altivec.h: Wrap C++ functions in extern "C++" block.
[gcc.git] / gcc / real.c
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "toplev.h"
30 #include "real.h"
31 #include "tm_p.h"
32
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
36
37 Specifically
38
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
40
41 where
42 s = sign (+- 1)
43 b = base or radix, here always 2
44 e = exponent
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
47
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
50 range [0.5, 1.0).
51
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
56 in a normalized form.
57
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 29.
61
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
68
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
73
74
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
77
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
80 #endif
81
82 static void get_zero (REAL_VALUE_TYPE *, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
85 static void get_inf (REAL_VALUE_TYPE *, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
87 const REAL_VALUE_TYPE *, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
89 unsigned int);
90 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 unsigned int);
92 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
94 const REAL_VALUE_TYPE *);
95 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
96 const REAL_VALUE_TYPE *, int);
97 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
98 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
100 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
105 const REAL_VALUE_TYPE *);
106 static void normalize (REAL_VALUE_TYPE *);
107
108 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
109 const REAL_VALUE_TYPE *, int);
110 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
111 const REAL_VALUE_TYPE *);
112 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
113 const REAL_VALUE_TYPE *);
114 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
116
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
118
119 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE * real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE *, int);
123
124 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
125 \f
126 /* Initialize R with a positive zero. */
127
128 static inline void
129 get_zero (REAL_VALUE_TYPE *r, int sign)
130 {
131 memset (r, 0, sizeof (*r));
132 r->sign = sign;
133 }
134
135 /* Initialize R with the canonical quiet NaN. */
136
137 static inline void
138 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
139 {
140 memset (r, 0, sizeof (*r));
141 r->class = rvc_nan;
142 r->sign = sign;
143 r->canonical = 1;
144 }
145
146 static inline void
147 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
148 {
149 memset (r, 0, sizeof (*r));
150 r->class = rvc_nan;
151 r->sign = sign;
152 r->signalling = 1;
153 r->canonical = 1;
154 }
155
156 static inline void
157 get_inf (REAL_VALUE_TYPE *r, int sign)
158 {
159 memset (r, 0, sizeof (*r));
160 r->class = rvc_inf;
161 r->sign = sign;
162 }
163
164 \f
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
167
168 static bool
169 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
170 unsigned int n)
171 {
172 unsigned long sticky = 0;
173 unsigned int i, ofs = 0;
174
175 if (n >= HOST_BITS_PER_LONG)
176 {
177 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
178 sticky |= a->sig[i];
179 n &= HOST_BITS_PER_LONG - 1;
180 }
181
182 if (n != 0)
183 {
184 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
185 for (i = 0; i < SIGSZ; ++i)
186 {
187 r->sig[i]
188 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
189 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
190 << (HOST_BITS_PER_LONG - n)));
191 }
192 }
193 else
194 {
195 for (i = 0; ofs + i < SIGSZ; ++i)
196 r->sig[i] = a->sig[ofs + i];
197 for (; i < SIGSZ; ++i)
198 r->sig[i] = 0;
199 }
200
201 return sticky != 0;
202 }
203
204 /* Right-shift the significand of A by N bits; put the result in the
205 significand of R. */
206
207 static void
208 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
209 unsigned int n)
210 {
211 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
212
213 n &= HOST_BITS_PER_LONG - 1;
214 if (n != 0)
215 {
216 for (i = 0; i < SIGSZ; ++i)
217 {
218 r->sig[i]
219 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
220 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
221 << (HOST_BITS_PER_LONG - n)));
222 }
223 }
224 else
225 {
226 for (i = 0; ofs + i < SIGSZ; ++i)
227 r->sig[i] = a->sig[ofs + i];
228 for (; i < SIGSZ; ++i)
229 r->sig[i] = 0;
230 }
231 }
232
233 /* Left-shift the significand of A by N bits; put the result in the
234 significand of R. */
235
236 static void
237 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
238 unsigned int n)
239 {
240 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
241
242 n &= HOST_BITS_PER_LONG - 1;
243 if (n == 0)
244 {
245 for (i = 0; ofs + i < SIGSZ; ++i)
246 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
247 for (; i < SIGSZ; ++i)
248 r->sig[SIGSZ-1-i] = 0;
249 }
250 else
251 for (i = 0; i < SIGSZ; ++i)
252 {
253 r->sig[SIGSZ-1-i]
254 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
255 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
256 >> (HOST_BITS_PER_LONG - n)));
257 }
258 }
259
260 /* Likewise, but N is specialized to 1. */
261
262 static inline void
263 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
264 {
265 unsigned int i;
266
267 for (i = SIGSZ - 1; i > 0; --i)
268 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
269 r->sig[0] = a->sig[0] << 1;
270 }
271
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
274
275 static inline bool
276 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
277 const REAL_VALUE_TYPE *b)
278 {
279 bool carry = false;
280 int i;
281
282 for (i = 0; i < SIGSZ; ++i)
283 {
284 unsigned long ai = a->sig[i];
285 unsigned long ri = ai + b->sig[i];
286
287 if (carry)
288 {
289 carry = ri < ai;
290 carry |= ++ri == 0;
291 }
292 else
293 carry = ri < ai;
294
295 r->sig[i] = ri;
296 }
297
298 return carry;
299 }
300
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
304
305 static inline bool
306 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
307 const REAL_VALUE_TYPE *b, int carry)
308 {
309 int i;
310
311 for (i = 0; i < SIGSZ; ++i)
312 {
313 unsigned long ai = a->sig[i];
314 unsigned long ri = ai - b->sig[i];
315
316 if (carry)
317 {
318 carry = ri > ai;
319 carry |= ~--ri == 0;
320 }
321 else
322 carry = ri > ai;
323
324 r->sig[i] = ri;
325 }
326
327 return carry;
328 }
329
330 /* Negate the significand A, placing the result in R. */
331
332 static inline void
333 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
334 {
335 bool carry = true;
336 int i;
337
338 for (i = 0; i < SIGSZ; ++i)
339 {
340 unsigned long ri, ai = a->sig[i];
341
342 if (carry)
343 {
344 if (ai)
345 {
346 ri = -ai;
347 carry = false;
348 }
349 else
350 ri = ai;
351 }
352 else
353 ri = ~ai;
354
355 r->sig[i] = ri;
356 }
357 }
358
359 /* Compare significands. Return tri-state vs zero. */
360
361 static inline int
362 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
363 {
364 int i;
365
366 for (i = SIGSZ - 1; i >= 0; --i)
367 {
368 unsigned long ai = a->sig[i];
369 unsigned long bi = b->sig[i];
370
371 if (ai > bi)
372 return 1;
373 if (ai < bi)
374 return -1;
375 }
376
377 return 0;
378 }
379
380 /* Return true if A is nonzero. */
381
382 static inline int
383 cmp_significand_0 (const REAL_VALUE_TYPE *a)
384 {
385 int i;
386
387 for (i = SIGSZ - 1; i >= 0; --i)
388 if (a->sig[i])
389 return 1;
390
391 return 0;
392 }
393
394 /* Set bit N of the significand of R. */
395
396 static inline void
397 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
398 {
399 r->sig[n / HOST_BITS_PER_LONG]
400 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
401 }
402
403 /* Clear bit N of the significand of R. */
404
405 static inline void
406 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
407 {
408 r->sig[n / HOST_BITS_PER_LONG]
409 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
410 }
411
412 /* Test bit N of the significand of R. */
413
414 static inline bool
415 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
416 {
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
421 return t;
422 }
423
424 /* Clear bits 0..N-1 of the significand of R. */
425
426 static void
427 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
428 {
429 int i, w = n / HOST_BITS_PER_LONG;
430
431 for (i = 0; i < w; ++i)
432 r->sig[i] = 0;
433
434 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
435 }
436
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
439
440 static inline bool
441 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
442 const REAL_VALUE_TYPE *b)
443 {
444 REAL_VALUE_TYPE u;
445 int i, bit = SIGNIFICAND_BITS - 1;
446 unsigned long msb, inexact;
447
448 u = *a;
449 memset (r->sig, 0, sizeof (r->sig));
450
451 msb = 0;
452 goto start;
453 do
454 {
455 msb = u.sig[SIGSZ-1] & SIG_MSB;
456 lshift_significand_1 (&u, &u);
457 start:
458 if (msb || cmp_significands (&u, b) >= 0)
459 {
460 sub_significands (&u, &u, b, 0);
461 set_significand_bit (r, bit);
462 }
463 }
464 while (--bit >= 0);
465
466 for (i = 0, inexact = 0; i < SIGSZ; i++)
467 inexact |= u.sig[i];
468
469 return inexact != 0;
470 }
471
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
476
477 static void
478 normalize (REAL_VALUE_TYPE *r)
479 {
480 int shift = 0, exp;
481 int i, j;
482
483 /* Find the first word that is nonzero. */
484 for (i = SIGSZ - 1; i >= 0; i--)
485 if (r->sig[i] == 0)
486 shift += HOST_BITS_PER_LONG;
487 else
488 break;
489
490 /* Zero significand flushes to zero. */
491 if (i < 0)
492 {
493 r->class = rvc_zero;
494 r->exp = 0;
495 return;
496 }
497
498 /* Find the first bit that is nonzero. */
499 for (j = 0; ; j++)
500 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
501 break;
502 shift += j;
503
504 if (shift > 0)
505 {
506 exp = r->exp - shift;
507 if (exp > MAX_EXP)
508 get_inf (r, r->sign);
509 else if (exp < -MAX_EXP)
510 get_zero (r, r->sign);
511 else
512 {
513 r->exp = exp;
514 lshift_significand (r, r, shift);
515 }
516 }
517 }
518 \f
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
521
522 static bool
523 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
524 const REAL_VALUE_TYPE *b, int subtract_p)
525 {
526 int dexp, sign, exp;
527 REAL_VALUE_TYPE t;
528 bool inexact = false;
529
530 /* Determine if we need to add or subtract. */
531 sign = a->sign;
532 subtract_p = (sign ^ b->sign) ^ subtract_p;
533
534 switch (CLASS2 (a->class, b->class))
535 {
536 case CLASS2 (rvc_zero, rvc_zero):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r, sign & !subtract_p);
539 return false;
540
541 case CLASS2 (rvc_zero, rvc_normal):
542 case CLASS2 (rvc_zero, rvc_inf):
543 case CLASS2 (rvc_zero, rvc_nan):
544 /* 0 + ANY = ANY. */
545 case CLASS2 (rvc_normal, rvc_nan):
546 case CLASS2 (rvc_inf, rvc_nan):
547 case CLASS2 (rvc_nan, rvc_nan):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal, rvc_inf):
550 /* R + Inf = Inf. */
551 *r = *b;
552 r->sign = sign ^ subtract_p;
553 return false;
554
555 case CLASS2 (rvc_normal, rvc_zero):
556 case CLASS2 (rvc_inf, rvc_zero):
557 case CLASS2 (rvc_nan, rvc_zero):
558 /* ANY + 0 = ANY. */
559 case CLASS2 (rvc_nan, rvc_normal):
560 case CLASS2 (rvc_nan, rvc_inf):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf, rvc_normal):
563 /* Inf + R = Inf. */
564 *r = *a;
565 return false;
566
567 case CLASS2 (rvc_inf, rvc_inf):
568 if (subtract_p)
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r, 0);
571 else
572 /* Inf + Inf = Inf. */
573 *r = *a;
574 return false;
575
576 case CLASS2 (rvc_normal, rvc_normal):
577 break;
578
579 default:
580 abort ();
581 }
582
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp = a->exp - b->exp;
585 if (dexp < 0)
586 {
587 const REAL_VALUE_TYPE *t;
588 t = a, a = b, b = t;
589 dexp = -dexp;
590 sign ^= subtract_p;
591 }
592 exp = a->exp;
593
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
596 if (dexp > 0)
597 {
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp >= SIGNIFICAND_BITS)
601 {
602 *r = *a;
603 r->sign = sign;
604 return true;
605 }
606
607 inexact |= sticky_rshift_significand (&t, b, dexp);
608 b = &t;
609 }
610
611 if (subtract_p)
612 {
613 if (sub_significands (r, a, b, inexact))
614 {
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
618 significand. */
619 sign ^= 1;
620 neg_significand (r, r);
621 }
622 }
623 else
624 {
625 if (add_significands (r, a, b))
626 {
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
629 exponent. */
630 inexact |= sticky_rshift_significand (r, r, 1);
631 r->sig[SIGSZ-1] |= SIG_MSB;
632 if (++exp > MAX_EXP)
633 {
634 get_inf (r, sign);
635 return true;
636 }
637 }
638 }
639
640 r->class = rvc_normal;
641 r->sign = sign;
642 r->exp = exp;
643
644 /* Re-normalize the result. */
645 normalize (r);
646
647 /* Special case: if the subtraction results in zero, the result
648 is positive. */
649 if (r->class == rvc_zero)
650 r->sign = 0;
651 else
652 r->sig[0] |= inexact;
653
654 return inexact;
655 }
656
657 /* Calculate R = A * B. Return true if the result may be inexact. */
658
659 static bool
660 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
661 const REAL_VALUE_TYPE *b)
662 {
663 REAL_VALUE_TYPE u, t, *rr;
664 unsigned int i, j, k;
665 int sign = a->sign ^ b->sign;
666 bool inexact = false;
667
668 switch (CLASS2 (a->class, b->class))
669 {
670 case CLASS2 (rvc_zero, rvc_zero):
671 case CLASS2 (rvc_zero, rvc_normal):
672 case CLASS2 (rvc_normal, rvc_zero):
673 /* +-0 * ANY = 0 with appropriate sign. */
674 get_zero (r, sign);
675 return false;
676
677 case CLASS2 (rvc_zero, rvc_nan):
678 case CLASS2 (rvc_normal, rvc_nan):
679 case CLASS2 (rvc_inf, rvc_nan):
680 case CLASS2 (rvc_nan, rvc_nan):
681 /* ANY * NaN = NaN. */
682 *r = *b;
683 r->sign = sign;
684 return false;
685
686 case CLASS2 (rvc_nan, rvc_zero):
687 case CLASS2 (rvc_nan, rvc_normal):
688 case CLASS2 (rvc_nan, rvc_inf):
689 /* NaN * ANY = NaN. */
690 *r = *a;
691 r->sign = sign;
692 return false;
693
694 case CLASS2 (rvc_zero, rvc_inf):
695 case CLASS2 (rvc_inf, rvc_zero):
696 /* 0 * Inf = NaN */
697 get_canonical_qnan (r, sign);
698 return false;
699
700 case CLASS2 (rvc_inf, rvc_inf):
701 case CLASS2 (rvc_normal, rvc_inf):
702 case CLASS2 (rvc_inf, rvc_normal):
703 /* Inf * Inf = Inf, R * Inf = Inf */
704 get_inf (r, sign);
705 return false;
706
707 case CLASS2 (rvc_normal, rvc_normal):
708 break;
709
710 default:
711 abort ();
712 }
713
714 if (r == a || r == b)
715 rr = &t;
716 else
717 rr = r;
718 get_zero (rr, 0);
719
720 /* Collect all the partial products. Since we don't have sure access
721 to a widening multiply, we split each long into two half-words.
