[Ada] Argument_String_To_List creates empty items from whitespace
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
51
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
55
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
60
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
66
67 init_recog and init_recog_no_volatile are responsible for setting this. */
68
69 int volatile_ok;
70
71 struct recog_data_d recog_data;
72
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative *recog_op_alt;
77
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES];
81
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
84
85 int which_alternative;
86
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
90
91 int reload_completed;
92
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
95
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
99
100 void
101 init_recog_no_volatile (void)
102 {
103 volatile_ok = 0;
104 }
105
106 void
107 init_recog (void)
108 {
109 volatile_ok = 1;
110 }
111
112 \f
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
114
115 static bool
116 asm_labels_ok (rtx body)
117 {
118 rtx asmop;
119 int i;
120
121 asmop = extract_asm_operands (body);
122 if (asmop == NULL_RTX)
123 return true;
124
125 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127 return false;
128
129 return true;
130 }
131
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
134
135 int
136 check_asm_operands (rtx x)
137 {
138 int noperands;
139 rtx *operands;
140 const char **constraints;
141 int i;
142
143 if (!asm_labels_ok (x))
144 return 0;
145
146 /* Post-reload, be more strict with things. */
147 if (reload_completed)
148 {
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn *insn = make_insn_raw (x);
151 extract_insn (insn);
152 constrain_operands (1, get_enabled_alternatives (insn));
153 return which_alternative >= 0;
154 }
155
156 noperands = asm_noperands (x);
157 if (noperands < 0)
158 return 0;
159 if (noperands == 0)
160 return 1;
161
162 operands = XALLOCAVEC (rtx, noperands);
163 constraints = XALLOCAVEC (const char *, noperands);
164
165 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
166
167 for (i = 0; i < noperands; i++)
168 {
169 const char *c = constraints[i];
170 if (c[0] == '%')
171 c++;
172 if (! asm_operand_ok (operands[i], c, constraints))
173 return 0;
174 }
175
176 return 1;
177 }
178 \f
179 /* Static data for the next two routines. */
180
181 struct change_t
182 {
183 rtx object;
184 int old_code;
185 bool unshare;
186 rtx *loc;
187 rtx old;
188 };
189
190 static change_t *changes;
191 static int changes_allocated;
192
193 static int num_changes = 0;
194
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
198
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202 the change in place.
203
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
207
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
212
213 static bool
214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
215 {
216 rtx old = *loc;
217
218 if (old == new_rtx || rtx_equal_p (old, new_rtx))
219 return 1;
220
221 gcc_assert (in_group != 0 || num_changes == 0);
222
223 *loc = new_rtx;
224
225 /* Save the information describing this change. */
226 if (num_changes >= changes_allocated)
227 {
228 if (changes_allocated == 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated = MAX_RECOG_OPERANDS * 5;
232 else
233 changes_allocated *= 2;
234
235 changes = XRESIZEVEC (change_t, changes, changes_allocated);
236 }
237
238 changes[num_changes].object = object;
239 changes[num_changes].loc = loc;
240 changes[num_changes].old = old;
241 changes[num_changes].unshare = unshare;
242
243 if (object && !MEM_P (object))
244 {
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
246 case invalid. */
247 changes[num_changes].old_code = INSN_CODE (object);
248 INSN_CODE (object) = -1;
249 }
250
251 num_changes++;
252
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
255
256 if (in_group)
257 return 1;
258 else
259 return apply_change_group ();
260 }
261
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263 UNSHARE to false. */
264
265 bool
266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
267 {
268 return validate_change_1 (object, loc, new_rtx, in_group, false);
269 }
270
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272 UNSHARE to true. */
273
274 bool
275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
276 {
277 return validate_change_1 (object, loc, new_rtx, in_group, true);
278 }
279
280
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
284
285 Return true if anything was changed. */
286 bool
287 canonicalize_change_group (rtx_insn *insn, rtx x)
288 {
289 if (COMMUTATIVE_P (x)
290 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
291 {
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem = XEXP (x, 0);
295 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297 return true;
298 }
299 else
300 return false;
301 }
302
303
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
306
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
310
311 int
312 insn_invalid_p (rtx_insn *insn, bool in_group)
313 {
314 rtx pat = PATTERN (insn);
315 int num_clobbers = 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
317 clobbers. */
318 int icode = recog (pat, insn,
319 (GET_CODE (pat) == SET
320 && ! reload_completed
321 && ! reload_in_progress)
322 ? &num_clobbers : 0);
323 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
324
325
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329 || (!is_asm && icode < 0))
330 return 1;
331
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers > 0)
336 {
337 rtx newpat;
338
339 if (added_clobbers_hard_reg_p (icode))
340 return 1;
341
342 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343 XVECEXP (newpat, 0, 0) = pat;
344 add_clobbers (newpat, icode);
345 if (in_group)
346 validate_change (insn, &PATTERN (insn), newpat, 1);
347 else
348 PATTERN (insn) = pat = newpat;
349 }
350
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed)
353 {
354 extract_insn (insn);
355
356 if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 return 1;
358 }
359
360 INSN_CODE (insn) = icode;
361 return 0;
362 }
363
364 /* Return number of changes made and not validated yet. */
365 int
366 num_changes_pending (void)
367 {
368 return num_changes;
369 }
370
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
373
374 int
375 verify_changes (int num)
376 {
377 int i;
378 rtx last_validated = NULL_RTX;
379
380 /* The changes have been applied and all INSN_CODEs have been reset to force
381 rerecognition.
382
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
387 the insn. */
388
389 for (i = num; i < num_changes; i++)
390 {
391 rtx object = changes[i].object;
392
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object == 0 || object == last_validated)
396 continue;
397
398 if (MEM_P (object))
399 {
400 if (! memory_address_addr_space_p (GET_MODE (object),
401 XEXP (object, 0),
402 MEM_ADDR_SPACE (object)))
403 break;
404 }
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
407 changes[i].old
408 && REG_P (changes[i].old)
409 && asm_noperands (PATTERN (object)) > 0
410 && REG_EXPR (changes[i].old) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 && DECL_REGISTER (REG_EXPR (changes[i].old)))
414 {
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
417 break;
418 }
419 else if (DEBUG_INSN_P (object))
420 continue;
421 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
422 {
423 rtx pat = PATTERN (object);
424
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat) == PARALLEL
431 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object)) < 0)
433 {
434 rtx newpat;
435
436 if (XVECLEN (pat, 0) == 2)
437 newpat = XVECEXP (pat, 0, 0);
438 else
439 {
440 int j;
441
442 newpat
443 = gen_rtx_PARALLEL (VOIDmode,
444 rtvec_alloc (XVECLEN (pat, 0) - 1));
445 for (j = 0; j < XVECLEN (newpat, 0); j++)
446 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
447 }
448
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
453
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
457
458 validate_change (object, &PATTERN (object), newpat, 1);
459 continue;
460 }
461 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 || GET_CODE (pat) == VAR_LOCATION)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 never recognized. */
465 continue;
466 else
467 break;
468 }
469 last_validated = object;
470 }
471
472 return (i == num_changes);
473 }
474
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
478
479 void
480 confirm_change_group (void)
481 {
482 int i;
483 rtx last_object = NULL;
484
485 for (i = 0; i < num_changes; i++)
486 {
487 rtx object = changes[i].object;
488
489 if (changes[i].unshare)
490 *changes[i].loc = copy_rtx (*changes[i].loc);
491
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
493 are made. */
494 if (object)
495 {
496 if (object != last_object && last_object && INSN_P (last_object))
497 df_insn_rescan (as_a <rtx_insn *> (last_object));
498 last_object = object;
499 }
500 }
501
502 if (last_object && INSN_P (last_object))
503 df_insn_rescan (as_a <rtx_insn *> (last_object));
504 num_changes = 0;
505 }
506
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
510
511 int
512 apply_change_group (void)
513 {
514 if (verify_changes (0))
515 {
516 confirm_change_group ();
517 return 1;
518 }
519 else
520 {
521 cancel_changes (0);
522 return 0;
523 }
524 }
525
526
527 /* Return the number of changes so far in the current group. */
528
529 int
530 num_validated_changes (void)
531 {
532 return num_changes;
533 }
534
535 /* Retract the changes numbered NUM and up. */
536
537 void
538 cancel_changes (int num)
539 {
540 int i;
541
542 /* Back out all the changes. Do this in the opposite order in which
543 they were made. */
544 for (i = num_changes - 1; i >= num; i--)
545 {
546 *changes[i].loc = changes[i].old;
547 if (changes[i].object && !MEM_P (changes[i].object))
548 INSN_CODE (changes[i].object) = changes[i].old_code;
549 }
550 num_changes = num;
551 }
552
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
556
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
559 machine_mode op0_mode)
560 {
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx = NULL_RTX;
564 scalar_int_mode is_mode;
565
566 if (SWAPPABLE_OPERANDS_P (x)
567 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568 {
569 validate_unshare_change (object, loc,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 : swap_condition (code),
572 GET_MODE (x), XEXP (x, 1),
573 XEXP (x, 0)), 1);
574 x = *loc;
575 code = GET_CODE (x);
576 }
577
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code))
580 {
581 case RTX_UNARY:
582 if (CONSTANT_P (XEXP (x, 0)))
583 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
584 op0_mode);
585 break;
586 case RTX_COMM_ARITH:
587 case RTX_BIN_ARITH:
588 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
589 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
590 XEXP (x, 1));
591 break;
592 case RTX_COMPARE:
593 case RTX_COMM_COMPARE:
594 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
595 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
596 XEXP (x, 0), XEXP (x, 1));
597 break;
598 default:
599 break;
600 }
601 if (new_rtx)
602 {
603 validate_change (object, loc, new_rtx, 1);
604 return;
605 }
606
607 switch (code)
608 {
609 case PLUS:
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
615 validate_change (object, loc,
616 simplify_gen_binary
617 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
618 break;
619 case MINUS:
620 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
621 validate_change (object, loc,
622 simplify_gen_binary
623 (PLUS, GET_MODE (x), XEXP (x, 0),
624 simplify_gen_unary (NEG,
625 GET_MODE (x), XEXP (x, 1),
626 GET_MODE (x))), 1);
627 break;
628 case ZERO_EXTEND:
629 case SIGN_EXTEND:
630 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
631 {
632 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
633 op0_mode);
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
636 if (!new_rtx)
637 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
638 validate_change (object, loc, new_rtx, 1);
639 }
640 break;
641 case SUBREG:
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
644 SUBREG_BYTE (x));
645
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
648 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
649 if (new_rtx)
650 validate_change (object, loc, new_rtx, 1);
651 break;
652 case ZERO_EXTRACT:
653 case SIGN_EXTRACT:
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
658
659 if (MEM_P (XEXP (x, 0))
660 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
661 && CONST_INT_P (XEXP (x, 1))
662 && CONST_INT_P (XEXP (x, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x, 0)))
665 && !MEM_VOLATILE_P (XEXP (x, 0)))
666 {
667 int pos = INTVAL (XEXP (x, 2));
668 machine_mode new_mode = is_mode;
669 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
670 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
671 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
672 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
673 scalar_int_mode wanted_mode = (new_mode == VOIDmode
674 ? word_mode
675 : as_a <scalar_int_mode> (new_mode));
676
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
679 {
680 int offset = pos / BITS_PER_UNIT;
681 rtx newmem;
682
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
686 offset =
687 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
688 offset);
689
690 gcc_assert (GET_MODE_PRECISION (wanted_mode)
691 == GET_MODE_BITSIZE (wanted_mode));
692 pos %= GET_MODE_BITSIZE (wanted_mode);
693
694 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
695
696 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
697 validate_change (object, &XEXP (x, 0), newmem, 1);
698 }
699 }
700
701 break;
702
703 default:
704 break;
705 }
706 }
707
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
710
711 static void
712 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
713 bool simplify)
714 {
715 int i, j;
716 const char *fmt;
717 rtx x = *loc;
718 enum rtx_code code;
719 machine_mode op0_mode = VOIDmode;
720 int prev_changes = num_changes;
721
722 if (!x)
723 return;
724
725 code = GET_CODE (x);
726 fmt = GET_RTX_FORMAT (code);
727 if (fmt[0] == 'e')
728 op0_mode = GET_MODE (XEXP (x, 0));
729
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
733
734 if (x == from
735 || (REG_P (x) && REG_P (from)
736 && GET_MODE (x) == GET_MODE (from)
737 && REGNO (x) == REGNO (from))
738 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
739 && rtx_equal_p (x, from)))
740 {
741 validate_unshare_change (object, loc, to, 1);
742 return;
743 }
744
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
749
750 if (GET_CODE (x) == PARALLEL)
751 {
752 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
753 {
754 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
756 {
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
760 (x, 0, j))));
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
762 from, to, object, simplify);
763 }
764 else
765 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
766 simplify);
767 }
768 }
769 else
770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
771 {
772 if (fmt[i] == 'e')
773 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
774 else if (fmt[i] == 'E')
775 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
776 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
777 simplify);
778 }
779
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes == prev_changes)
782 return;
783
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
788 op0_mode = GET_MODE (XEXP (x, 0));
789
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
792 if (simplify)
793 simplify_while_replacing (loc, to, object, op0_mode);
794 }
795
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
799
800 int
801 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
802 {
803 validate_replace_rtx_1 (loc, from, to, insn, true);
804 return apply_change_group ();
805 }
806
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
809
810 int
811 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
812 {
813 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
814 return apply_change_group ();
