_to_bb of ints of size max_label_num. */
465 label_to_bb_size = max_label_num ();
466 label_to_bb = (int *) oballoc (label_to_bb_size * sizeof (int));
467 bzero ((char *) label_to_bb, label_to_bb_size * sizeof (int));
468
469 /* Scan the insns in the function, count the number of basic blocks
470 present. When a code label is passed, set label_to_bb[label] = bb
471 number. */
472
473 /* The first block found will be block 1, so that function entry can be
474 block 0. */
475
476 {
477 register RTX_CODE prev_code = JUMP_INSN;
478 register RTX_CODE code;
479 register rtx insn;
480 register int i;
481 int block_separator_emitted = 0;
482
483 ignore_next_note = 0;
484
485 for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
486 {
487 code = GET_CODE (insn);
488
489 if (code == BARRIER)
490 ;
491 else if (code == CODE_LABEL)
492 /* This label is part of the next block, but we can't increment
493 block number yet since there might be multiple labels. */
494 label_to_bb[CODE_LABEL_NUMBER (insn)] = i + 1;
495 /* We make NOTE_INSN_SETJMP notes into a block of their own, so that
496 they can be the target of the fake arc for the setjmp call.
497 This avoids creating cycles of fake arcs, which would happen if
498 the block after the setjmp call contained a call insn. */
499 else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
500 || prev_code == CODE_LABEL || prev_code == BARRIER)
501 && (GET_RTX_CLASS (code) == 'i'
502 || (code == NOTE
503 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
504 {
505 i += 1;
506
507 /* Emit the block separator if it hasn't already been emitted. */
508 if (flag_test_coverage && ! block_separator_emitted)
509 {
510 /* Output a zero to the .bb file to indicate that a new
511 block list is starting. */
512 __write_long (0, bb_file, 4);
513 }
514 block_separator_emitted = 0;
515 }
516 /* If flag_test_coverage is true, then we must add an entry to the
517 .bb file for every note. */
518 else if (code == NOTE && flag_test_coverage)
519 {
520 /* Must ignore the line number notes that immediately follow the
521 end of an inline function to avoid counting it twice. There
522 is a note before the call, and one after the call. */
523 if (NOTE_LINE_NUMBER (insn) == NOTE_REPEATED_LINE_NUMBER)
524 ignore_next_note = 1;
525 else if (NOTE_LINE_NUMBER (insn) > 0)
526 {
527 if (ignore_next_note)
528 ignore_next_note = 0;
529 else
530 {
531 /* Emit a block separator here to ensure that a NOTE
532 immediately following a JUMP_INSN or CALL_INSN will end
533 up in the right basic block list. */
534 if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
535 || prev_code == CODE_LABEL || prev_code == BARRIER)
536 && ! block_separator_emitted)
537 {
538 /* Output a zero to the .bb file to indicate that
539 a new block list is starting. */
540 __write_long (0, bb_file, 4);
541
542 block_separator_emitted = 1;
543 }
544
545 /* If this is a new source file, then output the file's
546 name to the .bb file. */
547 if (! last_bb_file_name
548 || strcmp (NOTE_SOURCE_FILE (insn),
549 last_bb_file_name))
550 {
551 if (last_bb_file_name)
552 free (last_bb_file_name);
553 last_bb_file_name
554 = xmalloc (strlen (NOTE_SOURCE_FILE (insn)) + 1);
555 strcpy (last_bb_file_name, NOTE_SOURCE_FILE (insn));
556 output_gcov_string (NOTE_SOURCE_FILE (insn), (long)-1);
557 }
558
559 /* Output the line number to the .bb file. Must be done
560 after the output_bb_profile_data() call, and after the
561 file name is written, to ensure that it is correctly
562 handled by gcov. */
563 __write_long (NOTE_LINE_NUMBER (insn), bb_file, 4);
564 }
565 }
566 }
567
568 if (code != NOTE)
569 prev_code = code;
570 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
571 prev_code = CALL_INSN;
572 }
573
574 /* Allocate last `normal' entry for bb_graph. */
575
576 /* The last insn was a jump, call, or label. In that case we have
577 a block at the end of the function with no insns. */
578 if (prev_code == JUMP_INSN || prev_code == CALL_INSN
579 || prev_code == CODE_LABEL || prev_code == BARRIER)
580 {
581 i++;
582
583 /* Emit the block separator if it hasn't already been emitted. */
584 if (flag_test_coverage && ! block_separator_emitted)
585 {
586 /* Output a zero to the .bb file to indicate that a new
587 block list is starting. */
588 __write_long (0, bb_file, 4);
589 }
590 }
591
592 /* Create another block to stand for EXIT, and make all return insns, and
593 the last basic block point here. Add one more to account for block
594 zero. */
595 num_blocks = i + 2;
596 }
597
598 total_num_blocks += num_blocks;
599 if (dump_file)
600 fprintf (dump_file, "%d basic blocks\n", num_blocks);
601
602 /* If we are only doing test coverage here, then return now. */
603 if (! profile_arc_flag && ! flag_branch_probabilities)
604 return;
605
606 /* Create and initialize the arrays that will hold bb_graph
607 and execution count info. */
608
609 bb_graph = (struct bb_info *) alloca (num_blocks * sizeof (struct bb_info));
610 bzero ((char *) bb_graph, (sizeof (struct bb_info) * num_blocks));
611
612 {
613 /* Scan the insns again:
614 - at the entry to each basic block, increment the predecessor count
615 (and successor of previous block) if it is a fall through entry,
616 create adj_list entries for this and the previous block
617 - at each jump insn, increment predecessor/successor counts for
618 target/source basic blocks, add this insn to pred/succ lists.
