profile.c (edge_gcov_counts): Turn to pointer.
[gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990-2017 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4 based on some ideas from Dain Samples of UC Berkeley.
5 Further mangling by Bob Manson, Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Generate basic block profile instrumentation and auxiliary files.
24 Profile generation is optimized, so that not all arcs in the basic
25 block graph need instrumenting. First, the BB graph is closed with
26 one entry (function start), and one exit (function exit). Any
27 ABNORMAL_EDGE cannot be instrumented (because there is no control
28 path to place the code). We close the graph by inserting fake
29 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30 edges that do not go to the exit_block. We ignore such abnormal
31 edges. Naturally these fake edges are never directly traversed,
32 and so *cannot* be directly instrumented. Some other graph
33 massaging is done. To optimize the instrumentation we generate the
34 BB minimal span tree, only edges that are not on the span tree
35 (plus the entry point) need instrumenting. From that information
36 all other edge counts can be deduced. By construction all fake
37 edges must be on the spanning tree. We also attempt to place
38 EDGE_CRITICAL edges on the spanning tree.
39
40 The auxiliary files generated are <dumpbase>.gcno (at compile time)
41 and <dumpbase>.gcda (at run time). The format is
42 described in full in gcov-io.h. */
43
44 /* ??? Register allocation should use basic block execution counts to
45 give preference to the most commonly executed blocks. */
46
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48 then we can use arc counts to help decide which arcs to instrument. */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "backend.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "gimple.h"
57 #include "cfghooks.h"
58 #include "cgraph.h"
59 #include "coverage.h"
60 #include "diagnostic-core.h"
61 #include "cfganal.h"
62 #include "value-prof.h"
63 #include "gimple-iterator.h"
64 #include "tree-cfg.h"
65 #include "dumpfile.h"
66 #include "cfgloop.h"
67
68 #include "profile.h"
69
70 /* Map from BBs/edges to gcov counters. */
71 vec<gcov_type> bb_gcov_counts;
72 hash_map<edge,gcov_type> *edge_gcov_counts;
73
74 struct bb_profile_info {
75 unsigned int count_valid : 1;
76
77 /* Number of successor and predecessor edges. */
78 gcov_type succ_count;
79 gcov_type pred_count;
80 };
81
82 #define BB_INFO(b) ((struct bb_profile_info *) (b)->aux)
83
84
85 /* Counter summary from the last set of coverage counts read. */
86
87 const struct gcov_ctr_summary *profile_info;
88
89 /* Counter working set information computed from the current counter
90 summary. Not initialized unless profile_info summary is non-NULL. */
91 static gcov_working_set_t gcov_working_sets[NUM_GCOV_WORKING_SETS];
92
93 /* Collect statistics on the performance of this pass for the entire source
94 file. */
95
96 static int total_num_blocks;
97 static int total_num_edges;
98 static int total_num_edges_ignored;
99 static int total_num_edges_instrumented;
100 static int total_num_blocks_created;
101 static int total_num_passes;
102 static int total_num_times_called;
103 static int total_hist_br_prob[20];
104 static int total_num_branches;
105
106 /* Helper function to update gcov_working_sets. */
107
108 void add_working_set (gcov_working_set_t *set) {
109 int i = 0;
110 for (; i < NUM_GCOV_WORKING_SETS; i++)
111 gcov_working_sets[i] = set[i];
112 }
113
114 /* Forward declarations. */
115 static void find_spanning_tree (struct edge_list *);
116
117 /* Add edge instrumentation code to the entire insn chain.
118
119 F is the first insn of the chain.
120 NUM_BLOCKS is the number of basic blocks found in F. */
121
122 static unsigned
123 instrument_edges (struct edge_list *el)
124 {
125 unsigned num_instr_edges = 0;
126 int num_edges = NUM_EDGES (el);
127 basic_block bb;
128
129 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
130 {
131 edge e;
132 edge_iterator ei;
133
134 FOR_EACH_EDGE (e, ei, bb->succs)
135 {
136 struct edge_profile_info *inf = EDGE_INFO (e);
137
138 if (!inf->ignore && !inf->on_tree)
139 {
140 gcc_assert (!(e->flags & EDGE_ABNORMAL));
141 if (dump_file)
142 fprintf (dump_file, "Edge %d to %d instrumented%s\n",
143 e->src->index, e->dest->index,
144 EDGE_CRITICAL_P (e) ? " (and split)" : "");
145 gimple_gen_edge_profiler (num_instr_edges++, e);
146 }
147 }
148 }
149
150 total_num_blocks_created += num_edges;
151 if (dump_file)
152 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
153 return num_instr_edges;
154 }
155
156 /* Add code to measure histograms for values in list VALUES. */