815 }
816
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
819 INSN is still valid.
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
822
823 int
824 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
825 {
826 validate_replace_rtx_1 (where, from, to, insn, true);
827 return apply_change_group ();
828 }
829
830 /* Same as above, but do not simplify rtx afterwards. */
831 int
832 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
833 rtx_insn *insn)
834 {
835 validate_replace_rtx_1 (where, from, to, insn, false);
836 return apply_change_group ();
837
838 }
839
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
842
843 void
844 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
845 {
846 rtx note;
847 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
848 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
849 if (REG_NOTE_KIND (note) == REG_EQUAL
850 || REG_NOTE_KIND (note) == REG_EQUIV)
851 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
852 }
853
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
856 {
857 rtx from; /* Old RTX */
858 rtx to; /* New RTX */
859 rtx_insn *insn; /* Insn in which substitution is occurring. */
860 };
861
862 static void
863 validate_replace_src_1 (rtx *x, void *data)
864 {
865 struct validate_replace_src_data *d
866 = (struct validate_replace_src_data *) data;
867
868 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
869 }
870
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
872 SET_DESTs. */
873
874 void
875 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
876 {
877 struct validate_replace_src_data d;
878
879 d.from = from;
880 d.to = to;
881 d.insn = insn;
882 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
883 }
884
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
888
889 bool
890 validate_simplify_insn (rtx_insn *insn)
891 {
892 int i;
893 rtx pat = NULL;
894 rtx newpat = NULL;
895
896 pat = PATTERN (insn);
897
898 if (GET_CODE (pat) == SET)
899 {
900 newpat = simplify_rtx (SET_SRC (pat));
901 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
902 validate_change (insn, &SET_SRC (pat), newpat, 1);
903 newpat = simplify_rtx (SET_DEST (pat));
904 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
905 validate_change (insn, &SET_DEST (pat), newpat, 1);
906 }
907 else if (GET_CODE (pat) == PARALLEL)
908 for (i = 0; i < XVECLEN (pat, 0); i++)
909 {
910 rtx s = XVECEXP (pat, 0, i);
911
912 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
913 {
914 newpat = simplify_rtx (SET_SRC (s));
915 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
916 validate_change (insn, &SET_SRC (s), newpat, 1);
917 newpat = simplify_rtx (SET_DEST (s));
918 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
919 validate_change (insn, &SET_DEST (s), newpat, 1);
920 }
921 }
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
923 }
924 \f
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
928
929 int
930 next_insn_tests_no_inequality (rtx_insn *insn)
931 {
932 rtx_insn *next = next_cc0_user (insn);
933
934 /* If there is no next insn, we have to take the conservative choice. */
935 if (next == 0)
936 return 0;
937
938 return (INSN_P (next)
939 && ! inequality_comparisons_p (PATTERN (next)));
940 }
941 \f
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
946
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
949
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
951 it has.
952
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
955
956 int
957 general_operand (rtx op, machine_mode mode)
958 {
959 enum rtx_code code = GET_CODE (op);
960
961 if (mode == VOIDmode)
962 mode = GET_MODE (op);
963
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
967 && GET_MODE_CLASS (mode) != MODE_INT
968 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
969 return 0;
970
971 if (CONST_INT_P (op)
972 && mode != VOIDmode
973 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
974 return 0;
975
976 if (CONSTANT_P (op))
977 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
978 || mode == VOIDmode)
979 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
980 && targetm.legitimate_constant_p (mode == VOIDmode
981 ? GET_MODE (op)
982 : mode, op));
983
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
986
987 if (GET_MODE (op) != mode)
988 return 0;
989
990 if (code == SUBREG)
991 {
992 rtx sub = SUBREG_REG (op);
993
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed && MEM_P (sub)
1000 && paradoxical_subreg_p (op))
1001 return 0;
1002 #endif
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1007
1008 ??? This is a kludge. */
1009 if (!reload_completed
1010 && maybe_ne (SUBREG_BYTE (op), 0)
1011 && MEM_P (sub))
1012 return 0;
1013
1014 if (REG_P (sub)
1015 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1016 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1017 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1018 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1019 /* LRA can generate some invalid SUBREGS just for matched
1020 operand reload presentation. LRA needs to treat them as
1021 valid. */
1022 && ! LRA_SUBREG_P (op))
1023 return 0;
1024
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1032 mode. */
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op))
1035 return 0;
1036
1037 op = sub;
1038 code = GET_CODE (op);
1039 }
1040
1041 if (code == REG)
1042 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1044
1045 if (code == MEM)
1046 {
1047 rtx y = XEXP (op, 0);
1048
1049 if (! volatile_ok && MEM_VOLATILE_P (op))
1050 return 0;
1051
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1055 transformations. */
1056 if (lra_in_progress
1057 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1058 return 1;
1059 }
1060
1061 return 0;
1062 }
1063 \f
1064 /* Return 1 if OP is a valid memory address for a memory reference
1065 of mode MODE.
1066
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1069
1070 int
1071 address_operand (rtx op, machine_mode mode)
1072 {
1073 return memory_address_p (mode, op);
1074 }
1075
1076 /* Return 1 if OP is a register reference of mode MODE.
1077 If MODE is VOIDmode, accept a register in any mode.
1078
1079 The main use of this function is as a predicate in match_operand
1080 expressions in the machine description. */
1081
1082 int
1083 register_operand (rtx op, machine_mode mode)
1084 {
1085 if (GET_CODE (op) == SUBREG)
1086 {
1087 rtx sub = SUBREG_REG (op);
1088
1089 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1090 because it is guaranteed to be reloaded into one.
1091 Just make sure the MEM is valid in itself.
1092 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1093 but currently it does result from (SUBREG (REG)...) where the
1094 reg went on the stack.) */
1095 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1096 return 0;
1097 }
1098 else if (!REG_P (op))
1099 return 0;
1100 return general_operand (op, mode);
1101 }
1102
1103 /* Return 1 for a register in Pmode; ignore the tested mode. */
1104
1105 int
1106 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1107 {
1108 return register_operand (op, Pmode);
1109 }
1110
1111 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1112 or a hard register. */
1113
1114 int
1115 scratch_operand (rtx op, machine_mode mode)
1116 {
1117 if (GET_MODE (op) != mode && mode != VOIDmode)
1118 return 0;
1119
1120 return (GET_CODE (op) == SCRATCH
1121 || (REG_P (op)
1122 && (lra_in_progress
1123 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1124 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1125 }
1126
1127 /* Return 1 if OP is a valid immediate operand for mode MODE.
1128
1129 The main use of this function is as a predicate in match_operand
1130 expressions in the machine description. */
1131
1132 int
1133 immediate_operand (rtx op, machine_mode mode)
1134 {
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1141
1142 if (CONST_INT_P (op)
1143 && mode != VOIDmode
1144 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1145 return 0;
1146
1147 return (CONSTANT_P (op)
1148 && (GET_MODE (op) == mode || mode == VOIDmode
1149 || GET_MODE (op) == VOIDmode)
1150 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1151 && targetm.legitimate_constant_p (mode == VOIDmode
1152 ? GET_MODE (op)
1153 : mode, op));
1154 }
1155
1156 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1157
1158 int
1159 const_int_operand (rtx op, machine_mode mode)
1160 {
1161 if (!CONST_INT_P (op))
1162 return 0;
1163
1164 if (mode != VOIDmode
1165 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1166 return 0;
1167
1168 return 1;
1169 }
1170
1171 #if TARGET_SUPPORTS_WIDE_INT
1172 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1173 of mode MODE. */
1174 int
1175 const_scalar_int_operand (rtx op, machine_mode mode)
1176 {
1177 if (!CONST_SCALAR_INT_P (op))
1178 return 0;
1179
1180 if (CONST_INT_P (op))
1181 return const_int_operand (op, mode);
1182
1183 if (mode != VOIDmode)
1184 {
1185 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1186 int prec = GET_MODE_PRECISION (int_mode);
1187 int bitsize = GET_MODE_BITSIZE (int_mode);
1188
1189 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1190 return 0;
1191
1192 if (prec == bitsize)
1193 return 1;
1194 else
1195 {
1196 /* Multiword partial int. */
1197 HOST_WIDE_INT x
1198 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1199 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1200 }
1201 }
1202 return 1;
1203 }
1204
1205 /* Returns 1 if OP is an operand that is a constant integer or constant
1206 floating-point number of MODE. */
1207
1208 int
1209 const_double_operand (rtx op, machine_mode mode)
1210 {
1211 return (GET_CODE (op) == CONST_DOUBLE)
1212 && (GET_MODE (op) == mode || mode == VOIDmode);
1213 }
1214 #else
1215 /* Returns 1 if OP is an operand that is a constant integer or constant
1216 floating-point number of MODE. */
1217
1218 int
1219 const_double_operand (rtx op, machine_mode mode)
1220 {
1221 /* Don't accept CONST_INT or anything similar
1222 if the caller wants something floating. */
1223 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1224 && GET_MODE_CLASS (mode) != MODE_INT
1225 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1226 return 0;
1227
1228 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1229 && (mode == VOIDmode || GET_MODE (op) == mode
1230 || GET_MODE (op) == VOIDmode));
1231 }
1232 #endif
1233 /* Return 1 if OP is a general operand that is not an immediate
1234 operand of mode MODE. */
1235
1236 int
1237 nonimmediate_operand (rtx op, machine_mode mode)
1238 {
1239 return (general_operand (op, mode) && ! CONSTANT_P (op));
1240 }
1241
1242 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1243
1244 int
1245 nonmemory_operand (rtx op, machine_mode mode)
1246 {
1247 if (CONSTANT_P (op))
1248 return immediate_operand (op, mode);
1249 return register_operand (op, mode);
1250 }
1251
1252 /* Return 1 if OP is a valid operand that stands for pushing a
1253 value of mode MODE onto the stack.
1254
1255 The main use of this function is as a predicate in match_operand
1256 expressions in the machine description. */
1257
1258 int
1259 push_operand (rtx op, machine_mode mode)
1260 {
1261 if (!MEM_P (op))
1262 return 0;
1263
1264 if (mode != VOIDmode && GET_MODE (op) != mode)
1265 return 0;
1266
1267 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1268
1269 #ifdef PUSH_ROUNDING
1270 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1271 #endif
1272
1273 op = XEXP (op, 0);
1274
1275 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1276 {
1277 if (GET_CODE (op) != STACK_PUSH_CODE)
1278 return 0;
1279 }
1280 else
1281 {
1282 poly_int64 offset;
1283 if (GET_CODE (op) != PRE_MODIFY
1284 || GET_CODE (XEXP (op, 1)) != PLUS
1285 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1286 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1287 || (STACK_GROWS_DOWNWARD
1288 ? maybe_ne (offset, -rounded_size)
1289 : maybe_ne (offset, rounded_size)))
1290 return 0;
1291 }
1292
1293 return XEXP (op, 0) == stack_pointer_rtx;
1294 }
1295
1296 /* Return 1 if OP is a valid operand that stands for popping a
1297 value of mode MODE off the stack.
1298
1299 The main use of this function is as a predicate in match_operand
1300 expressions in the machine description. */
1301
1302 int
1303 pop_operand (rtx op, machine_mode mode)
1304 {
1305 if (!MEM_P (op))
1306 return 0;
1307
1308 if (mode != VOIDmode && GET_MODE (op) != mode)
1309 return 0;
1310
1311 op = XEXP (op, 0);
1312
1313 if (GET_CODE (op) != STACK_POP_CODE)
1314 return 0;
1315
1316 return XEXP (op, 0) == stack_pointer_rtx;
1317 }
1318
1319 /* Return 1 if ADDR is a valid memory address
1320 for mode MODE in address space AS. */
1321
1322 int
1323 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1324 rtx addr, addr_space_t as)
1325 {
1326 #ifdef GO_IF_LEGITIMATE_ADDRESS
1327 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1328 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1329 return 0;
1330
1331 win:
1332 return 1;
1333 #else
1334 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1335 #endif
1336 }
1337
1338 /* Return 1 if OP is a valid memory reference with mode MODE,
1339 including a valid address.
