recog: Split out a register_asm_p function
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43 #include "function-abi.h"
44
45 #ifndef STACK_POP_CODE
46 #if STACK_GROWS_DOWNWARD
47 #define STACK_POP_CODE POST_INC
48 #else
49 #define STACK_POP_CODE POST_DEC
50 #endif
51 #endif
52
53 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
54 static void validate_replace_src_1 (rtx *, void *);
55 static rtx_insn *split_insn (rtx_insn *);
56
57 struct target_recog default_target_recog;
58 #if SWITCHABLE_TARGET
59 struct target_recog *this_target_recog = &default_target_recog;
60 #endif
61
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in reginfo.c and final.c and reload.c.
67
68 init_recog and init_recog_no_volatile are responsible for setting this. */
69
70 int volatile_ok;
71
72 struct recog_data_d recog_data;
73
74 /* Contains a vector of operand_alternative structures, such that
75 operand OP of alternative A is at index A * n_operands + OP.
76 Set up by preprocess_constraints. */
77 const operand_alternative *recog_op_alt;
78
79 /* Used to provide recog_op_alt for asms. */
80 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
81 * MAX_RECOG_ALTERNATIVES];
82
83 /* On return from `constrain_operands', indicate which alternative
84 was satisfied. */
85
86 int which_alternative;
87
88 /* Nonzero after end of reload pass.
89 Set to 1 or 0 by toplev.c.
90 Controls the significance of (SUBREG (MEM)). */
91
92 int reload_completed;
93
94 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
95 int epilogue_completed;
96
97 /* Initialize data used by the function `recog'.
98 This must be called once in the compilation of a function
99 before any insn recognition may be done in the function. */
100
101 void
102 init_recog_no_volatile (void)
103 {
104 volatile_ok = 0;
105 }
106
107 void
108 init_recog (void)
109 {
110 volatile_ok = 1;
111 }
112
113 \f
114 /* Return true if labels in asm operands BODY are LABEL_REFs. */
115
116 static bool
117 asm_labels_ok (rtx body)
118 {
119 rtx asmop;
120 int i;
121
122 asmop = extract_asm_operands (body);
123 if (asmop == NULL_RTX)
124 return true;
125
126 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
127 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
128 return false;
129
130 return true;
131 }
132
133 /* Check that X is an insn-body for an `asm' with operands
134 and that the operands mentioned in it are legitimate. */
135
136 int
137 check_asm_operands (rtx x)
138 {
139 int noperands;
140 rtx *operands;
141 const char **constraints;
142 int i;
143
144 if (!asm_labels_ok (x))
145 return 0;
146
147 /* Post-reload, be more strict with things. */
148 if (reload_completed)
149 {
150 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
151 rtx_insn *insn = make_insn_raw (x);
152 extract_insn (insn);
153 constrain_operands (1, get_enabled_alternatives (insn));
154 return which_alternative >= 0;
155 }
156
157 noperands = asm_noperands (x);
158 if (noperands < 0)
159 return 0;
160 if (noperands == 0)
161 return 1;
162
163 operands = XALLOCAVEC (rtx, noperands);
164 constraints = XALLOCAVEC (const char *, noperands);
165
166 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
167
168 for (i = 0; i < noperands; i++)
169 {
170 const char *c = constraints[i];
171 if (c[0] == '%')
172 c++;
173 if (! asm_operand_ok (operands[i], c, constraints))
174 return 0;
175 }
176
177 return 1;
178 }
179 \f
180 /* Static data for the next two routines. */
181
182 struct change_t
183 {
184 rtx object;
185 int old_code;
186 bool unshare;
187 rtx *loc;
188 rtx old;
189 };
190
191 static change_t *changes;
192 static int changes_allocated;
193
194 static int num_changes = 0;
195
196 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
197 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
198 the change is simply made.
199
200 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
201 will be called with the address and mode as parameters. If OBJECT is
202 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
203 the change in place.
204
205 IN_GROUP is nonzero if this is part of a group of changes that must be
206 performed as a group. In that case, the changes will be stored. The
207 function `apply_change_group' will validate and apply the changes.
208
209 If IN_GROUP is zero, this is a single change. Try to recognize the insn
210 or validate the memory reference with the change applied. If the result
211 is not valid for the machine, suppress the change and return zero.
212 Otherwise, perform the change and return 1. */
213
214 static bool
215 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
216 {
217 rtx old = *loc;
218
219 if (old == new_rtx || rtx_equal_p (old, new_rtx))
220 return 1;
221
222 gcc_assert (in_group != 0 || num_changes == 0);
223
224 *loc = new_rtx;
225
226 /* Save the information describing this change. */
227 if (num_changes >= changes_allocated)
228 {
229 if (changes_allocated == 0)
230 /* This value allows for repeated substitutions inside complex
231 indexed addresses, or changes in up to 5 insns. */
232 changes_allocated = MAX_RECOG_OPERANDS * 5;
233 else
234 changes_allocated *= 2;
235
236 changes = XRESIZEVEC (change_t, changes, changes_allocated);
237 }
238
239 changes[num_changes].object = object;
240 changes[num_changes].loc = loc;
241 changes[num_changes].old = old;
242 changes[num_changes].unshare = unshare;
243
244 if (object && !MEM_P (object))
245 {
246 /* Set INSN_CODE to force rerecognition of insn. Save old code in
247 case invalid. */
248 changes[num_changes].old_code = INSN_CODE (object);
249 INSN_CODE (object) = -1;
250 }
251
252 num_changes++;
253
254 /* If we are making a group of changes, return 1. Otherwise, validate the
255 change group we made. */
256
257 if (in_group)
258 return 1;
259 else
260 return apply_change_group ();
261 }
262
263 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
264 UNSHARE to false. */
265
266 bool
267 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
268 {
269 return validate_change_1 (object, loc, new_rtx, in_group, false);
270 }
271
272 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
273 UNSHARE to true. */
274
275 bool
276 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
277 {
278 return validate_change_1 (object, loc, new_rtx, in_group, true);
279 }
280
281
282 /* Keep X canonicalized if some changes have made it non-canonical; only
283 modifies the operands of X, not (for example) its code. Simplifications
284 are not the job of this routine.
285
286 Return true if anything was changed. */
287 bool
288 canonicalize_change_group (rtx_insn *insn, rtx x)
289 {
290 if (COMMUTATIVE_P (x)
291 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
292 {
293 /* Oops, the caller has made X no longer canonical.
294 Let's redo the changes in the correct order. */
295 rtx tem = XEXP (x, 0);
296 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
297 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
298 return true;
299 }
300 else
301 return false;
302 }
303
304
305 /* This subroutine of apply_change_group verifies whether the changes to INSN
306 were valid; i.e. whether INSN can still be recognized.
307
308 If IN_GROUP is true clobbers which have to be added in order to
309 match the instructions will be added to the current change group.
310 Otherwise the changes will take effect immediately. */
311
312 int
313 insn_invalid_p (rtx_insn *insn, bool in_group)
314 {
315 rtx pat = PATTERN (insn);
316 int num_clobbers = 0;
317 /* If we are before reload and the pattern is a SET, see if we can add
318 clobbers. */
319 int icode = recog (pat, insn,
320 (GET_CODE (pat) == SET
321 && ! reload_completed
322 && ! reload_in_progress)
323 ? &num_clobbers : 0);
324 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
325
326
327 /* If this is an asm and the operand aren't legal, then fail. Likewise if
328 this is not an asm and the insn wasn't recognized. */
329 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
330 || (!is_asm && icode < 0))
331 return 1;
332
333 /* If we have to add CLOBBERs, fail if we have to add ones that reference
334 hard registers since our callers can't know if they are live or not.
335 Otherwise, add them. */
336 if (num_clobbers > 0)
337 {
338 rtx newpat;
339
340 if (added_clobbers_hard_reg_p (icode))
341 return 1;
342
343 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
344 XVECEXP (newpat, 0, 0) = pat;
345 add_clobbers (newpat, icode);
346 if (in_group)
347 validate_change (insn, &PATTERN (insn), newpat, 1);
348 else
349 PATTERN (insn) = pat = newpat;
350 }
351
352 /* After reload, verify that all constraints are satisfied. */
353 if (reload_completed)
354 {
355 extract_insn (insn);
356
357 if (! constrain_operands (1, get_preferred_alternatives (insn)))
358 return 1;
359 }
360
361 INSN_CODE (insn) = icode;
362 return 0;
363 }
364
365 /* Return number of changes made and not validated yet. */
366 int
367 num_changes_pending (void)
368 {
369 return num_changes;
370 }
371
372 /* Tentatively apply the changes numbered NUM and up.
373 Return 1 if all changes are valid, zero otherwise. */
374
375 int
376 verify_changes (int num)
377 {
378 int i;
379 rtx last_validated = NULL_RTX;
380
381 /* The changes have been applied and all INSN_CODEs have been reset to force
382 rerecognition.