157 static void
158 instrument_values (histogram_values values)
159 {
160 unsigned i;
161
162 /* Emit code to generate the histograms before the insns. */
163
164 for (i = 0; i < values.length (); i++)
165 {
166 histogram_value hist = values[i];
167 unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
168
169 if (!coverage_counter_alloc (t, hist->n_counters))
170 continue;
171
172 switch (hist->type)
173 {
174 case HIST_TYPE_INTERVAL:
175 gimple_gen_interval_profiler (hist, t, 0);
176 break;
177
178 case HIST_TYPE_POW2:
179 gimple_gen_pow2_profiler (hist, t, 0);
180 break;
181
182 case HIST_TYPE_SINGLE_VALUE:
183 gimple_gen_one_value_profiler (hist, t, 0);
184 break;
185
186 case HIST_TYPE_INDIR_CALL:
187 case HIST_TYPE_INDIR_CALL_TOPN:
188 gimple_gen_ic_profiler (hist, t, 0);
189 break;
190
191 case HIST_TYPE_AVERAGE:
192 gimple_gen_average_profiler (hist, t, 0);
193 break;
194
195 case HIST_TYPE_IOR:
196 gimple_gen_ior_profiler (hist, t, 0);
197 break;
198
199 case HIST_TYPE_TIME_PROFILE:
200 gimple_gen_time_profiler (t, 0);
201 break;
202
203 default:
204 gcc_unreachable ();
205 }
206 }
207 }
208 \f
209
210 /* Fill the working set information into the profile_info structure. */
211
212 void
213 get_working_sets (void)
214 {
215 unsigned ws_ix, pctinc, pct;
216 gcov_working_set_t *ws_info;
217
218 if (!profile_info)
219 return;
220
221 compute_working_sets (profile_info, gcov_working_sets);
222
223 if (dump_file)
224 {
225 fprintf (dump_file, "Counter working sets:\n");
226 /* Multiply the percentage by 100 to avoid float. */
227 pctinc = 100 * 100 / NUM_GCOV_WORKING_SETS;
228 for (ws_ix = 0, pct = pctinc; ws_ix < NUM_GCOV_WORKING_SETS;
229 ws_ix++, pct += pctinc)
230 {
231 if (ws_ix == NUM_GCOV_WORKING_SETS - 1)
232 pct = 9990;
233 ws_info = &gcov_working_sets[ws_ix];
234 /* Print out the percentage using int arithmatic to avoid float. */
235 fprintf (dump_file, "\t\t%u.%02u%%: num counts=%u, min counter="
236 "%" PRId64 "\n",
237 pct / 100, pct - (pct / 100 * 100),
238 ws_info->num_counters,
239 (int64_t)ws_info->min_counter);
240 }
241 }
242 }
243
244 /* Given a the desired percentage of the full profile (sum_all from the
245 summary), multiplied by 10 to avoid float in PCT_TIMES_10, returns
246 the corresponding working set information. If an exact match for
247 the percentage isn't found, the closest value is used. */
248
249 gcov_working_set_t *
250 find_working_set (unsigned pct_times_10)
251 {
252 unsigned i;
253 if (!profile_info)
254 return NULL;
255 gcc_assert (pct_times_10 <= 1000);
256 if (pct_times_10 >= 999)
257 return &gcov_working_sets[NUM_GCOV_WORKING_SETS - 1];
258 i = pct_times_10 * NUM_GCOV_WORKING_SETS / 1000;
259 if (!i)
260 return &gcov_working_sets[0];
261 return &gcov_working_sets[i - 1];
262 }
263
264 /* Computes hybrid profile for all matching entries in da_file.
265
266 CFG_CHECKSUM is the precomputed checksum for the CFG. */
267
268 static gcov_type *
269 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
270 {
271 unsigned num_edges = 0;
272 basic_block bb;
273 gcov_type *counts;
274
275 /* Count the edges to be (possibly) instrumented. */
276 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
277 {
278 edge e;
279 edge_iterator ei;
280
281 FOR_EACH_EDGE (e, ei, bb->succs)
282 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
283 num_edges++;
284 }
285
286 counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum,
287 lineno_checksum, &profile_info);
288 if (!counts)
289 return NULL;
290
291 get_working_sets ();
292
293 if (dump_file && profile_info)
294 fprintf (dump_file, "Merged %u profiles with maximal count %u.\n",
295 profile_info->runs, (unsigned) profile_info->sum_max);
296
297 return counts;
298 }
299
300
301 static bool
302 is_edge_inconsistent (vec<edge, va_gc> *edges)
303 {
304 edge e;
305 edge_iterator ei;
306 FOR_EACH_EDGE (e, ei, edges)
307 {
308 if (!EDGE_INFO (e)->ignore)
309 {
310 if (edge_gcov_count (e) < 0
311 && (!(e->flags & EDGE_FAKE)
312 || !block_ends_with_call_p (e->src)))
313 {
314 if (dump_file)
315 {
316 fprintf (dump_file,
317 "Edge %i->%i is inconsistent, count%" PRId64,
318 e->src->index, e->dest->index, edge_gcov_count (e));
319 dump_bb (dump_file, e->src, 0, TDF_DETAILS);
320 dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
321 }
322 return true;
323 }
324 }
325 }
326 return false;
327 }
328
329 static void
330 correct_negative_edge_counts (void)
331 {
332 basic_block bb;
333 edge e;
334 edge_iterator ei;
335
336 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
337 {
338 FOR_EACH_EDGE (e, ei, bb->succs)
339 {
340 if (edge_gcov_count (e) < 0)
341 edge_gcov_count (e) = 0;
342 }
343 }
344 }
345
346 /* Check consistency.