1340
1341 The main use of this function is as a predicate in match_operand
1342 expressions in the machine description. */
1343
1344 int
1345 memory_operand (rtx op, machine_mode mode)
1346 {
1347 rtx inner;
1348
1349 if (! reload_completed)
1350 /* Note that no SUBREG is a memory operand before end of reload pass,
1351 because (SUBREG (MEM...)) forces reloading into a register. */
1352 return MEM_P (op) && general_operand (op, mode);
1353
1354 if (mode != VOIDmode && GET_MODE (op) != mode)
1355 return 0;
1356
1357 inner = op;
1358 if (GET_CODE (inner) == SUBREG)
1359 inner = SUBREG_REG (inner);
1360
1361 return (MEM_P (inner) && general_operand (op, mode));
1362 }
1363
1364 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1365 that is, a memory reference whose address is a general_operand. */
1366
1367 int
1368 indirect_operand (rtx op, machine_mode mode)
1369 {
1370 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1371 if (! reload_completed
1372 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1373 {
1374 if (mode != VOIDmode && GET_MODE (op) != mode)
1375 return 0;
1376
1377 /* The only way that we can have a general_operand as the resulting
1378 address is if OFFSET is zero and the address already is an operand
1379 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1380 operand. */
1381 poly_int64 offset;
1382 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1383 return (known_eq (offset + SUBREG_BYTE (op), 0)
1384 && general_operand (addr, Pmode));
1385 }
1386
1387 return (MEM_P (op)
1388 && memory_operand (op, mode)
1389 && general_operand (XEXP (op, 0), Pmode));
1390 }
1391
1392 /* Return 1 if this is an ordered comparison operator (not including
1393 ORDERED and UNORDERED). */
1394
1395 int
1396 ordered_comparison_operator (rtx op, machine_mode mode)
1397 {
1398 if (mode != VOIDmode && GET_MODE (op) != mode)
1399 return false;
1400 switch (GET_CODE (op))
1401 {
1402 case EQ:
1403 case NE:
1404 case LT:
1405 case LTU:
1406 case LE:
1407 case LEU:
1408 case GT:
1409 case GTU:
1410 case GE:
1411 case GEU:
1412 return true;
1413 default:
1414 return false;
1415 }
1416 }
1417
1418 /* Return 1 if this is a comparison operator. This allows the use of
1419 MATCH_OPERATOR to recognize all the branch insns. */
1420
1421 int
1422 comparison_operator (rtx op, machine_mode mode)
1423 {
1424 return ((mode == VOIDmode || GET_MODE (op) == mode)
1425 && COMPARISON_P (op));
1426 }
1427 \f
1428 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1429
1430 rtx
1431 extract_asm_operands (rtx body)
1432 {
1433 rtx tmp;
1434 switch (GET_CODE (body))
1435 {
1436 case ASM_OPERANDS:
1437 return body;
1438
1439 case SET:
1440 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1441 tmp = SET_SRC (body);
1442 if (GET_CODE (tmp) == ASM_OPERANDS)
1443 return tmp;
1444 break;
1445
1446 case PARALLEL:
1447 tmp = XVECEXP (body, 0, 0);
1448 if (GET_CODE (tmp) == ASM_OPERANDS)
1449 return tmp;
1450 if (GET_CODE (tmp) == SET)
1451 {
1452 tmp = SET_SRC (tmp);
1453 if (GET_CODE (tmp) == ASM_OPERANDS)
1454 return tmp;
1455 }
1456 break;
1457
1458 default:
1459 break;
1460 }
1461 return NULL;
1462 }
1463
1464 /* If BODY is an insn body that uses ASM_OPERANDS,
1465 return the number of operands (both input and output) in the insn.
1466 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1467 return 0.
1468 Otherwise return -1. */
1469
1470 int
1471 asm_noperands (const_rtx body)
1472 {
1473 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1474 int i, n_sets = 0;
1475
1476 if (asm_op == NULL)
1477 {
1478 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1479 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1480 {
1481 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1482 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1483 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1484 return -1;
1485 return 0;
1486 }
1487 return -1;
1488 }
1489
1490 if (GET_CODE (body) == SET)
1491 n_sets = 1;
1492 else if (GET_CODE (body) == PARALLEL)
1493 {
1494 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1495 {
1496 /* Multiple output operands, or 1 output plus some clobbers:
1497 body is
1498 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1499 /* Count backwards through CLOBBERs to determine number of SETs. */
1500 for (i = XVECLEN (body, 0); i > 0; i--)
1501 {
1502 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1503 break;
1504 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1505 return -1;
1506 }
1507
1508 /* N_SETS is now number of output operands. */
1509 n_sets = i;
1510
1511 /* Verify that all the SETs we have
1512 came from a single original asm_operands insn
1513 (so that invalid combinations are blocked). */
1514 for (i = 0; i < n_sets; i++)
1515 {
1516 rtx elt = XVECEXP (body, 0, i);
1517 if (GET_CODE (elt) != SET)
1518 return -1;
1519 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1520 return -1;
1521 /* If these ASM_OPERANDS rtx's came from different original insns
1522 then they aren't allowed together. */
1523 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1524 != ASM_OPERANDS_INPUT_VEC (asm_op))
1525 return -1;
1526 }
1527 }
1528 else
1529 {
1530 /* 0 outputs, but some clobbers:
1531 body is [(asm_operands ...) (clobber (reg ...))...]. */
1532 /* Make sure all the other parallel things really are clobbers. */
1533 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1534 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1535 return -1;
1536 }
1537 }
1538
1539 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1540 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1541 }
1542
1543 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1544 copy its operands (both input and output) into the vector OPERANDS,
1545 the locations of the operands within the insn into the vector OPERAND_LOCS,
1546 and the constraints for the operands into CONSTRAINTS.
1547 Write the modes of the operands into MODES.
1548 Write the location info into LOC.
1549 Return the assembler-template.
1550 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1551 return the basic assembly string.
1552
1553 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1554 we don't store that info. */
1555
1556 const char *
1557 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1558 const char **constraints, machine_mode *modes,
1559 location_t *loc)
1560 {
1561 int nbase = 0, n, i;
1562 rtx asmop;
1563
1564 switch (GET_CODE (body))
1565 {
1566 case ASM_OPERANDS:
1567 /* Zero output asm: BODY is (asm_operands ...). */
1568 asmop = body;
1569 break;
1570
1571 case SET:
1572 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1573 asmop = SET_SRC (body);
1574
1575 /* The output is in the SET.
1576 Its constraint is in the ASM_OPERANDS itself. */
1577 if (operands)
1578 operands[0] = SET_DEST (body);
1579 if (operand_locs)
1580 operand_locs[0] = &SET_DEST (body);
1581 if (constraints)
1582 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1583 if (modes)
1584 modes[0] = GET_MODE (SET_DEST (body));
1585 nbase = 1;
1586 break;
1587
1588 case PARALLEL:
1589 {
1590 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1591
1592 asmop = XVECEXP (body, 0, 0);
1593 if (GET_CODE (asmop) == SET)
1594 {
1595 asmop = SET_SRC (asmop);
1596
1597 /* At least one output, plus some CLOBBERs. The outputs are in
1598 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1599 for (i = 0; i < nparallel; i++)
1600 {
1601 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1602 break; /* Past last SET */
1603 if (operands)
1604 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1605 if (operand_locs)
1606 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1607 if (constraints)
1608 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1609 if (modes)
1610 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1611 }
1612 nbase = i;
1613 }
1614 else if (GET_CODE (asmop) == ASM_INPUT)
1615 {
1616 if (loc)
1617 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1618 return XSTR (asmop, 0);
1619 }
1620 break;
1621 }
1622
1623 default:
1624 gcc_unreachable ();
1625 }
1626
1627 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1628 for (i = 0; i < n; i++)
1629 {
1630 if (operand_locs)
1631 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1632 if (operands)
1633 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1634 if (constraints)
1635 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1636 if (modes)
1637 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1638 }
1639 nbase += n;
1640
1641 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1642 for (i = 0; i < n; i++)
1643 {
1644 if (operand_locs)
1645 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1646 if (operands)
1647 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1648 if (constraints)
1649 constraints[nbase + i] = "";
1650 if (modes)
1651 modes[nbase + i] = Pmode;
1652 }
1653
1654 if (loc)
1655 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1656
1657 return ASM_OPERANDS_TEMPLATE (asmop);
1658 }
1659
1660 /* Parse inline assembly string STRING and determine which operands are
1661 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1662 to true if operand I is referenced.
1663
1664 This is intended to distinguish barrier-like asms such as:
1665
1666 asm ("" : "=m" (...));
1667
1668 from real references such as:
1669
1670 asm ("sw\t$0, %0" : "=m" (...)); */
1671
1672 void
1673 get_referenced_operands (const char *string, bool *used,
1674 unsigned int noperands)
1675 {
1676 memset (used, 0, sizeof (bool) * noperands);
1677 const char *p = string;
1678 while (*p)
1679 switch (*p)
1680 {
1681 case '%':
1682 p += 1;
1683 /* A letter followed by a digit indicates an operand number. */
1684 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1685 p += 1;
1686 if (ISDIGIT (*p))
1687 {
1688 char *endptr;
1689 unsigned long opnum = strtoul (p, &endptr, 10);
1690 if (endptr != p && opnum < noperands)
1691 used[opnum] = true;
1692 p = endptr;
1693 }
1694 else
1695 p += 1;
1696 break;
1697
1698 default:
1699 p++;
1700 break;
1701 }
1702 }
1703
1704 /* Check if an asm_operand matches its constraints.
1705 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1706
1707 int
1708 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1709 {
1710 int result = 0;
1711 bool incdec_ok = false;
1712
1713 /* Use constrain_operands after reload. */
1714 gcc_assert (!reload_completed);
1715
1716 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1717 many alternatives as required to match the other operands. */
1718 if (*constraint == '\0')
1719 result = 1;
1720
1721 while (*constraint)
1722 {
1723 enum constraint_num cn;
1724 char c = *constraint;
1725 int len;
1726 switch (c)
1727 {
1728 case ',':
1729 constraint++;
1730 continue;
1731
1732 case '0': case '1': case '2': case '3': case '4':
1733 case '5': case '6': case '7': case '8': case '9':
1734 /* If caller provided constraints pointer, look up
1735 the matching constraint. Otherwise, our caller should have
1736 given us the proper matching constraint, but we can't
1737 actually fail the check if they didn't. Indicate that
1738 results are inconclusive. */
1739 if (constraints)
1740 {
1741 char *end;
1742 unsigned long match;
1743
1744 match = strtoul (constraint, &end, 10);
1745 if (!result)
1746 result = asm_operand_ok (op, constraints[match], NULL);
1747 constraint = (const char *) end;
1748 }
1749 else
1750 {
1751 do
1752 constraint++;
1753 while (ISDIGIT (*constraint));
1754 if (! result)
1755 result = -1;
1756 }
1757 continue;
1758
1759 /* The rest of the compiler assumes that reloading the address
1760 of a MEM into a register will make it fit an 'o' constraint.
1761 That is, if it sees a MEM operand for an 'o' constraint,
1762 it assumes that (mem (base-reg)) will fit.
1763
1764 That assumption fails on targets that don't have offsettable
1765 addresses at all. We therefore need to treat 'o' asm
1766 constraints as a special case and only accept operands that
1767 are already offsettable, thus proving that at least one
1768 offsettable address exists. */
1769 case 'o': /* offsettable */
1770 if (offsettable_nonstrict_memref_p (op))
1771 result = 1;
1772 break;
1773
1774 case 'g':
1775 if (general_operand (op, VOIDmode))
1776 result = 1;
1777 break;
1778
1779 case '<':
1780 case '>':
1781 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1782 to exist, excepting those that expand_call created. Further,
1783 on some machines which do not have generalized auto inc/dec,
1784 an inc/dec is not a memory_operand.
1785
1786 Match any memory and hope things are resolved after reload. */
1787 incdec_ok = true;
1788 /* FALLTHRU */
1789 default:
1790 cn = lookup_constraint (constraint);
1791 switch (get_constraint_type (cn))
1792 {
1793 case CT_REGISTER:
1794 if (!result
1795 && reg_class_for_constraint (cn) != NO_REGS
1796 && GET_MODE (op) != BLKmode
1797 && register_operand (op, VOIDmode))
1798 result = 1;
1799 break;
1800
1801 case CT_CONST_INT:
1802 if (!result
1803 && CONST_INT_P (op)
1804 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1805 result = 1;
1806 break;
1807
1808 case CT_MEMORY:
1809 case CT_SPECIAL_MEMORY:
1810 /* Every memory operand can be reloaded to fit. */
1811 result = result || memory_operand (op, VOIDmode);
1812 break;
1813
1814 case CT_ADDRESS:
1815 /* Every address operand can be reloaded to fit. */
1816 result = result || address_operand (op, VOIDmode);
1817 break;
1818
1819 case CT_FIXED_FORM:
1820 result = result || constraint_satisfied_p (op, cn);
1821 break;
1822 }
1823 break;
1824 }
1825 len = CONSTRAINT_LEN (c, constraint);
1826 do
1827 constraint++;
1828 while (--len && *constraint && *constraint != ',');
1829 if (len)
1830 return 0;
1831 }
1832
1833 /* For operands without < or > constraints reject side-effects. */
1834 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1835 switch (GET_CODE (XEXP (op, 0)))
1836 {
1837 case PRE_INC:
1838 case POST_INC:
1839 case PRE_DEC:
1840 case POST_DEC:
1841 case PRE_MODIFY:
1842 case POST_MODIFY:
1843 return 0;
1844 default:
1845 break;
1846 }
1847
1848 return result;
1849 }
1850 \f
1851 /* Given an rtx *P, if it is a sum containing an integer constant term,
1852 return the location (type rtx *) of the pointer to that constant term.
1853 Otherwise, return a null pointer. */
1854
1855 rtx *
1856 find_constant_term_loc (rtx *p)
1857 {
1858 rtx *tem;
1859 enum rtx_code code = GET_CODE (*p);
1860
1861 /* If *P IS such a constant term, P is its location. */
1862
1863 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1864 || code == CONST)
1865 return p;
1866
1867 /* Otherwise, if not a sum, it has no constant term. */
1868
1869 if (GET_CODE (*p) != PLUS)
1870 return 0;
1871
1872 /* If one of the summands is constant, return its location. */
1873
1874 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1875 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1876 return p;
1877
1878 /* Otherwise, check each summand for containing a constant term. */
1879
1880 if (XEXP (*p, 0) != 0)
1881 {
1882 tem = find_constant_term_loc (&XEXP (*p, 0));
1883 if (tem != 0)
1884 return tem;
1885 }
1886
1887 if (XEXP (*p, 1) != 0)
1888 {
1889 tem = find_constant_term_loc (&XEXP (*p, 1));
1890 if (tem != 0)
1891 return tem;
1892 }
1893
1894 return 0;
1895 }
1896 \f
1897 /* Return 1 if OP is a memory reference
1898 whose address contains no side effects
1899 and remains valid after the addition
1900 of a positive integer less than the
1901 size of the object being referenced.