722
723 Consider the long-hand form of a four half-word multiplication:
724
725 A B C D
726 * E F G H
727 --------------
728 DE DF DG DH
729 CE CF CG CH
730 BE BF BG BH
731 AE AF AG AH
732
733 We construct partial products of the widened half-word products
734 that are known to not overlap, e.g. DF+DH. Each such partial
735 product is given its proper exponent, which allows us to sum them
736 and obtain the finished product. */
737
738 for (i = 0; i < SIGSZ * 2; ++i)
739 {
740 unsigned long ai = a->sig[i / 2];
741 if (i & 1)
742 ai >>= HOST_BITS_PER_LONG / 2;
743 else
744 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
745
746 if (ai == 0)
747 continue;
748
749 for (j = 0; j < 2; ++j)
750 {
751 int exp = (a->exp - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
752 + (b->exp - (1-j)*(HOST_BITS_PER_LONG/2)));
753
754 if (exp > MAX_EXP)
755 {
756 get_inf (r, sign);
757 return true;
758 }
759 if (exp < -MAX_EXP)
760 {
761 /* Would underflow to zero, which we shouldn't bother adding. */
762 inexact = true;
763 continue;
764 }
765
766 memset (&u, 0, sizeof (u));
767 u.class = rvc_normal;
768 u.exp = exp;
769
770 for (k = j; k < SIGSZ * 2; k += 2)
771 {
772 unsigned long bi = b->sig[k / 2];
773 if (k & 1)
774 bi >>= HOST_BITS_PER_LONG / 2;
775 else
776 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
777
778 u.sig[k / 2] = ai * bi;
779 }
780
781 normalize (&u);
782 inexact |= do_add (rr, rr, &u, 0);
783 }
784 }
785
786 rr->sign = sign;
787 if (rr != r)
788 *r = t;
789
790 return inexact;
791 }
792
793 /* Calculate R = A / B. Return true if the result may be inexact. */
794
795 static bool
796 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
797 const REAL_VALUE_TYPE *b)
798 {
799 int exp, sign = a->sign ^ b->sign;
800 REAL_VALUE_TYPE t, *rr;
801 bool inexact;
802
803 switch (CLASS2 (a->class, b->class))
804 {
805 case CLASS2 (rvc_zero, rvc_zero):
806 /* 0 / 0 = NaN. */
807 case CLASS2 (rvc_inf, rvc_inf):
808 /* Inf / Inf = NaN. */
809 get_canonical_qnan (r, sign);
810 return false;
811
812 case CLASS2 (rvc_zero, rvc_normal):
813 case CLASS2 (rvc_zero, rvc_inf):
814 /* 0 / ANY = 0. */
815 case CLASS2 (rvc_normal, rvc_inf):
816 /* R / Inf = 0. */
817 get_zero (r, sign);
818 return false;
819
820 case CLASS2 (rvc_normal, rvc_zero):
821 /* R / 0 = Inf. */
822 case CLASS2 (rvc_inf, rvc_zero):
823 /* Inf / 0 = Inf. */
824 get_inf (r, sign);
825 return false;
826
827 case CLASS2 (rvc_zero, rvc_nan):
828 case CLASS2 (rvc_normal, rvc_nan):
829 case CLASS2 (rvc_inf, rvc_nan):
830 case CLASS2 (rvc_nan, rvc_nan):
831 /* ANY / NaN = NaN. */
832 *r = *b;
833 r->sign = sign;
834 return false;
835
836 case CLASS2 (rvc_nan, rvc_zero):
837 case CLASS2 (rvc_nan, rvc_normal):
838 case CLASS2 (rvc_nan, rvc_inf):
839 /* NaN / ANY = NaN. */
840 *r = *a;
841 r->sign = sign;
842 return false;
843
844 case CLASS2 (rvc_inf, rvc_normal):
845 /* Inf / R = Inf. */
846 get_inf (r, sign);
847 return false;
848
849 case CLASS2 (rvc_normal, rvc_normal):
850 break;
851
852 default:
853 abort ();
854 }
855
856 if (r == a || r == b)
857 rr = &t;
858 else
859 rr = r;
860
861 /* Make sure all fields in the result are initialized. */
862 get_zero (rr, 0);
863 rr->class = rvc_normal;
864 rr->sign = sign;
865
866 exp = a->exp - b->exp + 1;
867 if (exp > MAX_EXP)
868 {
869 get_inf (r, sign);
870 return true;
871 }
872 if (exp < -MAX_EXP)
873 {
874 get_zero (r, sign);
875 return true;
876 }
877 rr->exp = exp;
878
879 inexact = div_significands (rr, a, b);
880
881 /* Re-normalize the result. */
882 normalize (rr);
883 rr->sig[0] |= inexact;
884
885 if (rr != r)
886 *r = t;
887
888 return inexact;
889 }
890
891 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
892 one of the two operands is a NaN. */
893
894 static int
895 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
896 int nan_result)
897 {
898 int ret;
899
900 switch (CLASS2 (a->class, b->class))
901 {
902 case CLASS2 (rvc_zero, rvc_zero):
903 /* Sign of zero doesn't matter for compares. */
904 return 0;
905
906 case CLASS2 (rvc_inf, rvc_zero):
907 case CLASS2 (rvc_inf, rvc_normal):
908 case CLASS2 (rvc_normal, rvc_zero):
909 return (a->sign ? -1 : 1);
910
911 case CLASS2 (rvc_inf, rvc_inf):
912 return -a->sign - -b->sign;
913
914 case CLASS2 (rvc_zero, rvc_normal):
915 case CLASS2 (rvc_zero, rvc_inf):
916 case CLASS2 (rvc_normal, rvc_inf):
917 return (b->sign ? 1 : -1);
918
919 case CLASS2 (rvc_zero, rvc_nan):
920 case CLASS2 (rvc_normal, rvc_nan):
921 case CLASS2 (rvc_inf, rvc_nan):
922 case CLASS2 (rvc_nan, rvc_nan):
923 case CLASS2 (rvc_nan, rvc_zero):
924 case CLASS2 (rvc_nan, rvc_normal):
925 case CLASS2 (rvc_nan, rvc_inf):
926 return nan_result;
927
928 case CLASS2 (rvc_normal, rvc_normal):
929 break;
930
931 default:
932 abort ();
933 }
934
935 if (a->sign != b->sign)
936 return -a->sign - -b->sign;
937
938 if (a->exp > b->exp)
939 ret = 1;
940 else if (a->exp < b->exp)
941 ret = -1;
942 else
943 ret = cmp_significands (a, b);
944
945 return (a->sign ? -ret : ret);
946 }
947
948 /* Return A truncated to an integral value toward zero. */
949
950 static void
951 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
952 {
953 *r = *a;
954
955 switch (r->class)
956 {
957 case rvc_zero:
958 case rvc_inf:
959 case rvc_nan:
960 break;
961
962 case rvc_normal:
963 if (r->exp <= 0)
964 get_zero (r, r->sign);
965 else if (r->exp < SIGNIFICAND_BITS)
966 clear_significand_below (r, SIGNIFICAND_BITS - r->exp);
967 break;
968
969 default:
970 abort ();
971 }
972 }
973
974 /* Perform the binary or unary operation described by CODE.
975 For a unary operation, leave OP1 NULL. */
976
977 void
978 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
979 const REAL_VALUE_TYPE *op1)
980 {
981 enum tree_code code = icode;
982
983 switch (code)
984 {
985 case PLUS_EXPR:
986 do_add (r, op0, op1, 0);
987 break;
988
989 case MINUS_EXPR:
990 do_add (r, op0, op1, 1);
991 break;
992
993 case MULT_EXPR:
994 do_multiply (r, op0, op1);
995 break;
996
997 case RDIV_EXPR:
998 do_divide (r, op0, op1);
999 break;
1000
1001 case MIN_EXPR:
1002 if (op1->class == rvc_nan)
1003 *r = *op1;
1004 else if (do_compare (op0, op1, -1) < 0)
1005 *r = *op0;
1006 else
1007 *r = *op1;
1008 break;
1009
1010 case MAX_EXPR:
1011 if (op1->class == rvc_nan)
1012 *r = *op1;
1013 else if (do_compare (op0, op1, 1) < 0)
1014 *r = *op1;
1015 else
1016 *r = *op0;
1017 break;
1018
1019 case NEGATE_EXPR:
1020 *r = *op0;
1021 r->sign ^= 1;
1022 break;
1023
1024 case ABS_EXPR:
1025 *r = *op0;
1026 r->sign = 0;
1027 break;
1028
1029 case FIX_TRUNC_EXPR:
1030 do_fix_trunc (r, op0);
1031 break;
1032
1033 default:
1034 abort ();
1035 }
1036 }
1037
1038 /* Legacy. Similar, but return the result directly. */
1039
1040 REAL_VALUE_TYPE
1041 real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1042 const REAL_VALUE_TYPE *op1)
1043 {
1044 REAL_VALUE_TYPE r;
1045 real_arithmetic (&r, icode, op0, op1);
1046 return r;
1047 }
1048
1049 bool
1050 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1051 const REAL_VALUE_TYPE *op1)
1052 {
1053 enum tree_code code = icode;
1054
1055 switch (code)
1056 {
1057 case LT_EXPR:
1058 return do_compare (op0, op1, 1) < 0;
1059 case LE_EXPR:
1060 return do_compare (op0, op1, 1) <= 0;
1061 case GT_EXPR:
1062 return do_compare (op0, op1, -1) > 0;
1063 case GE_EXPR:
1064 return do_compare (op0, op1, -1) >= 0;
1065 case EQ_EXPR:
1066 return do_compare (op0, op1, -1) == 0;
1067 case NE_EXPR:
1068 return do_compare (op0, op1, -1) != 0;
1069 case UNORDERED_EXPR:
1070 return op0->class == rvc_nan || op1->class == rvc_nan;
1071 case ORDERED_EXPR:
1072 return op0->class != rvc_nan && op1->class != rvc_nan;
1073 case UNLT_EXPR:
1074 return do_compare (op0, op1, -1) < 0;
1075 case UNLE_EXPR:
1076 return do_compare (op0, op1, -1) <= 0;
1077 case UNGT_EXPR:
1078 return do_compare (op0, op1, 1) > 0;
1079 case UNGE_EXPR:
1080 return do_compare (op0, op1, 1) >= 0;
1081 case UNEQ_EXPR:
1082 return do_compare (op0, op1, 0) == 0;
1083
1084 default:
1085 abort ();
1086 }
1087 }
1088
1089 /* Return floor log2(R). */
1090
1091 int
1092 real_exponent (const REAL_VALUE_TYPE *r)
1093 {
1094 switch (r->class)
1095 {
1096 case rvc_zero:
1097 return 0;
1098 case rvc_inf:
1099 case rvc_nan:
1100 return (unsigned int)-1 >> 1;
1101 case rvc_normal:
1102 return r->exp;
1103 default:
1104 abort ();
1105 }
1106 }
1107
1108 /* R = OP0 * 2**EXP. */
1109
1110 void
1111 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1112 {
1113 *r = *op0;
1114 switch (r->class)
1115 {
1116 case rvc_zero:
1117 case rvc_inf:
1118 case rvc_nan:
1119 break;
1120
1121 case rvc_normal:
1122 exp += op0->exp;
1123 if (exp > MAX_EXP)
1124 get_inf (r, r->sign);
1125 else if (exp < -MAX_EXP)
1126 get_zero (r, r->sign);
1127 else
1128 r->exp = exp;
1129 break;
1130
1131 default:
1132 abort ();
1133 }
1134 }
1135
1136 /* Determine whether a floating-point value X is infinite. */
1137
1138 bool
1139 real_isinf (const REAL_VALUE_TYPE *r)
1140 {
1141 return (r->class == rvc_inf);
1142 }
1143
1144 /* Determine whether a floating-point value X is a NaN. */
1145
1146 bool
1147 real_isnan (const REAL_VALUE_TYPE *r)
1148 {
1149 return (r->class == rvc_nan);
1150 }
1151
1152 /* Determine whether a floating-point value X is negative. */
1153
1154 bool
1155 real_isneg (const REAL_VALUE_TYPE *r)
1156 {
1157 return r->sign;
1158 }
1159
1160 /* Determine whether a floating-point value X is minus zero. */
1161
1162 bool
1163 real_isnegzero (const REAL_VALUE_TYPE *r)
1164 {
1165 return r->sign && r->class == rvc_zero;
1166 }
1167
1168 /* Compare two floating-point objects for bitwise identity. */
1169
1170 bool
1171 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1172 {
1173 int i;
1174
1175 if (a->class != b->class)
1176 return false;
1177 if (a->sign != b->sign)
1178 return false;
1179
1180 switch (a->class)
1181 {
1182 case rvc_zero:
1183 case rvc_inf:
1184 return true;
1185
1186 case rvc_normal:
1187 if (a->exp != b->exp)
1188 return false;
1189 break;
1190
1191 case rvc_nan:
1192 if (a->signalling != b->signalling)
1193 return false;
1194 /* The significand is ignored for canonical NaNs. */
1195 if (a->canonical || b->canonical)
1196 return a->canonical == b->canonical;
1197 break;
1198
1199 default:
1200 abort ();
1201 }
1202
1203 for (i = 0; i < SIGSZ; ++i)
1204 if (a->sig[i] != b->sig[i])
1205 return false;
1206
1207 return true;
1208 }
1209
1210 /* Try to change R into its exact multiplicative inverse in machine
1211 mode MODE. Return true if successful. */
1212
1213 bool
1214 exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1215 {
1216 const REAL_VALUE_TYPE *one = real_digit (1);
1217 REAL_VALUE_TYPE u;
1218 int i;
1219
1220 if (r->class != rvc_normal)
1221 return false;
1222
1223 /* Check for a power of two: all significand bits zero except the MSB. */
1224 for (i = 0; i < SIGSZ-1; ++i)
1225 if (r->sig[i] != 0)
1226 return false;
1227 if (r->sig[SIGSZ-1] != SIG_MSB)
1228 return false;
1229
1230 /* Find the inverse and truncate to the required mode. */
1231 do_divide (&u, one, r);
1232 real_convert (&u, mode, &u);
1233
1234 /* The rounding may have overflowed. */
1235 if (u.class != rvc_normal)
1236 return false;
1237 for (i = 0; i < SIGSZ-1; ++i)
1238 if (u.sig[i] != 0)
1239 return false;
1240 if (u.sig[SIGSZ-1] != SIG_MSB)
1241 return false;
1242
1243 *r = u;
1244 return true;
1245 }
1246 \f
1247 /* Render R as an integer. */
1248
1249 HOST_WIDE_INT
1250 real_to_integer (const REAL_VALUE_TYPE *r)
1251 {
1252 unsigned HOST_WIDE_INT i;
1253
1254 switch (r->class)
1255 {
1256 case rvc_zero:
1257 underflow:
1258 return 0;
1259
1260 case rvc_inf:
1261 case rvc_nan:
1262 overflow:
1263 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1264 if (!r->sign)
1265 i--;
1266 return i;
1267
1268 case rvc_normal:
1269 if (r->exp <= 0)
1270 goto underflow;
1271 /* Only force overflow for unsigned overflow. Signed overflow is
1272 undefined, so it doesn't matter what we return, and some callers
1273 expect to be able to use this routine for both signed and
1274 unsigned conversions. */
1275 if (r->exp > HOST_BITS_PER_WIDE_INT)
1276 goto overflow;
1277
1278 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1279 i = r->sig[SIGSZ-1];
1280 else if (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG)
1281 {
1282 i = r->sig[SIGSZ-1];
1283 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1284 i |= r->sig[SIGSZ-2];
1285 }
1286 else
1287 abort ();
1288
1289 i >>= HOST_BITS_PER_WIDE_INT - r->exp;
1290
1291 if (r->sign)
1292 i = -i;
1293 return i;
1294
1295 default:
1296 abort ();
1297 }
1298 }
1299
1300 /* Likewise, but to an integer pair, HI+LOW. */
1301
1302 void
1303 real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1304 const REAL_VALUE_TYPE *r)
1305 {
1306 REAL_VALUE_TYPE t;
1307 HOST_WIDE_INT low, high;
1308 int exp;
1309
1310 switch (r->class)
1311 {
1312 case rvc_zero:
1313 underflow:
1314 low = high = 0;
1315 break;
1316
1317 case rvc_inf:
1318 case rvc_nan:
1319 overflow:
1320 high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1321 if (r->sign)
1322 low = 0;
1323 else
1324 {
1325 high--;
1326 low = -1;
1327 }
1328 break;
1329
1330 case rvc_normal:
1331 exp = r->exp;
1332 if (exp <= 0)
1333 goto underflow;
1334 /* Only force overflow for unsigned overflow. Signed overflow is
1335 undefined, so it doesn't matter what we return, and some callers
1336 expect to be able to use this routine for both signed and
1337 unsigned conversions. */
1338 if (exp > 2*HOST_BITS_PER_WIDE_INT)
1339 goto overflow;
1340
1341 rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1342 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1343 {
1344 high = t.sig[SIGSZ-1];
1345 low = t.sig[SIGSZ-2];
1346 }
1347 else if (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG)
1348 {
1349 high = t.sig[SIGSZ-1];
1350 high = high << (HOST_BITS_PER_LONG - 1) << 1;
1351 high |= t.sig[SIGSZ-2];
1352
1353 low = t.sig[SIGSZ-3];
1354 low = low << (HOST_BITS_PER_LONG - 1) << 1;
1355 low |= t.sig[SIGSZ-4];
1356 }
1357 else
1358 abort ();
1359
1360 if (r->sign)
1361 {
1362 if (low == 0)
1363 high = -high;
1364 else
1365 low = -low, high = ~high;
1366 }
1367 break;
1368
1369 default:
1370 abort ();
1371 }
1372
1373 *plow = low;
1374 *phigh = high;
1375 }
1376
1377 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1378 of NUM / DEN. Return the quotient and place the remainder in NUM.