347 Return true if inconsistency is found. */
348 static bool
349 is_inconsistent (void)
350 {
351 basic_block bb;
352 bool inconsistent = false;
353 FOR_EACH_BB_FN (bb, cfun)
354 {
355 inconsistent |= is_edge_inconsistent (bb->preds);
356 if (!dump_file && inconsistent)
357 return true;
358 inconsistent |= is_edge_inconsistent (bb->succs);
359 if (!dump_file && inconsistent)
360 return true;
361 if (bb_gcov_count (bb) < 0)
362 {
363 if (dump_file)
364 {
365 fprintf (dump_file, "BB %i count is negative "
366 "%" PRId64,
367 bb->index,
368 bb_gcov_count (bb));
369 dump_bb (dump_file, bb, 0, TDF_DETAILS);
370 }
371 inconsistent = true;
372 }
373 if (bb_gcov_count (bb) != sum_edge_counts (bb->preds))
374 {
375 if (dump_file)
376 {
377 fprintf (dump_file, "BB %i count does not match sum of incoming edges "
378 "%" PRId64" should be %" PRId64,
379 bb->index,
380 bb_gcov_count (bb),
381 sum_edge_counts (bb->preds));
382 dump_bb (dump_file, bb, 0, TDF_DETAILS);
383 }
384 inconsistent = true;
385 }
386 if (bb_gcov_count (bb) != sum_edge_counts (bb->succs) &&
387 ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL
388 && block_ends_with_call_p (bb)))
389 {
390 if (dump_file)
391 {
392 fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
393 "%" PRId64" should be %" PRId64,
394 bb->index,
395 bb_gcov_count (bb),
396 sum_edge_counts (bb->succs));
397 dump_bb (dump_file, bb, 0, TDF_DETAILS);
398 }
399 inconsistent = true;
400 }
401 if (!dump_file && inconsistent)
402 return true;
403 }
404
405 return inconsistent;
406 }
407
408 /* Set each basic block count to the sum of its outgoing edge counts */
409 static void
410 set_bb_counts (void)
411 {
412 basic_block bb;
413 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
414 {
415 bb_gcov_count (bb) = sum_edge_counts (bb->succs);
416 gcc_assert (bb_gcov_count (bb) >= 0);
417 }
418 }
419
420 /* Reads profile data and returns total number of edge counts read */
421 static int
422 read_profile_edge_counts (gcov_type *exec_counts)
423 {
424 basic_block bb;
425 int num_edges = 0;
426 int exec_counts_pos = 0;
427 /* For each edge not on the spanning tree, set its execution count from
428 the .da file. */
429 /* The first count in the .da file is the number of times that the function
430 was entered. This is the exec_count for block zero. */
431
432 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
433 {
434 edge e;
435 edge_iterator ei;
436
437 FOR_EACH_EDGE (e, ei, bb->succs)
438 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
439 {
440 num_edges++;
441 if (exec_counts)
442 {
443 edge_gcov_count (e) = exec_counts[exec_counts_pos++];
444 if (edge_gcov_count (e) > profile_info->sum_max)
445 {
446 if (flag_profile_correction)
447 {
448 static bool informed = 0;
449 if (dump_enabled_p () && !informed)
450 dump_printf_loc (MSG_NOTE, input_location,
451 "corrupted profile info: edge count"
452 " exceeds maximal count\n");
453 informed = 1;
454 }
455 else
456 error ("corrupted profile info: edge from %i to %i exceeds maximal count",
457 bb->index, e->dest->index);
458 }
459 }
460 else
461 edge_gcov_count (e) = 0;
462
463 EDGE_INFO (e)->count_valid = 1;
464 BB_INFO (bb)->succ_count--;
465 BB_INFO (e->dest)->pred_count--;
466 if (dump_file)
467 {
468 fprintf (dump_file, "\nRead edge from %i to %i, count:",
469 bb->index, e->dest->index);
470 fprintf (dump_file, "%" PRId64,
471 (int64_t) edge_gcov_count (e));
472 }
473 }
474 }
475
476 return num_edges;
477 }
478
479 #define OVERLAP_BASE 10000
480
481 /* Compare the static estimated profile to the actual profile, and
482 return the "degree of overlap" measure between them.
483
484 Degree of overlap is a number between 0 and OVERLAP_BASE. It is
485 the sum of each basic block's minimum relative weights between
486 two profiles. And overlap of OVERLAP_BASE means two profiles are
487 identical. */
488
489 static int
490 compute_frequency_overlap (void)
491 {
492 gcov_type count_total = 0, freq_total = 0;
493 int overlap = 0;
494 basic_block bb;
495
496 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
497 {
498 count_total += bb_gcov_count (bb);
499 freq_total += bb->frequency;
500 }
501
502 if (count_total == 0 || freq_total == 0)
503 return 0;
504
505 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
506 overlap += MIN (bb_gcov_count (bb) * OVERLAP_BASE / count_total,
507 bb->frequency * OVERLAP_BASE / freq_total);
508
509 return overlap;
510 }
511
512 /* Compute the branch probabilities for the various branches.
513 Annotate them accordingly.
514
515 CFG_CHECKSUM is the precomputed checksum for the CFG. */
516
517 static void
518 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
519 {
520 basic_block bb;
521 int i;
522 int num_edges = 0;
523 int changes;
524 int passes;
525 int hist_br_prob[20];
526 int num_branches;
527 gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
528 int inconsistent = 0;
529
530 /* Very simple sanity checks so we catch bugs in our profiling code. */
531 if (!profile_info)
532 return;
533
534 bb_gcov_counts.safe_grow_cleared (last_basic_block_for_fn (cfun));
535 edge_gcov_counts = new hash_map<edge,gcov_type>;
536
537 if (profile_info->sum_all < profile_info->sum_max)
538 {
539 error ("corrupted profile info: sum_all is smaller than sum_max");
540 exec_counts = NULL;
541 }
542
543 /* Attach extra info block to each bb. */
544 alloc_aux_for_blocks (sizeof (struct bb_profile_info));
545 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
546 {
547 edge e;
548 edge_iterator ei;
549
550 FOR_EACH_EDGE (e, ei, bb->succs)
551 if (!EDGE_INFO (e)->ignore)
552 BB_INFO (bb)->succ_count++;
553 FOR_EACH_EDGE (e, ei, bb->preds)
554 if (!EDGE_INFO (e)->ignore)
555 BB_INFO (bb)->pred_count++;
556 }
557
558 /* Avoid predicting entry on exit nodes. */
559 BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2;
560 BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2;
561
562 num_edges = read_profile_edge_counts (exec_counts);
563
564 if (dump_file)
565 fprintf (dump_file, "\n%d edge counts read\n", num_edges);
566
567 /* For every block in the file,
568 - if every exit/entrance edge has a known count, then set the block count
569 - if the block count is known, and every exit/entrance edge but one has
570 a known execution count, then set the count of the remaining edge
571
572 As edge counts are set, decrement the succ/pred count, but don't delete
573 the edge, that way we can easily tell when all edges are known, or only
574 one edge is unknown. */
575
576 /* The order that the basic blocks are iterated through is important.
577 Since the code that finds spanning trees starts with block 0, low numbered
578 edges are put on the spanning tree in preference to high numbered edges.
579 Hence, most instrumented edges are at the end. Graph solving works much
580 faster if we propagate numbers from the end to the start.