1902
1903 We assume that the original address is valid and do not check it.
1904
1905 This uses strict_memory_address_p as a subroutine, so
1906 don't use it before reload. */
1907
1908 int
1909 offsettable_memref_p (rtx op)
1910 {
1911 return ((MEM_P (op))
1912 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1913 MEM_ADDR_SPACE (op)));
1914 }
1915
1916 /* Similar, but don't require a strictly valid mem ref:
1917 consider pseudo-regs valid as index or base regs. */
1918
1919 int
1920 offsettable_nonstrict_memref_p (rtx op)
1921 {
1922 return ((MEM_P (op))
1923 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1924 MEM_ADDR_SPACE (op)));
1925 }
1926
1927 /* Return 1 if Y is a memory address which contains no side effects
1928 and would remain valid for address space AS after the addition of
1929 a positive integer less than the size of that mode.
1930
1931 We assume that the original address is valid and do not check it.
1932 We do check that it is valid for narrower modes.
1933
1934 If STRICTP is nonzero, we require a strictly valid address,
1935 for the sake of use in reload.c. */
1936
1937 int
1938 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1939 addr_space_t as)
1940 {
1941 enum rtx_code ycode = GET_CODE (y);
1942 rtx z;
1943 rtx y1 = y;
1944 rtx *y2;
1945 int (*addressp) (machine_mode, rtx, addr_space_t) =
1946 (strictp ? strict_memory_address_addr_space_p
1947 : memory_address_addr_space_p);
1948 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1949
1950 if (CONSTANT_ADDRESS_P (y))
1951 return 1;
1952
1953 /* Adjusting an offsettable address involves changing to a narrower mode.
1954 Make sure that's OK. */
1955
1956 if (mode_dependent_address_p (y, as))
1957 return 0;
1958
1959 machine_mode address_mode = GET_MODE (y);
1960 if (address_mode == VOIDmode)
1961 address_mode = targetm.addr_space.address_mode (as);
1962 #ifdef POINTERS_EXTEND_UNSIGNED
1963 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1964 #endif
1965
1966 /* ??? How much offset does an offsettable BLKmode reference need?
1967 Clearly that depends on the situation in which it's being used.
1968 However, the current situation in which we test 0xffffffff is
1969 less than ideal. Caveat user. */
1970 if (known_eq (mode_sz, 0))
1971 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1972
1973 /* If the expression contains a constant term,
1974 see if it remains valid when max possible offset is added. */
1975
1976 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1977 {
1978 int good;
1979
1980 y1 = *y2;
1981 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1982 /* Use QImode because an odd displacement may be automatically invalid
1983 for any wider mode. But it should be valid for a single byte. */
1984 good = (*addressp) (QImode, y, as);
1985
1986 /* In any case, restore old contents of memory. */
1987 *y2 = y1;
1988 return good;
1989 }
1990
1991 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1992 return 0;
1993
1994 /* The offset added here is chosen as the maximum offset that
1995 any instruction could need to add when operating on something
1996 of the specified mode. We assume that if Y and Y+c are
1997 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1998 go inside a LO_SUM here, so we do so as well. */
1999 if (GET_CODE (y) == LO_SUM
2000 && mode != BLKmode
2001 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
2002 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2003 plus_constant (address_mode, XEXP (y, 1),
2004 mode_sz - 1));
2005 #ifdef POINTERS_EXTEND_UNSIGNED
2006 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2007 else if (POINTERS_EXTEND_UNSIGNED > 0
2008 && GET_CODE (y) == ZERO_EXTEND
2009 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2010 z = gen_rtx_ZERO_EXTEND (address_mode,
2011 plus_constant (pointer_mode, XEXP (y, 0),
2012 mode_sz - 1));
2013 #endif
2014 else
2015 z = plus_constant (address_mode, y, mode_sz - 1);
2016
2017 /* Use QImode because an odd displacement may be automatically invalid
2018 for any wider mode. But it should be valid for a single byte. */
2019 return (*addressp) (QImode, z, as);
2020 }
2021
2022 /* Return 1 if ADDR is an address-expression whose effect depends
2023 on the mode of the memory reference it is used in.
2024
2025 ADDRSPACE is the address space associated with the address.
2026
2027 Autoincrement addressing is a typical example of mode-dependence
2028 because the amount of the increment depends on the mode. */
2029
2030 bool
2031 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2032 {
2033 /* Auto-increment addressing with anything other than post_modify
2034 or pre_modify always introduces a mode dependency. Catch such
2035 cases now instead of deferring to the target. */
2036 if (GET_CODE (addr) == PRE_INC
2037 || GET_CODE (addr) == POST_INC
2038 || GET_CODE (addr) == PRE_DEC
2039 || GET_CODE (addr) == POST_DEC)
2040 return true;
2041
2042 return targetm.mode_dependent_address_p (addr, addrspace);
2043 }
2044 \f
2045 /* Return true if boolean attribute ATTR is supported. */
2046
2047 static bool
2048 have_bool_attr (bool_attr attr)
2049 {
2050 switch (attr)
2051 {
2052 case BA_ENABLED:
2053 return HAVE_ATTR_enabled;
2054 case BA_PREFERRED_FOR_SIZE:
2055 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2056 case BA_PREFERRED_FOR_SPEED:
2057 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2058 }
2059 gcc_unreachable ();
2060 }
2061
2062 /* Return the value of ATTR for instruction INSN. */
2063
2064 static bool
2065 get_bool_attr (rtx_insn *insn, bool_attr attr)
2066 {
2067 switch (attr)
2068 {
2069 case BA_ENABLED:
2070 return get_attr_enabled (insn);
2071 case BA_PREFERRED_FOR_SIZE:
2072 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2073 case BA_PREFERRED_FOR_SPEED:
2074 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2075 }
2076 gcc_unreachable ();
2077 }
2078
2079 /* Like get_bool_attr_mask, but don't use the cache. */
2080
2081 static alternative_mask
2082 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2083 {
2084 /* Temporarily install enough information for get_attr_<foo> to assume
2085 that the insn operands are already cached. As above, the attribute
2086 mustn't depend on the values of operands, so we don't provide their
2087 real values here. */
2088 rtx_insn *old_insn = recog_data.insn;
2089 int old_alternative = which_alternative;
2090
2091 recog_data.insn = insn;
2092 alternative_mask mask = ALL_ALTERNATIVES;
2093 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2094 for (int i = 0; i < n_alternatives; i++)
2095 {
2096 which_alternative = i;
2097 if (!get_bool_attr (insn, attr))
2098 mask &= ~ALTERNATIVE_BIT (i);
2099 }
2100
2101 recog_data.insn = old_insn;
2102 which_alternative = old_alternative;
2103 return mask;
2104 }
2105
2106 /* Return the mask of operand alternatives that are allowed for INSN
2107 by boolean attribute ATTR. This mask depends only on INSN and on
2108 the current target; it does not depend on things like the values of
2109 operands. */
2110
2111 static alternative_mask
2112 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2113 {
2114 /* Quick exit for asms and for targets that don't use these attributes. */
2115 int code = INSN_CODE (insn);
2116 if (code < 0 || !have_bool_attr (attr))
2117 return ALL_ALTERNATIVES;
2118
2119 /* Calling get_attr_<foo> can be expensive, so cache the mask
2120 for speed. */
2121 if (!this_target_recog->x_bool_attr_masks[code][attr])
2122 this_target_recog->x_bool_attr_masks[code][attr]
2123 = get_bool_attr_mask_uncached (insn, attr);
2124 return this_target_recog->x_bool_attr_masks[code][attr];
2125 }
2126
2127 /* Return the set of alternatives of INSN that are allowed by the current
2128 target. */
2129
2130 alternative_mask
2131 get_enabled_alternatives (rtx_insn *insn)
2132 {
2133 return get_bool_attr_mask (insn, BA_ENABLED);
2134 }
2135
2136 /* Return the set of alternatives of INSN that are allowed by the current
2137 target and are preferred for the current size/speed optimization
2138 choice. */
2139
2140 alternative_mask
2141 get_preferred_alternatives (rtx_insn *insn)
2142 {
2143 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2144 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2145 else
2146 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2147 }
2148
2149 /* Return the set of alternatives of INSN that are allowed by the current
2150 target and are preferred for the size/speed optimization choice
2151 associated with BB. Passing a separate BB is useful if INSN has not
2152 been emitted yet or if we are considering moving it to a different
2153 block. */
2154
2155 alternative_mask
2156 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2157 {
2158 if (optimize_bb_for_speed_p (bb))
2159 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2160 else
2161 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2162 }
2163
2164 /* Assert that the cached boolean attributes for INSN are still accurate.
2165 The backend is required to define these attributes in a way that only
2166 depends on the current target (rather than operands, compiler phase,
2167 etc.). */
2168
2169 bool
2170 check_bool_attrs (rtx_insn *insn)
2171 {
2172 int code = INSN_CODE (insn);
2173 if (code >= 0)
2174 for (int i = 0; i <= BA_LAST; ++i)
2175 {
2176 enum bool_attr attr = (enum bool_attr) i;
2177 if (this_target_recog->x_bool_attr_masks[code][attr])
2178 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2179 == get_bool_attr_mask_uncached (insn, attr));
2180 }
2181 return true;
2182 }
2183
2184 /* Like extract_insn, but save insn extracted and don't extract again, when
2185 called again for the same insn expecting that recog_data still contain the
2186 valid information. This is used primary by gen_attr infrastructure that
2187 often does extract insn again and again. */
2188 void
2189 extract_insn_cached (rtx_insn *insn)
2190 {
2191 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2192 return;
2193 extract_insn (insn);
2194 recog_data.insn = insn;
2195 }
2196
2197 /* Do uncached extract_insn, constrain_operands and complain about failures.
2198 This should be used when extracting a pre-existing constrained instruction
2199 if the caller wants to know which alternative was chosen. */
2200 void
2201 extract_constrain_insn (rtx_insn *insn)
2202 {
2203 extract_insn (insn);
2204 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2205 fatal_insn_not_found (insn);
2206 }
2207
2208 /* Do cached extract_insn, constrain_operands and complain about failures.