383
384 The changes are valid if we aren't given an object, or if we are
385 given a MEM and it still is a valid address, or if this is in insn
386 and it is recognized. In the latter case, if reload has completed,
387 we also require that the operands meet the constraints for
388 the insn. */
389
390 for (i = num; i < num_changes; i++)
391 {
392 rtx object = changes[i].object;
393
394 /* If there is no object to test or if it is the same as the one we
395 already tested, ignore it. */
396 if (object == 0 || object == last_validated)
397 continue;
398
399 if (MEM_P (object))
400 {
401 if (! memory_address_addr_space_p (GET_MODE (object),
402 XEXP (object, 0),
403 MEM_ADDR_SPACE (object)))
404 break;
405 }
406 else if (/* changes[i].old might be zero, e.g. when putting a
407 REG_FRAME_RELATED_EXPR into a previously empty list. */
408 changes[i].old
409 && REG_P (changes[i].old)
410 && asm_noperands (PATTERN (object)) > 0
411 && register_asm_p (changes[i].old))
412 {
413 /* Don't allow changes of hard register operands to inline
414 assemblies if they have been defined as register asm ("x"). */
415 break;
416 }
417 else if (DEBUG_INSN_P (object))
418 continue;
419 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
420 {
421 rtx pat = PATTERN (object);
422
423 /* Perhaps we couldn't recognize the insn because there were
424 extra CLOBBERs at the end. If so, try to re-recognize
425 without the last CLOBBER (later iterations will cause each of
426 them to be eliminated, in turn). But don't do this if we
427 have an ASM_OPERAND. */
428 if (GET_CODE (pat) == PARALLEL
429 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
430 && asm_noperands (PATTERN (object)) < 0)
431 {
432 rtx newpat;
433
434 if (XVECLEN (pat, 0) == 2)
435 newpat = XVECEXP (pat, 0, 0);
436 else
437 {
438 int j;
439
440 newpat
441 = gen_rtx_PARALLEL (VOIDmode,
442 rtvec_alloc (XVECLEN (pat, 0) - 1));
443 for (j = 0; j < XVECLEN (newpat, 0); j++)
444 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
445 }
446
447 /* Add a new change to this group to replace the pattern
448 with this new pattern. Then consider this change
449 as having succeeded. The change we added will
450 cause the entire call to fail if things remain invalid.
451
452 Note that this can lose if a later change than the one
453 we are processing specified &XVECEXP (PATTERN (object), 0, X)
454 but this shouldn't occur. */
455
456 validate_change (object, &PATTERN (object), newpat, 1);
457 continue;
458 }
459 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
460 || GET_CODE (pat) == VAR_LOCATION)
461 /* If this insn is a CLOBBER or USE, it is always valid, but is
462 never recognized. */
463 continue;
464 else
465 break;
466 }
467 last_validated = object;
468 }
469
470 return (i == num_changes);
471 }
472
473 /* A group of changes has previously been issued with validate_change
474 and verified with verify_changes. Call df_insn_rescan for each of
475 the insn changed and clear num_changes. */
476
477 void
478 confirm_change_group (void)
479 {
480 int i;
481 rtx last_object = NULL;
482
483 for (i = 0; i < num_changes; i++)
484 {
485 rtx object = changes[i].object;
486
487 if (changes[i].unshare)
488 *changes[i].loc = copy_rtx (*changes[i].loc);
489
490 /* Avoid unnecessary rescanning when multiple changes to same instruction
491 are made. */
492 if (object)
493 {
494 if (object != last_object && last_object && INSN_P (last_object))
495 df_insn_rescan (as_a <rtx_insn *> (last_object));
496 last_object = object;
497 }
498 }
499
500 if (last_object && INSN_P (last_object))
501 df_insn_rescan (as_a <rtx_insn *> (last_object));
502 num_changes = 0;
503 }
504
505 /* Apply a group of changes previously issued with `validate_change'.
506 If all changes are valid, call confirm_change_group and return 1,
507 otherwise, call cancel_changes and return 0. */
508
509 int
510 apply_change_group (void)
511 {
512 if (verify_changes (0))
513 {
514 confirm_change_group ();
515 return 1;
516 }
517 else
518 {
519 cancel_changes (0);
520 return 0;
521 }
522 }
523
524
525 /* Return the number of changes so far in the current group. */
526
527 int
528 num_validated_changes (void)
529 {
530 return num_changes;
531 }
532
533 /* Retract the changes numbered NUM and up. */
534
535 void
536 cancel_changes (int num)
537 {
538 int i;
539
540 /* Back out all the changes. Do this in the opposite order in which
541 they were made. */
542 for (i = num_changes - 1; i >= num; i--)
543 {
544 *changes[i].loc = changes[i].old;
545 if (changes[i].object && !MEM_P (changes[i].object))
546 INSN_CODE (changes[i].object) = changes[i].old_code;
547 }
548 num_changes = num;
549 }
550
551 /* Reduce conditional compilation elsewhere. */
552 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
553 rtx. */
554
555 static void
556 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
557 machine_mode op0_mode)
558 {
559 rtx x = *loc;
560 enum rtx_code code = GET_CODE (x);
561 rtx new_rtx = NULL_RTX;
562 scalar_int_mode is_mode;
563
564 if (SWAPPABLE_OPERANDS_P (x)
565 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
566 {
567 validate_unshare_change (object, loc,
568 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
569 : swap_condition (code),
570 GET_MODE (x), XEXP (x, 1),
571 XEXP (x, 0)), 1);
572 x = *loc;
573 code = GET_CODE (x);
574 }
575
576 /* Canonicalize arithmetics with all constant operands. */
577 switch (GET_RTX_CLASS (code))
578 {
579 case RTX_UNARY:
580 if (CONSTANT_P (XEXP (x, 0)))
581 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
582 op0_mode);
583 break;
584 case RTX_COMM_ARITH:
585 case RTX_BIN_ARITH:
586 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
587 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
588 XEXP (x, 1));
589 break;
590 case RTX_COMPARE:
591 case RTX_COMM_COMPARE:
592 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
593 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
594 XEXP (x, 0), XEXP (x, 1));
595 break;
596 default:
597 break;
598 }
599 if (new_rtx)
600 {
601 validate_change (object, loc, new_rtx, 1);
602 return;
603 }
604
605 switch (code)
606 {
607 case PLUS:
608 /* If we have a PLUS whose second operand is now a CONST_INT, use
609 simplify_gen_binary to try to simplify it.
610 ??? We may want later to remove this, once simplification is
611 separated from this function. */
612 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
613 validate_change (object, loc,
614 simplify_gen_binary
615 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
616 break;
617 case MINUS:
618 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
619 validate_change (object, loc,
620 simplify_gen_binary
621 (PLUS, GET_MODE (x), XEXP (x, 0),
622 simplify_gen_unary (NEG,
623 GET_MODE (x), XEXP (x, 1),
624 GET_MODE (x))), 1);
625 break;
626 case ZERO_EXTEND:
627 case SIGN_EXTEND:
628 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
629 {
630 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
631 op0_mode);
632 /* If any of the above failed, substitute in something that
633 we know won't be recognized. */
634 if (!new_rtx)
635 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
636 validate_change (object, loc, new_rtx, 1);
637 }
638 break;
639 case SUBREG:
640 /* All subregs possible to simplify should be simplified. */
641 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
642 SUBREG_BYTE (x));
643
644 /* Subregs of VOIDmode operands are incorrect. */
645 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
646 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
647 if (new_rtx)
648 validate_change (object, loc, new_rtx, 1);
649 break;
650 case ZERO_EXTRACT:
651 case SIGN_EXTRACT:
652 /* If we are replacing a register with memory, try to change the memory
653 to be the mode required for memory in extract operations (this isn't
654 likely to be an insertion operation; if it was, nothing bad will
655 happen, we might just fail in some cases). */
656
657 if (MEM_P (XEXP (x, 0))
658 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
659 && CONST_INT_P (XEXP (x, 1))
660 && CONST_INT_P (XEXP (x, 2))
661 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
662 MEM_ADDR_SPACE (XEXP (x, 0)))
663 && !MEM_VOLATILE_P (XEXP (x, 0)))
664 {
665 int pos = INTVAL (XEXP (x, 2));
666 machine_mode new_mode = is_mode;
667 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
668 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
669 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
670 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
671 scalar_int_mode wanted_mode = (new_mode == VOIDmode
672 ? word_mode
673 : as_a <scalar_int_mode> (new_mode));
674
675 /* If we have a narrower mode, we can do something. */
676 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
677 {
678 int offset = pos / BITS_PER_UNIT;
679 rtx newmem;
680
681 /* If the bytes and bits are counted differently, we
682 must adjust the offset. */
683 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
684 offset =
685 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
686 offset);
687
688 gcc_assert (GET_MODE_PRECISION (wanted_mode)
689 == GET_MODE_BITSIZE (wanted_mode));
690 pos %= GET_MODE_BITSIZE (wanted_mode);
691
692 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
693
694 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
695 validate_change (object, &XEXP (x, 0), newmem, 1);
696 }
697 }
698
699 break;
700
701 default:
702 break;
703 }
704 }
705
706 /* Replace every occurrence of FROM in X with TO. Mark each change with
707 validate_change passing OBJECT. */
708
709 static void
710 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
711 bool simplify)
712 {
713 int i, j;
714 const char *fmt;
715 rtx x = *loc;
716 enum rtx_code code;
717 machine_mode op0_mode = VOIDmode;
718 int prev_changes = num_changes;
719
720 if (!x)
721 return;
722
723 code = GET_CODE (x);
724 fmt = GET_RTX_FORMAT (code);
725 if (fmt[0] == 'e')
726 op0_mode = GET_MODE (XEXP (x, 0));
727
728 /* X matches FROM if it is the same rtx or they are both referring to the
729 same register in the same mode. Avoid calling rtx_equal_p unless the
730 operands look similar. */
731
732 if (x == from
733 || (REG_P (x) && REG_P (from)
734 && GET_MODE (x) == GET_MODE (from)
735 && REGNO (x) == REGNO (from))
736 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
737 && rtx_equal_p (x, from)))
738 {
739 validate_unshare_change (object, loc, to, 1);
740 return;
741 }
742
743 /* Call ourself recursively to perform the replacements.