619
620 This also cannot be broken out as a separate subroutine
621 because it uses `alloca'. */
622
623 register RTX_CODE prev_code = JUMP_INSN;
624 register RTX_CODE code;
625 register rtx insn;
626 register int i;
627 int fall_through = 0;
628 struct adj_list *arcptr;
629 int dest;
630
631 /* Block 0 always falls through to block 1. */
632 num_arcs = 0;
633 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
634 init_arc (arcptr, 0, 1, 0);
635 arcptr->fall_through = 1;
636 num_arcs++;
637
638 /* Add a fake fall through arc from the last block to block 0, to make the
639 graph complete. */
640 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
641 init_arc (arcptr, num_blocks - 1, 0, 0);
642 arcptr->fake = 1;
643 num_arcs++;
644
645 /* Exit must be one node of the graph, and all exits from the function
646 must point there. When see a return branch, must point the arc to the
647 exit node. */
648
649 /* Must start scan with second insn in function as above. */
650 for (insn = NEXT_INSN (f), i = 0; insn; insn = NEXT_INSN (insn))
651 {
652 code = GET_CODE (insn);
653
654 if (code == BARRIER)
655 fall_through = 0;
656 else if (code == CODE_LABEL)
657 ;
658 /* We make NOTE_INSN_SETJMP notes into a block of their own, so that
659 they can be the target of the fake arc for the setjmp call.
660 This avoids creating cycles of fake arcs, which would happen if
661 the block after the setjmp call ended with a call. */
662 else if ((prev_code == JUMP_INSN || prev_code == CALL_INSN
663 || prev_code == CODE_LABEL || prev_code == BARRIER)
664 && (GET_RTX_CLASS (code) == 'i'
665 || (code == NOTE
666 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)))
667 {
668 /* This is the first insn of the block. */
669 i += 1;
670 if (fall_through)
671 {
672 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
673 init_arc (arcptr, i - 1, i, 0);
674 arcptr->fall_through = 1;
675
676 num_arcs++;
677 }
678 fall_through = 1;
679 bb_graph[i].first_insn = insn;
680 }
681 else if (code == NOTE)
682 ;
683
684 if (code == CALL_INSN)
685 {
686 /* In the normal case, the call returns, and this is just like
687 a branch fall through. */
688 fall_through = 1;
689
690 /* Setjmp may return more times than called, so to make the graph
691 solvable, add a fake arc from the function entrance to the
692 next block.
693
694 All other functions may return fewer times than called (if
695 a descendent call longjmp or exit), so to make the graph
696 solvable, add a fake arc to the function exit from the
697 current block.
698
699 Distinguish the cases by checking for a SETJUMP note.
700 A call_insn can be the last ins of a function, so must check
701 to see if next insn actually exists. */
702 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
703 if (NEXT_INSN (insn)
704 && GET_CODE (NEXT_INSN (insn)) == NOTE
705 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
706 init_arc (arcptr, 0, i+1, insn);
707 else
708 init_arc (arcptr, i, num_blocks-1, insn);
709 arcptr->fake = 1;
710 num_arcs++;
711 }
712 else if (code == JUMP_INSN)
713 {
714 rtx tem, pattern = PATTERN (insn);
715 rtx tablejump = 0;
716
717 /* If running without optimization, then jump label won't be valid,
718 so we must search for the destination label in that case.
719 We have to handle tablejumps and returns specially anyways, so
720 we don't check the JUMP_LABEL at all here. */
721
722 if (GET_CODE (pattern) == PARALLEL)
723 {
724 /* This assumes that PARALLEL jumps are tablejump entry
725 jumps. */
726 /* Make an arc from this jump to the label of the
727 jump table. This will instrument the number of
728 times the switch statement is executed. */
729 if (GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
730 {
731 tem = XEXP (XVECEXP (pattern, 0, 1), 0);
732 if (GET_CODE (tem) != LABEL_REF)
733 abort ();
734 dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
735 }
736 else if (GET_CODE (XVECEXP (pattern, 0, 0)) == SET
737 && SET_DEST (XVECEXP (pattern, 0, 0)) == pc_rtx)
738 {
739 tem = SET_SRC (XVECEXP (pattern, 0, 0));
740 if (GET_CODE (tem) == PLUS
741 && GET_CODE (XEXP (tem, 1)) == LABEL_REF)
742 {
743 tem = XEXP (tem, 1);
744 dest = label_to_bb [CODE_LABEL_NUMBER (XEXP (tem, 0))];
745 }
746 }
747 else
748 abort ();
749 }
750 else if (GET_CODE (pattern) == ADDR_VEC
751 || GET_CODE (pattern) == ADDR_DIFF_VEC)
752 tablejump = pattern;
753 else if (GET_CODE (pattern) == RETURN)
754 dest = num_blocks - 1;
755 else if ((tem = SET_SRC (pattern))
756 && GET_CODE (tem) == LABEL_REF)
757 dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (tem, 0))];
758 else
759 {
760 rtx label_ref;
761
762 /* Must be an IF_THEN_ELSE branch. */
763 if (GET_CODE (tem) != IF_THEN_ELSE)
764 abort ();
765 if (XEXP (tem, 1) != pc_rtx)
766 label_ref = XEXP (tem, 1);
767 else
768 label_ref = XEXP (tem, 2);
769 dest = label_to_bb[CODE_LABEL_NUMBER (XEXP (label_ref, 0))];
770 }
771
772 if (tablejump)
773 {
774 int diff_vec_p = GET_CODE (tablejump) == ADDR_DIFF_VEC;
775 int len = XVECLEN (tablejump, diff_vec_p);
776 int k;
777
778 for (k = 0; k < len; k++)
779 {
780 rtx tem = XEXP (XVECEXP (tablejump, diff_vec_p, k), 0);
781 dest = label_to_bb[CODE_LABEL_NUMBER (tem)];
782
783 arcptr = (struct adj_list *) alloca (sizeof(struct adj_list));
784 init_arc (arcptr, i, dest, insn);
785
786 num_arcs++;
787 }
788 }
789 else
790 {
791 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
792 init_arc (arcptr, i, dest, insn);
793
794 num_arcs++;
795 }
796
797 /* Determine whether or not this jump will fall through.