2209 Used by insn_attrtab. */
2210 void
2211 extract_constrain_insn_cached (rtx_insn *insn)
2212 {
2213 extract_insn_cached (insn);
2214 if (which_alternative == -1
2215 && !constrain_operands (reload_completed,
2216 get_enabled_alternatives (insn)))
2217 fatal_insn_not_found (insn);
2218 }
2219
2220 /* Do cached constrain_operands on INSN and complain about failures. */
2221 int
2222 constrain_operands_cached (rtx_insn *insn, int strict)
2223 {
2224 if (which_alternative == -1)
2225 return constrain_operands (strict, get_enabled_alternatives (insn));
2226 else
2227 return 1;
2228 }
2229 \f
2230 /* Analyze INSN and fill in recog_data. */
2231
2232 void
2233 extract_insn (rtx_insn *insn)
2234 {
2235 int i;
2236 int icode;
2237 int noperands;
2238 rtx body = PATTERN (insn);
2239
2240 recog_data.n_operands = 0;
2241 recog_data.n_alternatives = 0;
2242 recog_data.n_dups = 0;
2243 recog_data.is_asm = false;
2244
2245 switch (GET_CODE (body))
2246 {
2247 case USE:
2248 case CLOBBER:
2249 case ASM_INPUT:
2250 case ADDR_VEC:
2251 case ADDR_DIFF_VEC:
2252 case VAR_LOCATION:
2253 case DEBUG_MARKER:
2254 return;
2255
2256 case SET:
2257 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2258 goto asm_insn;
2259 else
2260 goto normal_insn;
2261 case PARALLEL:
2262 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2263 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2264 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2265 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2266 goto asm_insn;
2267 else
2268 goto normal_insn;
2269 case ASM_OPERANDS:
2270 asm_insn:
2271 recog_data.n_operands = noperands = asm_noperands (body);
2272 if (noperands >= 0)
2273 {
2274 /* This insn is an `asm' with operands. */
2275
2276 /* expand_asm_operands makes sure there aren't too many operands. */
2277 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2278
2279 /* Now get the operand values and constraints out of the insn. */
2280 decode_asm_operands (body, recog_data.operand,
2281 recog_data.operand_loc,
2282 recog_data.constraints,
2283 recog_data.operand_mode, NULL);
2284 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2285 if (noperands > 0)
2286 {
2287 const char *p = recog_data.constraints[0];
2288 recog_data.n_alternatives = 1;
2289 while (*p)
2290 recog_data.n_alternatives += (*p++ == ',');
2291 }
2292 recog_data.is_asm = true;
2293 break;
2294 }
2295 fatal_insn_not_found (insn);
2296
2297 default:
2298 normal_insn:
2299 /* Ordinary insn: recognize it, get the operands via insn_extract
2300 and get the constraints. */
2301
2302 icode = recog_memoized (insn);
2303 if (icode < 0)
2304 fatal_insn_not_found (insn);
2305
2306 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2307 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2308 recog_data.n_dups = insn_data[icode].n_dups;
2309
2310 insn_extract (insn);
2311
2312 for (i = 0; i < noperands; i++)
2313 {
2314 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2315 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2316 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2317 /* VOIDmode match_operands gets mode from their real operand. */
2318 if (recog_data.operand_mode[i] == VOIDmode)
2319 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2320 }
2321 }
2322 for (i = 0; i < noperands; i++)
2323 recog_data.operand_type[i]
2324 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2325 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2326 : OP_IN);
2327
2328 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2329
2330 recog_data.insn = NULL;
2331 which_alternative = -1;
2332 }
2333
2334 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2335 operands, N_ALTERNATIVES alternatives and constraint strings
2336 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2337 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2338 if the insn is an asm statement and preprocessing should take the
2339 asm operands into account, e.g. to determine whether they could be
2340 addresses in constraints that require addresses; it should then
2341 point to an array of pointers to each operand. */
2342
2343 void
2344 preprocess_constraints (int n_operands, int n_alternatives,
2345 const char **constraints,
2346 operand_alternative *op_alt_base,
2347 rtx **oploc)
2348 {
2349 for (int i = 0; i < n_operands; i++)
2350 {
2351 int j;
2352 struct operand_alternative *op_alt;
2353 const char *p = constraints[i];
2354
2355 op_alt = op_alt_base;
2356
2357 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2358 {
2359 op_alt[i].cl = NO_REGS;
2360 op_alt[i].constraint = p;
2361 op_alt[i].matches = -1;
2362 op_alt[i].matched = -1;
2363
2364 if (*p == '\0' || *p == ',')
2365 {
2366 op_alt[i].anything_ok = 1;
2367 continue;
2368 }
2369
2370 for (;;)
2371 {
2372 char c = *p;
2373 if (c == '#')
2374 do
2375 c = *++p;
2376 while (c != ',' && c != '\0');
2377 if (c == ',' || c == '\0')
2378 {
2379 p++;
2380 break;
2381 }
2382
2383 switch (c)
2384 {
2385 case '?':
2386 op_alt[i].reject += 6;
2387 break;
2388 case '!':
2389 op_alt[i].reject += 600;
2390 break;
2391 case '&':
2392 op_alt[i].earlyclobber = 1;
2393 break;
2394
2395 case '0': case '1': case '2': case '3': case '4':
2396 case '5': case '6': case '7': case '8': case '9':
2397 {
2398 char *end;
2399 op_alt[i].matches = strtoul (p, &end, 10);
2400 op_alt[op_alt[i].matches].matched = i;
2401 p = end;
2402 }
2403 continue;
2404
2405 case 'X':
2406 op_alt[i].anything_ok = 1;
2407 break;
2408
2409 case 'g':
2410 op_alt[i].cl =
2411 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2412 break;
2413
2414 default:
2415 enum constraint_num cn = lookup_constraint (p);
2416 enum reg_class cl;
2417 switch (get_constraint_type (cn))
2418 {
2419 case CT_REGISTER:
2420 cl = reg_class_for_constraint (cn);
2421 if (cl != NO_REGS)
2422 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2423 break;
2424
2425 case CT_CONST_INT:
2426 break;
2427
2428 case CT_MEMORY:
2429 case CT_SPECIAL_MEMORY:
2430 op_alt[i].memory_ok = 1;
2431 break;
2432
2433 case CT_ADDRESS:
2434 if (oploc && !address_operand (*oploc[i], VOIDmode))
2435 break;
2436
2437 op_alt[i].is_address = 1;
2438 op_alt[i].cl
2439 = (reg_class_subunion
2440 [(int) op_alt[i].cl]
2441 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2442 ADDRESS, SCRATCH)]);
2443 break;
2444
2445 case CT_FIXED_FORM:
2446 break;
2447 }
2448 break;
2449 }
2450 p += CONSTRAINT_LEN (c, p);
2451 }
2452 }
2453 }
2454 }
2455
2456 /* Return an array of operand_alternative instructions for
2457 instruction ICODE. */
2458
2459 const operand_alternative *
2460 preprocess_insn_constraints (unsigned int icode)
2461 {
2462 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2463 if (this_target_recog->x_op_alt[icode])
2464 return this_target_recog->x_op_alt[icode];
2465
2466 int n_operands = insn_data[icode].n_operands;
2467 if (n_operands == 0)
2468 return 0;
2469 /* Always provide at least one alternative so that which_op_alt ()
2470 works correctly. If the instruction has 0 alternatives (i.e. all
2471 constraint strings are empty) then each operand in this alternative
2472 will have anything_ok set. */
2473 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2474 int n_entries = n_operands * n_alternatives;
2475
2476 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2477 const char **constraints = XALLOCAVEC (const char *, n_operands);
2478
2479 for (int i = 0; i < n_operands; ++i)
2480 constraints[i] = insn_data[icode].operand[i].constraint;
2481 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2482 NULL);
2483
2484 this_target_recog->x_op_alt[icode] = op_alt;
2485 return op_alt;
2486 }
2487
2488 /* After calling extract_insn, you can use this function to extract some
2489 information from the constraint strings into a more usable form.
2490 The collected data is stored in recog_op_alt. */
2491
2492 void
2493 preprocess_constraints (rtx_insn *insn)
2494 {
2495 int icode = INSN_CODE (insn);
2496 if (icode >= 0)
2497 recog_op_alt = preprocess_insn_constraints (icode);
2498 else
2499 {
2500 int n_operands = recog_data.n_operands;
2501 int n_alternatives = recog_data.n_alternatives;
2502 int n_entries = n_operands * n_alternatives;
2503 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2504 preprocess_constraints (n_operands, n_alternatives,
2505 recog_data.constraints, asm_op_alt,
2506 NULL);
2507 recog_op_alt = asm_op_alt;
2508 }
2509 }
2510
2511 /* Check the operands of an insn against the insn's operand constraints
2512 and return 1 if they match any of the alternatives in ALTERNATIVES.
2513
2514 The information about the insn's operands, constraints, operand modes
2515 etc. is obtained from the global variables set up by extract_insn.
2516
2517 WHICH_ALTERNATIVE is set to a number which indicates which
2518 alternative of constraints was matched: 0 for the first alternative,
2519 1 for the next, etc.
2520
2521 In addition, when two operands are required to match
2522 and it happens that the output operand is (reg) while the
2523 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2524 make the output operand look like the input.
2525 This is because the output operand is the one the template will print.
2526
2527 This is used in final, just before printing the assembler code and by
2528 the routines that determine an insn's attribute.
2529
2530 If STRICT is a positive nonzero value, it means that we have been
2531 called after reload has been completed. In that case, we must
2532 do all checks strictly. If it is zero, it means that we have been called
2533 before reload has completed. In that case, we first try to see if we can
2534 find an alternative that matches strictly. If not, we try again, this
2535 time assuming that reload will fix up the insn. This provides a "best
2536 guess" for the alternative and is used to compute attributes of insns prior
2537 to reload. A negative value of STRICT is used for this internal call. */
2538
2539 struct funny_match
2540 {
2541 int this_op, other;
2542 };
2543
2544 int
2545 constrain_operands (int strict, alternative_mask alternatives)
2546 {
2547 const char *constraints[MAX_RECOG_OPERANDS];
2548 int matching_operands[MAX_RECOG_OPERANDS];
2549 int earlyclobber[MAX_RECOG_OPERANDS];
2550 int c;
2551
2552 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2553 int funny_match_index;
2554
2555 which_alternative = 0;
2556 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2557 return 1;
2558
2559 for (c = 0; c < recog_data.n_operands; c++)
2560 {
2561 constraints[c] = recog_data.constraints[c];
2562 matching_operands[c] = -1;
2563 }
2564
2565 do
2566 {
2567 int seen_earlyclobber_at = -1;
2568 int opno;
2569 int lose = 0;
2570 funny_match_index = 0;
2571
2572 if (!TEST_BIT (alternatives, which_alternative))
2573 {
2574 int i;
2575
2576 for (i = 0; i < recog_data.n_operands; i++)
2577 constraints[i] = skip_alternative (constraints[i]);
2578
2579 which_alternative++;
2580 continue;
2581 }
2582
2583 for (opno = 0; opno < recog_data.n_operands; opno++)
2584 {
2585 rtx op = recog_data.operand[opno];
2586 machine_mode mode = GET_MODE (op);
2587 const char *p = constraints[opno];
2588 int offset = 0;
2589 int win = 0;
2590 int val;
2591 int len;
2592
2593 earlyclobber[opno] = 0;
2594
2595 /* A unary operator may be accepted by the predicate, but it
2596 is irrelevant for matching constraints. */
2597 if (UNARY_P (op))
2598 op = XEXP (op, 0);
2599
2600 if (GET_CODE (op) == SUBREG)
2601 {
2602 if (REG_P (SUBREG_REG (op))
2603 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2604 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2605 GET_MODE (SUBREG_REG (op)),
2606 SUBREG_BYTE (op),
2607 GET_MODE (op));
2608 op = SUBREG_REG (op);
2609 }
2610
2611 /* An empty constraint or empty alternative
2612 allows anything which matched the pattern. */
2613 if (*p == 0 || *p == ',')
2614 win = 1;
2615
2616 do
2617 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2618 {
2619 case '\0':
2620 len = 0;
2621 break;
2622 case ',':
2623 c = '\0';
2624 break;
2625
2626 case '#':
2627 /* Ignore rest of this alternative as far as
2628 constraint checking is concerned. */
2629 do
2630 p++;
2631 while (*p && *p != ',');
2632 len = 0;
2633 break;
2634
2635 case '&':
2636 earlyclobber[opno] = 1;
2637 if (seen_earlyclobber_at < 0)
2638 seen_earlyclobber_at = opno;
2639 break;
2640
2641 case '0': case '1': case '2': case '3': case '4':
2642 case '5': case '6': case '7': case '8': case '9':
2643 {
2644 /* This operand must be the same as a previous one.
2645 This kind of constraint is used for instructions such
2646 as add when they take only two operands.
2647
2648 Note that the lower-numbered operand is passed first.
2649
2650 If we are not testing strictly, assume that this
2651 constraint will be satisfied. */
2652
2653 char *end;
2654 int match;
2655
2656 match = strtoul (p, &end, 10);
2657 p = end;
2658
2659 if (strict < 0)
2660 val = 1;
2661 else
2662 {
2663 rtx op1 = recog_data.operand[match];
2664 rtx op2 = recog_data.operand[opno];
2665
2666 /* A unary operator may be accepted by the predicate,
2667 but it is irrelevant for matching constraints. */
2668 if (UNARY_P (op1))
2669 op1 = XEXP (op1, 0);
2670 if (UNARY_P (op2))
2671 op2 = XEXP (op2, 0);
2672
2673 val = operands_match_p (op1, op2);
2674 }
2675
2676 matching_operands[opno] = match;
2677 matching_operands[match] = opno;
2678
2679 if (val != 0)
2680 win = 1;
2681
2682 /* If output is *x and input is *--x, arrange later
2683 to change the output to *--x as well, since the
2684 output op is the one that will be printed. */
2685 if (val == 2 && strict > 0)
2686 {
2687 funny_match[funny_match_index].this_op = opno;
2688 funny_match[funny_match_index++].other = match;
2689 }
2690 }
2691 len = 0;
2692 break;
2693
2694 case 'p':
2695 /* p is used for address_operands. When we are called by
2696 gen_reload, no one will have checked that the address is
2697 strictly valid, i.e., that all pseudos requiring hard regs
2698 have gotten them. */
2699 if (strict <= 0
2700 || (strict_memory_address_p (recog_data.operand_mode[opno],
2701 op)))
2702 win = 1;
2703 break;
2704
2705 /* No need to check general_operand again;
2706 it was done in insn-recog.c. Well, except that reload
2707 doesn't check the validity of its replacements, but
2708 that should only matter when there's a bug. */
2709 case 'g':
2710 /* Anything goes unless it is a REG and really has a hard reg
2711 but the hard reg is not in the class GENERAL_REGS. */
2712 if (REG_P (op))
2713 {
2714 if (strict < 0
2715 || GENERAL_REGS == ALL_REGS
2716 || (reload_in_progress
2717 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2718 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2719 win = 1;
2720 }
2721 else if (strict < 0 || general_operand (op, mode))
2722 win = 1;
2723 break;
2724
2725 default:
2726 {
2727 enum constraint_num cn = lookup_constraint (p);
2728 enum reg_class cl = reg_class_for_constraint (cn);
2729 if (cl != NO_REGS)
2730 {
2731 if (strict < 0
2732 || (strict == 0
2733 && REG_P (op)
2734 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2735 || (strict == 0 && GET_CODE (op) == SCRATCH)
2736 || (REG_P (op)
2737 && reg_fits_class_p (op, cl, offset, mode)))
2738 win = 1;
2739 }
2740
2741 else if (constraint_satisfied_p (op, cn))
2742 win = 1;
2743
2744 else if (insn_extra_memory_constraint (cn)
2745 /* Every memory operand can be reloaded to fit. */
2746 && ((strict < 0 && MEM_P (op))
2747 /* Before reload, accept what reload can turn
2748 into a mem. */
2749 || (strict < 0 && CONSTANT_P (op))
2750 /* Before reload, accept a pseudo,
2751 since LRA can turn it into a mem. */
2752 || (strict < 0 && targetm.lra_p () && REG_P (op)
2753 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2754 /* During reload, accept a pseudo */
2755 || (reload_in_progress && REG_P (op)
2756 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2757 win = 1;
2758 else if (insn_extra_address_constraint (cn)
2759 /* Every address operand can be reloaded to fit. */
2760 && strict < 0)
2761 win = 1;
2762 /* Cater to architectures like IA-64 that define extra memory
2763 constraints without using define_memory_constraint. */
2764 else if (reload_in_progress
2765 && REG_P (op)
2766 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2767 && reg_renumber[REGNO (op)] < 0
2768 && reg_equiv_mem (REGNO (op)) != 0
2769 && constraint_satisfied_p
2770 (reg_equiv_mem (REGNO (op)), cn))
2771 win = 1;
2772 break;
2773 }
2774 }
2775 while (p += len, c);
2776
2777 constraints[opno] = p;
2778 /* If this operand did not win somehow,
2779 this alternative loses. */
2780 if (! win)
2781 lose = 1;
2782 }
2783 /* This alternative won; the operands are ok.