744 We must not replace inside already replaced expression, otherwise we
745 get infinite recursion for replacements like (reg X)->(subreg (reg X))
746 so we must special case shared ASM_OPERANDS. */
747
748 if (GET_CODE (x) == PARALLEL)
749 {
750 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
751 {
752 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
753 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
754 {
755 /* Verify that operands are really shared. */
756 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
757 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
758 (x, 0, j))));
759 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
760 from, to, object, simplify);
761 }
762 else
763 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
764 simplify);
765 }
766 }
767 else
768 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
769 {
770 if (fmt[i] == 'e')
771 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
772 else if (fmt[i] == 'E')
773 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
774 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
775 simplify);
776 }
777
778 /* If we didn't substitute, there is nothing more to do. */
779 if (num_changes == prev_changes)
780 return;
781
782 /* ??? The regmove is no more, so is this aberration still necessary? */
783 /* Allow substituted expression to have different mode. This is used by
784 regmove to change mode of pseudo register. */
785 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
786 op0_mode = GET_MODE (XEXP (x, 0));
787
788 /* Do changes needed to keep rtx consistent. Don't do any other
789 simplifications, as it is not our job. */
790 if (simplify)
791 simplify_while_replacing (loc, to, object, op0_mode);
792 }
793
794 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
795 with TO. After all changes have been made, validate by seeing
796 if INSN is still valid. */
797
798 int
799 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
800 {
801 validate_replace_rtx_1 (loc, from, to, insn, true);
802 return apply_change_group ();
803 }
804
805 /* Try replacing every occurrence of FROM in INSN with TO. After all
806 changes have been made, validate by seeing if INSN is still valid. */
807
808 int
809 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
810 {
811 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
812 return apply_change_group ();
813 }
814
815 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
816 is a part of INSN. After all changes have been made, validate by seeing if
817 INSN is still valid.
818 validate_replace_rtx (from, to, insn) is equivalent to
819 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
820
821 int
822 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
823 {
824 validate_replace_rtx_1 (where, from, to, insn, true);
825 return apply_change_group ();
826 }
827
828 /* Same as above, but do not simplify rtx afterwards. */
829 int
830 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
831 rtx_insn *insn)
832 {
833 validate_replace_rtx_1 (where, from, to, insn, false);
834 return apply_change_group ();
835
836 }
837
838 /* Try replacing every occurrence of FROM in INSN with TO. This also
839 will replace in REG_EQUAL and REG_EQUIV notes. */
840
841 void
842 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
843 {
844 rtx note;
845 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
846 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
847 if (REG_NOTE_KIND (note) == REG_EQUAL
848 || REG_NOTE_KIND (note) == REG_EQUIV)
849 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
850 }
851
852 /* Function called by note_uses to replace used subexpressions. */
853 struct validate_replace_src_data
854 {
855 rtx from; /* Old RTX */
856 rtx to; /* New RTX */
857 rtx_insn *insn; /* Insn in which substitution is occurring. */
858 };
859
860 static void
861 validate_replace_src_1 (rtx *x, void *data)
862 {
863 struct validate_replace_src_data *d
864 = (struct validate_replace_src_data *) data;
865
866 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
867 }
868
869 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
870 SET_DESTs. */
871
872 void
873 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
874 {
875 struct validate_replace_src_data d;
876
877 d.from = from;
878 d.to = to;
879 d.insn = insn;
880 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
881 }
882
883 /* Try simplify INSN.
884 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
885 pattern and return true if something was simplified. */
886
887 bool
888 validate_simplify_insn (rtx_insn *insn)
889 {
890 int i;
891 rtx pat = NULL;
892 rtx newpat = NULL;
893
894 pat = PATTERN (insn);
895
896 if (GET_CODE (pat) == SET)
897 {
898 newpat = simplify_rtx (SET_SRC (pat));
899 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
900 validate_change (insn, &SET_SRC (pat), newpat, 1);
901 newpat = simplify_rtx (SET_DEST (pat));
902 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
903 validate_change (insn, &SET_DEST (pat), newpat, 1);
904 }
905 else if (GET_CODE (pat) == PARALLEL)
906 for (i = 0; i < XVECLEN (pat, 0); i++)
907 {
908 rtx s = XVECEXP (pat, 0, i);
909
910 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
911 {
912 newpat = simplify_rtx (SET_SRC (s));
913 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
914 validate_change (insn, &SET_SRC (s), newpat, 1);
915 newpat = simplify_rtx (SET_DEST (s));
916 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
917 validate_change (insn, &SET_DEST (s), newpat, 1);
918 }
919 }
920 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
921 }
922
923 /* Check whether INSN matches a specific alternative of an .md pattern. */
924
925 bool
926 valid_insn_p (rtx_insn *insn)
927 {
928 recog_memoized (insn);
929 if (INSN_CODE (insn) < 0)
930 return false;
931 extract_insn (insn);
932 /* We don't know whether the insn will be in code that is optimized
933 for size or speed, so consider all enabled alternatives. */
934 if (!constrain_operands (1, get_enabled_alternatives (insn)))
935 return false;
936 return true;
937 }
938
939 /* Return 1 if OP is a valid general operand for machine mode MODE.
940 This is either a register reference, a memory reference,
941 or a constant. In the case of a memory reference, the address
942 is checked for general validity for the target machine.
943
944 Register and memory references must have mode MODE in order to be valid,
945 but some constants have no machine mode and are valid for any mode.
946
947 If MODE is VOIDmode, OP is checked for validity for whatever mode
948 it has.
949
950 The main use of this function is as a predicate in match_operand
951 expressions in the machine description. */
952
953 int
954 general_operand (rtx op, machine_mode mode)
955 {
956 enum rtx_code code = GET_CODE (op);
957
958 if (mode == VOIDmode)
959 mode = GET_MODE (op);
960
961 /* Don't accept CONST_INT or anything similar
962 if the caller wants something floating. */
963 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
964 && GET_MODE_CLASS (mode) != MODE_INT
965 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
966 return 0;
967
968 if (CONST_INT_P (op)
969 && mode != VOIDmode
970 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
971 return 0;
972
973 if (CONSTANT_P (op))
974 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
975 || mode == VOIDmode)
976 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
977 && targetm.legitimate_constant_p (mode == VOIDmode
978 ? GET_MODE (op)
979 : mode, op));
980
981 /* Except for certain constants with VOIDmode, already checked for,
982 OP's mode must match MODE if MODE specifies a mode. */
983
984 if (GET_MODE (op) != mode)
985 return 0;
986
987 if (code == SUBREG)
988 {
989 rtx sub = SUBREG_REG (op);
990
991 #ifdef INSN_SCHEDULING
992 /* On machines that have insn scheduling, we want all memory
993 reference to be explicit, so outlaw paradoxical SUBREGs.
994 However, we must allow them after reload so that they can
995 get cleaned up by cleanup_subreg_operands. */
996 if (!reload_completed && MEM_P (sub)
997 && paradoxical_subreg_p (op))
998 return 0;
999 #endif
1000 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1001 may result in incorrect reference. We should simplify all valid
1002 subregs of MEM anyway. But allow this after reload because we
1003 might be called from cleanup_subreg_operands.
1004
1005 ??? This is a kludge. */
1006 if (!reload_completed
1007 && maybe_ne (SUBREG_BYTE (op), 0)
1008 && MEM_P (sub))
1009 return 0;
1010
1011 if (REG_P (sub)
1012 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1013 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1014 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1015 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1016 /* LRA can generate some invalid SUBREGS just for matched
1017 operand reload presentation. LRA needs to treat them as
1018 valid. */
1019 && ! LRA_SUBREG_P (op))
1020 return 0;
1021
1022 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1023 create such rtl, and we must reject it. */
1024 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1025 /* LRA can use subreg to store a floating point value in an
1026 integer mode. Although the floating point and the
1027 integer modes need the same number of hard registers, the
1028 size of floating point mode can be less than the integer
1029 mode. */
1030 && ! lra_in_progress
1031 && paradoxical_subreg_p (op))
1032 return 0;
1033
1034 op = sub;
1035 code = GET_CODE (op);
1036 }
1037
1038 if (code == REG)
1039 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1040 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1041
1042 if (code == MEM)
1043 {
1044 rtx y = XEXP (op, 0);
1045
1046 if (! volatile_ok && MEM_VOLATILE_P (op))
1047 return 0;
1048
1049 /* Use the mem's mode, since it will be reloaded thus. LRA can
1050 generate move insn with invalid addresses which is made valid
1051 and efficiently calculated by LRA through further numerous
1052 transformations. */
1053 if (lra_in_progress
1054 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1055 return 1;
1056 }
1057
1058 return 0;
1059 }
1060 \f
1061 /* Return 1 if OP is a valid memory address for a memory reference
1062 of mode MODE.
1063
1064 The main use of this function is as a predicate in match_operand
1065 expressions in the machine description. */
1066
1067 int
1068 address_operand (rtx op, machine_mode mode)
1069 {
1070 /* Wrong mode for an address expr. */
1071 if (GET_MODE (op) != VOIDmode
1072 && ! SCALAR_INT_MODE_P (GET_MODE (op)))
1073 return false;
1074
1075 return memory_address_p (mode, op);
1076 }
1077
1078 /* Return 1 if OP is a register reference of mode MODE.
1079 If MODE is VOIDmode, accept a register in any mode.
1080
1081 The main use of this function is as a predicate in match_operand
1082 expressions in the machine description. */
1083
1084 int
1085 register_operand (rtx op, machine_mode mode)
1086 {
1087 if (GET_CODE (op) == SUBREG)
1088 {
1089 rtx sub = SUBREG_REG (op);
1090
1091 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1092 because it is guaranteed to be reloaded into one.
1093 Just make sure the MEM is valid in itself.
1094 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1095 but currently it does result from (SUBREG (REG)...) where the
1096 reg went on the stack.) */
1097 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1098 return 0;
1099 }
1100 else if (!REG_P (op))
1101 return 0;
1102 return general_operand (op, mode);
1103 }
1104
1105 /* Return 1 for a register in Pmode; ignore the tested mode. */
1106
1107 int
1108 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1109 {
1110 return register_operand (op, Pmode);
1111 }
1112
1113 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1114 or a hard register. */
1115
1116 int
1117 scratch_operand (rtx op, machine_mode mode)
1118 {
1119 if (GET_MODE (op) != mode && mode != VOIDmode)
1120 return 0;
1121
1122 return (GET_CODE (op) == SCRATCH
1123 || (REG_P (op)
1124 && (lra_in_progress
1125 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1126 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1127 }
1128
1129 /* Return 1 if OP is a valid immediate operand for mode MODE.