798 Unconditional jumps and returns are not always followed by
799 barriers. */
800 pattern = PATTERN (insn);
801 if (GET_CODE (pattern) == PARALLEL
802 || GET_CODE (pattern) == RETURN)
803 fall_through = 0;
804 else if (GET_CODE (pattern) == ADDR_VEC
805 || GET_CODE (pattern) == ADDR_DIFF_VEC)
806 /* These aren't actually jump insns, but they never fall
807 through, so... */
808 fall_through = 0;
809 else
810 {
811 if (GET_CODE (pattern) != SET || SET_DEST (pattern) != pc_rtx)
812 abort ();
813 if (GET_CODE (SET_SRC (pattern)) != IF_THEN_ELSE)
814 fall_through = 0;
815 }
816 }
817
818 if (code != NOTE)
819 prev_code = code;
820 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
821 {
822 /* Make a fake insn to tag our notes on. */
823 bb_graph[i].first_insn = insn
824 = emit_insn_after (gen_rtx (USE, VOIDmode, stack_pointer_rtx),
825 insn);
826 prev_code = CALL_INSN;
827 }
828 }
829
830 /* If the code at the end of the function would give a new block, then
831 do the following. */
832
833 if (prev_code == JUMP_INSN || prev_code == CALL_INSN
834 || prev_code == CODE_LABEL || prev_code == BARRIER)
835 {
836 if (fall_through)
837 {
838 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
839 init_arc (arcptr, i, i + 1, 0);
840 arcptr->fall_through = 1;
841
842 num_arcs++;
843 }
844
845 /* This may not be a real insn, but that should not cause a problem. */
846 bb_graph[i+1].first_insn = get_last_insn ();
847 }
848
849 /* There is always a fake arc from the last block of the function
850 to the function exit block. */
851 arcptr = (struct adj_list *) alloca (sizeof (struct adj_list));
852 init_arc (arcptr, num_blocks-2, num_blocks-1, 0);
853 arcptr->fake = 1;
854 num_arcs++;
855 }
856
857 total_num_arcs += num_arcs;
858 if (dump_file)
859 fprintf (dump_file, "%d arcs\n", num_arcs);
860
861 /* Create spanning tree from basic block graph, mark each arc that is
862 on the spanning tree. */
863
864 /* To reduce the instrumentation cost, make two passes over the tree.
865 First, put as many must-split (crowded and fake) arcs on the tree as
866 possible, then on the second pass fill in the rest of the tree.
867 Note that the spanning tree is considered undirected, so that as many
868 must-split arcs as possible can be put on it.
869
870 Fallthrough arcs which are crowded should not be chosen on the first
871 pass, since they do not require creating a new basic block. These
872 arcs will have fall_through set. */
873
874 find_spanning_tree (num_blocks);
875
876 /* Create a .bbg file from which gcov can reconstruct the basic block
877 graph. First output the number of basic blocks, and then for every
878 arc output the source and target basic block numbers.
879 NOTE: The format of this file must be compatible with gcov. */
880
881 if (flag_test_coverage)
882 {
883 int flag_bits;
884
885 __write_long (num_blocks, bbg_file, 4);
886 __write_long (num_arcs, bbg_file, 4);
887
888 for (i = 0; i < num_blocks; i++)
889 {
890 long count = 0;
891 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
892 count++;
893 __write_long (count, bbg_file, 4);
894
895 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
896 {
897 flag_bits = 0;
898 if (arcptr->on_tree)
899 flag_bits |= 0x1;
900 if (arcptr->fake)
901 flag_bits |= 0x2;
902 if (arcptr->fall_through)
903 flag_bits |= 0x4;
904
905 __write_long (ARC_TARGET (arcptr), bbg_file, 4);
906 __write_long (flag_bits, bbg_file, 4);
907 }
908 }
909
910 /* Emit a -1 to separate the list of all arcs from the list of
911 loop back edges that follows. */
912 __write_long (-1, bbg_file, 4);
913 }
914
915 /* For each arc not on the spanning tree, add counting code as rtl. */
916
917 if (profile_arc_flag)
918 instrument_arcs (f, num_blocks, dump_file);
919
920 /* Execute the rest only if doing branch probabilities. */
921 if (! flag_branch_probabilities)
922 return;
923
924 /* For each arc not on the spanning tree, set its execution count from
925 the .da file. */
926
927 /* The first count in the .da file is the number of times that the function
928 was entered. This is the exec_count for block zero. */
929
930 num_arcs = 0;
931 for (i = 0; i < num_blocks; i++)
932 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
933 if (! arcptr->on_tree)
934 {
935 num_arcs++;
936 if (da_file)
937 {
938 long value;
939 __read_long (&value, da_file, 8);
940 ARC_COUNT (arcptr) = value;
941 }
942 else
943 ARC_COUNT (arcptr) = 0;
944 arcptr->count_valid = 1;
945 bb_graph[i].succ_count--;
946 bb_graph[ARC_TARGET (arcptr)].pred_count--;
947 }
948
949 if (dump_file)
950 fprintf (dump_file, "%d arc counts read\n", num_arcs);
951
952 /* For every block in the file,
953 - if every exit/entrance arc has a known count, then set the block count
954 - if the block count is known, and every exit/entrance arc but one has
955 a known execution count, then set the count of the remaining arc
956
957 As arc counts are set, decrement the succ/pred count, but don't delete
958 the arc, that way we can easily tell when all arcs are known, or only
959 one arc is unknown. */
960
961 /* The order that the basic blocks are iterated through is important.