2784 Change whichever operands this alternative says to change. */
2785 if (! lose)
2786 {
2787 int opno, eopno;
2788
2789 /* See if any earlyclobber operand conflicts with some other
2790 operand. */
2791
2792 if (strict > 0 && seen_earlyclobber_at >= 0)
2793 for (eopno = seen_earlyclobber_at;
2794 eopno < recog_data.n_operands;
2795 eopno++)
2796 /* Ignore earlyclobber operands now in memory,
2797 because we would often report failure when we have
2798 two memory operands, one of which was formerly a REG. */
2799 if (earlyclobber[eopno]
2800 && REG_P (recog_data.operand[eopno]))
2801 for (opno = 0; opno < recog_data.n_operands; opno++)
2802 if ((MEM_P (recog_data.operand[opno])
2803 || recog_data.operand_type[opno] != OP_OUT)
2804 && opno != eopno
2805 /* Ignore things like match_operator operands. */
2806 && *recog_data.constraints[opno] != 0
2807 && ! (matching_operands[opno] == eopno
2808 && operands_match_p (recog_data.operand[opno],
2809 recog_data.operand[eopno]))
2810 && ! safe_from_earlyclobber (recog_data.operand[opno],
2811 recog_data.operand[eopno]))
2812 lose = 1;
2813
2814 if (! lose)
2815 {
2816 while (--funny_match_index >= 0)
2817 {
2818 recog_data.operand[funny_match[funny_match_index].other]
2819 = recog_data.operand[funny_match[funny_match_index].this_op];
2820 }
2821
2822 /* For operands without < or > constraints reject side-effects. */
2823 if (AUTO_INC_DEC && recog_data.is_asm)
2824 {
2825 for (opno = 0; opno < recog_data.n_operands; opno++)
2826 if (MEM_P (recog_data.operand[opno]))
2827 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2828 {
2829 case PRE_INC:
2830 case POST_INC:
2831 case PRE_DEC:
2832 case POST_DEC:
2833 case PRE_MODIFY:
2834 case POST_MODIFY:
2835 if (strchr (recog_data.constraints[opno], '<') == NULL
2836 && strchr (recog_data.constraints[opno], '>')
2837 == NULL)
2838 return 0;
2839 break;
2840 default:
2841 break;
2842 }
2843 }
2844
2845 return 1;
2846 }
2847 }
2848
2849 which_alternative++;
2850 }
2851 while (which_alternative < recog_data.n_alternatives);
2852
2853 which_alternative = -1;
2854 /* If we are about to reject this, but we are not to test strictly,
2855 try a very loose test. Only return failure if it fails also. */
2856 if (strict == 0)
2857 return constrain_operands (-1, alternatives);
2858 else
2859 return 0;
2860 }
2861
2862 /* Return true iff OPERAND (assumed to be a REG rtx)
2863 is a hard reg in class CLASS when its regno is offset by OFFSET
2864 and changed to mode MODE.
2865 If REG occupies multiple hard regs, all of them must be in CLASS. */
2866
2867 bool
2868 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2869 machine_mode mode)
2870 {
2871 unsigned int regno = REGNO (operand);
2872
2873 if (cl == NO_REGS)
2874 return false;
2875
2876 /* Regno must not be a pseudo register. Offset may be negative. */
2877 return (HARD_REGISTER_NUM_P (regno)
2878 && HARD_REGISTER_NUM_P (regno + offset)
2879 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2880 regno + offset));
2881 }
2882 \f
2883 /* Split single instruction. Helper function for split_all_insns and
2884 split_all_insns_noflow. Return last insn in the sequence if successful,
2885 or NULL if unsuccessful. */
2886
2887 static rtx_insn *
2888 split_insn (rtx_insn *insn)
2889 {
2890 /* Split insns here to get max fine-grain parallelism. */
2891 rtx_insn *first = PREV_INSN (insn);
2892 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2893 rtx insn_set, last_set, note;
2894
2895 if (last == insn)
2896 return NULL;
2897
2898 /* If the original instruction was a single set that was known to be
2899 equivalent to a constant, see if we can say the same about the last
2900 instruction in the split sequence. The two instructions must set
2901 the same destination. */
2902 insn_set = single_set (insn);
2903 if (insn_set)
2904 {
2905 last_set = single_set (last);
2906 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2907 {
2908 note = find_reg_equal_equiv_note (insn);
2909 if (note && CONSTANT_P (XEXP (note, 0)))
2910 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2911 else if (CONSTANT_P (SET_SRC (insn_set)))
2912 set_unique_reg_note (last, REG_EQUAL,
2913 copy_rtx (SET_SRC (insn_set)));
2914 }
2915 }
2916
2917 /* try_split returns the NOTE that INSN became. */
2918 SET_INSN_DELETED (insn);
2919
2920 /* ??? Coddle to md files that generate subregs in post-reload
2921 splitters instead of computing the proper hard register. */
2922 if (reload_completed && first != last)
2923 {
2924 first = NEXT_INSN (first);
2925 for (;;)
2926 {
2927 if (INSN_P (first))
2928 cleanup_subreg_operands (first);
2929 if (first == last)
2930 break;
2931 first = NEXT_INSN (first);
2932 }
2933 }
2934
2935 return last;
2936 }
2937
2938 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2939
2940 void
2941 split_all_insns (void)
2942 {
2943 bool changed;
2944 bool need_cfg_cleanup = false;
2945 basic_block bb;
2946
2947 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2948 bitmap_clear (blocks);
2949 changed = false;
2950
2951 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2952 {
2953 rtx_insn *insn, *next;
2954 bool finish = false;
2955
2956 rtl_profile_for_bb (bb);
2957 for (insn = BB_HEAD (bb); !finish ; insn = next)
2958 {
2959 /* Can't use `next_real_insn' because that might go across
2960 CODE_LABELS and short-out basic blocks. */
2961 next = NEXT_INSN (insn);
2962 finish = (insn == BB_END (bb));
2963
2964 /* If INSN has a REG_EH_REGION note and we split INSN, the
2965 resulting split may not have/need REG_EH_REGION notes.
2966
2967 If that happens and INSN was the last reference to the
2968 given EH region, then the EH region will become unreachable.
2969 We can not leave the unreachable blocks in the CFG as that
2970 will trigger a checking failure.
2971
2972 So track if INSN has a REG_EH_REGION note. If so and we
2973 split INSN, then trigger a CFG cleanup. */
2974 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2975 if (INSN_P (insn))
2976 {
2977 rtx set = single_set (insn);
2978
2979 /* Don't split no-op move insns. These should silently
2980 disappear later in final. Splitting such insns would
2981 break the code that handles LIBCALL blocks. */
2982 if (set && set_noop_p (set))
2983 {
2984 /* Nops get in the way while scheduling, so delete them
2985 now if register allocation has already been done. It
2986 is too risky to try to do this before register
2987 allocation, and there are unlikely to be very many
2988 nops then anyways. */
2989 if (reload_completed)
2990 delete_insn_and_edges (insn);
2991 if (note)
2992 need_cfg_cleanup = true;
2993 }
2994 else
2995 {
2996 if (split_insn (insn))
2997 {
2998 bitmap_set_bit (blocks, bb->index);
2999 changed = true;
3000 if (note)
3001 need_cfg_cleanup = true;
3002 }
3003 }
3004 }
3005 }
3006 }
3007
3008 default_rtl_profile ();
3009 if (changed)
3010 {
3011 find_many_sub_basic_blocks (blocks);
3012
3013 /* Splitting could drop an REG_EH_REGION if it potentially
3014 trapped in its original form, but does not in its split
3015 form. Consider a FLOAT_TRUNCATE which splits into a memory
3016 store/load pair and -fnon-call-exceptions. */
3017 if (need_cfg_cleanup)
3018 cleanup_cfg (0);
3019 }
3020
3021 checking_verify_flow_info ();
3022 }
3023
3024 /* Same as split_all_insns, but do not expect CFG to be available.
3025 Used by machine dependent reorg passes. */
3026
3027 unsigned int
3028 split_all_insns_noflow (void)
3029 {
3030 rtx_insn *next, *insn;
3031
3032 for (insn = get_insns (); insn; insn = next)
3033 {
3034 next = NEXT_INSN (insn);
3035 if (INSN_P (insn))
3036 {
3037 /* Don't split no-op move insns. These should silently
3038 disappear later in final. Splitting such insns would
3039 break the code that handles LIBCALL blocks. */
3040 rtx set = single_set (insn);
3041 if (set && set_noop_p (set))
3042 {
3043 /* Nops get in the way while scheduling, so delete them
3044 now if register allocation has already been done. It
3045 is too risky to try to do this before register
3046 allocation, and there are unlikely to be very many
3047 nops then anyways.
3048
3049 ??? Should we use delete_insn when the CFG isn't valid? */
3050 if (reload_completed)
3051 delete_insn_and_edges (insn);
3052 }
3053 else
3054 split_insn (insn);
3055 }
3056 }
3057 return 0;
3058 }
3059 \f
3060 struct peep2_insn_data
3061 {
3062 rtx_insn *insn;
3063 regset live_before;
3064 };
3065
3066 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3067 static int peep2_current;
3068
3069 static bool peep2_do_rebuild_jump_labels;
3070 static bool peep2_do_cleanup_cfg;
3071
3072 /* The number of instructions available to match a peep2. */
3073 int peep2_current_count;
3074
3075 /* A marker indicating the last insn of the block. The live_before regset
3076 for this element is correct, indicating DF_LIVE_OUT for the block. */
3077 #define PEEP2_EOB invalid_insn_rtx
3078
3079 /* Wrap N to fit into the peep2_insn_data buffer. */
3080
3081 static int
3082 peep2_buf_position (int n)
3083 {
3084 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3085 n -= MAX_INSNS_PER_PEEP2 + 1;
3086 return n;
3087 }
3088
3089 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3090 does not exist. Used by the recognizer to find the next insn to match
3091 in a multi-insn pattern. */
3092
3093 rtx_insn *
3094 peep2_next_insn (int n)
3095 {
3096 gcc_assert (n <= peep2_current_count);
3097
3098 n = peep2_buf_position (peep2_current + n);
3099
3100 return peep2_insn_data[n].insn;
3101 }
3102
3103 /* Return true if REGNO is dead before the Nth non-note insn
3104 after `current'. */
3105
3106 int
3107 peep2_regno_dead_p (int ofs, int regno)
3108 {
3109 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3110
3111 ofs = peep2_buf_position (peep2_current + ofs);
3112
3113 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3114
3115 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3116 }
3117
3118 /* Similarly for a REG. */
3119
3120 int
3121 peep2_reg_dead_p (int ofs, rtx reg)
3122 {
3123 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3124
3125 ofs = peep2_buf_position (peep2_current + ofs);
3126
3127 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3128
3129 unsigned int end_regno = END_REGNO (reg);
3130 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3131 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3132 return 0;
3133 return 1;
3134 }
3135
3136 /* Regno offset to be used in the register search. */
3137 static int search_ofs;
3138
3139 /* Try to find a hard register of mode MODE, matching the register class in
3140 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3141 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3142 in which case the only condition is that the register must be available
3143 before CURRENT_INSN.