1130
1131 The main use of this function is as a predicate in match_operand
1132 expressions in the machine description. */
1133
1134 int
1135 immediate_operand (rtx op, machine_mode mode)
1136 {
1137 /* Don't accept CONST_INT or anything similar
1138 if the caller wants something floating. */
1139 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1140 && GET_MODE_CLASS (mode) != MODE_INT
1141 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1142 return 0;
1143
1144 if (CONST_INT_P (op)
1145 && mode != VOIDmode
1146 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1147 return 0;
1148
1149 return (CONSTANT_P (op)
1150 && (GET_MODE (op) == mode || mode == VOIDmode
1151 || GET_MODE (op) == VOIDmode)
1152 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1153 && targetm.legitimate_constant_p (mode == VOIDmode
1154 ? GET_MODE (op)
1155 : mode, op));
1156 }
1157
1158 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1159
1160 int
1161 const_int_operand (rtx op, machine_mode mode)
1162 {
1163 if (!CONST_INT_P (op))
1164 return 0;
1165
1166 if (mode != VOIDmode
1167 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1168 return 0;
1169
1170 return 1;
1171 }
1172
1173 #if TARGET_SUPPORTS_WIDE_INT
1174 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1175 of mode MODE. */
1176 int
1177 const_scalar_int_operand (rtx op, machine_mode mode)
1178 {
1179 if (!CONST_SCALAR_INT_P (op))
1180 return 0;
1181
1182 if (CONST_INT_P (op))
1183 return const_int_operand (op, mode);
1184
1185 if (mode != VOIDmode)
1186 {
1187 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1188 int prec = GET_MODE_PRECISION (int_mode);
1189 int bitsize = GET_MODE_BITSIZE (int_mode);
1190
1191 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1192 return 0;
1193
1194 if (prec == bitsize)
1195 return 1;
1196 else
1197 {
1198 /* Multiword partial int. */
1199 HOST_WIDE_INT x
1200 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1201 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1202 }
1203 }
1204 return 1;
1205 }
1206
1207 /* Returns 1 if OP is an operand that is a constant integer or constant
1208 floating-point number of MODE. */
1209
1210 int
1211 const_double_operand (rtx op, machine_mode mode)
1212 {
1213 return (GET_CODE (op) == CONST_DOUBLE)
1214 && (GET_MODE (op) == mode || mode == VOIDmode);
1215 }
1216 #else
1217 /* Returns 1 if OP is an operand that is a constant integer or constant
1218 floating-point number of MODE. */
1219
1220 int
1221 const_double_operand (rtx op, machine_mode mode)
1222 {
1223 /* Don't accept CONST_INT or anything similar
1224 if the caller wants something floating. */
1225 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1226 && GET_MODE_CLASS (mode) != MODE_INT
1227 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1228 return 0;
1229
1230 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1231 && (mode == VOIDmode || GET_MODE (op) == mode
1232 || GET_MODE (op) == VOIDmode));
1233 }
1234 #endif
1235 /* Return 1 if OP is a general operand that is not an immediate
1236 operand of mode MODE. */
1237
1238 int
1239 nonimmediate_operand (rtx op, machine_mode mode)
1240 {
1241 return (general_operand (op, mode) && ! CONSTANT_P (op));
1242 }
1243
1244 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1245
1246 int
1247 nonmemory_operand (rtx op, machine_mode mode)
1248 {
1249 if (CONSTANT_P (op))
1250 return immediate_operand (op, mode);
1251 return register_operand (op, mode);
1252 }
1253
1254 /* Return 1 if OP is a valid operand that stands for pushing a
1255 value of mode MODE onto the stack.
1256
1257 The main use of this function is as a predicate in match_operand
1258 expressions in the machine description. */
1259
1260 int
1261 push_operand (rtx op, machine_mode mode)
1262 {
1263 if (!MEM_P (op))
1264 return 0;
1265
1266 if (mode != VOIDmode && GET_MODE (op) != mode)
1267 return 0;
1268
1269 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1270
1271 #ifdef PUSH_ROUNDING
1272 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1273 #endif
1274
1275 op = XEXP (op, 0);
1276
1277 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1278 {
1279 if (GET_CODE (op) != STACK_PUSH_CODE)
1280 return 0;
1281 }
1282 else
1283 {
1284 poly_int64 offset;
1285 if (GET_CODE (op) != PRE_MODIFY
1286 || GET_CODE (XEXP (op, 1)) != PLUS
1287 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1288 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1289 || (STACK_GROWS_DOWNWARD
1290 ? maybe_ne (offset, -rounded_size)
1291 : maybe_ne (offset, rounded_size)))
1292 return 0;
1293 }
1294
1295 return XEXP (op, 0) == stack_pointer_rtx;
1296 }
1297
1298 /* Return 1 if OP is a valid operand that stands for popping a
1299 value of mode MODE off the stack.
1300
1301 The main use of this function is as a predicate in match_operand
1302 expressions in the machine description. */
1303
1304 int
1305 pop_operand (rtx op, machine_mode mode)
1306 {
1307 if (!MEM_P (op))
1308 return 0;
1309
1310 if (mode != VOIDmode && GET_MODE (op) != mode)
1311 return 0;
1312
1313 op = XEXP (op, 0);
1314
1315 if (GET_CODE (op) != STACK_POP_CODE)
1316 return 0;
1317
1318 return XEXP (op, 0) == stack_pointer_rtx;
1319 }
1320
1321 /* Return 1 if ADDR is a valid memory address
1322 for mode MODE in address space AS. */
1323
1324 int
1325 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1326 rtx addr, addr_space_t as)
1327 {
1328 #ifdef GO_IF_LEGITIMATE_ADDRESS
1329 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1330 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1331 return 0;
1332
1333 win:
1334 return 1;
1335 #else
1336 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1337 #endif
1338 }
1339
1340 /* Return 1 if OP is a valid memory reference with mode MODE,
1341 including a valid address.
1342
1343 The main use of this function is as a predicate in match_operand
1344 expressions in the machine description. */
1345
1346 int
1347 memory_operand (rtx op, machine_mode mode)
1348 {
1349 rtx inner;
1350
1351 if (! reload_completed)
1352 /* Note that no SUBREG is a memory operand before end of reload pass,
1353 because (SUBREG (MEM...)) forces reloading into a register. */
1354 return MEM_P (op) && general_operand (op, mode);
1355
1356 if (mode != VOIDmode && GET_MODE (op) != mode)
1357 return 0;
1358
1359 inner = op;
1360 if (GET_CODE (inner) == SUBREG)
1361 inner = SUBREG_REG (inner);
1362
1363 return (MEM_P (inner) && general_operand (op, mode));
1364 }
1365
1366 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1367 that is, a memory reference whose address is a general_operand. */
1368
1369 int
1370 indirect_operand (rtx op, machine_mode mode)
1371 {
1372 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1373 if (! reload_completed
1374 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1375 {
1376 if (mode != VOIDmode && GET_MODE (op) != mode)
1377 return 0;
1378
1379 /* The only way that we can have a general_operand as the resulting
1380 address is if OFFSET is zero and the address already is an operand
1381 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1382 operand. */
1383 poly_int64 offset;
1384 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1385 return (known_eq (offset + SUBREG_BYTE (op), 0)
1386 && general_operand (addr, Pmode));
1387 }
1388
1389 return (MEM_P (op)
1390 && memory_operand (op, mode)
1391 && general_operand (XEXP (op, 0), Pmode));
1392 }
1393
1394 /* Return 1 if this is an ordered comparison operator (not including
1395 ORDERED and UNORDERED). */
1396
1397 int
1398 ordered_comparison_operator (rtx op, machine_mode mode)
1399 {
1400 if (mode != VOIDmode && GET_MODE (op) != mode)
1401 return false;
1402 switch (GET_CODE (op))
1403 {
1404 case EQ:
1405 case NE:
1406 case LT:
1407 case LTU:
1408 case LE:
1409 case LEU:
1410 case GT:
1411 case GTU:
1412 case GE:
1413 case GEU:
1414 return true;
1415 default:
1416 return false;
1417 }
1418 }
1419
1420 /* Return 1 if this is a comparison operator. This allows the use of
1421 MATCH_OPERATOR to recognize all the branch insns. */
1422
1423 int
1424 comparison_operator (rtx op, machine_mode mode)
1425 {
1426 return ((mode == VOIDmode || GET_MODE (op) == mode)
1427 && COMPARISON_P (op));
1428 }
1429 \f
1430 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1431
1432 rtx
1433 extract_asm_operands (rtx body)
1434 {
1435 rtx tmp;
1436 switch (GET_CODE (body))
1437 {
1438 case ASM_OPERANDS:
1439 return body;
1440
1441 case SET:
1442 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1443 tmp = SET_SRC (body);
1444 if (GET_CODE (tmp) == ASM_OPERANDS)
1445 return tmp;
1446 break;
1447
1448 case PARALLEL:
1449 tmp = XVECEXP (body, 0, 0);
1450 if (GET_CODE (tmp) == ASM_OPERANDS)
1451 return tmp;
1452 if (GET_CODE (tmp) == SET)
1453 {
1454 tmp = SET_SRC (tmp);
1455 if (GET_CODE (tmp) == ASM_OPERANDS)
1456 return tmp;
1457 }
1458 break;
1459
1460 default:
1461 break;
1462 }
1463 return NULL;
1464 }
1465
1466 /* If BODY is an insn body that uses ASM_OPERANDS,
1467 return the number of operands (both input and output) in the insn.
1468 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1469 return 0.