962 Since the code that finds spanning trees starts with block 0, low numbered
963 arcs are put on the spanning tree in preference to high numbered arcs.
964 Hence, most instrumented arcs are at the end. Graph solving works much
965 faster if we propagate numbers from the end to the start.
966
967 This takes an average of slightly more than 3 passes. */
968
969 changes = 1;
970 passes = 0;
971 while (changes)
972 {
973 passes++;
974 changes = 0;
975
976 for (i = num_blocks - 1; i >= 0; i--)
977 {
978 struct bb_info *binfo = &bb_graph[i];
979 if (! binfo->count_valid)
980 {
981 if (binfo->succ_count == 0)
982 {
983 total = 0;
984 for (arcptr = binfo->succ; arcptr;
985 arcptr = arcptr->succ_next)
986 total += ARC_COUNT (arcptr);
987 binfo->exec_count = total;
988 binfo->count_valid = 1;
989 changes = 1;
990 }
991 else if (binfo->pred_count == 0)
992 {
993 total = 0;
994 for (arcptr = binfo->pred; arcptr;
995 arcptr = arcptr->pred_next)
996 total += ARC_COUNT (arcptr);
997 binfo->exec_count = total;
998 binfo->count_valid = 1;
999 changes = 1;
1000 }
1001 }
1002 if (binfo->count_valid)
1003 {
1004 if (binfo->succ_count == 1)
1005 {
1006 total = 0;
1007 /* One of the counts will be invalid, but it is zero,
1008 so adding it in also doesn't hurt. */
1009 for (arcptr = binfo->succ; arcptr;
1010 arcptr = arcptr->succ_next)
1011 total += ARC_COUNT (arcptr);
1012 /* Calculate count for remaining arc by conservation. */
1013 total = binfo->exec_count - total;
1014 /* Search for the invalid arc, and set its count. */
1015 for (arcptr = binfo->succ; arcptr;
1016 arcptr = arcptr->succ_next)
1017 if (! arcptr->count_valid)
1018 break;
1019 if (! arcptr)
1020 abort ();
1021 arcptr->count_valid = 1;
1022 ARC_COUNT (arcptr) = total;
1023 binfo->succ_count--;
1024
1025 bb_graph[ARC_TARGET (arcptr)].pred_count--;
1026 changes = 1;
1027 }
1028 if (binfo->pred_count == 1)
1029 {
1030 total = 0;
1031 /* One of the counts will be invalid, but it is zero,
1032 so adding it in also doesn't hurt. */
1033 for (arcptr = binfo->pred; arcptr;
1034 arcptr = arcptr->pred_next)
1035 total += ARC_COUNT (arcptr);
1036 /* Calculate count for remaining arc by conservation. */
1037 total = binfo->exec_count - total;
1038 /* Search for the invalid arc, and set its count. */
1039 for (arcptr = binfo->pred; arcptr;
1040 arcptr = arcptr->pred_next)
1041 if (! arcptr->count_valid)
1042 break;
1043 if (! arcptr)
1044 abort ();
1045 arcptr->count_valid = 1;
1046 ARC_COUNT (arcptr) = total;
1047 binfo->pred_count--;
1048
1049 bb_graph[ARC_SOURCE (arcptr)].succ_count--;
1050 changes = 1;
1051 }
1052 }
1053 }
1054 }
1055
1056 total_num_passes += passes;
1057 if (dump_file)
1058 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
1059
1060 /* If the graph has been correctly solved, every block will have a
1061 succ and pred count of zero. */
1062 for (i = 0; i < num_blocks; i++)
1063 {
1064 struct bb_info *binfo = &bb_graph[i];
1065 if (binfo->succ_count || binfo->pred_count)
1066 abort ();
1067 }
1068
1069 /* For every arc, calculate its branch probability and add a reg_note
1070 to the branch insn to indicate this. */
1071
1072 for (i = 0; i < 20; i++)
1073 hist_br_prob[i] = 0;
1074 num_never_executed = 0;
1075 num_branches = 0;
1076
1077 for (i = 0; i < num_blocks; i++)
1078 {
1079 struct bb_info *binfo = &bb_graph[i];
1080
1081 total = binfo->exec_count;
1082 for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
1083 {
1084 if (arcptr->branch_insn)
1085 {
1086 /* This calculates the branch probability as an integer between
1087 0 and REG_BR_PROB_BASE, properly rounded to the nearest
1088 integer. Perform the arithmetic in double to avoid
1089 overflowing the range of ints. */
1090
1091 if (total == 0)
1092 prob = -1;
1093 else
1094 {
1095 rtx pat = PATTERN (arcptr->branch_insn);
1096
1097 prob = (((double)ARC_COUNT (arcptr) * REG_BR_PROB_BASE)
1098 + (total >> 1)) / total;
1099 if (prob < 0 || prob > REG_BR_PROB_BASE)
1100 {
1101 if (dump_file)
1102 fprintf (dump_file, "bad count: prob for %d-%d thought to be %d (forcibly normalized)\n",
1103 ARC_SOURCE (arcptr), ARC_TARGET (arcptr),
1104 prob);
1105
1106 bad_counts = 1;
1107 prob = REG_BR_PROB_BASE / 2;
1108 }
1109
1110 /* Match up probability with JUMP pattern. */
1111
1112 if (GET_CODE (pat) == SET
1113 && GET_CODE (SET_SRC (pat)) == IF_THEN_ELSE)
1114 {
1115 if (ARC_TARGET (arcptr) == ARC_SOURCE (arcptr) + 1)