581
582 This takes an average of slightly more than 3 passes. */
583
584 changes = 1;
585 passes = 0;
586 while (changes)
587 {
588 passes++;
589 changes = 0;
590 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb)
591 {
592 struct bb_profile_info *bi = BB_INFO (bb);
593 if (! bi->count_valid)
594 {
595 if (bi->succ_count == 0)
596 {
597 edge e;
598 edge_iterator ei;
599 gcov_type total = 0;
600
601 FOR_EACH_EDGE (e, ei, bb->succs)
602 total += edge_gcov_count (e);
603 bb_gcov_count (bb) = total;
604 bi->count_valid = 1;
605 changes = 1;
606 }
607 else if (bi->pred_count == 0)
608 {
609 edge e;
610 edge_iterator ei;
611 gcov_type total = 0;
612
613 FOR_EACH_EDGE (e, ei, bb->preds)
614 total += edge_gcov_count (e);
615 bb_gcov_count (bb) = total;
616 bi->count_valid = 1;
617 changes = 1;
618 }
619 }
620 if (bi->count_valid)
621 {
622 if (bi->succ_count == 1)
623 {
624 edge e;
625 edge_iterator ei;
626 gcov_type total = 0;
627
628 /* One of the counts will be invalid, but it is zero,
629 so adding it in also doesn't hurt. */
630 FOR_EACH_EDGE (e, ei, bb->succs)
631 total += edge_gcov_count (e);
632
633 /* Search for the invalid edge, and set its count. */
634 FOR_EACH_EDGE (e, ei, bb->succs)
635 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
636 break;
637
638 /* Calculate count for remaining edge by conservation. */
639 total = bb_gcov_count (bb) - total;
640
641 gcc_assert (e);
642 EDGE_INFO (e)->count_valid = 1;
643 edge_gcov_count (e) = total;
644 bi->succ_count--;
645
646 BB_INFO (e->dest)->pred_count--;
647 changes = 1;
648 }
649 if (bi->pred_count == 1)
650 {
651 edge e;
652 edge_iterator ei;
653 gcov_type total = 0;
654
655 /* One of the counts will be invalid, but it is zero,
656 so adding it in also doesn't hurt. */
657 FOR_EACH_EDGE (e, ei, bb->preds)
658 total += edge_gcov_count (e);
659
660 /* Search for the invalid edge, and set its count. */
661 FOR_EACH_EDGE (e, ei, bb->preds)
662 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
663 break;
664
665 /* Calculate count for remaining edge by conservation. */
666 total = bb_gcov_count (bb) - total + edge_gcov_count (e);
667
668 gcc_assert (e);
669 EDGE_INFO (e)->count_valid = 1;
670 edge_gcov_count (e) = total;
671 bi->pred_count--;
672
673 BB_INFO (e->src)->succ_count--;
674 changes = 1;
675 }
676 }
677 }
678 }
679 if (dump_file)
680 {
681 int overlap = compute_frequency_overlap ();
682 gimple_dump_cfg (dump_file, dump_flags);
683 fprintf (dump_file, "Static profile overlap: %d.%d%%\n",
684 overlap / (OVERLAP_BASE / 100),
685 overlap % (OVERLAP_BASE / 100));
686 }
687
688 total_num_passes += passes;
689 if (dump_file)
690 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
691
692 /* If the graph has been correctly solved, every block will have a
693 succ and pred count of zero. */
694 FOR_EACH_BB_FN (bb, cfun)
695 {
696 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
697 }
698
699 /* Check for inconsistent basic block counts */
700 inconsistent = is_inconsistent ();
701
702 if (inconsistent)
703 {
704 if (flag_profile_correction)
705 {
706 /* Inconsistency detected. Make it flow-consistent. */
707 static int informed = 0;
708 if (dump_enabled_p () && informed == 0)
709 {
710 informed = 1;
711 dump_printf_loc (MSG_NOTE, input_location,
712 "correcting inconsistent profile data\n");
713 }
714 correct_negative_edge_counts ();
715 /* Set bb counts to the sum of the outgoing edge counts */
716 set_bb_counts ();
717 if (dump_file)
718 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
719 mcf_smooth_cfg ();
720 }
721 else
722 error ("corrupted profile info: profile data is not flow-consistent");
723 }
724
725 /* For every edge, calculate its branch probability and add a reg_note
726 to the branch insn to indicate this. */
727
728 for (i = 0; i < 20; i++)
729 hist_br_prob[i] = 0;
730 num_branches = 0;
731
732 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
733 {
734 edge e;
735 edge_iterator ei;
736
737 if (bb_gcov_count (bb) < 0)
738 {
739 error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
740 bb->index, (int)bb_gcov_count (bb));
741 bb_gcov_count (bb) = 0;
742 }
743 FOR_EACH_EDGE (e, ei, bb->succs)
744 {
745 /* Function may return twice in the cased the called function is
746 setjmp or calls fork, but we can't represent this by extra
747 edge from the entry, since extra edge from the exit is
748 already present. We get negative frequency from the entry
749 point. */
750 if ((edge_gcov_count (e) < 0
751 && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
752 || (edge_gcov_count (e) > bb_gcov_count (bb)
753 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
754 {
755 if (block_ends_with_call_p (bb))
756 edge_gcov_count (e) = edge_gcov_count (e) < 0
757 ? 0 : bb_gcov_count (bb);
758 }
759 if (edge_gcov_count (e) < 0
760 || edge_gcov_count (e) > bb_gcov_count (bb))
761 {
762 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
763 e->src->index, e->dest->index,
764 (int)edge_gcov_count (e));
765 edge_gcov_count (e) = bb_gcov_count (bb) / 2;
766 }
767 }
768 if (bb_gcov_count (bb))
769 {
770 FOR_EACH_EDGE (e, ei, bb->succs)
771 e->probability = GCOV_COMPUTE_SCALE (edge_gcov_count (e),
772 bb_gcov_count (bb));
773 if (bb->index >= NUM_FIXED_BLOCKS
774 && block_ends_with_condjump_p (bb)
775 && EDGE_COUNT (bb->succs) >= 2)
776 {
777 int prob;
778 edge e;
779 int index;
780
781 /* Find the branch edge. It is possible that we do have fake
782 edges here. */
783 FOR_EACH_EDGE (e, ei, bb->succs)
784 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
785 break;
786
787 prob = e->probability;
788 index = prob * 20 / REG_BR_PROB_BASE;
789
790 if (index == 20)
791 index = 19;
792 hist_br_prob[index]++;
793
794 num_branches++;
795 }
796 }
797 /* As a last resort, distribute the probabilities evenly.