1470 Otherwise return -1. */
1471
1472 int
1473 asm_noperands (const_rtx body)
1474 {
1475 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1476 int i, n_sets = 0;
1477
1478 if (asm_op == NULL)
1479 {
1480 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1481 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1482 {
1483 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1484 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1485 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1486 return -1;
1487 return 0;
1488 }
1489 return -1;
1490 }
1491
1492 if (GET_CODE (body) == SET)
1493 n_sets = 1;
1494 else if (GET_CODE (body) == PARALLEL)
1495 {
1496 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1497 {
1498 /* Multiple output operands, or 1 output plus some clobbers:
1499 body is
1500 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1501 /* Count backwards through CLOBBERs to determine number of SETs. */
1502 for (i = XVECLEN (body, 0); i > 0; i--)
1503 {
1504 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1505 break;
1506 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1507 return -1;
1508 }
1509
1510 /* N_SETS is now number of output operands. */
1511 n_sets = i;
1512
1513 /* Verify that all the SETs we have
1514 came from a single original asm_operands insn
1515 (so that invalid combinations are blocked). */
1516 for (i = 0; i < n_sets; i++)
1517 {
1518 rtx elt = XVECEXP (body, 0, i);
1519 if (GET_CODE (elt) != SET)
1520 return -1;
1521 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1522 return -1;
1523 /* If these ASM_OPERANDS rtx's came from different original insns
1524 then they aren't allowed together. */
1525 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1526 != ASM_OPERANDS_INPUT_VEC (asm_op))
1527 return -1;
1528 }
1529 }
1530 else
1531 {
1532 /* 0 outputs, but some clobbers:
1533 body is [(asm_operands ...) (clobber (reg ...))...]. */
1534 /* Make sure all the other parallel things really are clobbers. */
1535 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1536 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1537 return -1;
1538 }
1539 }
1540
1541 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1542 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1543 }
1544
1545 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1546 copy its operands (both input and output) into the vector OPERANDS,
1547 the locations of the operands within the insn into the vector OPERAND_LOCS,
1548 and the constraints for the operands into CONSTRAINTS.
1549 Write the modes of the operands into MODES.
1550 Write the location info into LOC.
1551 Return the assembler-template.
1552 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1553 return the basic assembly string.
1554
1555 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1556 we don't store that info. */
1557
1558 const char *
1559 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1560 const char **constraints, machine_mode *modes,
1561 location_t *loc)
1562 {
1563 int nbase = 0, n, i;
1564 rtx asmop;
1565
1566 switch (GET_CODE (body))
1567 {
1568 case ASM_OPERANDS:
1569 /* Zero output asm: BODY is (asm_operands ...). */
1570 asmop = body;
1571 break;
1572
1573 case SET:
1574 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1575 asmop = SET_SRC (body);
1576
1577 /* The output is in the SET.
1578 Its constraint is in the ASM_OPERANDS itself. */
1579 if (operands)
1580 operands[0] = SET_DEST (body);
1581 if (operand_locs)
1582 operand_locs[0] = &SET_DEST (body);
1583 if (constraints)
1584 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1585 if (modes)
1586 modes[0] = GET_MODE (SET_DEST (body));
1587 nbase = 1;
1588 break;
1589
1590 case PARALLEL:
1591 {
1592 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1593
1594 asmop = XVECEXP (body, 0, 0);
1595 if (GET_CODE (asmop) == SET)
1596 {
1597 asmop = SET_SRC (asmop);
1598
1599 /* At least one output, plus some CLOBBERs. The outputs are in
1600 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1601 for (i = 0; i < nparallel; i++)
1602 {
1603 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1604 break; /* Past last SET */
1605 gcc_assert (GET_CODE (XVECEXP (body, 0, i)) == SET);
1606 if (operands)
1607 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1608 if (operand_locs)
1609 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1610 if (constraints)
1611 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1612 if (modes)
1613 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1614 }
1615 nbase = i;
1616 }
1617 else if (GET_CODE (asmop) == ASM_INPUT)
1618 {
1619 if (loc)
1620 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1621 return XSTR (asmop, 0);
1622 }
1623 break;
1624 }
1625
1626 default:
1627 gcc_unreachable ();
1628 }
1629
1630 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1631 for (i = 0; i < n; i++)
1632 {
1633 if (operand_locs)
1634 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1635 if (operands)
1636 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1637 if (constraints)
1638 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1639 if (modes)
1640 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1641 }
1642 nbase += n;
1643
1644 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1645 for (i = 0; i < n; i++)
1646 {
1647 if (operand_locs)
1648 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1649 if (operands)
1650 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1651 if (constraints)
1652 constraints[nbase + i] = "";
1653 if (modes)
1654 modes[nbase + i] = Pmode;
1655 }
1656
1657 if (loc)
1658 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1659
1660 return ASM_OPERANDS_TEMPLATE (asmop);
1661 }
1662
1663 /* Parse inline assembly string STRING and determine which operands are
1664 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1665 to true if operand I is referenced.
1666
1667 This is intended to distinguish barrier-like asms such as:
1668
1669 asm ("" : "=m" (...));
1670
1671 from real references such as:
1672
1673 asm ("sw\t$0, %0" : "=m" (...)); */
1674
1675 void
1676 get_referenced_operands (const char *string, bool *used,
1677 unsigned int noperands)
1678 {
1679 memset (used, 0, sizeof (bool) * noperands);
1680 const char *p = string;
1681 while (*p)
1682 switch (*p)
1683 {
1684 case '%':
1685 p += 1;
1686 /* A letter followed by a digit indicates an operand number. */
1687 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1688 p += 1;
1689 if (ISDIGIT (*p))
1690 {
1691 char *endptr;
1692 unsigned long opnum = strtoul (p, &endptr, 10);
1693 if (endptr != p && opnum < noperands)
1694 used[opnum] = true;
1695 p = endptr;
1696 }
1697 else
1698 p += 1;
1699 break;
1700
1701 default:
1702 p++;
1703 break;
1704 }
1705 }
1706
1707 /* Check if an asm_operand matches its constraints.
1708 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1709
1710 int
1711 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1712 {
1713 int result = 0;
1714 bool incdec_ok = false;
1715
1716 /* Use constrain_operands after reload. */
1717 gcc_assert (!reload_completed);
1718
1719 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1720 many alternatives as required to match the other operands. */
1721 if (*constraint == '\0')
1722 result = 1;
1723
1724 while (*constraint)
1725 {
1726 enum constraint_num cn;
1727 char c = *constraint;
1728 int len;
1729 switch (c)
1730 {
1731 case ',':
1732 constraint++;
1733 continue;
1734
1735 case '0': case '1': case '2': case '3': case '4':
1736 case '5': case '6': case '7': case '8': case '9':
1737 /* If caller provided constraints pointer, look up
1738 the matching constraint. Otherwise, our caller should have
1739 given us the proper matching constraint, but we can't
1740 actually fail the check if they didn't. Indicate that
1741 results are inconclusive. */
1742 if (constraints)
1743 {
1744 char *end;
1745 unsigned long match;
1746
1747 match = strtoul (constraint, &end, 10);
1748 if (!result)
1749 result = asm_operand_ok (op, constraints[match], NULL);
1750 constraint = (const char *) end;
1751 }
1752 else
1753 {
1754 do
1755 constraint++;
1756 while (ISDIGIT (*constraint));
1757 if (! result)
1758 result = -1;
1759 }
1760 continue;
1761
1762 /* The rest of the compiler assumes that reloading the address
1763 of a MEM into a register will make it fit an 'o' constraint.
1764 That is, if it sees a MEM operand for an 'o' constraint,
1765 it assumes that (mem (base-reg)) will fit.
1766
1767 That assumption fails on targets that don't have offsettable
1768 addresses at all. We therefore need to treat 'o' asm
1769 constraints as a special case and only accept operands that
1770 are already offsettable, thus proving that at least one
1771 offsettable address exists. */
1772 case 'o': /* offsettable */
1773 if (offsettable_nonstrict_memref_p (op))
1774 result = 1;
1775 break;
1776
1777 case 'g':
1778 if (general_operand (op, VOIDmode))
1779 result = 1;
1780 break;
1781
1782 case '<':
1783 case '>':
1784 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1785 to exist, excepting those that expand_call created. Further,
1786 on some machines which do not have generalized auto inc/dec,
1787 an inc/dec is not a memory_operand.
1788
1789 Match any memory and hope things are resolved after reload. */
1790 incdec_ok = true;
1791 /* FALLTHRU */
1792 default:
1793 cn = lookup_constraint (constraint);
1794 rtx mem = NULL;
1795 switch (get_constraint_type (cn))
1796 {
1797 case CT_REGISTER:
1798 if (!result
1799 && reg_class_for_constraint (cn) != NO_REGS
1800 && GET_MODE (op) != BLKmode
1801 && register_operand (op, VOIDmode))
1802 result = 1;
1803 break;
1804
1805 case CT_CONST_INT:
1806 if (!result
1807 && CONST_INT_P (op)
1808 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1809 result = 1;
1810 break;
1811
1812 case CT_MEMORY:
1813 mem = op;
1814 /* Fall through. */
1815 case CT_SPECIAL_MEMORY:
1816 /* Every memory operand can be reloaded to fit. */
1817 if (!mem)
1818 mem = extract_mem_from_operand (op);
1819 result = result || memory_operand (mem, VOIDmode);
1820 break;
1821
1822 case CT_ADDRESS:
1823 /* Every address operand can be reloaded to fit. */
1824 result = result || address_operand (op, VOIDmode);
1825 break;
1826
1827 case CT_FIXED_FORM:
1828 result = result || constraint_satisfied_p (op, cn);
1829 break;
1830 }
1831 break;
1832 }
1833 len = CONSTRAINT_LEN (c, constraint);
1834 do
1835 constraint++;
1836 while (--len && *constraint && *constraint != ',');
1837 if (len)
1838 return 0;
1839 }
1840
1841 /* For operands without < or > constraints reject side-effects. */
1842 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1843 switch (GET_CODE (XEXP (op, 0)))
1844 {
1845 case PRE_INC:
1846 case POST_INC:
1847 case PRE_DEC:
1848 case POST_DEC:
1849 case PRE_MODIFY:
1850 case POST_MODIFY:
1851 return 0;
1852 default:
1853 break;
1854 }
1855
1856 return result;
1857 }
1858 \f
1859 /* Given an rtx *P, if it is a sum containing an integer constant term,
1860 return the location (type rtx *) of the pointer to that constant term.