1379 It is expected that NUM / DEN are close enough that the quotient is
1380 small. */
1381
1382 static unsigned long
1383 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1384 {
1385 unsigned long q, msb;
1386 int expn = num->exp, expd = den->exp;
1387
1388 if (expn < expd)
1389 return 0;
1390
1391 q = msb = 0;
1392 goto start;
1393 do
1394 {
1395 msb = num->sig[SIGSZ-1] & SIG_MSB;
1396 q <<= 1;
1397 lshift_significand_1 (num, num);
1398 start:
1399 if (msb || cmp_significands (num, den) >= 0)
1400 {
1401 sub_significands (num, num, den, 0);
1402 q |= 1;
1403 }
1404 }
1405 while (--expn >= expd);
1406
1407 num->exp = expd;
1408 normalize (num);
1409
1410 return q;
1411 }
1412
1413 /* Render R as a decimal floating point constant. Emit DIGITS significant
1414 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1415 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1416 zeros. */
1417
1418 #define M_LOG10_2 0.30102999566398119521
1419
1420 void
1421 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1422 size_t digits, int crop_trailing_zeros)
1423 {
1424 const REAL_VALUE_TYPE *one, *ten;
1425 REAL_VALUE_TYPE r, pten, u, v;
1426 int dec_exp, cmp_one, digit;
1427 size_t max_digits;
1428 char *p, *first, *last;
1429 bool sign;
1430
1431 r = *r_orig;
1432 switch (r.class)
1433 {
1434 case rvc_zero:
1435 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1436 return;
1437 case rvc_normal:
1438 break;
1439 case rvc_inf:
1440 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1441 return;
1442 case rvc_nan:
1443 /* ??? Print the significand as well, if not canonical? */
1444 strcpy (str, (r.sign ? "-NaN" : "+NaN"));
1445 return;
1446 default:
1447 abort ();
1448 }
1449
1450 /* Bound the number of digits printed by the size of the representation. */
1451 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1452 if (digits == 0 || digits > max_digits)
1453 digits = max_digits;
1454
1455 /* Estimate the decimal exponent, and compute the length of the string it
1456 will print as. Be conservative and add one to account for possible
1457 overflow or rounding error. */
1458 dec_exp = r.exp * M_LOG10_2;
1459 for (max_digits = 1; dec_exp ; max_digits++)
1460 dec_exp /= 10;
1461
1462 /* Bound the number of digits printed by the size of the output buffer. */
1463 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1464 if (max_digits > buf_size)
1465 abort ();
1466 if (digits > max_digits)
1467 digits = max_digits;
1468
1469 one = real_digit (1);
1470 ten = ten_to_ptwo (0);
1471
1472 sign = r.sign;
1473 r.sign = 0;
1474
1475 dec_exp = 0;
1476 pten = *one;
1477
1478 cmp_one = do_compare (&r, one, 0);
1479 if (cmp_one > 0)
1480 {
1481 int m;
1482
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1485
1486 u = r;
1487 u.exp = SIGNIFICAND_BITS - 1;
1488
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m = floor_log2 (max_digits);
1491
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1495 DEC_EXP by 2**M. */
1496 do
1497 {
1498 REAL_VALUE_TYPE t;
1499
1500 do_divide (&t, &u, ten_to_ptwo (m));
1501 do_fix_trunc (&v, &t);
1502 if (cmp_significands (&v, &t) == 0)
1503 {
1504 u = t;
1505 dec_exp += 1 << m;
1506 }
1507 }
1508 while (--m >= 0);
1509
1510 /* Revert the scaling to integer that we performed earlier. */
1511 u.exp += r.exp - (SIGNIFICAND_BITS - 1);
1512 r = u;
1513
1514 /* Find power of 10. Do this by dividing out 10**2**M when
1515 this is larger than the current remainder. Fill PTEN with
1516 the power of 10 that we compute. */
1517 if (r.exp > 0)
1518 {
1519 m = floor_log2 ((int)(r.exp * M_LOG10_2)) + 1;
1520 do
1521 {
1522 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1523 if (do_compare (&u, ptentwo, 0) >= 0)
1524 {
1525 do_divide (&u, &u, ptentwo);
1526 do_multiply (&pten, &pten, ptentwo);
1527 dec_exp += 1 << m;
1528 }
1529 }
1530 while (--m >= 0);
1531 }
1532 else
1533 /* We managed to divide off enough tens in the above reduction
1534 loop that we've now got a negative exponent. Fall into the
1535 less-than-one code to compute the proper value for PTEN. */
1536 cmp_one = -1;
1537 }
1538 if (cmp_one < 0)
1539 {
1540 int m;
1541
1542 /* Number is less than one. Pad significand with leading
1543 decimal zeros. */
1544
1545 v = r;
1546 while (1)
1547 {
1548 /* Stop if we'd shift bits off the bottom. */
1549 if (v.sig[0] & 7)
1550 break;
1551
1552 do_multiply (&u, &v, ten);
1553
1554 /* Stop if we're now >= 1. */
1555 if (u.exp > 0)
1556 break;
1557
1558 v = u;
1559 dec_exp -= 1;
1560 }
1561 r = v;
1562
1563 /* Find power of 10. Do this by multiplying in P=10**2**M when
1564 the current remainder is smaller than 1/P. Fill PTEN with the
1565 power of 10 that we compute. */
1566 m = floor_log2 ((int)(-r.exp * M_LOG10_2)) + 1;
1567 do
1568 {
1569 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1570 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1571
1572 if (do_compare (&v, ptenmtwo, 0) <= 0)
1573 {
1574 do_multiply (&v, &v, ptentwo);
1575 do_multiply (&pten, &pten, ptentwo);
1576 dec_exp -= 1 << m;
1577 }
1578 }
1579 while (--m >= 0);
1580
1581 /* Invert the positive power of 10 that we've collected so far. */
1582 do_divide (&pten, one, &pten);
1583 }
1584
1585 p = str;
1586 if (sign)
1587 *p++ = '-';
1588 first = p++;
1589
1590 /* At this point, PTEN should contain the nearest power of 10 smaller
1591 than R, such that this division produces the first digit.
1592
1593 Using a divide-step primitive that returns the complete integral
1594 remainder avoids the rounding error that would be produced if
1595 we were to use do_divide here and then simply multiply by 10 for
1596 each subsequent digit. */
1597
1598 digit = rtd_divmod (&r, &pten);
1599
1600 /* Be prepared for error in that division via underflow ... */
1601 if (digit == 0 && cmp_significand_0 (&r))
1602 {
1603 /* Multiply by 10 and try again. */
1604 do_multiply (&r, &r, ten);
1605 digit = rtd_divmod (&r, &pten);
1606 dec_exp -= 1;
1607 if (digit == 0)
1608 abort ();
1609 }
1610
1611 /* ... or overflow. */
1612 if (digit == 10)
1613 {
1614 *p++ = '1';
1615 if (--digits > 0)
1616 *p++ = '0';
1617 dec_exp += 1;
1618 }
1619 else if (digit > 10)
1620 abort ();
1621 else
1622 *p++ = digit + '0';
1623
1624 /* Generate subsequent digits. */
1625 while (--digits > 0)
1626 {
1627 do_multiply (&r, &r, ten);
1628 digit = rtd_divmod (&r, &pten);
1629 *p++ = digit + '0';
1630 }
1631 last = p;
1632
1633 /* Generate one more digit with which to do rounding. */
1634 do_multiply (&r, &r, ten);
1635 digit = rtd_divmod (&r, &pten);
1636
1637 /* Round the result. */
1638 if (digit == 5)
1639 {
1640 /* Round to nearest. If R is nonzero there are additional
1641 nonzero digits to be extracted. */
1642 if (cmp_significand_0 (&r))
1643 digit++;
1644 /* Round to even. */
1645 else if ((p[-1] - '0') & 1)
1646 digit++;
1647 }
1648 if (digit > 5)
1649 {
1650 while (p > first)
1651 {
1652 digit = *--p;
1653 if (digit == '9')
1654 *p = '0';
1655 else
1656 {
1657 *p = digit + 1;
1658 break;
1659 }
1660 }
1661
1662 /* Carry out of the first digit. This means we had all 9's and
1663 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1664 if (p == first)
1665 {
1666 first[1] = '1';
1667 dec_exp++;
1668 }
1669 }
1670
1671 /* Insert the decimal point. */
1672 first[0] = first[1];
1673 first[1] = '.';
1674
1675 /* If requested, drop trailing zeros. Never crop past "1.0". */
1676 if (crop_trailing_zeros)
1677 while (last > first + 3 && last[-1] == '0')
1678 last--;
1679
1680 /* Append the exponent. */
1681 sprintf (last, "e%+d", dec_exp);
1682 }
1683
1684 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1685 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1686 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1687 strip trailing zeros. */
1688
1689 void
1690 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1691 size_t digits, int crop_trailing_zeros)
1692 {
1693 int i, j, exp = r->exp;
1694 char *p, *first;
1695 char exp_buf[16];
1696 size_t max_digits;
1697
1698 switch (r->class)
1699 {
1700 case rvc_zero:
1701 exp = 0;
1702 break;
1703 case rvc_normal:
1704 break;
1705 case rvc_inf:
1706 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1707 return;
1708 case rvc_nan:
1709 /* ??? Print the significand as well, if not canonical? */
1710 strcpy (str, (r->sign ? "-NaN" : "+NaN"));
1711 return;
1712 default:
1713 abort ();
1714 }
1715
1716 if (digits == 0)
1717 digits = SIGNIFICAND_BITS / 4;
1718
1719 /* Bound the number of digits printed by the size of the output buffer. */
1720
1721 sprintf (exp_buf, "p%+d", exp);
1722 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1723 if (max_digits > buf_size)
1724 abort ();
1725 if (digits > max_digits)
1726 digits = max_digits;
1727
1728 p = str;
1729 if (r->sign)
1730 *p++ = '-';
1731 *p++ = '0';
1732 *p++ = 'x';
1733 *p++ = '0';
1734 *p++ = '.';
1735 first = p;
1736
1737 for (i = SIGSZ - 1; i >= 0; --i)
1738 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1739 {
1740 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1741 if (--digits == 0)
1742 goto out;
1743 }
1744
1745 out:
1746 if (crop_trailing_zeros)
1747 while (p > first + 1 && p[-1] == '0')
1748 p--;
1749
1750 sprintf (p, "p%+d", exp);
1751 }
1752
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1755
1756 void
1757 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1758 {
1759 int exp = 0;
1760 bool sign = false;
1761
1762 get_zero (r, 0);
1763
1764 if (*str == '-')
1765 {
1766 sign = true;
1767 str++;
1768 }
1769 else if (*str == '+')
1770 str++;
1771
1772 if (str[0] == '0' && str[1] == 'x')
1773 {
1774 /* Hexadecimal floating point. */
1775 int pos = SIGNIFICAND_BITS - 4, d;
1776
1777 str += 2;
1778
1779 while (*str == '0')
1780 str++;
1781 while (1)
1782 {
1783 d = hex_value (*str);
1784 if (d == _hex_bad)
1785 break;
1786 if (pos >= 0)
1787 {
1788 r->sig[pos / HOST_BITS_PER_LONG]
1789 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1790 pos -= 4;
1791 }
1792 exp += 4;
1793 str++;
1794 }
1795 if (*str == '.')