1116 {
1117 /* A fall through arc should never have a
1118 branch insn. */
1119 abort ();
1120 }
1121 else
1122 {
1123 /* This is the arc for the taken branch. */
1124 if (GET_CODE (XEXP (SET_SRC (pat), 2)) != PC)
1125 prob = REG_BR_PROB_BASE - prob;
1126 }
1127 }
1128 }
1129
1130 if (prob == -1)
1131 num_never_executed++;
1132 else
1133 {
1134 int index = prob * 20 / REG_BR_PROB_BASE;
1135 if (index == 20)
1136 index = 19;
1137 hist_br_prob[index]++;
1138 }
1139 num_branches++;
1140
1141 REG_NOTES (arcptr->branch_insn)
1142 = gen_rtx (EXPR_LIST, REG_BR_PROB, GEN_INT (prob),
1143 REG_NOTES (arcptr->branch_insn));
1144 }
1145 }
1146
1147 /* Add a REG_EXEC_COUNT note to the first instruction of this block. */
1148 if (! binfo->first_insn
1149 || GET_RTX_CLASS (GET_CODE (binfo->first_insn)) != 'i')
1150 {
1151 /* Block 0 is a fake block representing function entry, and does
1152 not have a real first insn. The second last block might not
1153 begin with a real insn. */
1154 if (i == num_blocks - 1)
1155 return_label_execution_count = total;
1156 else if (i != 0 && i != num_blocks - 2)
1157 abort ();
1158 }
1159 else
1160 {
1161 REG_NOTES (binfo->first_insn)
1162 = gen_rtx (EXPR_LIST, REG_EXEC_COUNT, GEN_INT (total),
1163 REG_NOTES (binfo->first_insn));
1164 if (i == num_blocks - 1)
1165 return_label_execution_count = total;
1166 }
1167 }
1168
1169 /* This should never happen. */
1170 if (bad_counts)
1171 warning ("Arc profiling: some arc counts were bad.");
1172
1173 if (dump_file)
1174 {
1175 fprintf (dump_file, "%d branches\n", num_branches);
1176 fprintf (dump_file, "%d branches never executed\n",
1177 num_never_executed);
1178 if (num_branches)
1179 for (i = 0; i < 10; i++)
1180 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1181 (hist_br_prob[i]+hist_br_prob[19-i])*100/num_branches,
1182 5*i, 5*i+5);
1183
1184 total_num_branches += num_branches;
1185 total_num_never_executed += num_never_executed;
1186 for (i = 0; i < 20; i++)
1187 total_hist_br_prob[i] += hist_br_prob[i];
1188 }
1189
1190 }
1191 \f
1192 /* Initialize a new arc.
1193 ARCPTR is the empty adj_list this function fills in.
1194 SOURCE is the block number of the source block.
1195 TARGET is the block number of the target block.
1196 INSN is the insn which transfers control from SOURCE to TARGET,
1197 or zero if the transfer is implicit. */
1198
1199 static void
1200 init_arc (arcptr, source, target, insn)
1201 struct adj_list *arcptr;
1202 int source, target;
1203 rtx insn;
1204 {
1205 ARC_TARGET (arcptr) = target;
1206 ARC_SOURCE (arcptr) = source;
1207
1208 ARC_COUNT (arcptr) = 0;
1209 arcptr->count_valid = 0;
1210 arcptr->on_tree = 0;
1211 arcptr->fake = 0;
1212 arcptr->fall_through = 0;
1213 arcptr->branch_insn = insn;
1214
1215 arcptr->succ_next = bb_graph[source].succ;
1216 bb_graph[source].succ = arcptr;
1217 bb_graph[source].succ_count++;
1218
1219 arcptr->pred_next = bb_graph[target].pred;
1220 bb_graph[target].pred = arcptr;
1221 bb_graph[target].pred_count++;
1222 }
1223
1224 /* This function searches all of the arcs in the program flow graph, and puts
1225 as many bad arcs as possible onto the spanning tree. Bad arcs include
1226 fake arcs (needed for setjmp(), longjmp(), exit()) which MUST be on the
1227 spanning tree as they can't be instrumented. Also, arcs which must be
1228 split when instrumented should be part of the spanning tree if possible. */
1229
1230 static void
1231 find_spanning_tree (num_blocks)
1232 int num_blocks;
1233 {
1234 int i;
1235 struct adj_list *arcptr;
1236 struct bb_info *binfo = &bb_graph[0];
1237
1238 /* Fake arcs must be part of the spanning tree, and are always safe to put
1239 on the spanning tree. Fake arcs will either be a successor of node 0,
1240 a predecessor of the last node, or from the last node to node 0. */
1241
1242 for (arcptr = bb_graph[0].succ; arcptr; arcptr = arcptr->succ_next)
1243 if (arcptr->fake)
1244 {
1245 /* Adding this arc should never cause a cycle. This is a fatal
1246 error if it would. */
1247 if (bb_graph[ARC_TARGET (arcptr)].on_tree && binfo->on_tree)
1248 abort();
1249 else
1250 {
1251 arcptr->on_tree = 1;
1252 bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
1253 binfo->on_tree = 1;
1254 }
1255 }
1256
1257 binfo = &bb_graph[num_blocks-1];
1258 for (arcptr = binfo->pred; arcptr; arcptr = arcptr->pred_next)
1259 if (arcptr->fake)