1861 Otherwise, return a null pointer. */
1862
1863 rtx *
1864 find_constant_term_loc (rtx *p)
1865 {
1866 rtx *tem;
1867 enum rtx_code code = GET_CODE (*p);
1868
1869 /* If *P IS such a constant term, P is its location. */
1870
1871 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1872 || code == CONST)
1873 return p;
1874
1875 /* Otherwise, if not a sum, it has no constant term. */
1876
1877 if (GET_CODE (*p) != PLUS)
1878 return 0;
1879
1880 /* If one of the summands is constant, return its location. */
1881
1882 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1883 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1884 return p;
1885
1886 /* Otherwise, check each summand for containing a constant term. */
1887
1888 if (XEXP (*p, 0) != 0)
1889 {
1890 tem = find_constant_term_loc (&XEXP (*p, 0));
1891 if (tem != 0)
1892 return tem;
1893 }
1894
1895 if (XEXP (*p, 1) != 0)
1896 {
1897 tem = find_constant_term_loc (&XEXP (*p, 1));
1898 if (tem != 0)
1899 return tem;
1900 }
1901
1902 return 0;
1903 }
1904 \f
1905 /* Return 1 if OP is a memory reference
1906 whose address contains no side effects
1907 and remains valid after the addition
1908 of a positive integer less than the
1909 size of the object being referenced.
1910
1911 We assume that the original address is valid and do not check it.
1912
1913 This uses strict_memory_address_p as a subroutine, so
1914 don't use it before reload. */
1915
1916 int
1917 offsettable_memref_p (rtx op)
1918 {
1919 return ((MEM_P (op))
1920 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1921 MEM_ADDR_SPACE (op)));
1922 }
1923
1924 /* Similar, but don't require a strictly valid mem ref:
1925 consider pseudo-regs valid as index or base regs. */
1926
1927 int
1928 offsettable_nonstrict_memref_p (rtx op)
1929 {
1930 return ((MEM_P (op))
1931 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1932 MEM_ADDR_SPACE (op)));
1933 }
1934
1935 /* Return 1 if Y is a memory address which contains no side effects
1936 and would remain valid for address space AS after the addition of
1937 a positive integer less than the size of that mode.
1938
1939 We assume that the original address is valid and do not check it.
1940 We do check that it is valid for narrower modes.
1941
1942 If STRICTP is nonzero, we require a strictly valid address,
1943 for the sake of use in reload.c. */
1944
1945 int
1946 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1947 addr_space_t as)
1948 {
1949 enum rtx_code ycode = GET_CODE (y);
1950 rtx z;
1951 rtx y1 = y;
1952 rtx *y2;
1953 int (*addressp) (machine_mode, rtx, addr_space_t) =
1954 (strictp ? strict_memory_address_addr_space_p
1955 : memory_address_addr_space_p);
1956 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1957
1958 if (CONSTANT_ADDRESS_P (y))
1959 return 1;
1960
1961 /* Adjusting an offsettable address involves changing to a narrower mode.
1962 Make sure that's OK. */
1963
1964 if (mode_dependent_address_p (y, as))
1965 return 0;
1966
1967 machine_mode address_mode = GET_MODE (y);
1968 if (address_mode == VOIDmode)
1969 address_mode = targetm.addr_space.address_mode (as);
1970 #ifdef POINTERS_EXTEND_UNSIGNED
1971 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1972 #endif
1973
1974 /* ??? How much offset does an offsettable BLKmode reference need?
1975 Clearly that depends on the situation in which it's being used.
1976 However, the current situation in which we test 0xffffffff is
1977 less than ideal. Caveat user. */
1978 if (known_eq (mode_sz, 0))
1979 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1980
1981 /* If the expression contains a constant term,
1982 see if it remains valid when max possible offset is added. */
1983
1984 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1985 {
1986 int good;
1987
1988 y1 = *y2;
1989 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1990 /* Use QImode because an odd displacement may be automatically invalid
1991 for any wider mode. But it should be valid for a single byte. */
1992 good = (*addressp) (QImode, y, as);
1993
1994 /* In any case, restore old contents of memory. */
1995 *y2 = y1;
1996 return good;
1997 }
1998
1999 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2000 return 0;
2001
2002 /* The offset added here is chosen as the maximum offset that
2003 any instruction could need to add when operating on something
2004 of the specified mode. We assume that if Y and Y+c are
2005 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2006 go inside a LO_SUM here, so we do so as well. */
2007 if (GET_CODE (y) == LO_SUM
2008 && mode != BLKmode
2009 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
2010 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2011 plus_constant (address_mode, XEXP (y, 1),
2012 mode_sz - 1));
2013 #ifdef POINTERS_EXTEND_UNSIGNED
2014 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2015 else if (POINTERS_EXTEND_UNSIGNED > 0
2016 && GET_CODE (y) == ZERO_EXTEND
2017 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2018 z = gen_rtx_ZERO_EXTEND (address_mode,
2019 plus_constant (pointer_mode, XEXP (y, 0),
2020 mode_sz - 1));
2021 #endif
2022 else
2023 z = plus_constant (address_mode, y, mode_sz - 1);
2024
2025 /* Use QImode because an odd displacement may be automatically invalid
2026 for any wider mode. But it should be valid for a single byte. */
2027 return (*addressp) (QImode, z, as);
2028 }
2029
2030 /* Return 1 if ADDR is an address-expression whose effect depends
2031 on the mode of the memory reference it is used in.
2032
2033 ADDRSPACE is the address space associated with the address.
2034
2035 Autoincrement addressing is a typical example of mode-dependence
2036 because the amount of the increment depends on the mode. */
2037
2038 bool
2039 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2040 {
2041 /* Auto-increment addressing with anything other than post_modify
2042 or pre_modify always introduces a mode dependency. Catch such
2043 cases now instead of deferring to the target. */
2044 if (GET_CODE (addr) == PRE_INC
2045 || GET_CODE (addr) == POST_INC
2046 || GET_CODE (addr) == PRE_DEC
2047 || GET_CODE (addr) == POST_DEC)
2048 return true;
2049
2050 return targetm.mode_dependent_address_p (addr, addrspace);
2051 }
2052 \f
2053 /* Return true if boolean attribute ATTR is supported. */
2054
2055 static bool
2056 have_bool_attr (bool_attr attr)
2057 {
2058 switch (attr)
2059 {
2060 case BA_ENABLED:
2061 return HAVE_ATTR_enabled;
2062 case BA_PREFERRED_FOR_SIZE:
2063 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2064 case BA_PREFERRED_FOR_SPEED:
2065 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2066 }
2067 gcc_unreachable ();
2068 }
2069
2070 /* Return the value of ATTR for instruction INSN. */
2071
2072 static bool
2073 get_bool_attr (rtx_insn *insn, bool_attr attr)
2074 {
2075 switch (attr)
2076 {
2077 case BA_ENABLED:
2078 return get_attr_enabled (insn);
2079 case BA_PREFERRED_FOR_SIZE:
2080 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2081 case BA_PREFERRED_FOR_SPEED:
2082 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2083 }
2084 gcc_unreachable ();
2085 }
2086
2087 /* Like get_bool_attr_mask, but don't use the cache. */
2088
2089 static alternative_mask
2090 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2091 {
2092 /* Temporarily install enough information for get_attr_<foo> to assume
2093 that the insn operands are already cached. As above, the attribute
2094 mustn't depend on the values of operands, so we don't provide their
2095 real values here. */
2096 rtx_insn *old_insn = recog_data.insn;
2097 int old_alternative = which_alternative;
2098
2099 recog_data.insn = insn;
2100 alternative_mask mask = ALL_ALTERNATIVES;
2101 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2102 for (int i = 0; i < n_alternatives; i++)
2103 {
2104 which_alternative = i;
2105 if (!get_bool_attr (insn, attr))
2106 mask &= ~ALTERNATIVE_BIT (i);
2107 }
2108
2109 recog_data.insn = old_insn;
2110 which_alternative = old_alternative;
2111 return mask;
2112 }
2113
2114 /* Return the mask of operand alternatives that are allowed for INSN
2115 by boolean attribute ATTR. This mask depends only on INSN and on
2116 the current target; it does not depend on things like the values of
2117 operands. */
2118
2119 static alternative_mask
2120 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2121 {
2122 /* Quick exit for asms and for targets that don't use these attributes. */
2123 int code = INSN_CODE (insn);
2124 if (code < 0 || !have_bool_attr (attr))
2125 return ALL_ALTERNATIVES;
2126
2127 /* Calling get_attr_<foo> can be expensive, so cache the mask
2128 for speed. */
2129 if (!this_target_recog->x_bool_attr_masks[code][attr])
2130 this_target_recog->x_bool_attr_masks[code][attr]
2131 = get_bool_attr_mask_uncached (insn, attr);
2132 return this_target_recog->x_bool_attr_masks[code][attr];
2133 }
2134
2135 /* Return the set of alternatives of INSN that are allowed by the current
2136 target. */
2137
2138 alternative_mask
2139 get_enabled_alternatives (rtx_insn *insn)
2140 {
2141 return get_bool_attr_mask (insn, BA_ENABLED);
2142 }
2143
2144 /* Return the set of alternatives of INSN that are allowed by the current
2145 target and are preferred for the current size/speed optimization
2146 choice. */
2147
2148 alternative_mask
2149 get_preferred_alternatives (rtx_insn *insn)
2150 {
2151 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2152 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2153 else
2154 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2155 }
2156
2157 /* Return the set of alternatives of INSN that are allowed by the current
2158 target and are preferred for the size/speed optimization choice
2159 associated with BB. Passing a separate BB is useful if INSN has not
2160 been emitted yet or if we are considering moving it to a different
2161 block. */
2162
2163 alternative_mask
2164 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2165 {
2166 if (optimize_bb_for_speed_p (bb))
2167 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2168 else
2169 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2170 }
2171
2172 /* Assert that the cached boolean attributes for INSN are still accurate.