1796 {
1797 str++;
1798 if (pos == SIGNIFICAND_BITS - 4)
1799 {
1800 while (*str == '0')
1801 str++, exp -= 4;
1802 }
1803 while (1)
1804 {
1805 d = hex_value (*str);
1806 if (d == _hex_bad)
1807 break;
1808 if (pos >= 0)
1809 {
1810 r->sig[pos / HOST_BITS_PER_LONG]
1811 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1812 pos -= 4;
1813 }
1814 str++;
1815 }
1816 }
1817 if (*str == 'p' || *str == 'P')
1818 {
1819 bool exp_neg = false;
1820
1821 str++;
1822 if (*str == '-')
1823 {
1824 exp_neg = true;
1825 str++;
1826 }
1827 else if (*str == '+')
1828 str++;
1829
1830 d = 0;
1831 while (ISDIGIT (*str))
1832 {
1833 d *= 10;
1834 d += *str - '0';
1835 if (d > MAX_EXP)
1836 {
1837 /* Overflowed the exponent. */
1838 if (exp_neg)
1839 goto underflow;
1840 else
1841 goto overflow;
1842 }
1843 str++;
1844 }
1845 if (exp_neg)
1846 d = -d;
1847
1848 exp += d;
1849 }
1850
1851 r->class = rvc_normal;
1852 r->exp = exp;
1853
1854 normalize (r);
1855 }
1856 else
1857 {
1858 /* Decimal floating point. */
1859 const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
1860 int d;
1861
1862 while (*str == '0')
1863 str++;
1864 while (ISDIGIT (*str))
1865 {
1866 d = *str++ - '0';
1867 do_multiply (r, r, ten);
1868 if (d)
1869 do_add (r, r, real_digit (d), 0);
1870 }
1871 if (*str == '.')
1872 {
1873 str++;
1874 if (r->class == rvc_zero)
1875 {
1876 while (*str == '0')
1877 str++, exp--;
1878 }
1879 while (ISDIGIT (*str))
1880 {
1881 d = *str++ - '0';
1882 do_multiply (r, r, ten);
1883 if (d)
1884 do_add (r, r, real_digit (d), 0);
1885 exp--;
1886 }
1887 }
1888
1889 if (*str == 'e' || *str == 'E')
1890 {
1891 bool exp_neg = false;
1892
1893 str++;
1894 if (*str == '-')
1895 {
1896 exp_neg = true;
1897 str++;
1898 }
1899 else if (*str == '+')
1900 str++;
1901
1902 d = 0;
1903 while (ISDIGIT (*str))
1904 {
1905 d *= 10;
1906 d += *str - '0';
1907 if (d > MAX_EXP)
1908 {
1909 /* Overflowed the exponent. */
1910 if (exp_neg)
1911 goto underflow;
1912 else
1913 goto overflow;
1914 }
1915 str++;
1916 }
1917 if (exp_neg)
1918 d = -d;
1919 exp += d;
1920 }
1921
1922 if (exp)
1923 times_pten (r, exp);
1924 }
1925
1926 r->sign = sign;
1927 return;
1928
1929 underflow:
1930 get_zero (r, sign);
1931 return;
1932
1933 overflow:
1934 get_inf (r, sign);
1935 return;
1936 }
1937
1938 /* Legacy. Similar, but return the result directly. */
1939
1940 REAL_VALUE_TYPE
1941 real_from_string2 (const char *s, enum machine_mode mode)
1942 {
1943 REAL_VALUE_TYPE r;
1944
1945 real_from_string (&r, s);
1946 if (mode != VOIDmode)
1947 real_convert (&r, mode, &r);
1948
1949 return r;
1950 }
1951
1952 /* Initialize R from the integer pair HIGH+LOW. */
1953
1954 void
1955 real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
1956 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
1957 int unsigned_p)
1958 {
1959 if (low == 0 && high == 0)
1960 get_zero (r, 0);
1961 else
1962 {
1963 r->class = rvc_normal;
1964 r->sign = high < 0 && !unsigned_p;
1965 r->exp = 2 * HOST_BITS_PER_WIDE_INT;
1966
1967 if (r->sign)
1968 {
1969 high = ~high;
1970 if (low == 0)
1971 high += 1;
1972 else
1973 low = -low;
1974 }
1975
1976 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
1977 {
1978 r->sig[SIGSZ-1] = high;
1979 r->sig[SIGSZ-2] = low;
1980 memset (r->sig, 0, sizeof(long)*(SIGSZ-2));
1981 }
1982 else if (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT)
1983 {
1984 r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
1985 r->sig[SIGSZ-2] = high;
1986 r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
1987 r->sig[SIGSZ-4] = low;
1988 if (SIGSZ > 4)
1989 memset (r->sig, 0, sizeof(long)*(SIGSZ-4));
1990 }
1991 else
1992 abort ();
1993
1994 normalize (r);
1995 }
1996
1997 if (mode != VOIDmode)
1998 real_convert (r, mode, r);
1999 }
2000
2001 /* Returns 10**2**N. */
2002
2003 static const REAL_VALUE_TYPE *
2004 ten_to_ptwo (int n)
2005 {
2006 static REAL_VALUE_TYPE tens[EXP_BITS];
2007
2008 if (n < 0 || n >= EXP_BITS)
2009 abort ();
2010
2011 if (tens[n].class == rvc_zero)
2012 {
2013 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2014 {
2015 HOST_WIDE_INT t = 10;
2016 int i;
2017
2018 for (i = 0; i < n; ++i)
2019 t *= t;
2020
2021 real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2022 }
2023 else
2024 {
2025 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2026 do_multiply (&tens[n], t, t);
2027 }
2028 }
2029
2030 return &tens[n];
2031 }
2032
2033 /* Returns 10**(-2**N). */
2034
2035 static const REAL_VALUE_TYPE *
2036 ten_to_mptwo (int n)
2037 {
2038 static REAL_VALUE_TYPE tens[EXP_BITS];
2039
2040 if (n < 0 || n >= EXP_BITS)
2041 abort ();
2042
2043 if (tens[n].class == rvc_zero)
2044 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2045
2046 return &tens[n];
2047 }
2048
2049 /* Returns N. */
2050
2051 static const REAL_VALUE_TYPE *
2052 real_digit (int n)
2053 {
2054 static REAL_VALUE_TYPE num[10];
2055
2056 if (n < 0 || n > 9)
2057 abort ();
2058
2059 if (n > 0 && num[n].class == rvc_zero)
2060 real_from_integer (&num[n], VOIDmode, n, 0, 1);
2061
2062 return &num[n];
2063 }
2064
2065 /* Multiply R by 10**EXP. */
2066
2067 static void
2068 times_pten (REAL_VALUE_TYPE *r, int exp)
2069 {
2070 REAL_VALUE_TYPE pten, *rr;
2071 bool negative = (exp < 0);
2072 int i;
2073
2074 if (negative)
2075 {
2076 exp = -exp;
2077 pten = *real_digit (1);
2078 rr = &pten;
2079 }
2080 else
2081 rr = r;
2082
2083 for (i = 0; exp > 0; ++i, exp >>= 1)
2084 if (exp & 1)
2085 do_multiply (rr, rr, ten_to_ptwo (i));
2086
2087 if (negative)
2088 do_divide (r, r, &pten);
2089 }
2090
2091 /* Fills R with +Inf. */
2092
2093 void
2094 real_inf (REAL_VALUE_TYPE *r)
2095 {
2096 get_inf (r, 0);
2097 }
2098
2099 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2100 we force a QNaN, else we force an SNaN. The string, if not empty,
2101 is parsed as a number and placed in the significand. Return true
2102 if the string was successfully parsed. */
2103
2104 bool
2105 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2106 enum machine_mode mode)
2107 {
2108 const struct real_format *fmt;
2109
2110 fmt = REAL_MODE_FORMAT (mode);
2111 if (fmt == NULL)
2112 abort ();
2113
2114 if (*str == 0)
2115 {
2116 if (quiet)
2117 get_canonical_qnan (r, 0);
2118 else
2119 get_canonical_snan (r, 0);
2120 }
2121 else
2122 {
2123 int base = 10, d;
2124 bool neg = false;
2125
2126 memset (r, 0, sizeof (*r));
2127 r->class = rvc_nan;
2128
2129 /* Parse akin to strtol into the significand of R. */
2130
2131 while (ISSPACE (*str))
2132 str++;
2133 if (*str == '-')
2134 str++, neg = true;
2135 else if (*str == '+')
2136 str++;
2137 if (*str == '0')
2138 {
2139 if (*++str == 'x')
2140 str++, base = 16;
2141 else
2142 base = 8;
2143 }
2144
2145 while ((d = hex_value (*str)) < base)
2146 {
2147 REAL_VALUE_TYPE u;
2148
2149 switch (base)
2150 {
2151 case 8:
2152 lshift_significand (r, r, 3);
2153 break;
2154 case 16:
2155 lshift_significand (r, r, 4);
2156 break;
2157 case 10:
2158 lshift_significand_1 (&u, r);
2159 lshift_significand (r, r, 3);
2160 add_significands (r, r, &u);
2161 break;
2162 default:
2163 abort ();
2164 }
2165
2166 get_zero (&u, 0);
2167 u.sig[0] = d;
2168 add_significands (r, r, &u);
2169
2170 str++;
2171 }
2172
2173 /* Must have consumed the entire string for success. */
2174 if (*str != 0)
2175 return false;
2176
2177 /* Shift the significand into place such that the bits
2178 are in the most significant bits for the format. */
2179 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2180
2181 /* Our MSB is always unset for NaNs. */
2182 r->sig[SIGSZ-1] &= ~SIG_MSB;
2183
2184 /* Force quiet or signalling NaN. */
2185 r->signalling = !quiet;
2186 }
2187
2188 return true;
2189 }
2190
2191 /* Fills R with the largest finite value representable in mode MODE.
2192 If SIGN is nonzero, R is set to the most negative finite value. */
2193
2194 void
2195 real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2196 {
2197 const struct real_format *fmt;
2198 int np2;
2199
2200 fmt = REAL_MODE_FORMAT (mode);
2201 if (fmt == NULL)
2202 abort ();
2203
2204 r->class = rvc_normal;
2205 r->sign = sign;
2206 r->signalling = 0;
2207 r->canonical = 0;
2208 r->exp = fmt->emax * fmt->log2_b;
2209
2210 np2 = SIGNIFICAND_BITS - fmt->p * fmt->log2_b;
2211 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2212 clear_significand_below (r, np2);
2213 }
2214
2215 /* Fills R with 2**N. */
2216
2217 void
2218 real_2expN (REAL_VALUE_TYPE *r, int n)
2219 {
2220 memset (r, 0, sizeof (*r));
2221
2222 n++;
2223 if (n > MAX_EXP)
2224 r->class = rvc_inf;
2225 else if (n < -MAX_EXP)
2226 ;
2227 else
2228 {
2229 r->class = rvc_normal;
2230 r->exp = n;
2231 r->sig[SIGSZ-1] = SIG_MSB;
2232 }
2233 }
2234
2235 \f
2236 static void
2237 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2238 {
2239 int p2, np2, i, w;
2240 unsigned long sticky;
2241 bool guard, lsb;
2242 int emin2m1, emax2;
2243
2244 p2 = fmt->p * fmt->log2_b;
2245 emin2m1 = (fmt->emin - 1) * fmt->log2_b;
2246 emax2 = fmt->emax * fmt->log2_b;
2247
2248 np2 = SIGNIFICAND_BITS - p2;
2249 switch (r->class)
2250 {
2251 underflow:
2252 get_zero (r, r->sign);
2253 case rvc_zero:
2254 if (!fmt->has_signed_zero)
2255 r->sign = 0;
2256 return;
2257
2258 overflow:
2259 get_inf (r, r->sign);
2260 case rvc_inf:
2261 return;
2262
2263 case rvc_nan:
2264 clear_significand_below (r, np2);
2265 return;
2266
2267 case rvc_normal:
2268 break;
2269
2270 default:
2271 abort ();
2272 }
2273
2274 /* If we're not base2, normalize the exponent to a multiple of
2275 the true base. */
2276 if (fmt->log2_b != 1)
2277 {
2278 int shift = r->exp & (fmt->log2_b - 1);
2279 if (shift)
2280 {
2281 shift = fmt->log2_b - shift;
2282 r->sig[0] |= sticky_rshift_significand (r, r, shift);
2283 r->exp += shift;
2284 }
2285 }
2286
2287 /* Check the range of the exponent. If we're out of range,
2288 either underflow or overflow. */
2289 if (r->exp > emax2)
2290 goto overflow;
2291 else if (r->exp <= emin2m1)
2292 {
2293 int diff;
2294
2295 if (!fmt->has_denorm)
2296 {
2297 /* Don't underflow completely until we've had a chance to round. */
2298 if (r->exp < emin2m1)
2299 goto underflow;
2300 }
2301 else
2302 {
2303 diff = emin2m1 - r->exp + 1;
2304 if (diff > p2)
2305 goto underflow;
2306
2307 /* De-normalize the significand. */
2308 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2309 r->exp += diff;
2310 }
2311 }
2312
2313 /* There are P2 true significand bits, followed by one guard bit,
2314 followed by one sticky bit, followed by stuff. Fold nonzero
2315 stuff into the sticky bit. */
2316
2317 sticky = 0;
2318 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2319 sticky |= r->sig[i];
2320 sticky |=
2321 r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2322
2323 guard = test_significand_bit (r, np2 - 1);
2324 lsb = test_significand_bit (r, np2);
2325
2326 /* Round to even. */
2327 if (guard && (sticky || lsb))
2328 {
2329 REAL_VALUE_TYPE u;
2330 get_zero (&u, 0);
2331 set_significand_bit (&u, np2);
2332
2333 if (add_significands (r, r, &u))
2334 {
2335 /* Overflow. Means the significand had been all ones, and
2336 is now all zeros. Need to increase the exponent, and
2337 possibly re-normalize it. */
2338 if (++r->exp > emax2)
2339 goto overflow;
2340 r->sig[SIGSZ-1] = SIG_MSB;
2341
2342 if (fmt->log2_b != 1)
2343 {
2344 int shift = r->exp & (fmt->log2_b - 1);
2345 if (shift)
2346 {
2347 shift = fmt->log2_b - shift;
2348 rshift_significand (r, r, shift);
2349 r->exp += shift;
2350 if (r->exp > emax2)
2351 goto overflow;
2352 }
2353 }
2354 }
2355 }
2356
2357 /* Catch underflow that we deferred until after rounding. */
2358 if (r->exp <= emin2m1)
2359 goto underflow;
2360
2361 /* Clear out trailing garbage. */
2362 clear_significand_below (r, np2);
2363 }
2364
2365 /* Extend or truncate to a new mode. */
2366
2367 void
2368 real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2369 const REAL_VALUE_TYPE *a)
2370 {
2371 const struct real_format *fmt;
2372
2373 fmt = REAL_MODE_FORMAT (mode);
2374 if (fmt == NULL)
2375 abort ();
2376
2377 *r = *a;
2378 round_for_format (fmt, r);
2379
2380 /* round_for_format de-normalizes denormals. Undo just that part. */
2381 if (r->class == rvc_normal)
2382 normalize (r);
2383 }
2384
2385 /* Legacy. Likewise, except return the struct directly. */
2386
2387 REAL_VALUE_TYPE
2388 real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2389 {
2390 REAL_VALUE_TYPE r;
2391 real_convert (&r, mode, &a);
2392 return r;
2393 }
2394
2395 /* Return true if truncating to MODE is exact. */
2396
2397 bool
2398 exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2399 {
2400 REAL_VALUE_TYPE t;
2401 real_convert (&t, mode, a);
2402 return real_identical (&t, a);
2403 }
2404
2405 /* Write R to the given target format. Place the words of the result
2406 in target word order in BUF. There are always 32 bits in each
2407 long, no matter the size of the host long.