1260 {
1261 /* Adding this arc should never cause a cycle. This is a fatal
1262 error if it would. */
1263 if (bb_graph[ARC_SOURCE (arcptr)].on_tree && binfo->on_tree)
1264 abort();
1265 else
1266 {
1267 arcptr->on_tree = 1;
1268 bb_graph[ARC_SOURCE (arcptr)].on_tree = 1;
1269 binfo->on_tree = 1;
1270 }
1271 }
1272 /* The only entrace to node zero is a fake arc. */
1273 bb_graph[0].pred->on_tree = 1;
1274
1275 /* Arcs which are crowded at both the source and target should be put on
1276 the spanning tree if possible, except for fall_throuch arcs which never
1277 require adding a new block even if crowded, add arcs with the same source
1278 and dest which must always be instrumented. */
1279 for (i = 0; i < num_blocks; i++)
1280 {
1281 binfo = &bb_graph[i];
1282
1283 for (arcptr = binfo->succ; arcptr; arcptr = arcptr->succ_next)
1284 if (! ((binfo->succ == arcptr && arcptr->succ_next == 0)
1285 || (bb_graph[ARC_TARGET (arcptr)].pred
1286 && arcptr->pred_next == 0))
1287 && ! arcptr->fall_through
1288 && ARC_TARGET (arcptr) != i)
1289 {
1290 /* This is a crowded arc at both source and target. Try to put
1291 in on the spanning tree. Can do this if either the source or
1292 target block is not yet on the tree. */
1293 if (! bb_graph[ARC_TARGET (arcptr)].on_tree || ! binfo->on_tree)
1294 {
1295 arcptr->on_tree = 1;
1296 bb_graph[ARC_TARGET (arcptr)].on_tree = 1;
1297 binfo->on_tree = 1;
1298 }
1299 }
1300 }
1301
1302 /* Clear all of the basic block on_tree bits, so that we can use them to
1303 create the spanning tree. */
1304 for (i = 0; i < num_blocks; i++)
1305 bb_graph[i].on_tree = 0;
1306
1307 /* Now fill in the spanning tree until every basic block is on it.
1308 Don't put the 0 to 1 fall through arc on the tree, since it is
1309 always cheap to instrument, so start filling the tree from node 1. */
1310
1311 for (i = 1; i < num_blocks; i++)
1312 for (arcptr = bb_graph[i].succ; arcptr; arcptr = arcptr->succ_next)
1313 if (! arcptr->on_tree
1314 && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1315 {
1316 fill_spanning_tree (i);
1317 break;
1318 }
1319 }
1320
1321 /* Add arcs reached from BLOCK to the spanning tree if they are needed and
1322 not already there. */
1323
1324 static void
1325 fill_spanning_tree (block)
1326 int block;
1327 {
1328 struct adj_list *arcptr;
1329
1330 expand_spanning_tree (block);
1331
1332 for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
1333 if (! arcptr->on_tree
1334 && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1335 {
1336 arcptr->on_tree = 1;
1337 fill_spanning_tree (ARC_TARGET (arcptr));
1338 }
1339 }
1340
1341 /* When first visit a block, must add all blocks that are already connected
1342 to this block via tree arcs to the spanning tree. */
1343
1344 static void
1345 expand_spanning_tree (block)
1346 int block;
1347 {
1348 struct adj_list *arcptr;
1349
1350 bb_graph[block].on_tree = 1;
1351
1352 for (arcptr = bb_graph[block].succ; arcptr; arcptr = arcptr->succ_next)
1353 if (arcptr->on_tree && ! bb_graph[ARC_TARGET (arcptr)].on_tree)
1354 expand_spanning_tree (ARC_TARGET (arcptr));
1355
1356 for (arcptr = bb_graph[block].pred;
1357 arcptr; arcptr = arcptr->pred_next)
1358 if (arcptr->on_tree && ! bb_graph[ARC_SOURCE (arcptr)].on_tree)
1359 expand_spanning_tree (ARC_SOURCE (arcptr));
1360 }
1361 \f
1362 /* Perform file-level initialization for branch-prob processing. */
1363
1364 void
1365 init_branch_prob (filename)
1366 char *filename;
1367 {
1368 long len;
1369 int i;
1370
1371 if (flag_test_coverage)
1372 {
1373 /* Open an output file for the basic block/line number map. */
1374 int len = strlen (filename);
1375 char *data_file = (char *) alloca (len + 4);
1376 strcpy (data_file, filename);
1377 strip_off_ending (data_file, len);
1378 strcat (data_file, ".bb");
1379 if ((bb_file = fopen (data_file, "w")) == 0)
1380 pfatal_with_name (data_file);
1381
1382 /* Open an output file for the program flow graph. */
1383 len = strlen (filename);
1384 bbg_file_name = (char *) alloca (len + 5);
1385 strcpy (bbg_file_name, filename);
1386 strip_off_ending (bbg_file_name, len);
1387 strcat (bbg_file_name, ".bbg");
1388 if ((bbg_file = fopen (bbg_file_name, "w")) == 0)
1389 pfatal_with_name (bbg_file_name);
1390
1391 /* Initialize to zero, to ensure that the first file name will be
1392 written to the .bb file. */
1393 last_bb_file_name = 0;