798 Use simple heuristics that if there are normal edges,
799 give all abnormals frequency of 0, otherwise distribute the
800 frequency over abnormals (this is the case of noreturn
801 calls). */
802 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
803 {
804 int total = 0;
805
806 FOR_EACH_EDGE (e, ei, bb->succs)
807 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
808 total ++;
809 if (total)
810 {
811 FOR_EACH_EDGE (e, ei, bb->succs)
812 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
813 e->probability = REG_BR_PROB_BASE / total;
814 else
815 e->probability = 0;
816 }
817 else
818 {
819 total += EDGE_COUNT (bb->succs);
820 FOR_EACH_EDGE (e, ei, bb->succs)
821 e->probability = REG_BR_PROB_BASE / total;
822 }
823 if (bb->index >= NUM_FIXED_BLOCKS
824 && block_ends_with_condjump_p (bb)
825 && EDGE_COUNT (bb->succs) >= 2)
826 num_branches++;
827 }
828 }
829
830 FOR_ALL_BB_FN (bb, cfun)
831 {
832 edge e;
833 edge_iterator ei;
834
835 bb->count = profile_count::from_gcov_type (bb_gcov_count (bb));
836 FOR_EACH_EDGE (e, ei, bb->succs)
837 e->count = profile_count::from_gcov_type (edge_gcov_count (e));
838 }
839 bb_gcov_counts.release ();
840 delete edge_gcov_counts;
841 edge_gcov_counts = NULL;
842
843 counts_to_freqs ();
844
845 if (dump_file)
846 {
847 fprintf (dump_file, "%d branches\n", num_branches);
848 if (num_branches)
849 for (i = 0; i < 10; i++)
850 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
851 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
852 5 * i, 5 * i + 5);
853
854 total_num_branches += num_branches;
855 for (i = 0; i < 20; i++)
856 total_hist_br_prob[i] += hist_br_prob[i];
857
858 fputc ('\n', dump_file);
859 fputc ('\n', dump_file);
860 }
861
862 free_aux_for_blocks ();
863 }
864
865 /* Load value histograms values whose description is stored in VALUES array
866 from .gcda file.
867
868 CFG_CHECKSUM is the precomputed checksum for the CFG. */
869
870 static void
871 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
872 unsigned lineno_checksum)
873 {
874 unsigned i, j, t, any;
875 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
876 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
877 gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
878 gcov_type *aact_count;
879 struct cgraph_node *node;
880
881 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
882 n_histogram_counters[t] = 0;
883
884 for (i = 0; i < values.length (); i++)
885 {
886 histogram_value hist = values[i];
887 n_histogram_counters[(int) hist->type] += hist->n_counters;
888 }
889
890 any = 0;
891 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
892 {
893 if (!n_histogram_counters[t])
894 {
895 histogram_counts[t] = NULL;
896 continue;
897 }
898
899 histogram_counts[t] =
900 get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
901 n_histogram_counters[t], cfg_checksum,
902 lineno_checksum, NULL);
903 if (histogram_counts[t])
904 any = 1;
905 act_count[t] = histogram_counts[t];
906 }
907 if (!any)
908 return;
909
910 for (i = 0; i < values.length (); i++)
911 {
912 histogram_value hist = values[i];
913 gimple *stmt = hist->hvalue.stmt;
914
915 t = (int) hist->type;
916
917 aact_count = act_count[t];
918
919 if (act_count[t])
920 act_count[t] += hist->n_counters;
921
922 gimple_add_histogram_value (cfun, stmt, hist);
923 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
924 for (j = 0; j < hist->n_counters; j++)
925 if (aact_count)
926 hist->hvalue.counters[j] = aact_count[j];
927 else
928 hist->hvalue.counters[j] = 0;
929
930 /* Time profiler counter is not related to any statement,
931 so that we have to read the counter and set the value to
932 the corresponding call graph node. */
933 if (hist->type == HIST_TYPE_TIME_PROFILE)
934 {
935 node = cgraph_node::get (hist->fun->decl);
936 node->tp_first_run = hist->hvalue.counters[0];
937
938 if (dump_file)
939 fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run);
940 }
941 }
942
943 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
944 free (histogram_counts[t]);
945 }
946
947 /* When passed NULL as file_name, initialize.
948 When passed something else, output the necessary commands to change
949 line to LINE and offset to FILE_NAME. */
950 static void
951 output_location (char const *file_name, int line,
952 gcov_position_t *offset, basic_block bb)
953 {
954 static char const *prev_file_name;
955 static int prev_line;
956 bool name_differs, line_differs;
957
958 if (!file_name)
959 {
960 prev_file_name = NULL;
961 prev_line = -1;
962 return;
963 }
964
965 name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
966 line_differs = prev_line != line;
967
968 if (!*offset)
969 {
970 *offset = gcov_write_tag (GCOV_TAG_LINES);
971 gcov_write_unsigned (bb->index);
972 name_differs = line_differs = true;
973 }
974
975 /* If this is a new source file, then output the
976 file's name to the .bb file. */
977 if (name_differs)
978 {
979 prev_file_name = file_name;
980 gcov_write_unsigned (0);
981 gcov_write_filename (prev_file_name);
982 }
983 if (line_differs)
984 {
985 gcov_write_unsigned (line);
986 prev_line = line;
987 }
988 }
989
990 /* Instrument and/or analyze program behavior based on program the CFG.
991
992 This function creates a representation of the control flow graph (of
993 the function being compiled) that is suitable for the instrumentation
994 of edges and/or converting measured edge counts to counts on the
995 complete CFG.