2408
2409 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2410
2411 long
2412 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2413 const struct real_format *fmt)
2414 {
2415 REAL_VALUE_TYPE r;
2416 long buf1;
2417
2418 r = *r_orig;
2419 round_for_format (fmt, &r);
2420
2421 if (!buf)
2422 buf = &buf1;
2423 (*fmt->encode) (fmt, buf, &r);
2424
2425 return *buf;
2426 }
2427
2428 /* Similar, but look up the format from MODE. */
2429
2430 long
2431 real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2432 {
2433 const struct real_format *fmt;
2434
2435 fmt = REAL_MODE_FORMAT (mode);
2436 if (fmt == NULL)
2437 abort ();
2438
2439 return real_to_target_fmt (buf, r, fmt);
2440 }
2441
2442 /* Read R from the given target format. Read the words of the result
2443 in target word order in BUF. There are always 32 bits in each
2444 long, no matter the size of the host long. */
2445
2446 void
2447 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2448 const struct real_format *fmt)
2449 {
2450 (*fmt->decode) (fmt, r, buf);
2451 }
2452
2453 /* Similar, but look up the format from MODE. */
2454
2455 void
2456 real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2457 {
2458 const struct real_format *fmt;
2459
2460 fmt = REAL_MODE_FORMAT (mode);
2461 if (fmt == NULL)
2462 abort ();
2463
2464 (*fmt->decode) (fmt, r, buf);
2465 }
2466
2467 /* Return the number of bits in the significand for MODE. */
2468 /* ??? Legacy. Should get access to real_format directly. */
2469
2470 int
2471 significand_size (enum machine_mode mode)
2472 {
2473 const struct real_format *fmt;
2474
2475 fmt = REAL_MODE_FORMAT (mode);
2476 if (fmt == NULL)
2477 return 0;
2478
2479 return fmt->p * fmt->log2_b;
2480 }
2481
2482 /* Return a hash value for the given real value. */
2483 /* ??? The "unsigned int" return value is intended to be hashval_t,
2484 but I didn't want to pull hashtab.h into real.h. */
2485
2486 unsigned int
2487 real_hash (const REAL_VALUE_TYPE *r)
2488 {
2489 unsigned int h;
2490 size_t i;
2491
2492 h = r->class | (r->sign << 2);
2493 switch (r->class)
2494 {
2495 case rvc_zero:
2496 case rvc_inf:
2497 return h;
2498
2499 case rvc_normal:
2500 h |= r->exp << 3;
2501 break;
2502
2503 case rvc_nan:
2504 if (r->signalling)
2505 h ^= (unsigned int)-1;
2506 if (r->canonical)
2507 return h;
2508 break;
2509
2510 default:
2511 abort ();
2512 }
2513
2514 if (sizeof(unsigned long) > sizeof(unsigned int))
2515 for (i = 0; i < SIGSZ; ++i)
2516 {
2517 unsigned long s = r->sig[i];
2518 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2519 }
2520 else
2521 for (i = 0; i < SIGSZ; ++i)
2522 h ^= r->sig[i];
2523
2524 return h;
2525 }
2526 \f
2527 /* IEEE single-precision format. */
2528
2529 static void encode_ieee_single (const struct real_format *fmt,
2530 long *, const REAL_VALUE_TYPE *);
2531 static void decode_ieee_single (const struct real_format *,
2532 REAL_VALUE_TYPE *, const long *);
2533
2534 static void
2535 encode_ieee_single (const struct real_format *fmt, long *buf,
2536 const REAL_VALUE_TYPE *r)
2537 {
2538 unsigned long image, sig, exp;
2539 unsigned long sign = r->sign;
2540 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2541
2542 image = sign << 31;
2543 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2544
2545 switch (r->class)
2546 {
2547 case rvc_zero:
2548 break;
2549
2550 case rvc_inf:
2551 if (fmt->has_inf)
2552 image |= 255 << 23;
2553 else
2554 image |= 0x7fffffff;
2555 break;
2556
2557 case rvc_nan:
2558 if (fmt->has_nans)
2559 {
2560 if (r->canonical)
2561 sig = 0;
2562 if (r->signalling == fmt->qnan_msb_set)
2563 sig &= ~(1 << 22);
2564 else
2565 sig |= 1 << 22;
2566 /* We overload qnan_msb_set here: it's only clear for
2567 mips_ieee_single, which wants all mantissa bits but the
2568 quiet/signalling one set in canonical NaNs (at least
2569 Quiet ones). */
2570 if (r->canonical && !fmt->qnan_msb_set)
2571 sig |= (1 << 22) - 1;
2572 else if (sig == 0)
2573 sig = 1 << 21;
2574
2575 image |= 255 << 23;
2576 image |= sig;
2577 }
2578 else
2579 image |= 0x7fffffff;
2580 break;
2581
2582 case rvc_normal:
2583 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2584 whereas the intermediate representation is 0.F x 2**exp.
2585 Which means we're off by one. */
2586 if (denormal)
2587 exp = 0;
2588 else
2589 exp = r->exp + 127 - 1;
2590 image |= exp << 23;
2591 image |= sig;
2592 break;
2593
2594 default:
2595 abort ();
2596 }
2597
2598 buf[0] = image;
2599 }
2600
2601 static void
2602 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2603 const long *buf)
2604 {
2605 unsigned long image = buf[0] & 0xffffffff;
2606 bool sign = (image >> 31) & 1;
2607 int exp = (image >> 23) & 0xff;
2608
2609 memset (r, 0, sizeof (*r));
2610 image <<= HOST_BITS_PER_LONG - 24;
2611 image &= ~SIG_MSB;
2612
2613 if (exp == 0)
2614 {
2615 if (image && fmt->has_denorm)
2616 {
2617 r->class = rvc_normal;
2618 r->sign = sign;
2619 r->exp = -126;
2620 r->sig[SIGSZ-1] = image << 1;
2621 normalize (r);
2622 }
2623 else if (fmt->has_signed_zero)
2624 r->sign = sign;
2625 }
2626 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2627 {
2628 if (image)
2629 {
2630 r->class = rvc_nan;
2631 r->sign = sign;
2632 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2633 ^ fmt->qnan_msb_set);
2634 r->sig[SIGSZ-1] = image;
2635 }
2636 else
2637 {
2638 r->class = rvc_inf;
2639 r->sign = sign;
2640 }
2641 }
2642 else
2643 {
2644 r->class = rvc_normal;
2645 r->sign = sign;
2646 r->exp = exp - 127 + 1;
2647 r->sig[SIGSZ-1] = image | SIG_MSB;
2648 }
2649 }
2650
2651 const struct real_format ieee_single_format =
2652 {
2653 encode_ieee_single,
2654 decode_ieee_single,
2655 2,
2656 1,
2657 24,
2658 24,
2659 -125,
2660 128,
2661 31,
2662 true,
2663 true,
2664 true,
2665 true,
2666 true
2667 };
2668
2669 const struct real_format mips_single_format =
2670 {
2671 encode_ieee_single,
2672 decode_ieee_single,
2673 2,
2674 1,
2675 24,
2676 24,
2677 -125,
2678 128,
2679 31,
2680 true,
2681 true,
2682 true,
2683 true,
2684 false
2685 };
2686
2687 \f
2688 /* IEEE double-precision format. */
2689
2690 static void encode_ieee_double (const struct real_format *fmt,
2691 long *, const REAL_VALUE_TYPE *);
2692 static void decode_ieee_double (const struct real_format *,
2693 REAL_VALUE_TYPE *, const long *);
2694
2695 static void
2696 encode_ieee_double (const struct real_format *fmt, long *buf,
2697 const REAL_VALUE_TYPE *r)
2698 {
2699 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
2700 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2701
2702 image_hi = r->sign << 31;
2703 image_lo = 0;
2704
2705 if (HOST_BITS_PER_LONG == 64)
2706 {
2707 sig_hi = r->sig[SIGSZ-1];
2708 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
2709 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
2710 }
2711 else
2712 {
2713 sig_hi = r->sig[SIGSZ-1];
2714 sig_lo = r->sig[SIGSZ-2];
2715 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
2716 sig_hi = (sig_hi >> 11) & 0xfffff;
2717 }
2718
2719 switch (r->class)
2720 {
2721 case rvc_zero:
2722 break;
2723
2724 case rvc_inf:
2725 if (fmt->has_inf)
2726 image_hi |= 2047 << 20;
2727 else
2728 {
2729 image_hi |= 0x7fffffff;
2730 image_lo = 0xffffffff;
2731 }
2732 break;
2733
2734 case rvc_nan:
2735 if (fmt->has_nans)
2736 {
2737 if (r->canonical)
2738 sig_hi = sig_lo = 0;
2739 if (r->signalling == fmt->qnan_msb_set)
2740 sig_hi &= ~(1 << 19);
2741 else
2742 sig_hi |= 1 << 19;
2743 /* We overload qnan_msb_set here: it's only clear for
2744 mips_ieee_single, which wants all mantissa bits but the
2745 quiet/signalling one set in canonical NaNs (at least
2746 Quiet ones). */
2747 if (r->canonical && !fmt->qnan_msb_set)
2748 {
2749 sig_hi |= (1 << 19) - 1;
2750 sig_lo = 0xffffffff;
2751 }
2752 else if (sig_hi == 0 && sig_lo == 0)
2753 sig_hi = 1 << 18;
2754
2755 image_hi |= 2047 << 20;
2756 image_hi |= sig_hi;
2757 image_lo = sig_lo;
2758 }
2759 else
2760 {
2761 image_hi |= 0x7fffffff;
2762 image_lo = 0xffffffff;
2763 }
2764 break;
2765
2766 case rvc_normal:
2767 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2768 whereas the intermediate representation is 0.F x 2**exp.
2769 Which means we're off by one. */
2770 if (denormal)
2771 exp = 0;
2772 else
2773 exp = r->exp + 1023 - 1;
2774 image_hi |= exp << 20;
2775 image_hi |= sig_hi;
2776 image_lo = sig_lo;
2777 break;
2778
2779 default:
2780 abort ();
2781 }
2782
2783 if (FLOAT_WORDS_BIG_ENDIAN)
2784 buf[0] = image_hi, buf[1] = image_lo;
2785 else
2786 buf[0] = image_lo, buf[1] = image_hi;
2787 }
2788
2789 static void
2790 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2791 const long *buf)
2792 {
2793 unsigned long image_hi, image_lo;
2794 bool sign;
2795 int exp;
2796
2797 if (FLOAT_WORDS_BIG_ENDIAN)
2798 image_hi = buf[0], image_lo = buf[1];
2799 else
2800 image_lo = buf[0], image_hi = buf[1];
2801 image_lo &= 0xffffffff;
2802 image_hi &= 0xffffffff;
2803
2804 sign = (image_hi >> 31) & 1;
2805 exp = (image_hi >> 20) & 0x7ff;
2806
2807 memset (r, 0, sizeof (*r));
2808
2809 image_hi <<= 32 - 21;
2810 image_hi |= image_lo >> 21;
2811 image_hi &= 0x7fffffff;
2812 image_lo <<= 32 - 21;
2813
2814 if (exp == 0)
2815 {
2816 if ((image_hi || image_lo) && fmt->has_denorm)
2817 {
2818 r->class = rvc_normal;
2819 r->sign = sign;
2820 r->exp = -1022;
2821 if (HOST_BITS_PER_LONG == 32)
2822 {
2823 image_hi = (image_hi << 1) | (image_lo >> 31);
2824 image_lo <<= 1;
2825 r->sig[SIGSZ-1] = image_hi;
2826 r->sig[SIGSZ-2] = image_lo;
2827 }
2828 else
2829 {
2830 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
2831 r->sig[SIGSZ-1] = image_hi;
2832 }
2833 normalize (r);
2834 }
2835 else if (fmt->has_signed_zero)
2836 r->sign = sign;
2837 }
2838 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
2839 {
2840 if (image_hi || image_lo)
2841 {
2842 r->class = rvc_nan;
2843 r->sign = sign;
2844 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
2845 if (HOST_BITS_PER_LONG == 32)
2846 {
2847 r->sig[SIGSZ-1] = image_hi;
2848 r->sig[SIGSZ-2] = image_lo;
2849 }
2850 else
2851 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
2852 }
2853 else
2854 {
2855 r->class = rvc_inf;
2856 r->sign = sign;
2857 }
2858 }
2859 else
2860 {
2861 r->class = rvc_normal;
2862 r->sign = sign;
2863 r->exp = exp - 1023 + 1;
2864 if (HOST_BITS_PER_LONG == 32)
2865 {
2866 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
2867 r->sig[SIGSZ-2] = image_lo;
2868 }
2869 else
2870 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
2871 }
2872 }
2873
2874 const struct real_format ieee_double_format =
2875 {
2876 encode_ieee_double,
2877 decode_ieee_double,
2878 2,
2879 1,
2880 53,
2881 53,
2882 -1021,
2883 1024,
2884 63,
2885 true,
2886 true,
2887 true,
2888 true,
2889 true
2890 };
2891
2892 const struct real_format mips_double_format =
2893 {
2894 encode_ieee_double,
2895 decode_ieee_double,
2896 2,
2897 1,
2898 53,
2899 53,
2900 -1021,
2901 1024,
2902 63,
2903 true,
2904 true,
2905 true,
2906 true,
2907 false
2908 };
2909
2910 \f
2911 /* IEEE extended double precision format. This comes in three
2912 flavors: Intel's as a 12 byte image, Intel's as a 16 byte image,
2913 and Motorola's. */
2914
2915 static void encode_ieee_extended (const struct real_format *fmt,
2916 long *, const REAL_VALUE_TYPE *);
2917 static void decode_ieee_extended (const struct real_format *,
2918 REAL_VALUE_TYPE *, const long *);
2919
2920 static void encode_ieee_extended_128 (const struct real_format *fmt,
2921 long *, const REAL_VALUE_TYPE *);
2922 static void decode_ieee_extended_128 (const struct real_format *,
2923 REAL_VALUE_TYPE *, const long *);
2924
2925 static void
2926 encode_ieee_extended (const struct real_format *fmt, long *buf,
2927 const REAL_VALUE_TYPE *r)
2928 {
2929 unsigned long image_hi, sig_hi, sig_lo;
2930 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2931
2932 image_hi = r->sign << 15;
2933 sig_hi = sig_lo = 0;
2934
2935 switch (r->class)
2936 {
2937 case rvc_zero:
2938 break;
2939
2940 case rvc_inf:
2941 if (fmt->has_inf)
2942 {
2943 image_hi |= 32767;
2944
2945 /* Intel requires the explicit integer bit to be set, otherwise
2946 it considers the value a "pseudo-infinity". Motorola docs
2947 say it doesn't care. */
2948 sig_hi = 0x80000000;
2949 }
2950 else
2951 {
2952 image_hi |= 32767;
2953 sig_lo = sig_hi = 0xffffffff;
2954 }
2955 break;
2956
2957 case rvc_nan:
2958 if (fmt->has_nans)
2959 {
2960 image_hi |= 32767;
2961 if (HOST_BITS_PER_LONG == 32)
2962 {
2963 sig_hi = r->sig[SIGSZ-1];
2964 sig_lo = r->sig[SIGSZ-2];
2965 }
2966 else
2967 {
2968 sig_lo = r->sig[SIGSZ-1];
2969 sig_hi = sig_lo >> 31 >> 1;
2970 sig_lo &= 0xffffffff;
2971 }
2972 if (r->signalling == fmt->qnan_msb_set)
2973 sig_hi &= ~(1 << 30);
2974 else
2975 sig_hi |= 1 << 30;
2976 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
2977 sig_hi = 1 << 29;
2978
2979 /* Intel requires the explicit integer bit to be set, otherwise
2980 it considers the value a "pseudo-nan". Motorola docs say it
2981 doesn't care. */
2982 sig_hi |= 0x80000000;
2983 }
2984 else
2985 {
2986 image_hi |= 32767;
2987 sig_lo = sig_hi = 0xffffffff;
2988 }
2989 break;
2990
2991 case rvc_normal:
2992 {
2993 int exp = r->exp;
2994
2995 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2996 whereas the intermediate representation is 0.F x 2**exp.