1394 }
1395
1396 if (flag_branch_probabilities)
1397 {
1398 len = strlen (filename);
1399 da_file_name = (char *) alloca (len + 4);
1400 strcpy (da_file_name, filename);
1401 strip_off_ending (da_file_name, len);
1402 strcat (da_file_name, ".da");
1403 if ((da_file = fopen (da_file_name, "r")) == 0)
1404 warning ("file %s not found, execution counts assumed to be zero.",
1405 da_file_name);
1406
1407 /* The first word in the .da file gives the number of instrumented arcs,
1408 which is not needed for our purposes. */
1409
1410 if (da_file)
1411 __read_long (&len, da_file, 8);
1412 }
1413
1414 if (profile_arc_flag)
1415 init_arc_profiler ();
1416
1417 total_num_blocks = 0;
1418 total_num_arcs = 0;
1419 total_num_arcs_instrumented = 0;
1420 total_num_blocks_created = 0;
1421 total_num_passes = 0;
1422 total_num_times_called = 0;
1423 total_num_branches = 0;
1424 total_num_never_executed = 0;
1425 for (i = 0; i < 20; i++)
1426 total_hist_br_prob[i] = 0;
1427 }
1428
1429 /* Performs file-level cleanup after branch-prob processing
1430 is completed. */
1431
1432 void
1433 end_branch_prob (dump_file)
1434 FILE *dump_file;
1435 {
1436 if (flag_test_coverage)
1437 {
1438 fclose (bb_file);
1439 fclose (bbg_file);
1440 }
1441
1442 if (flag_branch_probabilities)
1443 {
1444 if (da_file)
1445 {
1446 long temp;
1447 /* This seems slightly dangerous, as it presumes the EOF
1448 flag will not be set until an attempt is made to read
1449 past the end of the file. */
1450 if (feof (da_file))
1451 warning (".da file contents exhausted too early\n");
1452 /* Should be at end of file now. */
1453 if (__read_long (&temp, da_file, 8) == 0)
1454 warning (".da file contents not exhausted\n");
1455 fclose (da_file);
1456 }
1457 }
1458
1459 if (dump_file)
1460 {
1461 fprintf (dump_file, "\n");
1462 fprintf (dump_file, "Total number of blocks: %d\n", total_num_blocks);
1463 fprintf (dump_file, "Total number of arcs: %d\n", total_num_arcs);
1464 fprintf (dump_file, "Total number of instrumented arcs: %d\n",
1465 total_num_arcs_instrumented);
1466 fprintf (dump_file, "Total number of blocks created: %d\n",
1467 total_num_blocks_created);
1468 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1469 total_num_passes);
1470 if (total_num_times_called != 0)
1471 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1472 (total_num_passes + (total_num_times_called >> 1))
1473 / total_num_times_called);
1474 fprintf (dump_file, "Total number of branches: %d\n", total_num_branches);
1475 fprintf (dump_file, "Total number of branches never executed: %d\n",
1476 total_num_never_executed);
1477 if (total_num_branches)
1478 {
1479 int i;
1480
1481 for (i = 0; i < 10; i++)
1482 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1483 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1484 / total_num_branches, 5*i, 5*i+5);
1485 }
1486 }
1487 }
1488 \f
1489 /* The label used by the arc profiling code. */
1490
1491 static rtx profiler_label;
1492
1493 /* Initialize the profiler_label. */
1494
1495 static void
1496 init_arc_profiler ()
1497 {
1498 /* Generate and save a copy of this so it can be shared. */
1499 char *name = xmalloc (20);
1500 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
1501 profiler_label = gen_rtx (SYMBOL_REF, Pmode, name);
1502 }
1503
1504 /* Output instructions as RTL to increment the arc execution count. */
1505
1506 static void
1507 output_arc_profiler (arcno, insert_after)
1508 int arcno;
1509 rtx insert_after;
1510 {
1511 rtx profiler_target_addr
1512 = (arcno
1513 ? gen_rtx (CONST, Pmode,
1514 gen_rtx (PLUS, Pmode, profiler_label,
1515 gen_rtx (CONST_INT, VOIDmode,
1516 LONG_TYPE_SIZE / BITS_PER_UNIT * arcno)))
1517 : profiler_label);
1518 enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
1519 rtx profiler_reg = gen_reg_rtx (mode);
1520 rtx address_reg = gen_reg_rtx (Pmode);
1521 rtx mem_ref, add_ref;
1522 rtx sequence;
1523
1524 /* In this case, reload can use explicitly mentioned hard registers for
1525 reloads. It is not safe to output profiling code between a call
1526 and the instruction that copies the result to a pseudo-reg. This
1527 is because reload may allocate one of the profiling code pseudo-regs
1528 to the return value reg, thus clobbering the return value. So we
1529 must check for calls here, and emit the profiling code after the
1530 instruction that uses the return value, if any.