996
997 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
998 the flow graph that are needed to reconstruct the dynamic behavior of the
999 flow graph. This data is written to the gcno file for gcov.
1000
1001 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
1002 information from the gcda file containing edge count information from
1003 previous executions of the function being compiled. In this case, the
1004 control flow graph is annotated with actual execution counts by
1005 compute_branch_probabilities().
1006
1007 Main entry point of this file. */
1008
1009 void
1010 branch_prob (void)
1011 {
1012 basic_block bb;
1013 unsigned i;
1014 unsigned num_edges, ignored_edges;
1015 unsigned num_instrumented;
1016 struct edge_list *el;
1017 histogram_values values = histogram_values ();
1018 unsigned cfg_checksum, lineno_checksum;
1019
1020 total_num_times_called++;
1021
1022 flow_call_edges_add (NULL);
1023 add_noreturn_fake_exit_edges ();
1024
1025 /* We can't handle cyclic regions constructed using abnormal edges.
1026 To avoid these we replace every source of abnormal edge by a fake
1027 edge from entry node and every destination by fake edge to exit.
1028 This keeps graph acyclic and our calculation exact for all normal
1029 edges except for exit and entrance ones.
1030
1031 We also add fake exit edges for each call and asm statement in the
1032 basic, since it may not return. */
1033
1034 FOR_EACH_BB_FN (bb, cfun)
1035 {
1036 int need_exit_edge = 0, need_entry_edge = 0;
1037 int have_exit_edge = 0, have_entry_edge = 0;
1038 edge e;
1039 edge_iterator ei;
1040
1041 /* Functions returning multiple times are not handled by extra edges.
1042 Instead we simply allow negative counts on edges from exit to the
1043 block past call and corresponding probabilities. We can't go
1044 with the extra edges because that would result in flowgraph that
1045 needs to have fake edges outside the spanning tree. */
1046
1047 FOR_EACH_EDGE (e, ei, bb->succs)
1048 {
1049 gimple_stmt_iterator gsi;
1050 gimple *last = NULL;
1051
1052 /* It may happen that there are compiler generated statements
1053 without a locus at all. Go through the basic block from the
1054 last to the first statement looking for a locus. */
1055 for (gsi = gsi_last_nondebug_bb (bb);
1056 !gsi_end_p (gsi);
1057 gsi_prev_nondebug (&gsi))
1058 {
1059 last = gsi_stmt (gsi);
1060 if (!RESERVED_LOCATION_P (gimple_location (last)))
1061 break;
1062 }
1063
1064 /* Edge with goto locus might get wrong coverage info unless
1065 it is the only edge out of BB.
1066 Don't do that when the locuses match, so
1067 if (blah) goto something;
1068 is not computed twice. */
1069 if (last
1070 && gimple_has_location (last)
1071 && !RESERVED_LOCATION_P (e->goto_locus)
1072 && !single_succ_p (bb)
1073 && (LOCATION_FILE (e->goto_locus)
1074 != LOCATION_FILE (gimple_location (last))
1075 || (LOCATION_LINE (e->goto_locus)
1076 != LOCATION_LINE (gimple_location (last)))))
1077 {
1078 basic_block new_bb = split_edge (e);
1079 edge ne = single_succ_edge (new_bb);
1080 ne->goto_locus = e->goto_locus;
1081 }
1082 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1083 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1084 need_exit_edge = 1;
1085 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1086 have_exit_edge = 1;
1087 }
1088 FOR_EACH_EDGE (e, ei, bb->preds)
1089 {
1090 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1091 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1092 need_entry_edge = 1;
1093 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1094 have_entry_edge = 1;
1095 }
1096
1097 if (need_exit_edge && !have_exit_edge)
1098 {
1099 if (dump_file)
1100 fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1101 bb->index);
1102 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
1103 }
1104 if (need_entry_edge && !have_entry_edge)
1105 {
1106 if (dump_file)
1107 fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1108 bb->index);
1109 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE);
1110 /* Avoid bbs that have both fake entry edge and also some
1111 exit edge. One of those edges wouldn't be added to the
1112 spanning tree, but we can't instrument any of them. */
1113 if (have_exit_edge || need_exit_edge)
1114 {
1115 gimple_stmt_iterator gsi;
1116 gimple *first;
1117
1118 gsi = gsi_start_nondebug_after_labels_bb (bb);
1119 gcc_checking_assert (!gsi_end_p (gsi));
1120 first = gsi_stmt (gsi);
1121 /* Don't split the bbs containing __builtin_setjmp_receiver
1122 or ABNORMAL_DISPATCHER calls. These are very
1123 special and don't expect anything to be inserted before
1124 them. */
1125 if (is_gimple_call (first)
1126 && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER)
1127 || (gimple_call_flags (first) & ECF_RETURNS_TWICE)
1128 || (gimple_call_internal_p (first)
1129 && (gimple_call_internal_fn (first)
1130 == IFN_ABNORMAL_DISPATCHER))))
1131 continue;
1132
1133 if (dump_file)
1134 fprintf (dump_file, "Splitting bb %i after labels\n",
1135 bb->index);
1136 split_block_after_labels (bb);
1137 }
1138 }
1139 }
1140
1141 el = create_edge_list ();
1142 num_edges = NUM_EDGES (el);
1143 alloc_aux_for_edges (sizeof (struct edge_profile_info));
1144
1145 /* The basic blocks are expected to be numbered sequentially. */
1146 compact_blocks ();
1147
1148 ignored_edges = 0;
1149 for (i = 0 ; i < num_edges ; i++)
1150 {
1151 edge e = INDEX_EDGE (el, i);
1152
1153 /* Mark edges we've replaced by fake edges above as ignored. */
1154 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1155 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1156 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1157 {