3144 Registers that already have bits set in REG_SET will not be considered.
3145
3146 If an appropriate register is available, it will be returned and the
3147 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3148 returned. */
3149
3150 rtx
3151 peep2_find_free_register (int from, int to, const char *class_str,
3152 machine_mode mode, HARD_REG_SET *reg_set)
3153 {
3154 enum reg_class cl;
3155 HARD_REG_SET live;
3156 df_ref def;
3157 int i;
3158
3159 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3160 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3161
3162 from = peep2_buf_position (peep2_current + from);
3163 to = peep2_buf_position (peep2_current + to);
3164
3165 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3166 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3167
3168 while (from != to)
3169 {
3170 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3171
3172 /* Don't use registers set or clobbered by the insn. */
3173 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3174 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3175
3176 from = peep2_buf_position (from + 1);
3177 }
3178
3179 cl = reg_class_for_constraint (lookup_constraint (class_str));
3180
3181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3182 {
3183 int raw_regno, regno, success, j;
3184
3185 /* Distribute the free registers as much as possible. */
3186 raw_regno = search_ofs + i;
3187 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3188 raw_regno -= FIRST_PSEUDO_REGISTER;
3189 #ifdef REG_ALLOC_ORDER
3190 regno = reg_alloc_order[raw_regno];
3191 #else
3192 regno = raw_regno;
3193 #endif
3194
3195 /* Can it support the mode we need? */
3196 if (!targetm.hard_regno_mode_ok (regno, mode))
3197 continue;
3198
3199 success = 1;
3200 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3201 {
3202 /* Don't allocate fixed registers. */
3203 if (fixed_regs[regno + j])
3204 {
3205 success = 0;
3206 break;
3207 }
3208 /* Don't allocate global registers. */
3209 if (global_regs[regno + j])
3210 {
3211 success = 0;
3212 break;
3213 }
3214 /* Make sure the register is of the right class. */
3215 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3216 {
3217 success = 0;
3218 break;
3219 }
3220 /* And that we don't create an extra save/restore. */
3221 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3222 {
3223 success = 0;
3224 break;
3225 }
3226
3227 if (! targetm.hard_regno_scratch_ok (regno + j))
3228 {
3229 success = 0;
3230 break;
3231 }
3232
3233 /* And we don't clobber traceback for noreturn functions. */
3234 if ((regno + j == FRAME_POINTER_REGNUM
3235 || regno + j == HARD_FRAME_POINTER_REGNUM)
3236 && (! reload_completed || frame_pointer_needed))
3237 {
3238 success = 0;
3239 break;
3240 }
3241
3242 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3243 || TEST_HARD_REG_BIT (live, regno + j))
3244 {
3245 success = 0;
3246 break;
3247 }
3248 }
3249
3250 if (success)
3251 {
3252 add_to_hard_reg_set (reg_set, mode, regno);
3253
3254 /* Start the next search with the next register. */
3255 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3256 raw_regno = 0;
3257 search_ofs = raw_regno;
3258
3259 return gen_rtx_REG (mode, regno);
3260 }
3261 }
3262
3263 search_ofs = 0;
3264 return NULL_RTX;
3265 }
3266
3267 /* Forget all currently tracked instructions, only remember current
3268 LIVE regset. */
3269
3270 static void
3271 peep2_reinit_state (regset live)
3272 {
3273 int i;
3274
3275 /* Indicate that all slots except the last holds invalid data. */
3276 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3277 peep2_insn_data[i].insn = NULL;
3278 peep2_current_count = 0;
3279
3280 /* Indicate that the last slot contains live_after data. */
3281 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3282 peep2_current = MAX_INSNS_PER_PEEP2;
3283
3284 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3285 }
3286
3287 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3288 starting at INSN. Perform the replacement, removing the old insns and
3289 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3290 if the replacement is rejected. */
3291
3292 static rtx_insn *
3293 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3294 {
3295 int i;
3296 rtx_insn *last, *before_try, *x;
3297 rtx eh_note, as_note;
3298 rtx_insn *old_insn;
3299 rtx_insn *new_insn;
3300 bool was_call = false;
3301
3302 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3303 match more than one insn, or to be split into more than one insn. */
3304 old_insn = peep2_insn_data[peep2_current].insn;
3305 if (RTX_FRAME_RELATED_P (old_insn))
3306 {
3307 bool any_note = false;
3308 rtx note;
3309
3310 if (match_len != 0)
3311 return NULL;
3312
3313 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3314 may be in the stream for the purpose of register allocation. */
3315 if (active_insn_p (attempt))
3316 new_insn = attempt;
3317 else
3318 new_insn = next_active_insn (attempt);
3319 if (next_active_insn (new_insn))
3320 return NULL;
3321
3322 /* We have a 1-1 replacement. Copy over any frame-related info. */
3323 RTX_FRAME_RELATED_P (new_insn) = 1;
3324
3325 /* Allow the backend to fill in a note during the split. */
3326 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3327 switch (REG_NOTE_KIND (note))
3328 {
3329 case REG_FRAME_RELATED_EXPR:
3330 case REG_CFA_DEF_CFA:
3331 case REG_CFA_ADJUST_CFA:
3332 case REG_CFA_OFFSET:
3333 case REG_CFA_REGISTER:
3334 case REG_CFA_EXPRESSION:
3335 case REG_CFA_RESTORE:
3336 case REG_CFA_SET_VDRAP:
3337 any_note = true;
3338 break;
3339 default:
3340 break;
3341 }
3342
3343 /* If the backend didn't supply a note, copy one over. */
3344 if (!any_note)
3345 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3346 switch (REG_NOTE_KIND (note))
3347 {
3348 case REG_FRAME_RELATED_EXPR:
3349 case REG_CFA_DEF_CFA:
3350 case REG_CFA_ADJUST_CFA:
3351 case REG_CFA_OFFSET:
3352 case REG_CFA_REGISTER:
3353 case REG_CFA_EXPRESSION:
3354 case REG_CFA_RESTORE:
3355 case REG_CFA_SET_VDRAP:
3356 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3357 any_note = true;
3358 break;
3359 default:
3360 break;
3361 }
3362
3363 /* If there still isn't a note, make sure the unwind info sees the
3364 same expression as before the split. */
3365 if (!any_note)
3366 {
3367 rtx old_set, new_set;
3368
3369 /* The old insn had better have been simple, or annotated. */
3370 old_set = single_set (old_insn);
3371 gcc_assert (old_set != NULL);
3372
3373 new_set = single_set (new_insn);
3374 if (!new_set || !rtx_equal_p (new_set, old_set))
3375 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3376 }
3377
3378 /* Copy prologue/epilogue status. This is required in order to keep
3379 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3380 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3381 }
3382
3383 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3384 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3385 cfg-related call notes. */
3386 for (i = 0; i <= match_len; ++i)
3387 {
3388 int j;
3389 rtx note;
3390
3391 j = peep2_buf_position (peep2_current + i);
3392 old_insn = peep2_insn_data[j].insn;
3393 if (!CALL_P (old_insn))
3394 continue;
3395 was_call = true;
3396
3397 new_insn = attempt;
3398 while (new_insn != NULL_RTX)
3399 {
3400 if (CALL_P (new_insn))
3401 break;
3402 new_insn = NEXT_INSN (new_insn);
3403 }
3404
3405 gcc_assert (new_insn != NULL_RTX);
3406
3407 CALL_INSN_FUNCTION_USAGE (new_insn)
3408 = CALL_INSN_FUNCTION_USAGE (old_insn);
3409 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3410
3411 for (note = REG_NOTES (old_insn);
3412 note;
3413 note = XEXP (note, 1))
3414 switch (REG_NOTE_KIND (note))
3415 {
3416 case REG_NORETURN:
3417 case REG_SETJMP:
3418 case REG_TM:
3419 case REG_CALL_NOCF_CHECK:
3420 add_reg_note (new_insn, REG_NOTE_KIND (note),
3421 XEXP (note, 0));
3422 break;
3423 default:
3424 /* Discard all other reg notes. */
3425 break;
3426 }
3427
3428 /* Croak if there is another call in the sequence. */
3429 while (++i <= match_len)
3430 {
3431 j = peep2_buf_position (peep2_current + i);
3432 old_insn = peep2_insn_data[j].insn;
3433 gcc_assert (!CALL_P (old_insn));
3434 }
3435 break;
3436 }
3437
3438 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3439 move those notes over to the new sequence. */
3440 as_note = NULL;
3441 for (i = match_len; i >= 0; --i)
3442 {
3443 int j = peep2_buf_position (peep2_current + i);
3444 old_insn = peep2_insn_data[j].insn;
3445
3446 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3447 if (as_note)
3448 break;
3449 }
3450
3451 i = peep2_buf_position (peep2_current + match_len);
3452 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3453
3454 /* Replace the old sequence with the new. */
3455 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3456 last = emit_insn_after_setloc (attempt,
3457 peep2_insn_data[i].insn,
3458 INSN_LOCATION (peepinsn));
3459 if (JUMP_P (peepinsn) && JUMP_P (last))
3460 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3461 before_try = PREV_INSN (insn);
3462 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3463
3464 /* Re-insert the EH_REGION notes. */
3465 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3466 {
3467 edge eh_edge;
3468 edge_iterator ei;
3469
3470 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3471 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3472 break;
3473
3474 if (eh_note)
3475 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3476
3477 if (eh_edge)
3478 for (x = last; x != before_try; x = PREV_INSN (x))
3479 if (x != BB_END (bb)
3480 && (can_throw_internal (x)
3481 || can_nonlocal_goto (x)))
3482 {
3483 edge nfte, nehe;
3484 int flags;
3485
3486 nfte = split_block (bb, x);
3487 flags = (eh_edge->flags
3488 & (EDGE_EH | EDGE_ABNORMAL));
3489 if (CALL_P (x))
3490 flags |= EDGE_ABNORMAL_CALL;
3491 nehe = make_edge (nfte->src, eh_edge->dest,
3492 flags);
3493
3494 nehe->probability = eh_edge->probability;
3495 nfte->probability = nehe->probability.invert ();
3496
3497 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3498 bb = nfte->src;
3499 eh_edge = nehe;
3500 }
3501
3502 /* Converting possibly trapping insn to non-trapping is
3503 possible. Zap dummy outgoing edges. */
3504 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3505 }
3506
3507 /* Re-insert the ARGS_SIZE notes. */
3508 if (as_note)
3509 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3510
3511 /* If we generated a jump instruction, it won't have
3512 JUMP_LABEL set. Recompute after we're done. */
3513 for (x = last; x != before_try; x = PREV_INSN (x))
3514 if (JUMP_P (x))
3515 {
3516 peep2_do_rebuild_jump_labels = true;
3517 break;
3518 }
3519
3520 return last;
3521 }
3522
3523 /* After performing a replacement in basic block BB, fix up the life
3524 information in our buffer. LAST is the last of the insns that we
3525 emitted as a replacement. PREV is the insn before the start of
3526 the replacement. MATCH_LEN is the number of instructions that were
3527 matched, and which now need to be replaced in the buffer. */
3528
3529 static void
3530 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3531 rtx_insn *prev)
3532 {
3533 int i = peep2_buf_position (peep2_current + match_len + 1);
3534 rtx_insn *x;
3535 regset_head live;
3536
3537 INIT_REG_SET (&live);
3538 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3539
3540 gcc_assert (peep2_current_count >= match_len + 1);
3541 peep2_current_count -= match_len + 1;
3542
3543 x = last;
3544 do
3545 {
3546 if (INSN_P (x))
3547 {
3548 df_insn_rescan (x);
3549 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3550 {
3551 peep2_current_count++;
3552 if (--i < 0)
3553 i = MAX_INSNS_PER_PEEP2;
3554 peep2_insn_data[i].insn = x;
3555 df_simulate_one_insn_backwards (bb, x, &live);
3556 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3557 }
3558 }
3559 x = PREV_INSN (x);
3560 }
3561 while (x != prev);
3562 CLEAR_REG_SET (&live);
3563
3564 peep2_current = i;
3565 }
3566
3567 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3568 Return true if we added it, false otherwise. The caller will try to match
3569 peepholes against the buffer if we return false; otherwise it will try to
3570 add more instructions to the buffer. */
3571
3572 static bool
3573 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3574 {
3575 int pos;
3576
3577 /* Once we have filled the maximum number of insns the buffer can hold,
3578 allow the caller to match the insns against peepholes. We wait until
3579 the buffer is full in case the target has similar peepholes of different
3580 length; we always want to match the longest if possible. */
3581 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3582 return false;
3583
3584 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3585 any other pattern, lest it change the semantics of the frame info. */
3586 if (RTX_FRAME_RELATED_P (insn))
3587 {
3588 /* Let the buffer drain first. */
3589 if (peep2_current_count > 0)
3590 return false;
3591 /* Now the insn will be the only thing in the buffer. */
3592 }
3593
3594 pos = peep2_buf_position (peep2_current + peep2_current_count);
3595 peep2_insn_data[pos].insn = insn;
3596 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3597 peep2_current_count++;
3598
3599 df_simulate_one_insn_forwards (bb, insn, live);
3600 return true;
3601 }
3602
3603 /* Perform the peephole2 optimization pass. */
3604
3605 static void
3606 peephole2_optimize (void)
3607 {
3608 rtx_insn *insn;
3609 bitmap live;
3610 int i;
3611 basic_block bb;
3612
3613 peep2_do_cleanup_cfg = false;
3614 peep2_do_rebuild_jump_labels = false;