2173 The backend is required to define these attributes in a way that only
2174 depends on the current target (rather than operands, compiler phase,
2175 etc.). */
2176
2177 bool
2178 check_bool_attrs (rtx_insn *insn)
2179 {
2180 int code = INSN_CODE (insn);
2181 if (code >= 0)
2182 for (int i = 0; i <= BA_LAST; ++i)
2183 {
2184 enum bool_attr attr = (enum bool_attr) i;
2185 if (this_target_recog->x_bool_attr_masks[code][attr])
2186 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2187 == get_bool_attr_mask_uncached (insn, attr));
2188 }
2189 return true;
2190 }
2191
2192 /* Like extract_insn, but save insn extracted and don't extract again, when
2193 called again for the same insn expecting that recog_data still contain the
2194 valid information. This is used primary by gen_attr infrastructure that
2195 often does extract insn again and again. */
2196 void
2197 extract_insn_cached (rtx_insn *insn)
2198 {
2199 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2200 return;
2201 extract_insn (insn);
2202 recog_data.insn = insn;
2203 }
2204
2205 /* Do uncached extract_insn, constrain_operands and complain about failures.
2206 This should be used when extracting a pre-existing constrained instruction
2207 if the caller wants to know which alternative was chosen. */
2208 void
2209 extract_constrain_insn (rtx_insn *insn)
2210 {
2211 extract_insn (insn);
2212 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2213 fatal_insn_not_found (insn);
2214 }
2215
2216 /* Do cached extract_insn, constrain_operands and complain about failures.
2217 Used by insn_attrtab. */
2218 void
2219 extract_constrain_insn_cached (rtx_insn *insn)
2220 {
2221 extract_insn_cached (insn);
2222 if (which_alternative == -1
2223 && !constrain_operands (reload_completed,
2224 get_enabled_alternatives (insn)))
2225 fatal_insn_not_found (insn);
2226 }
2227
2228 /* Do cached constrain_operands on INSN and complain about failures. */
2229 int
2230 constrain_operands_cached (rtx_insn *insn, int strict)
2231 {
2232 if (which_alternative == -1)
2233 return constrain_operands (strict, get_enabled_alternatives (insn));
2234 else
2235 return 1;
2236 }
2237 \f
2238 /* Analyze INSN and fill in recog_data. */
2239
2240 void
2241 extract_insn (rtx_insn *insn)
2242 {
2243 int i;
2244 int icode;
2245 int noperands;
2246 rtx body = PATTERN (insn);
2247
2248 recog_data.n_operands = 0;
2249 recog_data.n_alternatives = 0;
2250 recog_data.n_dups = 0;
2251 recog_data.is_asm = false;
2252
2253 switch (GET_CODE (body))
2254 {
2255 case USE:
2256 case CLOBBER:
2257 case ASM_INPUT:
2258 case ADDR_VEC:
2259 case ADDR_DIFF_VEC:
2260 case VAR_LOCATION:
2261 case DEBUG_MARKER:
2262 return;
2263
2264 case SET:
2265 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2266 goto asm_insn;
2267 else
2268 goto normal_insn;
2269 case PARALLEL:
2270 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2271 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2272 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2273 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2274 goto asm_insn;
2275 else
2276 goto normal_insn;
2277 case ASM_OPERANDS:
2278 asm_insn:
2279 recog_data.n_operands = noperands = asm_noperands (body);
2280 if (noperands >= 0)
2281 {
2282 /* This insn is an `asm' with operands. */
2283
2284 /* expand_asm_operands makes sure there aren't too many operands. */
2285 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2286
2287 /* Now get the operand values and constraints out of the insn. */
2288 decode_asm_operands (body, recog_data.operand,
2289 recog_data.operand_loc,
2290 recog_data.constraints,
2291 recog_data.operand_mode, NULL);
2292 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2293 if (noperands > 0)
2294 {
2295 const char *p = recog_data.constraints[0];
2296 recog_data.n_alternatives = 1;
2297 while (*p)
2298 recog_data.n_alternatives += (*p++ == ',');
2299 }
2300 recog_data.is_asm = true;
2301 break;
2302 }
2303 fatal_insn_not_found (insn);
2304
2305 default:
2306 normal_insn:
2307 /* Ordinary insn: recognize it, get the operands via insn_extract
2308 and get the constraints. */
2309
2310 icode = recog_memoized (insn);
2311 if (icode < 0)
2312 fatal_insn_not_found (insn);
2313
2314 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2315 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2316 recog_data.n_dups = insn_data[icode].n_dups;
2317
2318 insn_extract (insn);
2319
2320 for (i = 0; i < noperands; i++)
2321 {
2322 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2323 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2324 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2325 /* VOIDmode match_operands gets mode from their real operand. */
2326 if (recog_data.operand_mode[i] == VOIDmode)
2327 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2328 }
2329 }
2330 for (i = 0; i < noperands; i++)
2331 recog_data.operand_type[i]
2332 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2333 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2334 : OP_IN);
2335
2336 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2337
2338 recog_data.insn = NULL;
2339 which_alternative = -1;
2340 }
2341
2342 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2343 operands, N_ALTERNATIVES alternatives and constraint strings
2344 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2345 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2346 if the insn is an asm statement and preprocessing should take the
2347 asm operands into account, e.g. to determine whether they could be
2348 addresses in constraints that require addresses; it should then
2349 point to an array of pointers to each operand. */
2350
2351 void
2352 preprocess_constraints (int n_operands, int n_alternatives,
2353 const char **constraints,
2354 operand_alternative *op_alt_base,
2355 rtx **oploc)
2356 {
2357 for (int i = 0; i < n_operands; i++)
2358 {
2359 int j;
2360 struct operand_alternative *op_alt;
2361 const char *p = constraints[i];
2362
2363 op_alt = op_alt_base;
2364
2365 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2366 {
2367 op_alt[i].cl = NO_REGS;
2368 op_alt[i].constraint = p;
2369 op_alt[i].matches = -1;
2370 op_alt[i].matched = -1;
2371
2372 if (*p == '\0' || *p == ',')
2373 {
2374 op_alt[i].anything_ok = 1;
2375 continue;
2376 }
2377
2378 for (;;)
2379 {
2380 char c = *p;
2381 if (c == '#')
2382 do
2383 c = *++p;
2384 while (c != ',' && c != '\0');
2385 if (c == ',' || c == '\0')
2386 {
2387 p++;
2388 break;
2389 }
2390
2391 switch (c)
2392 {
2393 case '?':
2394 op_alt[i].reject += 6;
2395 break;
2396 case '!':
2397 op_alt[i].reject += 600;
2398 break;
2399 case '&':
2400 op_alt[i].earlyclobber = 1;
2401 break;
2402
2403 case '0': case '1': case '2': case '3': case '4':
2404 case '5': case '6': case '7': case '8': case '9':
2405 {
2406 char *end;
2407 op_alt[i].matches = strtoul (p, &end, 10);
2408 op_alt[op_alt[i].matches].matched = i;
2409 p = end;
2410 }
2411 continue;
2412
2413 case 'X':
2414 op_alt[i].anything_ok = 1;
2415 break;
2416
2417 case 'g':
2418 op_alt[i].cl =
2419 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2420 break;
2421
2422 default:
2423 enum constraint_num cn = lookup_constraint (p);
2424 enum reg_class cl;
2425 switch (get_constraint_type (cn))
2426 {
2427 case CT_REGISTER:
2428 cl = reg_class_for_constraint (cn);
2429 if (cl != NO_REGS)
2430 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2431 break;
2432
2433 case CT_CONST_INT:
2434 break;
2435
2436 case CT_MEMORY:
2437 case CT_SPECIAL_MEMORY:
2438 op_alt[i].memory_ok = 1;
2439 break;
2440
2441 case CT_ADDRESS:
2442 if (oploc && !address_operand (*oploc[i], VOIDmode))
2443 break;
2444
2445 op_alt[i].is_address = 1;
2446 op_alt[i].cl
2447 = (reg_class_subunion
2448 [(int) op_alt[i].cl]
2449 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2450 ADDRESS, SCRATCH)]);
2451 break;
2452
2453 case CT_FIXED_FORM:
2454 break;
2455 }
2456 break;
2457 }
2458 p += CONSTRAINT_LEN (c, p);
2459 }
2460 }
2461 }
2462 }
2463
2464 /* Return an array of operand_alternative instructions for
2465 instruction ICODE. */
2466
2467 const operand_alternative *
2468 preprocess_insn_constraints (unsigned int icode)
2469 {
2470 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2471 if (this_target_recog->x_op_alt[icode])
2472 return this_target_recog->x_op_alt[icode];
2473
2474 int n_operands = insn_data[icode].n_operands;
2475 if (n_operands == 0)
2476 return 0;
2477 /* Always provide at least one alternative so that which_op_alt ()
2478 works correctly. If the instruction has 0 alternatives (i.e. all
2479 constraint strings are empty) then each operand in this alternative
2480 will have anything_ok set. */
2481 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2482 int n_entries = n_operands * n_alternatives;
2483
2484 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2485 const char **constraints = XALLOCAVEC (const char *, n_operands);
2486
2487 for (int i = 0; i < n_operands; ++i)
2488 constraints[i] = insn_data[icode].operand[i].constraint;
2489 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2490 NULL);
2491
2492 this_target_recog->x_op_alt[icode] = op_alt;
2493 return op_alt;
2494 }
2495
2496 /* After calling extract_insn, you can use this function to extract some
2497 information from the constraint strings into a more usable form.