1158 EDGE_INFO (e)->ignore = 1;
1159 ignored_edges++;
1160 }
1161 }
1162
1163 /* Create spanning tree from basic block graph, mark each edge that is
1164 on the spanning tree. We insert as many abnormal and critical edges
1165 as possible to minimize number of edge splits necessary. */
1166
1167 find_spanning_tree (el);
1168
1169 /* Fake edges that are not on the tree will not be instrumented, so
1170 mark them ignored. */
1171 for (num_instrumented = i = 0; i < num_edges; i++)
1172 {
1173 edge e = INDEX_EDGE (el, i);
1174 struct edge_profile_info *inf = EDGE_INFO (e);
1175
1176 if (inf->ignore || inf->on_tree)
1177 /*NOP*/;
1178 else if (e->flags & EDGE_FAKE)
1179 {
1180 inf->ignore = 1;
1181 ignored_edges++;
1182 }
1183 else
1184 num_instrumented++;
1185 }
1186
1187 total_num_blocks += n_basic_blocks_for_fn (cfun);
1188 if (dump_file)
1189 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun));
1190
1191 total_num_edges += num_edges;
1192 if (dump_file)
1193 fprintf (dump_file, "%d edges\n", num_edges);
1194
1195 total_num_edges_ignored += ignored_edges;
1196 if (dump_file)
1197 fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1198
1199 total_num_edges_instrumented += num_instrumented;
1200 if (dump_file)
1201 fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1202
1203 /* Compute two different checksums. Note that we want to compute
1204 the checksum in only once place, since it depends on the shape
1205 of the control flow which can change during
1206 various transformations. */
1207 cfg_checksum = coverage_compute_cfg_checksum (cfun);
1208 lineno_checksum = coverage_compute_lineno_checksum ();
1209
1210 /* Write the data from which gcov can reconstruct the basic block
1211 graph and function line numbers (the gcno file). */
1212 if (coverage_begin_function (lineno_checksum, cfg_checksum))
1213 {
1214 gcov_position_t offset;
1215
1216 /* Basic block flags */
1217 offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1218 gcov_write_unsigned (n_basic_blocks_for_fn (cfun));
1219 gcov_write_length (offset);
1220
1221 /* Arcs */
1222 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1223 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1224 {
1225 edge e;
1226 edge_iterator ei;
1227
1228 offset = gcov_write_tag (GCOV_TAG_ARCS);
1229 gcov_write_unsigned (bb->index);
1230
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1232 {
1233 struct edge_profile_info *i = EDGE_INFO (e);
1234 if (!i->ignore)
1235 {
1236 unsigned flag_bits = 0;
1237
1238 if (i->on_tree)
1239 flag_bits |= GCOV_ARC_ON_TREE;
1240 if (e->flags & EDGE_FAKE)
1241 flag_bits |= GCOV_ARC_FAKE;
1242 if (e->flags & EDGE_FALLTHRU)
1243 flag_bits |= GCOV_ARC_FALLTHROUGH;
1244 /* On trees we don't have fallthru flags, but we can
1245 recompute them from CFG shape. */
1246 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1247 && e->src->next_bb == e->dest)
1248 flag_bits |= GCOV_ARC_FALLTHROUGH;
1249
1250 gcov_write_unsigned (e->dest->index);
1251 gcov_write_unsigned (flag_bits);
1252 }
1253 }
1254
1255 gcov_write_length (offset);
1256 }
1257
1258 /* Line numbers. */
1259 /* Initialize the output. */
1260 output_location (NULL, 0, NULL, NULL);
1261
1262 FOR_EACH_BB_FN (bb, cfun)
1263 {
1264 gimple_stmt_iterator gsi;
1265 gcov_position_t offset = 0;
1266
1267 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
1268 {
1269 expanded_location curr_location =
1270 expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1271 output_location (curr_location.file, curr_location.line,
1272 &offset, bb);
1273 }
1274
1275 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1276 {
1277 gimple *stmt = gsi_stmt (gsi);
1278 if (!RESERVED_LOCATION_P (gimple_location (stmt)))
1279 output_location (gimple_filename (stmt), gimple_lineno (stmt),
1280 &offset, bb);
1281 }
1282
1283 /* Notice GOTO expressions eliminated while constructing the CFG. */
1284 if (single_succ_p (bb)
1285 && !RESERVED_LOCATION_P (single_succ_edge (bb)->goto_locus))
1286 {
1287 expanded_location curr_location
1288 = expand_location (single_succ_edge (bb)->goto_locus);
1289 output_location (curr_location.file, curr_location.line,
1290 &offset, bb);
1291 }
1292
1293 if (offset)
1294 {
1295 /* A file of NULL indicates the end of run. */
1296 gcov_write_unsigned (0);
1297 gcov_write_string (NULL);
1298 gcov_write_length (offset);
1299 }
1300 }
1301 }
1302
1303 if (flag_profile_values)
1304 gimple_find_values_to_profile (&values);
1305
1306 if (flag_branch_probabilities)
1307 {
1308 compute_branch_probabilities (cfg_checksum, lineno_checksum);
1309 if (flag_profile_values)
1310 compute_value_histograms (values, cfg_checksum, lineno_checksum);
1311 }
1312
1313 remove_fake_edges ();
1314
1315 /* For each edge not on the spanning tree, add counting code. */
1316 if (profile_arc_flag
1317 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1318 {
1319 unsigned n_instrumented;
1320
1321 gimple_init_gcov_profiler ();
1322
1323 n_instrumented = instrument_edges (el);
1324
1325 gcc_assert (n_instrumented == num_instrumented);
1326
1327 if (flag_profile_values)
1328 instrument_values (values);
1329
1330 /* Commit changes done by instrumentation. */
1331 gsi_commit_edge_inserts ();
1332 }
1333
1334 free_aux_for_edges ();
1335
1336 values.release ();
1337 free_edge_list (el);
1338 coverage_end_function (lineno_checksum, cfg_checksum);
1339 if (flag_branch_probabilities && profile_info)
1340 {
1341 struct loop *loop;
1342 if (dump_file && (dump_flags & TDF_DETAILS))
1343 report_predictor_hitrates ();
1344 profile_status_for_fn (cfun) = PROFILE_READ;
1345
1346 /* At this moment we have precise loop iteration count estimates.