3615
3616 df_set_flags (DF_LR_RUN_DCE);
3617 df_note_add_problem ();
3618 df_analyze ();
3619
3620 /* Initialize the regsets we're going to use. */
3621 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3622 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3623 search_ofs = 0;
3624 live = BITMAP_ALLOC (&reg_obstack);
3625
3626 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3627 {
3628 bool past_end = false;
3629 int pos;
3630
3631 rtl_profile_for_bb (bb);
3632
3633 /* Start up propagation. */
3634 bitmap_copy (live, DF_LR_IN (bb));
3635 df_simulate_initialize_forwards (bb, live);
3636 peep2_reinit_state (live);
3637
3638 insn = BB_HEAD (bb);
3639 for (;;)
3640 {
3641 rtx_insn *attempt, *head;
3642 int match_len;
3643
3644 if (!past_end && !NONDEBUG_INSN_P (insn))
3645 {
3646 next_insn:
3647 insn = NEXT_INSN (insn);
3648 if (insn == NEXT_INSN (BB_END (bb)))
3649 past_end = true;
3650 continue;
3651 }
3652 if (!past_end && peep2_fill_buffer (bb, insn, live))
3653 goto next_insn;
3654
3655 /* If we did not fill an empty buffer, it signals the end of the
3656 block. */
3657 if (peep2_current_count == 0)
3658 break;
3659
3660 /* The buffer filled to the current maximum, so try to match. */
3661
3662 pos = peep2_buf_position (peep2_current + peep2_current_count);
3663 peep2_insn_data[pos].insn = PEEP2_EOB;
3664 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3665
3666 /* Match the peephole. */
3667 head = peep2_insn_data[peep2_current].insn;
3668 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3669 if (attempt != NULL)
3670 {
3671 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3672 if (last)
3673 {
3674 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3675 continue;
3676 }
3677 }
3678
3679 /* No match: advance the buffer by one insn. */
3680 peep2_current = peep2_buf_position (peep2_current + 1);
3681 peep2_current_count--;
3682 }
3683 }
3684
3685 default_rtl_profile ();
3686 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3687 BITMAP_FREE (peep2_insn_data[i].live_before);
3688 BITMAP_FREE (live);
3689 if (peep2_do_rebuild_jump_labels)
3690 rebuild_jump_labels (get_insns ());
3691 if (peep2_do_cleanup_cfg)
3692 cleanup_cfg (CLEANUP_CFG_CHANGED);
3693 }
3694
3695 /* Common predicates for use with define_bypass. */
3696
3697 /* Helper function for store_data_bypass_p, handle just a single SET
3698 IN_SET. */
3699
3700 static bool
3701 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3702 {
3703 if (!MEM_P (SET_DEST (in_set)))
3704 return false;
3705
3706 rtx out_set = single_set (out_insn);
3707 if (out_set)
3708 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3709
3710 rtx out_pat = PATTERN (out_insn);
3711 if (GET_CODE (out_pat) != PARALLEL)
3712 return false;
3713
3714 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3715 {
3716 rtx out_exp = XVECEXP (out_pat, 0, i);
3717
3718 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE)
3719 continue;
3720
3721 gcc_assert (GET_CODE (out_exp) == SET);
3722
3723 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3724 return false;
3725 }
3726
3727 return true;
3728 }
3729
3730 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3731 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3732 must be either a single_set or a PARALLEL with SETs inside. */
3733
3734 int
3735 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3736 {
3737 rtx in_set = single_set (in_insn);
3738 if (in_set)
3739 return store_data_bypass_p_1 (out_insn, in_set);
3740
3741 rtx in_pat = PATTERN (in_insn);
3742 if (GET_CODE (in_pat) != PARALLEL)
3743 return false;
3744
3745 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3746 {
3747 rtx in_exp = XVECEXP (in_pat, 0, i);
3748
3749 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE)
3750 continue;
3751
3752 gcc_assert (GET_CODE (in_exp) == SET);
3753
3754 if (!store_data_bypass_p_1 (out_insn, in_exp))
3755 return false;
3756 }
3757
3758 return true;
3759 }
3760
3761 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3762 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3763 or multiple set; IN_INSN should be single_set for truth, but for convenience
3764 of insn categorization may be any JUMP or CALL insn. */
3765
3766 int
3767 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3768 {
3769 rtx out_set, in_set;
3770
3771 in_set = single_set (in_insn);
3772 if (! in_set)
3773 {
3774 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3775 return false;
3776 }
3777
3778 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3779 return false;
3780 in_set = SET_SRC (in_set);
3781
3782 out_set = single_set (out_insn);
3783 if (out_set)
3784 {
3785 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3786 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3787 return false;
3788 }
3789 else
3790 {
3791 rtx out_pat;
3792 int i;
3793
3794 out_pat = PATTERN (out_insn);
3795 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3796
3797 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3798 {
3799 rtx exp = XVECEXP (out_pat, 0, i);
3800
3801 if (GET_CODE (exp) == CLOBBER)
3802 continue;
3803
3804 gcc_assert (GET_CODE (exp) == SET);
3805
3806 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3807 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3808 return false;
3809 }
3810 }
3811
3812 return true;
3813 }
3814 \f
3815 static unsigned int
3816 rest_of_handle_peephole2 (void)
3817 {
3818 if (HAVE_peephole2)
3819 peephole2_optimize ();
3820
3821 return 0;
3822 }
3823
3824 namespace {
3825
3826 const pass_data pass_data_peephole2 =
3827 {
3828 RTL_PASS, /* type */
3829 "peephole2", /* name */
3830 OPTGROUP_NONE, /* optinfo_flags */
3831 TV_PEEPHOLE2, /* tv_id */
3832 0, /* properties_required */
3833 0, /* properties_provided */
3834 0, /* properties_destroyed */
3835 0, /* todo_flags_start */
3836 TODO_df_finish, /* todo_flags_finish */
3837 };
3838
3839 class pass_peephole2 : public rtl_opt_pass
3840 {
3841 public:
3842 pass_peephole2 (gcc::context *ctxt)
3843 : rtl_opt_pass (pass_data_peephole2, ctxt)
3844 {}
3845
3846 /* opt_pass methods: */
3847 /* The epiphany backend creates a second instance of this pass, so we need
3848 a clone method. */
3849 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3850 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3851 virtual unsigned int execute (function *)
3852 {
3853 return rest_of_handle_peephole2 ();
3854 }
3855
3856 }; // class pass_peephole2
3857
3858 } // anon namespace
3859
3860 rtl_opt_pass *
3861 make_pass_peephole2 (gcc::context *ctxt)
3862 {
3863 return new pass_peephole2 (ctxt);
3864 }
3865
3866 namespace {
3867
3868 const pass_data pass_data_split_all_insns =
3869 {
3870 RTL_PASS, /* type */
3871 "split1", /* name */
3872 OPTGROUP_NONE, /* optinfo_flags */
3873 TV_NONE, /* tv_id */
3874 0, /* properties_required */
3875 PROP_rtl_split_insns, /* properties_provided */
3876 0, /* properties_destroyed */
3877 0, /* todo_flags_start */
3878 0, /* todo_flags_finish */
3879 };
3880
3881 class pass_split_all_insns : public rtl_opt_pass
3882 {
3883 public:
3884 pass_split_all_insns (gcc::context *ctxt)
3885 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3886 {}
3887
3888 /* opt_pass methods: */
3889 /* The epiphany backend creates a second instance of this pass, so
3890 we need a clone method. */
3891 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3892 virtual unsigned int execute (function *)
3893 {
3894 split_all_insns ();
3895 return 0;
3896 }
3897
3898 }; // class pass_split_all_insns
3899
3900 } // anon namespace
3901
3902 rtl_opt_pass *
3903 make_pass_split_all_insns (gcc::context *ctxt)
3904 {
3905 return new pass_split_all_insns (ctxt);
3906 }
3907
3908 namespace {
3909
3910 const pass_data pass_data_split_after_reload =
3911 {
3912 RTL_PASS, /* type */
3913 "split2", /* name */
3914 OPTGROUP_NONE, /* optinfo_flags */
3915 TV_NONE, /* tv_id */
3916 0, /* properties_required */
3917 0, /* properties_provided */
3918 0, /* properties_destroyed */
3919 0, /* todo_flags_start */
3920 0, /* todo_flags_finish */
3921 };
3922
3923 class pass_split_after_reload : public rtl_opt_pass
3924 {
3925 public:
3926 pass_split_after_reload (gcc::context *ctxt)
3927 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3928 {}
3929
3930 /* opt_pass methods: */
3931 virtual bool gate (function *)
3932 {
3933 /* If optimizing, then go ahead and split insns now. */
3934 if (optimize > 0)
3935 return true;
3936
3937 #ifdef STACK_REGS
3938 return true;
3939 #else
3940 return false;
3941 #endif
3942 }
3943
3944 virtual unsigned int execute (function *)
3945 {
3946 split_all_insns ();
3947 return 0;
3948 }
3949
3950 }; // class pass_split_after_reload
3951
3952 } // anon namespace
3953
3954 rtl_opt_pass *
3955 make_pass_split_after_reload (gcc::context *ctxt)
3956 {
3957 return new pass_split_after_reload (ctxt);
3958 }
3959
3960 namespace {
3961
3962 const pass_data pass_data_split_before_regstack =
3963 {
3964 RTL_PASS, /* type */
3965 "split3", /* name */
3966 OPTGROUP_NONE, /* optinfo_flags */
3967 TV_NONE, /* tv_id */
3968 0, /* properties_required */
3969 0, /* properties_provided */
3970 0, /* properties_destroyed */
3971 0, /* todo_flags_start */
3972 0, /* todo_flags_finish */
3973 };
3974
3975 class pass_split_before_regstack : public rtl_opt_pass
3976 {
3977 public:
3978 pass_split_before_regstack (gcc::context *ctxt)
3979 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3980 {}
3981
3982 /* opt_pass methods: */
3983 virtual bool gate (function *);
3984 virtual unsigned int execute (function *)
3985 {
3986 split_all_insns ();
3987 return 0;
3988 }
3989
3990 }; // class pass_split_before_regstack
3991
3992 bool
3993 pass_split_before_regstack::gate (function *)
3994 {
3995 #if HAVE_ATTR_length && defined (STACK_REGS)
3996 /* If flow2 creates new instructions which need splitting
3997 and scheduling after reload is not done, they might not be
3998 split until final which doesn't allow splitting
3999 if HAVE_ATTR_length. */
4000 # ifdef INSN_SCHEDULING
4001 return (optimize && !flag_schedule_insns_after_reload);
4002 # else
4003 return (optimize);
4004 # endif
4005 #else
4006 return 0;
4007 #endif
4008 }
4009
4010 } // anon namespace
4011
4012 rtl_opt_pass *
4013 make_pass_split_before_regstack (gcc::context *ctxt)
4014 {
4015 return new pass_split_before_regstack (ctxt);
4016 }
4017
4018 static unsigned int
4019 rest_of_handle_split_before_sched2 (void)
4020 {
4021 #ifdef INSN_SCHEDULING
4022 split_all_insns ();
4023 #endif
4024 return 0;
4025 }
4026
4027 namespace {
4028
4029 const pass_data pass_data_split_before_sched2 =
4030 {
4031 RTL_PASS, /* type */
4032 "split4", /* name */
4033 OPTGROUP_NONE, /* optinfo_flags */
4034 TV_NONE, /* tv_id */
4035 0, /* properties_required */
4036 0, /* properties_provided */
4037 0, /* properties_destroyed */
4038 0, /* todo_flags_start */
4039 0, /* todo_flags_finish */
4040 };
4041
4042 class pass_split_before_sched2 : public rtl_opt_pass
4043 {
4044 public:
4045 pass_split_before_sched2 (gcc::context *ctxt)
4046 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4047 {}
4048
4049 /* opt_pass methods: */
4050 virtual bool gate (function *)
4051 {
4052 #ifdef INSN_SCHEDULING
4053 return optimize > 0 && flag_schedule_insns_after_reload;
4054 #else
4055 return false;
4056 #endif
4057 }
4058
4059 virtual unsigned int execute (function *)
4060 {
4061 return rest_of_handle_split_before_sched2 ();
4062 }
4063
4064 }; // class pass_split_before_sched2
4065
4066 } // anon namespace
4067
4068 rtl_opt_pass *
4069 make_pass_split_before_sched2 (gcc::context *ctxt)
4070 {
4071 return new pass_split_before_sched2 (ctxt);
4072 }
4073
4074 namespace {
4075
4076 const pass_data pass_data_split_for_shorten_branches =
4077 {
4078 RTL_PASS, /* type */
4079 "split5", /* name */
4080 OPTGROUP_NONE, /* optinfo_flags */
4081 TV_NONE, /* tv_id */
4082 0, /* properties_required */
4083 0, /* properties_provided */
4084 0, /* properties_destroyed */
4085 0, /* todo_flags_start */
4086 0, /* todo_flags_finish */
4087 };
4088
4089 class pass_split_for_shorten_branches : public rtl_opt_pass
4090 {
4091 public:
4092 pass_split_for_shorten_branches (gcc::context *ctxt)
4093 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4094 {}
4095
4096 /* opt_pass methods: */
4097 virtual bool gate (function *)
4098 {
4099 /* The placement of the splitting that we do for shorten_branches
4100 depends on whether regstack is used by the target or not. */
4101 #if HAVE_ATTR_length && !defined (STACK_REGS)
4102 return true;
4103 #else
4104 return false;
4105 #endif
4106 }
4107
4108 virtual unsigned int execute (function *)
4109 {
4110 return split_all_insns_noflow ();
4111 }
4112
4113 }; // class pass_split_for_shorten_branches
4114
4115 } // anon namespace
4116
4117 rtl_opt_pass *
4118 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4119 {
4120 return new pass_split_for_shorten_branches (ctxt);
4121 }
4122
4123 /* (Re)initialize the target information after a change in target. */
4124
4125 void
4126 recog_init ()
4127 {
4128 /* The information is zero-initialized, so we don't need to do anything
4129 first time round. */
4130 if (!this_target_recog->x_initialized)
4131 {
4132 this_target_recog->x_initialized = true;
4133 return;
4134 }
4135 memset (this_target_recog->x_bool_attr_masks, 0,
4136 sizeof (this_target_recog->x_bool_attr_masks));
4137 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4138 if (this_target_recog->x_op_alt[i])
4139 {
4140 free (this_target_recog->x_op_alt[i]);
4141 this_target_recog->x_op_alt[i] = 0;
4142 }
4143 }