2997 Which means we're off by one.
2998
2999 Except for Motorola, which consider exp=0 and explicit
3000 integer bit set to continue to be normalized. In theory
3001 this discrepancy has been taken care of by the difference
3002 in fmt->emin in round_for_format. */
3003
3004 if (denormal)
3005 exp = 0;
3006 else
3007 {
3008 exp += 16383 - 1;
3009 if (exp < 0)
3010 abort ();
3011 }
3012 image_hi |= exp;
3013
3014 if (HOST_BITS_PER_LONG == 32)
3015 {
3016 sig_hi = r->sig[SIGSZ-1];
3017 sig_lo = r->sig[SIGSZ-2];
3018 }
3019 else
3020 {
3021 sig_lo = r->sig[SIGSZ-1];
3022 sig_hi = sig_lo >> 31 >> 1;
3023 sig_lo &= 0xffffffff;
3024 }
3025 }
3026 break;
3027
3028 default:
3029 abort ();
3030 }
3031
3032 if (FLOAT_WORDS_BIG_ENDIAN)
3033 buf[0] = image_hi << 16, buf[1] = sig_hi, buf[2] = sig_lo;
3034 else
3035 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3036 }
3037
3038 static void
3039 encode_ieee_extended_128 (const struct real_format *fmt, long *buf,
3040 const REAL_VALUE_TYPE *r)
3041 {
3042 buf[3 * !FLOAT_WORDS_BIG_ENDIAN] = 0;
3043 encode_ieee_extended (fmt, buf+!!FLOAT_WORDS_BIG_ENDIAN, r);
3044 }
3045
3046 static void
3047 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3048 const long *buf)
3049 {
3050 unsigned long image_hi, sig_hi, sig_lo;
3051 bool sign;
3052 int exp;
3053
3054 if (FLOAT_WORDS_BIG_ENDIAN)
3055 image_hi = buf[0] >> 16, sig_hi = buf[1], sig_lo = buf[2];
3056 else
3057 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3058 sig_lo &= 0xffffffff;
3059 sig_hi &= 0xffffffff;
3060 image_hi &= 0xffffffff;
3061
3062 sign = (image_hi >> 15) & 1;
3063 exp = image_hi & 0x7fff;
3064
3065 memset (r, 0, sizeof (*r));
3066
3067 if (exp == 0)
3068 {
3069 if ((sig_hi || sig_lo) && fmt->has_denorm)
3070 {
3071 r->class = rvc_normal;
3072 r->sign = sign;
3073
3074 /* When the IEEE format contains a hidden bit, we know that
3075 it's zero at this point, and so shift up the significand
3076 and decrease the exponent to match. In this case, Motorola
3077 defines the explicit integer bit to be valid, so we don't
3078 know whether the msb is set or not. */
3079 r->exp = fmt->emin;
3080 if (HOST_BITS_PER_LONG == 32)
3081 {
3082 r->sig[SIGSZ-1] = sig_hi;
3083 r->sig[SIGSZ-2] = sig_lo;
3084 }
3085 else
3086 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3087
3088 normalize (r);
3089 }
3090 else if (fmt->has_signed_zero)
3091 r->sign = sign;
3092 }
3093 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3094 {
3095 /* See above re "pseudo-infinities" and "pseudo-nans".
3096 Short summary is that the MSB will likely always be
3097 set, and that we don't care about it. */
3098 sig_hi &= 0x7fffffff;
3099
3100 if (sig_hi || sig_lo)
3101 {
3102 r->class = rvc_nan;
3103 r->sign = sign;
3104 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3105 if (HOST_BITS_PER_LONG == 32)
3106 {
3107 r->sig[SIGSZ-1] = sig_hi;
3108 r->sig[SIGSZ-2] = sig_lo;
3109 }
3110 else
3111 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3112 }
3113 else
3114 {
3115 r->class = rvc_inf;
3116 r->sign = sign;
3117 }
3118 }
3119 else
3120 {
3121 r->class = rvc_normal;
3122 r->sign = sign;
3123 r->exp = exp - 16383 + 1;
3124 if (HOST_BITS_PER_LONG == 32)
3125 {
3126 r->sig[SIGSZ-1] = sig_hi;
3127 r->sig[SIGSZ-2] = sig_lo;
3128 }
3129 else
3130 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3131 }
3132 }
3133
3134 static void
3135 decode_ieee_extended_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3136 const long *buf)
3137 {
3138 decode_ieee_extended (fmt, r, buf+!!FLOAT_WORDS_BIG_ENDIAN);
3139 }
3140
3141 const struct real_format ieee_extended_motorola_format =
3142 {
3143 encode_ieee_extended,
3144 decode_ieee_extended,
3145 2,
3146 1,
3147 64,
3148 64,
3149 -16382,
3150 16384,
3151 95,
3152 true,
3153 true,
3154 true,
3155 true,
3156 true
3157 };
3158
3159 const struct real_format ieee_extended_intel_96_format =
3160 {
3161 encode_ieee_extended,
3162 decode_ieee_extended,
3163 2,
3164 1,
3165 64,
3166 64,
3167 -16381,
3168 16384,
3169 79,
3170 true,
3171 true,
3172 true,
3173 true,
3174 true
3175 };
3176
3177 const struct real_format ieee_extended_intel_128_format =
3178 {
3179 encode_ieee_extended_128,
3180 decode_ieee_extended_128,
3181 2,
3182 1,
3183 64,
3184 64,
3185 -16381,
3186 16384,
3187 79,
3188 true,
3189 true,
3190 true,
3191 true,
3192 true
3193 };
3194
3195 /* The following caters to i386 systems that set the rounding precision
3196 to 53 bits instead of 64, e.g. FreeBSD. */
3197 const struct real_format ieee_extended_intel_96_round_53_format =
3198 {
3199 encode_ieee_extended,
3200 decode_ieee_extended,
3201 2,
3202 1,
3203 53,
3204 53,
3205 -16381,
3206 16384,
3207 79,
3208 true,
3209 true,
3210 true,
3211 true,
3212 true
3213 };
3214 \f
3215 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3216 numbers whose sum is equal to the extended precision value. The number
3217 with greater magnitude is first. This format has the same magnitude
3218 range as an IEEE double precision value, but effectively 106 bits of
3219 significand precision. Infinity and NaN are represented by their IEEE
3220 double precision value stored in the first number, the second number is
3221 ignored. Zeroes, Infinities, and NaNs are set in both doubles
3222 due to precedent. */
3223
3224 static void encode_ibm_extended (const struct real_format *fmt,
3225 long *, const REAL_VALUE_TYPE *);
3226 static void decode_ibm_extended (const struct real_format *,
3227 REAL_VALUE_TYPE *, const long *);
3228
3229 static void
3230 encode_ibm_extended (const struct real_format *fmt, long *buf,
3231 const REAL_VALUE_TYPE *r)
3232 {
3233 REAL_VALUE_TYPE u, v;
3234 const struct real_format *base_fmt;
3235
3236 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3237
3238 /* u = IEEE double precision portion of significand. */
3239 u = *r;
3240 round_for_format (base_fmt, &u);
3241 encode_ieee_double (base_fmt, &buf[0], &u);
3242
3243 if (r->class == rvc_normal)
3244 {
3245 do_add (&v, r, &u, 1);
3246 round_for_format (base_fmt, &v);
3247 encode_ieee_double (base_fmt, &buf[2], &v);
3248 }
3249 else
3250 {
3251 /* Inf, NaN, 0 are all representable as doubles, so the
3252 least-significant part can be 0.0. */
3253 buf[2] = 0;
3254 buf[3] = 0;
3255 }
3256 }
3257
3258 static void
3259 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3260 const long *buf)
3261 {
3262 REAL_VALUE_TYPE u, v;
3263 const struct real_format *base_fmt;
3264
3265 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3266 decode_ieee_double (base_fmt, &u, &buf[0]);
3267
3268 if (u.class != rvc_zero && u.class != rvc_inf && u.class != rvc_nan)
3269 {
3270 decode_ieee_double (base_fmt, &v, &buf[2]);
3271 do_add (r, &u, &v, 0);
3272 }
3273 else
3274 *r = u;
3275 }
3276
3277 const struct real_format ibm_extended_format =
3278 {
3279 encode_ibm_extended,
3280 decode_ibm_extended,
3281 2,
3282 1,
3283 53 + 53,
3284 53,
3285 -1021 + 53,
3286 1024,
3287 -1,
3288 true,
3289 true,
3290 true,
3291 true,
3292 true
3293 };
3294
3295 const struct real_format mips_extended_format =
3296 {
3297 encode_ibm_extended,
3298 decode_ibm_extended,
3299 2,
3300 1,
3301 53 + 53,
3302 53,
3303 -1021 + 53,
3304 1024,
3305 -1,
3306 true,
3307 true,
3308 true,
3309 true,
3310 false
3311 };
3312
3313 \f
3314 /* IEEE quad precision format. */
3315
3316 static void encode_ieee_quad (const struct real_format *fmt,
3317 long *, const REAL_VALUE_TYPE *);
3318 static void decode_ieee_quad (const struct real_format *,
3319 REAL_VALUE_TYPE *, const long *);
3320
3321 static void
3322 encode_ieee_quad (const struct real_format *fmt, long *buf,
3323 const REAL_VALUE_TYPE *r)
3324 {
3325 unsigned long image3, image2, image1, image0, exp;
3326 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3327 REAL_VALUE_TYPE u;
3328
3329 image3 = r->sign << 31;
3330 image2 = 0;
3331 image1 = 0;
3332 image0 = 0;
3333
3334 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3335
3336 switch (r->class)
3337 {
3338 case rvc_zero:
3339 break;
3340
3341 case rvc_inf:
3342 if (fmt->has_inf)
3343 image3 |= 32767 << 16;
3344 else
3345 {
3346 image3 |= 0x7fffffff;
3347 image2 = 0xffffffff;
3348 image1 = 0xffffffff;
3349 image0 = 0xffffffff;
3350 }
3351 break;
3352
3353 case rvc_nan:
3354 if (fmt->has_nans)
3355 {
3356 image3 |= 32767 << 16;
3357
3358 if (r->canonical)
3359 {
3360 /* Don't use bits from the significand. The
3361 initialization above is right. */
3362 }
3363 else if (HOST_BITS_PER_LONG == 32)
3364 {
3365 image0 = u.sig[0];
3366 image1 = u.sig[1];
3367 image2 = u.sig[2];
3368 image3 |= u.sig[3] & 0xffff;
3369 }
3370 else
3371 {
3372 image0 = u.sig[0];
3373 image1 = image0 >> 31 >> 1;
3374 image2 = u.sig[1];
3375 image3 |= (image2 >> 31 >> 1) & 0xffff;
3376 image0 &= 0xffffffff;
3377 image2 &= 0xffffffff;
3378 }
3379 if (r->signalling == fmt->qnan_msb_set)
3380 image3 &= ~0x8000;
3381 else
3382 image3 |= 0x8000;
3383 /* We overload qnan_msb_set here: it's only clear for
3384 mips_ieee_single, which wants all mantissa bits but the
3385 quiet/signalling one set in canonical NaNs (at least
3386 Quiet ones). */
3387 if (r->canonical && !fmt->qnan_msb_set)
3388 {
3389 image3 |= 0x7fff;
3390 image2 = image1 = image0 = 0xffffffff;
3391 }
3392 else if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3393 image3 |= 0x4000;
3394 }
3395 else
3396 {
3397 image3 |= 0x7fffffff;
3398 image2 = 0xffffffff;
3399 image1 = 0xffffffff;
3400 image0 = 0xffffffff;
3401 }
3402 break;
3403
3404 case rvc_normal:
3405 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3406 whereas the intermediate representation is 0.F x 2**exp.