1347 Record them to loop structure before the profile gets out of date. */
1348 FOR_EACH_LOOP (loop, 0)
1349 if (loop->header->count > 0)
1350 {
1351 gcov_type nit = expected_loop_iterations_unbounded (loop);
1352 widest_int bound = gcov_type_to_wide_int (nit);
1353 loop->any_estimate = false;
1354 record_niter_bound (loop, bound, true, false);
1355 }
1356 compute_function_frequency ();
1357 }
1358 }
1359 \f
1360 /* Union find algorithm implementation for the basic blocks using
1361 aux fields. */
1362
1363 static basic_block
1364 find_group (basic_block bb)
1365 {
1366 basic_block group = bb, bb1;
1367
1368 while ((basic_block) group->aux != group)
1369 group = (basic_block) group->aux;
1370
1371 /* Compress path. */
1372 while ((basic_block) bb->aux != group)
1373 {
1374 bb1 = (basic_block) bb->aux;
1375 bb->aux = (void *) group;
1376 bb = bb1;
1377 }
1378 return group;
1379 }
1380
1381 static void
1382 union_groups (basic_block bb1, basic_block bb2)
1383 {
1384 basic_block bb1g = find_group (bb1);
1385 basic_block bb2g = find_group (bb2);
1386
1387 /* ??? I don't have a place for the rank field. OK. Lets go w/o it,
1388 this code is unlikely going to be performance problem anyway. */
1389 gcc_assert (bb1g != bb2g);
1390
1391 bb1g->aux = bb2g;
1392 }
1393 \f
1394 /* This function searches all of the edges in the program flow graph, and puts
1395 as many bad edges as possible onto the spanning tree. Bad edges include
1396 abnormals edges, which can't be instrumented at the moment. Since it is
1397 possible for fake edges to form a cycle, we will have to develop some
1398 better way in the future. Also put critical edges to the tree, since they
1399 are more expensive to instrument. */
1400
1401 static void
1402 find_spanning_tree (struct edge_list *el)
1403 {
1404 int i;
1405 int num_edges = NUM_EDGES (el);
1406 basic_block bb;
1407
1408 /* We use aux field for standard union-find algorithm. */
1409 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
1410 bb->aux = bb;
1411
1412 /* Add fake edge exit to entry we can't instrument. */
1413 union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun));
1414
1415 /* First add all abnormal edges to the tree unless they form a cycle. Also
1416 add all edges to the exit block to avoid inserting profiling code behind
1417 setting return value from function. */
1418 for (i = 0; i < num_edges; i++)
1419 {
1420 edge e = INDEX_EDGE (el, i);
1421 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1422 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1423 && !EDGE_INFO (e)->ignore
1424 && (find_group (e->src) != find_group (e->dest)))
1425 {
1426 if (dump_file)
1427 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1428 e->src->index, e->dest->index);
1429 EDGE_INFO (e)->on_tree = 1;
1430 union_groups (e->src, e->dest);
1431 }
1432 }
1433
1434 /* Now insert all critical edges to the tree unless they form a cycle. */
1435 for (i = 0; i < num_edges; i++)
1436 {
1437 edge e = INDEX_EDGE (el, i);
1438 if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1439 && find_group (e->src) != find_group (e->dest))
1440 {
1441 if (dump_file)
1442 fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1443 e->src->index, e->dest->index);
1444 EDGE_INFO (e)->on_tree = 1;
1445 union_groups (e->src, e->dest);
1446 }
1447 }
1448
1449 /* And now the rest. */
1450 for (i = 0; i < num_edges; i++)
1451 {
1452 edge e = INDEX_EDGE (el, i);
1453 if (!EDGE_INFO (e)->ignore
1454 && find_group (e->src) != find_group (e->dest))
1455 {
1456 if (dump_file)
1457 fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1458 e->src->index, e->dest->index);
1459 EDGE_INFO (e)->on_tree = 1;
1460 union_groups (e->src, e->dest);
1461 }
1462 }
1463
1464 clear_aux_for_blocks ();
1465 }
1466 \f
1467 /* Perform file-level initialization for branch-prob processing. */
1468
1469 void
1470 init_branch_prob (void)
1471 {
1472 int i;
1473
1474 total_num_blocks = 0;
1475 total_num_edges = 0;
1476 total_num_edges_ignored = 0;
1477 total_num_edges_instrumented = 0;
1478 total_num_blocks_created = 0;
1479 total_num_passes = 0;
1480 total_num_times_called = 0;
1481 total_num_branches = 0;
1482 for (i = 0; i < 20; i++)
1483 total_hist_br_prob[i] = 0;
1484 }
1485
1486 /* Performs file-level cleanup after branch-prob processing
1487 is completed. */
1488
1489 void
1490 end_branch_prob (void)
1491 {
1492 if (dump_file)
1493 {
1494 fprintf (dump_file, "\n");
1495 fprintf (dump_file, "Total number of blocks: %d\n",
1496 total_num_blocks);
1497 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1498 fprintf (dump_file, "Total number of ignored edges: %d\n",
1499 total_num_edges_ignored);
1500 fprintf (dump_file, "Total number of instrumented edges: %d\n",
1501 total_num_edges_instrumented);
1502 fprintf (dump_file, "Total number of blocks created: %d\n",
1503 total_num_blocks_created);
1504 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1505 total_num_passes);
1506 if (total_num_times_called != 0)
1507 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1508 (total_num_passes + (total_num_times_called >> 1))
1509 / total_num_times_called);
1510 fprintf (dump_file, "Total number of branches: %d\n",
1511 total_num_branches);
1512 if (total_num_branches)
1513 {
1514 int i;
1515
1516 for (i = 0; i < 10; i++)
1517 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1518 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1519 / total_num_branches, 5*i, 5*i+5);
1520 }
1521 }
1522 }