1531
1532 ??? The code here performs the same tests that reload does so hopefully
1533 all the bases are covered. */
1534
1535 if (SMALL_REGISTER_CLASSES
1536 && GET_CODE (insert_after) == CALL_INSN
1537 && (GET_CODE (PATTERN (insert_after)) == SET
1538 || (GET_CODE (PATTERN (insert_after)) == PARALLEL
1539 && GET_CODE (XVECEXP (PATTERN (insert_after), 0, 0)) == SET)))
1540 {
1541 rtx return_reg;
1542 rtx next_insert_after = next_nonnote_insn (insert_after);
1543
1544 /* The first insn after the call may be a stack pop, skip it. */
1545 if (next_insert_after
1546 && GET_CODE (next_insert_after) == INSN
1547 && GET_CODE (PATTERN (next_insert_after)) == SET
1548 && SET_DEST (PATTERN (next_insert_after)) == stack_pointer_rtx)
1549 next_insert_after = next_nonnote_insn (next_insert_after);
1550
1551 if (next_insert_after
1552 && GET_CODE (next_insert_after) == INSN)
1553 {
1554 if (GET_CODE (PATTERN (insert_after)) == SET)
1555 return_reg = SET_DEST (PATTERN (insert_after));
1556 else
1557 return_reg = SET_DEST (XVECEXP (PATTERN (insert_after), 0, 0));
1558
1559 /* Now, NEXT_INSERT_AFTER may be an instruction that uses the
1560 return value. However, it could also be something else,
1561 like a CODE_LABEL, so check that the code is INSN. */
1562 if (next_insert_after != 0
1563 && GET_RTX_CLASS (GET_CODE (next_insert_after)) == 'i'
1564 && reg_referenced_p (return_reg, PATTERN (next_insert_after)))
1565 insert_after = next_insert_after;
1566 }
1567 }
1568
1569 start_sequence ();
1570
1571 emit_move_insn (address_reg, profiler_target_addr);
1572 mem_ref = gen_rtx (MEM, mode, address_reg);
1573 emit_move_insn (profiler_reg, mem_ref);
1574
1575 add_ref = gen_rtx (PLUS, mode, profiler_reg, GEN_INT (1));
1576 emit_move_insn (profiler_reg, add_ref);
1577
1578 /* This is the same rtx as above, but it is not legal to share this rtx. */
1579 mem_ref = gen_rtx (MEM, mode, address_reg);
1580 emit_move_insn (mem_ref, profiler_reg);
1581
1582 sequence = gen_sequence ();
1583 end_sequence ();
1584 emit_insn_after (sequence, insert_after);
1585 }
1586
1587 /* Output code for a constructor that will invoke __bb_init_func, if
1588 this has not already been done. */
1589
1590 void
1591 output_func_start_profiler ()
1592 {
1593 tree fnname, fndecl;
1594 char *name, *cfnname;
1595 rtx table_address;
1596 enum machine_mode mode = mode_for_size (LONG_TYPE_SIZE, MODE_INT, 0);
1597 int save_flag_inline_functions = flag_inline_functions;
1598
1599 /* It's either already been output, or we don't need it because we're
1600 not doing profile-arcs. */
1601 if (! need_func_profiler)
1602 return;
1603
1604 need_func_profiler = 0;
1605
1606 /* Synthesize a constructor function to invoke __bb_init_func with a
1607 pointer to this object file's profile block. */
1608 start_sequence ();
1609
1610 /* Try and make a unique name given the "file function name".
1611
1612 And no, I don't like this either. */
1613
1614 fnname = get_file_function_name ('I');
1615 cfnname = IDENTIFIER_POINTER (fnname);
1616 name = xmalloc (strlen (cfnname) + 5);
1617 sprintf (name, "%sGCOV",cfnname);
1618 fnname = get_identifier (name);
1619 free (name);
1620
1621 fndecl = build_decl (FUNCTION_DECL, fnname,
1622 build_function_type (void_type_node, NULL_TREE));
1623 DECL_EXTERNAL (fndecl) = 0;
1624 TREE_PUBLIC (fndecl) = 1;
1625 DECL_ASSEMBLER_NAME (fndecl) = fnname;
1626 DECL_RESULT (fndecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
1627 current_function_decl = fndecl;
1628 pushlevel (0);
1629 make_function_rtl (fndecl);
1630 init_function_start (fndecl, input_filename, lineno);
1631 expand_function_start (fndecl, 0);
1632
1633 /* Actually generate the code to call __bb_init_func. */
1634 name = xmalloc (20);
1635 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
1636 table_address = force_reg (Pmode, gen_rtx (SYMBOL_REF, Pmode, name));
1637 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__bb_init_func"), 0,
1638 mode, 1, table_address, Pmode);
1639
1640 expand_function_end (input_filename, lineno, 0);
1641 poplevel (1, 0, 1);
1642
1643 /* Since fndecl isn't in the list of globals, it would never be emitted
1644 when it's considered to be 'safe' for inlining, so turn off
1645 flag_inline_functions. */
1646 flag_inline_functions = 0;
1647
1648 rest_of_compilation (fndecl);
1649
1650 /* Reset flag_inline_functions to its original value. */
1651 flag_inline_functions = save_flag_inline_functions;
1652
1653 fflush (asm_out_file);
1654 current_function_decl = NULL_TREE;
1655
1656 assemble_constructor (IDENTIFIER_POINTER (DECL_NAME (fndecl)));
1657 }