3407 Which means we're off by one. */
3408 if (denormal)
3409 exp = 0;
3410 else
3411 exp = r->exp + 16383 - 1;
3412 image3 |= exp << 16;
3413
3414 if (HOST_BITS_PER_LONG == 32)
3415 {
3416 image0 = u.sig[0];
3417 image1 = u.sig[1];
3418 image2 = u.sig[2];
3419 image3 |= u.sig[3] & 0xffff;
3420 }
3421 else
3422 {
3423 image0 = u.sig[0];
3424 image1 = image0 >> 31 >> 1;
3425 image2 = u.sig[1];
3426 image3 |= (image2 >> 31 >> 1) & 0xffff;
3427 image0 &= 0xffffffff;
3428 image2 &= 0xffffffff;
3429 }
3430 break;
3431
3432 default:
3433 abort ();
3434 }
3435
3436 if (FLOAT_WORDS_BIG_ENDIAN)
3437 {
3438 buf[0] = image3;
3439 buf[1] = image2;
3440 buf[2] = image1;
3441 buf[3] = image0;
3442 }
3443 else
3444 {
3445 buf[0] = image0;
3446 buf[1] = image1;
3447 buf[2] = image2;
3448 buf[3] = image3;
3449 }
3450 }
3451
3452 static void
3453 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3454 const long *buf)
3455 {
3456 unsigned long image3, image2, image1, image0;
3457 bool sign;
3458 int exp;
3459
3460 if (FLOAT_WORDS_BIG_ENDIAN)
3461 {
3462 image3 = buf[0];
3463 image2 = buf[1];
3464 image1 = buf[2];
3465 image0 = buf[3];
3466 }
3467 else
3468 {
3469 image0 = buf[0];
3470 image1 = buf[1];
3471 image2 = buf[2];
3472 image3 = buf[3];
3473 }
3474 image0 &= 0xffffffff;
3475 image1 &= 0xffffffff;
3476 image2 &= 0xffffffff;
3477
3478 sign = (image3 >> 31) & 1;
3479 exp = (image3 >> 16) & 0x7fff;
3480 image3 &= 0xffff;
3481
3482 memset (r, 0, sizeof (*r));
3483
3484 if (exp == 0)
3485 {
3486 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
3487 {
3488 r->class = rvc_normal;
3489 r->sign = sign;
3490
3491 r->exp = -16382 + (SIGNIFICAND_BITS - 112);
3492 if (HOST_BITS_PER_LONG == 32)
3493 {
3494 r->sig[0] = image0;
3495 r->sig[1] = image1;
3496 r->sig[2] = image2;
3497 r->sig[3] = image3;
3498 }
3499 else
3500 {
3501 r->sig[0] = (image1 << 31 << 1) | image0;
3502 r->sig[1] = (image3 << 31 << 1) | image2;
3503 }
3504
3505 normalize (r);
3506 }
3507 else if (fmt->has_signed_zero)
3508 r->sign = sign;
3509 }
3510 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3511 {
3512 if (image3 | image2 | image1 | image0)
3513 {
3514 r->class = rvc_nan;
3515 r->sign = sign;
3516 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
3517
3518 if (HOST_BITS_PER_LONG == 32)
3519 {
3520 r->sig[0] = image0;
3521 r->sig[1] = image1;
3522 r->sig[2] = image2;
3523 r->sig[3] = image3;
3524 }
3525 else
3526 {
3527 r->sig[0] = (image1 << 31 << 1) | image0;
3528 r->sig[1] = (image3 << 31 << 1) | image2;
3529 }
3530 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3531 }
3532 else
3533 {
3534 r->class = rvc_inf;
3535 r->sign = sign;
3536 }
3537 }
3538 else
3539 {
3540 r->class = rvc_normal;
3541 r->sign = sign;
3542 r->exp = exp - 16383 + 1;
3543
3544 if (HOST_BITS_PER_LONG == 32)
3545 {
3546 r->sig[0] = image0;
3547 r->sig[1] = image1;
3548 r->sig[2] = image2;
3549 r->sig[3] = image3;
3550 }
3551 else
3552 {
3553 r->sig[0] = (image1 << 31 << 1) | image0;
3554 r->sig[1] = (image3 << 31 << 1) | image2;
3555 }
3556 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3557 r->sig[SIGSZ-1] |= SIG_MSB;
3558 }
3559 }
3560
3561 const struct real_format ieee_quad_format =
3562 {
3563 encode_ieee_quad,
3564 decode_ieee_quad,
3565 2,
3566 1,
3567 113,
3568 113,
3569 -16381,
3570 16384,
3571 127,
3572 true,
3573 true,
3574 true,
3575 true,
3576 true
3577 };
3578
3579 const struct real_format mips_quad_format =
3580 {
3581 encode_ieee_quad,
3582 decode_ieee_quad,
3583 2,
3584 1,
3585 113,
3586 113,
3587 -16381,
3588 16384,
3589 127,
3590 true,
3591 true,
3592 true,
3593 true,
3594 false
3595 };
3596 \f
3597 /* Descriptions of VAX floating point formats can be found beginning at
3598
3599 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3600
3601 The thing to remember is that they're almost IEEE, except for word
3602 order, exponent bias, and the lack of infinities, nans, and denormals.
3603
3604 We don't implement the H_floating format here, simply because neither
3605 the VAX or Alpha ports use it. */
3606
3607 static void encode_vax_f (const struct real_format *fmt,
3608 long *, const REAL_VALUE_TYPE *);
3609 static void decode_vax_f (const struct real_format *,
3610 REAL_VALUE_TYPE *, const long *);
3611 static void encode_vax_d (const struct real_format *fmt,
3612 long *, const REAL_VALUE_TYPE *);
3613 static void decode_vax_d (const struct real_format *,
3614 REAL_VALUE_TYPE *, const long *);
3615 static void encode_vax_g (const struct real_format *fmt,
3616 long *, const REAL_VALUE_TYPE *);
3617 static void decode_vax_g (const struct real_format *,
3618 REAL_VALUE_TYPE *, const long *);
3619
3620 static void
3621 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3622 const REAL_VALUE_TYPE *r)
3623 {
3624 unsigned long sign, exp, sig, image;
3625
3626 sign = r->sign << 15;
3627
3628 switch (r->class)
3629 {
3630 case rvc_zero:
3631 image = 0;
3632 break;
3633
3634 case rvc_inf:
3635 case rvc_nan:
3636 image = 0xffff7fff | sign;
3637 break;
3638
3639 case rvc_normal:
3640 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
3641 exp = r->exp + 128;
3642
3643 image = (sig << 16) & 0xffff0000;
3644 image |= sign;
3645 image |= exp << 7;
3646 image |= sig >> 16;
3647 break;
3648
3649 default:
3650 abort ();
3651 }
3652
3653 buf[0] = image;
3654 }
3655
3656 static void
3657 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
3658 REAL_VALUE_TYPE *r, const long *buf)
3659 {
3660 unsigned long image = buf[0] & 0xffffffff;
3661 int exp = (image >> 7) & 0xff;
3662
3663 memset (r, 0, sizeof (*r));
3664
3665 if (exp != 0)
3666 {
3667 r->class = rvc_normal;
3668 r->sign = (image >> 15) & 1;
3669 r->exp = exp - 128;
3670
3671 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
3672 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
3673 }
3674 }
3675
3676 static void
3677 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3678 const REAL_VALUE_TYPE *r)
3679 {
3680 unsigned long image0, image1, sign = r->sign << 15;
3681
3682 switch (r->class)
3683 {
3684 case rvc_zero:
3685 image0 = image1 = 0;
3686 break;
3687
3688 case rvc_inf:
3689 case rvc_nan:
3690 image0 = 0xffff7fff | sign;
3691 image1 = 0xffffffff;
3692 break;
3693
3694 case rvc_normal:
3695 /* Extract the significand into straight hi:lo. */
3696 if (HOST_BITS_PER_LONG == 64)
3697 {
3698 image0 = r->sig[SIGSZ-1];
3699 image1 = (image0 >> (64 - 56)) & 0xffffffff;
3700 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
3701 }
3702 else
3703 {
3704 image0 = r->sig[SIGSZ-1];
3705 image1 = r->sig[SIGSZ-2];
3706 image1 = (image0 << 24) | (image1 >> 8);
3707 image0 = (image0 >> 8) & 0xffffff;
3708 }
3709
3710 /* Rearrange the half-words of the significand to match the
3711 external format. */
3712 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
3713 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3714
3715 /* Add the sign and exponent. */
3716 image0 |= sign;
3717 image0 |= (r->exp + 128) << 7;
3718 break;
3719
3720 default:
3721 abort ();
3722 }
3723
3724 if (FLOAT_WORDS_BIG_ENDIAN)
3725 buf[0] = image1, buf[1] = image0;
3726 else
3727 buf[0] = image0, buf[1] = image1;
3728 }
3729
3730 static void
3731 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
3732 REAL_VALUE_TYPE *r, const long *buf)
3733 {
3734 unsigned long image0, image1;
3735 int exp;
3736
3737 if (FLOAT_WORDS_BIG_ENDIAN)
3738 image1 = buf[0], image0 = buf[1];
3739 else
3740 image0 = buf[0], image1 = buf[1];
3741 image0 &= 0xffffffff;
3742 image1 &= 0xffffffff;
3743
3744 exp = (image0 >> 7) & 0xff;
3745
3746 memset (r, 0, sizeof (*r));
3747
3748 if (exp != 0)
3749 {
3750 r->class = rvc_normal;
3751 r->sign = (image0 >> 15) & 1;
3752 r->exp = exp - 128;
3753
3754 /* Rearrange the half-words of the external format into
3755 proper ascending order. */
3756 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
3757 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3758
3759 if (HOST_BITS_PER_LONG == 64)
3760 {
3761 image0 = (image0 << 31 << 1) | image1;
3762 image0 <<= 64 - 56;
3763 image0 |= SIG_MSB;
3764 r->sig[SIGSZ-1] = image0;
3765 }
3766 else
3767 {
3768 r->sig[SIGSZ-1] = image0;
3769 r->sig[SIGSZ-2] = image1;
3770 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
3771 r->sig[SIGSZ-1] |= SIG_MSB;
3772 }
3773 }
3774 }
3775
3776 static void
3777 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3778 const REAL_VALUE_TYPE *r)
3779 {
3780 unsigned long image0, image1, sign = r->sign << 15;
3781
3782 switch (r->class)
3783 {
3784 case rvc_zero:
3785 image0 = image1 = 0;
3786 break;
3787
3788 case rvc_inf:
3789 case rvc_nan:
3790 image0 = 0xffff7fff | sign;
3791 image1 = 0xffffffff;
3792 break;
3793
3794 case rvc_normal:
3795 /* Extract the significand into straight hi:lo. */
3796 if (HOST_BITS_PER_LONG == 64)
3797 {
3798 image0 = r->sig[SIGSZ-1];
3799 image1 = (image0 >> (64 - 53)) & 0xffffffff;
3800 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
3801 }
3802 else
3803 {
3804 image0 = r->sig[SIGSZ-1];
3805 image1 = r->sig[SIGSZ-2];
3806 image1 = (image0 << 21) | (image1 >> 11);
3807 image0 = (image0 >> 11) & 0xfffff;
3808 }
3809
3810 /* Rearrange the half-words of the significand to match the
3811 external format. */
3812 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
3813 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3814
3815 /* Add the sign and exponent. */
3816 image0 |= sign;
3817 image0 |= (r->exp + 1024) << 4;
3818 break;
3819
3820 default:
3821 abort ();
3822 }
3823
3824 if (FLOAT_WORDS_BIG_ENDIAN)
3825 buf[0] = image1, buf[1] = image0;
3826 else
3827 buf[0] = image0, buf[1] = image1;
3828 }
3829
3830 static void
3831 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
3832 REAL_VALUE_TYPE *r, const long *buf)
3833 {
3834 unsigned long image0, image1;
3835 int exp;
3836
3837 if (FLOAT_WORDS_BIG_ENDIAN)
3838 image1 = buf[0], image0 = buf[1];
3839 else
3840 image0 = buf[0], image1 = buf[1];
3841 image0 &= 0xffffffff;
3842 image1 &= 0xffffffff;
3843
3844 exp = (image0 >> 4) & 0x7ff;
3845
3846 memset (r, 0, sizeof (*r));
3847
3848 if (exp != 0)
3849 {
3850 r->class = rvc_normal;
3851 r->sign = (image0 >> 15) & 1;
3852 r->exp = exp - 1024;
3853
3854 /* Rearrange the half-words of the external format into
3855 proper ascending order. */
3856 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
3857 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3858
3859 if (HOST_BITS_PER_LONG == 64)
3860 {
3861 image0 = (image0 << 31 << 1) | image1;
3862 image0 <<= 64 - 53;
3863 image0 |= SIG_MSB;
3864 r->sig[SIGSZ-1] = image0;
3865 }
3866 else
3867 {
3868 r->sig[SIGSZ-1] = image0;
3869 r->sig[SIGSZ-2] = image1;
3870 lshift_significand (r, r, 64 - 53);
3871 r->sig[SIGSZ-1] |= SIG_MSB;
3872 }
3873 }
3874 }
3875
3876 const struct real_format vax_f_format =
3877 {
3878 encode_vax_f,
3879 decode_vax_f,
3880 2,
3881 1,
3882 24,
3883 24,
3884 -127,
3885 127,
3886 15,
3887 false,
3888 false,
3889 false,
3890 false,
3891 false
3892 };
3893
3894 const struct real_format vax_d_format =
3895 {
3896 encode_vax_d,
3897 decode_vax_d,
3898 2,
3899 1,
3900 56,
3901 56,
3902 -127,
3903 127,
3904 15,
3905 false,
3906 false,
3907 false,
3908 false,
3909 false
3910 };
3911
3912 const struct real_format vax_g_format =
3913 {
3914 encode_vax_g,
3915 decode_vax_g,
3916 2,
3917 1,
3918 53,
3919 53,
3920 -1023,
3921 1023,
3922 15,
3923 false,
3924 false,
3925 false,
3926 false,
3927 false
3928 };
3929 \f
3930 /* A good reference for these can be found in chapter 9 of
3931 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
3932 An on-line version can be found here:
3933
3934 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
3935 */
3936
3937 static void encode_i370_single (const struct real_format *fmt,
3938 long *, const REAL_VALUE_TYPE *);
3939 static void decode_i370_single (const struct real_format *,
3940 REAL_VALUE_TYPE *, const long *);
3941 static void encode_i370_double (const struct real_format *fmt,
3942 long *, const REAL_VALUE_TYPE *);
3943 static void decode_i370_double (const struct real_format *,
3944 REAL_VALUE_TYPE *, const long *);
3945
3946 static void
3947 encode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
3948 long *buf, const REAL_VALUE_TYPE *r)
3949 {
3950 unsigned long sign, exp, sig, image;
3951
3952 sign = r->sign << 31;
3953
3954 switch (r->class)
3955 {
3956 case rvc_zero:
3957 image = 0;
3958 break;
3959
3960 case rvc_inf:
3961 case rvc_nan:
3962 image = 0x7fffffff | sign;
3963 break;
3964
3965 case rvc_normal:
3966 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0xffffff;
3967 exp = ((r->exp / 4) + 64) << 24;
3968 image = sign | exp | sig;
3969 break;
3970
3971 default:
3972 abort ();
3973 }
3974
3975 buf[0] = image;
3976 }
3977
3978 static void
3979 decode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
3980 REAL_VALUE_TYPE *r, const long *buf)
3981 {
3982 unsigned long sign, sig, image = buf[0];
3983 int exp;
3984
3985 sign = (image >> 31) & 1;
3986 exp = (image >> 24) & 0x7f;
3987 sig = image & 0xffffff;
3988
3989 memset (r, 0, sizeof (*r));
3990
3991 if (exp || sig)
3992 {
3993 r->class = rvc_normal;
3994 r->sign = sign;
3995 r->exp = (exp - 64) * 4;
3996 r->sig[SIGSZ-1] = sig << (HOST_BITS_PER_LONG - 24);
3997 normalize (r);
3998 }
3999 }
4000
4001 static void
4002 encode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4003 long *buf, const REAL_VALUE_TYPE *r)
4004 {
4005 unsigned long sign, exp, image_hi, image_lo;
4006
4007 sign = r->sign << 31;
4008
4009 switch (r->class)
4010 {
4011 case rvc_zero:
4012 image_hi = image_lo = 0;
4013 break;
4014
4015 case rvc_inf:
4016 case rvc_nan:
4017 image_hi = 0x7fffffff | sign;
4018 image_lo = 0xffffffff;
4019 break;
4020
4021 case rvc_normal:
4022 if (HOST_BITS_PER_LONG == 64)
4023 {
4024 image_hi = r->sig[SIGSZ-1];
4025 image_lo = (image_hi >> (64 - 56)) & 0xffffffff;
4026 image_hi = (image_hi >> (64 - 56 + 1) >> 31) & 0xffffff;
4027 }
4028 else
4029 {
4030 image_hi = r->sig[SIGSZ-1];
4031 image_lo = r->sig[SIGSZ-2];
4032 image_lo = (image_lo >> 8) | (image_hi << 24);
4033 image_hi >>= 8;
4034 }
4035
4036 exp = ((r->exp / 4) + 64) << 24;
4037 image_hi |= sign | exp;
4038 break;
4039
4040 default:
4041 abort ();
4042 }
4043
4044 if (FLOAT_WORDS_BIG_ENDIAN)
4045 buf[0] = image_hi, buf[1] = image_lo;
4046 else
4047 buf[0] = image_lo, buf[1] = image_hi;
4048 }
4049
4050 static void
4051 decode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4052 REAL_VALUE_TYPE *r, const long *buf)
4053 {
4054 unsigned long sign, image_hi, image_lo;
4055 int exp;
4056
4057 if (FLOAT_WORDS_BIG_ENDIAN)
4058 image_hi = buf[0], image_lo = buf[1];
4059 else
4060 image_lo = buf[0], image_hi = buf[1];
4061
4062 sign = (image_hi >> 31) & 1;
4063 exp = (image_hi >> 24) & 0x7f;
4064 image_hi &= 0xffffff;
4065 image_lo &= 0xffffffff;
4066
4067 memset (r, 0, sizeof (*r));
4068
4069 if (exp || image_hi || image_lo)
4070 {
4071 r->class = rvc_normal;
4072 r->sign = sign;
4073 r->exp = (exp - 64) * 4 + (SIGNIFICAND_BITS - 56);
4074
4075 if (HOST_BITS_PER_LONG == 32)
4076 {
4077 r->sig[0] = image_lo;
4078 r->sig[1] = image_hi;
4079 }
4080 else
4081 r->sig[0] = image_lo | (image_hi << 31 << 1);
4082
4083 normalize (r);
4084 }
4085 }
4086
4087 const struct real_format i370_single_format =
4088 {
4089 encode_i370_single,
4090 decode_i370_single,
4091 16,
4092 4,
4093 6,
4094 6,
4095 -64,
4096 63,
4097 31,
4098 false,
4099 false,
4100 false, /* ??? The encoding does allow for "unnormals". */
4101 false, /* ??? The encoding does allow for "unnormals". */
4102 false
4103 };
4104
4105 const struct real_format i370_double_format =
4106 {
4107 encode_i370_double,
4108 decode_i370_double,
4109 16,
4110 4,
4111 14,
4112 14,
4113 -64,
4114 63,
4115 63,
4116 false,
4117 false,
4118 false, /* ??? The encoding does allow for "unnormals". */
4119 false, /* ??? The encoding does allow for "unnormals". */
4120 false
4121 };
4122 \f
4123 /* The "twos-complement" c4x format is officially defined as
4124
4125 x = s(~s).f * 2**e
4126
4127 This is rather misleading. One must remember that F is signed.
4128 A better description would be
4129
4130 x = -1**s * ((s + 1 + .f) * 2**e
4131
4132 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4133 that's -1 * (1+1+(-.5)) == -1.5. I think.
4134
4135 The constructions here are taken from Tables 5-1 and 5-2 of the
4136 TMS320C4x User's Guide wherein step-by-step instructions for
4137 conversion from IEEE are presented. That's close enough to our
4138 internal representation so as to make things easy.
4139
4140 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4141
4142 static void encode_c4x_single (const struct real_format *fmt,
4143 long *, const REAL_VALUE_TYPE *);
4144 static void decode_c4x_single (const struct real_format *,
4145 REAL_VALUE_TYPE *, const long *);
4146 static void encode_c4x_extended (const struct real_format *fmt,
4147 long *, const REAL_VALUE_TYPE *);
4148 static void decode_c4x_extended (const struct real_format *,
4149 REAL_VALUE_TYPE *, const long *);
4150
4151 static void
4152 encode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4153 long *buf, const REAL_VALUE_TYPE *r)
4154 {
4155 unsigned long image, exp, sig;
4156
4157 switch (r->class)
4158 {
4159 case rvc_zero:
4160 exp = -128;
4161 sig = 0;
4162 break;
4163
4164 case rvc_inf:
4165 case rvc_nan:
4166 exp = 127;
4167 sig = 0x800000 - r->sign;
4168 break;
4169
4170 case rvc_normal:
4171 exp = r->exp - 1;
4172 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4173 if (r->sign)
4174 {
4175 if (sig)
4176 sig = -sig;
4177 else
4178 exp--;
4179 sig |= 0x800000;
4180 }
4181 break;
4182
4183 default:
4184 abort ();
4185 }
4186
4187 image = ((exp & 0xff) << 24) | (sig & 0xffffff);
4188 buf[0] = image;
4189 }
4190
4191 static void
4192 decode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4193 REAL_VALUE_TYPE *r, const long *buf)
4194 {
4195 unsigned long image = buf[0];
4196 unsigned long sig;
4197 int exp, sf;
4198
4199 exp = (((image >> 24) & 0xff) ^ 0x80) - 0x80;
4200 sf = ((image & 0xffffff) ^ 0x800000) - 0x800000;
4201
4202 memset (r, 0, sizeof (*r));
4203
4204 if (exp != -128)
4205 {
4206 r->class = rvc_normal;
4207
4208 sig = sf & 0x7fffff;
4209 if (sf < 0)
4210 {
4211 r->sign = 1;
4212 if (sig)
4213 sig = -sig;
4214 else
4215 exp++;
4216 }
4217 sig = (sig << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4218
4219 r->exp = exp + 1;
4220 r->sig[SIGSZ-1] = sig;
4221 }
4222 }
4223
4224 static void
4225 encode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4226 long *buf, const REAL_VALUE_TYPE *r)
4227 {
4228 unsigned long exp, sig;
4229
4230 switch (r->class)
4231 {
4232 case rvc_zero:
4233 exp = -128;
4234 sig = 0;
4235 break;
4236
4237 case rvc_inf:
4238 case rvc_nan:
4239 exp = 127;
4240 sig = 0x80000000 - r->sign;
4241 break;
4242
4243 case rvc_normal:
4244 exp = r->exp - 1;
4245
4246 sig = r->sig[SIGSZ-1];
4247 if (HOST_BITS_PER_LONG == 64)
4248 sig = sig >> 1 >> 31;
4249 sig &= 0x7fffffff;
4250
4251 if (r->sign)
4252 {
4253 if (sig)
4254 sig = -sig;
4255 else
4256 exp--;
4257 sig |= 0x80000000;
4258 }
4259 break;
4260
4261 default:
4262 abort ();
4263 }
4264
4265 exp = (exp & 0xff) << 24;
4266 sig &= 0xffffffff;
4267
4268 if (FLOAT_WORDS_BIG_ENDIAN)
4269 buf[0] = exp, buf[1] = sig;
4270 else
4271 buf[0] = sig, buf[0] = exp;
4272 }
4273
4274 static void
4275 decode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4276 REAL_VALUE_TYPE *r, const long *buf)
4277 {
4278 unsigned long sig;
4279 int exp, sf;
4280
4281 if (FLOAT_WORDS_BIG_ENDIAN)
4282 exp = buf[0], sf = buf[1];
4283 else
4284 sf = buf[0], exp = buf[1];
4285
4286 exp = (((exp >> 24) & 0xff) & 0x80) - 0x80;
4287 sf = ((sf & 0xffffffff) ^ 0x80000000) - 0x80000000;
4288
4289 memset (r, 0, sizeof (*r));
4290
4291 if (exp != -128)
4292 {
4293 r->class = rvc_normal;
4294
4295 sig = sf & 0x7fffffff;
4296 if (sf < 0)
4297 {
4298 r->sign = 1;
4299 if (sig)
4300 sig = -sig;
4301 else
4302 exp++;
4303 }
4304 if (HOST_BITS_PER_LONG == 64)
4305 sig = sig << 1 << 31;
4306 sig |= SIG_MSB;
4307
4308 r->exp = exp + 1;
4309 r->sig[SIGSZ-1] = sig;
4310 }
4311 }
4312
4313 const struct real_format c4x_single_format =
4314 {
4315 encode_c4x_single,
4316 decode_c4x_single,
4317 2,
4318 1,
4319 24,
4320 24,
4321 -126,
4322 128,
4323 -1,
4324 false,
4325 false,
4326 false,
4327 false,
4328 false
4329 };
4330
4331 const struct real_format c4x_extended_format =
4332 {
4333 encode_c4x_extended,
4334 decode_c4x_extended,
4335 2,
4336 1,
4337 32,
4338 32,
4339 -126,
4340 128,
4341 -1,
4342 false,
4343 false,
4344 false,
4345 false,
4346 false
4347 };
4348
4349 \f
4350 /* A synthetic "format" for internal arithmetic. It's the size of the
4351 internal significand minus the two bits needed for proper rounding.
4352 The encode and decode routines exist only to satisfy our paranoia
4353 harness. */
4354
4355 static void encode_internal (const struct real_format *fmt,
4356 long *, const REAL_VALUE_TYPE *);
4357 static void decode_internal (const struct real_format *,
4358 REAL_VALUE_TYPE *, const long *);
4359
4360 static void
4361 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4362 const REAL_VALUE_TYPE *r)
4363 {
4364 memcpy (buf, r, sizeof (*r));
4365 }
4366
4367 static void
4368 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4369 REAL_VALUE_TYPE *r, const long *buf)
4370 {
4371 memcpy (r, buf, sizeof (*r));
4372 }
4373
4374 const struct real_format real_internal_format =
4375 {
4376 encode_internal,
4377 decode_internal,
4378 2,
4379 1,
4380 SIGNIFICAND_BITS - 2,
4381 SIGNIFICAND_BITS - 2,
4382 -MAX_EXP,
4383 MAX_EXP,
4384 -1,
4385 true,
4386 true,
4387 false,
4388 true,
4389 true
4390 };
4391 \f
4392 /* Calculate the square root of X in mode MODE, and store the result
4393 in R. Return TRUE if the operation does not raise an exception.
4394 For details see "High Precision Division and Square Root",
4395 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4396 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4397
4398 bool
4399 real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4400 const REAL_VALUE_TYPE *x)
4401 {
4402 static REAL_VALUE_TYPE halfthree;
4403 static bool init = false;
4404 REAL_VALUE_TYPE h, t, i;
4405 int iter, exp;
4406
4407 /* sqrt(-0.0) is -0.0. */
4408 if (real_isnegzero (x))
4409 {
4410 *r = *x;
4411 return false;
4412 }
4413
4414 /* Negative arguments return NaN. */
4415 if (real_isneg (x))
4416 {
4417 get_canonical_qnan (r, 0);
4418 return false;
4419 }
4420
4421 /* Infinity and NaN return themselves. */
4422 if (real_isinf (x) || real_isnan (x))
4423 {
4424 *r = *x;
4425 return false;
4426 }
4427
4428 if (!init)
4429 {
4430 do_add (&halfthree, &dconst1, &dconsthalf, 0);
4431 init = true;
4432 }
4433
4434 /* Initial guess for reciprocal sqrt, i. */
4435 exp = real_exponent (x);
4436 real_ldexp (&i, &dconst1, -exp/2);
4437
4438 /* Newton's iteration for reciprocal sqrt, i. */
4439 for (iter = 0; iter < 16; iter++)
4440 {
4441 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4442 do_multiply (&t, x, &i);
4443 do_multiply (&h, &t, &i);
4444 do_multiply (&t, &h, &dconsthalf);
4445 do_add (&h, &halfthree, &t, 1);
4446 do_multiply (&t, &i, &h);
4447
4448 /* Check for early convergence. */
4449 if (iter >= 6 && real_identical (&i, &t))
4450 break;
4451
4452 /* ??? Unroll loop to avoid copying. */
4453 i = t;
4454 }
4455
4456 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4457 do_multiply (&t, x, &i);
4458 do_multiply (&h, &t, &i);
4459 do_add (&i, &dconst1, &h, 1);
4460 do_multiply (&h, &t, &i);
4461 do_multiply (&i, &dconsthalf, &h);
4462 do_add (&h, &t, &i, 0);
4463
4464 /* ??? We need a Tuckerman test to get the last bit. */
4465
4466 real_convert (r, mode, &h);
4467 return true;
4468 }
4469
4470 /* Calculate X raised to the integer exponent N in mode MODE and store
4471 the result in R. Return true if the result may be inexact due to
4472 loss of precision. The algorithm is the classic "left-to-right binary
4473 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4474 Algorithms", "The Art of Computer Programming", Volume 2. */
4475
4476 bool
4477 real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4478 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4479 {
4480 unsigned HOST_WIDE_INT bit;
4481 REAL_VALUE_TYPE t;
4482 bool inexact = false;
4483 bool init = false;
4484 bool neg;
4485 int i;
4486
4487 if (n == 0)
4488 {
4489 *r = dconst1;
4490 return false;
4491 }
4492 else if (n < 0)
4493 {
4494 /* Don't worry about overflow, from now on n is unsigned. */
4495 neg = true;
4496 n = -n;
4497 }
4498 else
4499 neg = false;
4500
4501 t = *x;
4502 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4503 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4504 {
4505 if (init)
4506 {
4507 inexact |= do_multiply (&t, &t, &t);
4508 if (n & bit)
4509 inexact |= do_multiply (&t, &t, x);
4510 }
4511 else if (n & bit)
4512 init = true;
4513 bit >>= 1;
4514 }
4515
4516 if (neg)
4517 inexact |= do_divide (&t, &dconst1, &t);
4518
4519 real_convert (r, mode, &t);
4520 return inexact;
4521 }
4522
4523 /* Round X to the nearest integer not larger in absolute value, i.e.
4524 towards zero, placing the result in R in mode MODE. */
4525
4526 void
4527 real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4528 const REAL_VALUE_TYPE *x)
4529 {
4530 do_fix_trunc (r, x);
4531 if (mode != VOIDmode)
4532 real_convert (r, mode, r);
4533 }
4534
4535 /* Round X to the largest integer not greater in value, i.e. round
4536 down, placing the result in R in mode MODE. */
4537
4538 void
4539 real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4540 const REAL_VALUE_TYPE *x)
4541 {
4542 do_fix_trunc (r, x);
4543 if (! real_identical (r, x) && r->sign)
4544 do_add (r, r, &dconstm1, 0);
4545 if (mode != VOIDmode)
4546 real_convert (r, mode, r);
4547 }
4548
4549 /* Round X to the smallest integer not less then argument, i.e. round
4550 up, placing the result in R in mode MODE. */
4551
4552 void
4553 real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4554 const REAL_VALUE_TYPE *x)
4555 {
4556 do_fix_trunc (r, x);
4557 if (! real_identical (r, x) && ! r->sign)
4558 do_add (r, r, &dconst1, 0);
4559 if (mode != VOIDmode)
4560 real_convert (r, mode, r);
4561 }