2498 The collected data is stored in recog_op_alt. */
2499
2500 void
2501 preprocess_constraints (rtx_insn *insn)
2502 {
2503 int icode = INSN_CODE (insn);
2504 if (icode >= 0)
2505 recog_op_alt = preprocess_insn_constraints (icode);
2506 else
2507 {
2508 int n_operands = recog_data.n_operands;
2509 int n_alternatives = recog_data.n_alternatives;
2510 int n_entries = n_operands * n_alternatives;
2511 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2512 preprocess_constraints (n_operands, n_alternatives,
2513 recog_data.constraints, asm_op_alt,
2514 NULL);
2515 recog_op_alt = asm_op_alt;
2516 }
2517 }
2518
2519 /* Check the operands of an insn against the insn's operand constraints
2520 and return 1 if they match any of the alternatives in ALTERNATIVES.
2521
2522 The information about the insn's operands, constraints, operand modes
2523 etc. is obtained from the global variables set up by extract_insn.
2524
2525 WHICH_ALTERNATIVE is set to a number which indicates which
2526 alternative of constraints was matched: 0 for the first alternative,
2527 1 for the next, etc.
2528
2529 In addition, when two operands are required to match
2530 and it happens that the output operand is (reg) while the
2531 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2532 make the output operand look like the input.
2533 This is because the output operand is the one the template will print.
2534
2535 This is used in final, just before printing the assembler code and by
2536 the routines that determine an insn's attribute.
2537
2538 If STRICT is a positive nonzero value, it means that we have been
2539 called after reload has been completed. In that case, we must
2540 do all checks strictly. If it is zero, it means that we have been called
2541 before reload has completed. In that case, we first try to see if we can
2542 find an alternative that matches strictly. If not, we try again, this
2543 time assuming that reload will fix up the insn. This provides a "best
2544 guess" for the alternative and is used to compute attributes of insns prior
2545 to reload. A negative value of STRICT is used for this internal call. */
2546
2547 struct funny_match
2548 {
2549 int this_op, other;
2550 };
2551
2552 int
2553 constrain_operands (int strict, alternative_mask alternatives)
2554 {
2555 const char *constraints[MAX_RECOG_OPERANDS];
2556 int matching_operands[MAX_RECOG_OPERANDS];
2557 int earlyclobber[MAX_RECOG_OPERANDS];
2558 int c;
2559
2560 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2561 int funny_match_index;
2562
2563 which_alternative = 0;
2564 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2565 return 1;
2566
2567 for (c = 0; c < recog_data.n_operands; c++)
2568 {
2569 constraints[c] = recog_data.constraints[c];
2570 matching_operands[c] = -1;
2571 }
2572
2573 do
2574 {
2575 int seen_earlyclobber_at = -1;
2576 int opno;
2577 int lose = 0;
2578 funny_match_index = 0;
2579
2580 if (!TEST_BIT (alternatives, which_alternative))
2581 {
2582 int i;
2583
2584 for (i = 0; i < recog_data.n_operands; i++)
2585 constraints[i] = skip_alternative (constraints[i]);
2586
2587 which_alternative++;
2588 continue;
2589 }
2590
2591 for (opno = 0; opno < recog_data.n_operands; opno++)
2592 {
2593 rtx op = recog_data.operand[opno];
2594 machine_mode mode = GET_MODE (op);
2595 const char *p = constraints[opno];
2596 int offset = 0;
2597 int win = 0;
2598 int val;
2599 int len;
2600
2601 earlyclobber[opno] = 0;
2602
2603 /* A unary operator may be accepted by the predicate, but it
2604 is irrelevant for matching constraints. */
2605 /* For special_memory_operand, there could be a memory operand inside,
2606 and it would cause a mismatch for constraint_satisfied_p. */
2607 if (UNARY_P (op) && op == extract_mem_from_operand (op))
2608 op = XEXP (op, 0);
2609
2610 if (GET_CODE (op) == SUBREG)
2611 {
2612 if (REG_P (SUBREG_REG (op))
2613 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2614 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2615 GET_MODE (SUBREG_REG (op)),
2616 SUBREG_BYTE (op),
2617 GET_MODE (op));
2618 op = SUBREG_REG (op);
2619 }
2620
2621 /* An empty constraint or empty alternative
2622 allows anything which matched the pattern. */
2623 if (*p == 0 || *p == ',')
2624 win = 1;
2625
2626 do
2627 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2628 {
2629 case '\0':
2630 len = 0;
2631 break;
2632 case ',':
2633 c = '\0';
2634 break;
2635
2636 case '#':
2637 /* Ignore rest of this alternative as far as
2638 constraint checking is concerned. */
2639 do
2640 p++;
2641 while (*p && *p != ',');
2642 len = 0;
2643 break;
2644
2645 case '&':
2646 earlyclobber[opno] = 1;
2647 if (seen_earlyclobber_at < 0)
2648 seen_earlyclobber_at = opno;
2649 break;
2650
2651 case '0': case '1': case '2': case '3': case '4':
2652 case '5': case '6': case '7': case '8': case '9':
2653 {
2654 /* This operand must be the same as a previous one.
2655 This kind of constraint is used for instructions such
2656 as add when they take only two operands.
2657
2658 Note that the lower-numbered operand is passed first.
2659
2660 If we are not testing strictly, assume that this
2661 constraint will be satisfied. */
2662
2663 char *end;
2664 int match;
2665
2666 match = strtoul (p, &end, 10);
2667 p = end;
2668
2669 if (strict < 0)
2670 val = 1;
2671 else
2672 {
2673 rtx op1 = recog_data.operand[match];
2674 rtx op2 = recog_data.operand[opno];
2675
2676 /* A unary operator may be accepted by the predicate,
2677 but it is irrelevant for matching constraints. */
2678 if (UNARY_P (op1))
2679 op1 = XEXP (op1, 0);
2680 if (UNARY_P (op2))
2681 op2 = XEXP (op2, 0);
2682
2683 val = operands_match_p (op1, op2);
2684 }
2685
2686 matching_operands[opno] = match;
2687 matching_operands[match] = opno;
2688
2689 if (val != 0)
2690 win = 1;
2691
2692 /* If output is *x and input is *--x, arrange later
2693 to change the output to *--x as well, since the
2694 output op is the one that will be printed. */
2695 if (val == 2 && strict > 0)
2696 {
2697 funny_match[funny_match_index].this_op = opno;
2698 funny_match[funny_match_index++].other = match;
2699 }
2700 }
2701 len = 0;
2702 break;
2703
2704 case 'p':
2705 /* p is used for address_operands. When we are called by
2706 gen_reload, no one will have checked that the address is
2707 strictly valid, i.e., that all pseudos requiring hard regs
2708 have gotten them. We also want to make sure we have a
2709 valid mode. */
2710 if ((GET_MODE (op) == VOIDmode
2711 || SCALAR_INT_MODE_P (GET_MODE (op)))
2712 && (strict <= 0
2713 || (strict_memory_address_p
2714 (recog_data.operand_mode[opno], op))))
2715 win = 1;
2716 break;
2717
2718 /* No need to check general_operand again;
2719 it was done in insn-recog.c. Well, except that reload
2720 doesn't check the validity of its replacements, but
2721 that should only matter when there's a bug. */
2722 case 'g':
2723 /* Anything goes unless it is a REG and really has a hard reg
2724 but the hard reg is not in the class GENERAL_REGS. */
2725 if (REG_P (op))
2726 {
2727 if (strict < 0
2728 || GENERAL_REGS == ALL_REGS
2729 || (reload_in_progress
2730 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2731 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2732 win = 1;
2733 }
2734 else if (strict < 0 || general_operand (op, mode))
2735 win = 1;
2736 break;
2737
2738 default:
2739 {
2740 enum constraint_num cn = lookup_constraint (p);
2741 enum reg_class cl = reg_class_for_constraint (cn);
2742 if (cl != NO_REGS)
2743 {
2744 if (strict < 0
2745 || (strict == 0
2746 && REG_P (op)
2747 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2748 || (strict == 0 && GET_CODE (op) == SCRATCH)
2749 || (REG_P (op)
2750 && reg_fits_class_p (op, cl, offset, mode)))
2751 win = 1;
2752 }
2753
2754 else if (constraint_satisfied_p (op, cn))
2755 win = 1;
2756
2757 else if (insn_extra_memory_constraint (cn)
2758 /* Every memory operand can be reloaded to fit. */
2759 && ((strict < 0 && MEM_P (op))
2760 /* Before reload, accept what reload can turn
2761 into a mem. */
2762 || (strict < 0 && CONSTANT_P (op))
2763 /* Before reload, accept a pseudo or hard register,
2764 since LRA can turn it into a mem. */
2765 || (strict < 0 && targetm.lra_p () && REG_P (op))
2766 /* During reload, accept a pseudo */
2767 || (reload_in_progress && REG_P (op)
2768 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2769 win = 1;
2770 else if (insn_extra_address_constraint (cn)
2771 /* Every address operand can be reloaded to fit. */
2772 && strict < 0)
2773 win = 1;
2774 /* Cater to architectures like IA-64 that define extra memory
2775 constraints without using define_memory_constraint. */
2776 else if (reload_in_progress
2777 && REG_P (op)
2778 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2779 && reg_renumber[REGNO (op)] < 0
2780 && reg_equiv_mem (REGNO (op)) != 0
2781 && constraint_satisfied_p
2782 (reg_equiv_mem (REGNO (op)), cn))
2783 win = 1;
2784 break;
2785 }
2786 }
2787 while (p += len, c);
2788
2789 constraints[opno] = p;
2790 /* If this operand did not win somehow,
2791 this alternative loses. */
2792 if (! win)
2793 lose = 1;
2794 }
2795 /* This alternative won; the operands are ok.
2796 Change whichever operands this alternative says to change. */
2797 if (! lose)
2798 {
2799 int opno, eopno;
2800
2801 /* See if any earlyclobber operand conflicts with some other
2802 operand. */
2803
2804 if (strict > 0 && seen_earlyclobber_at >= 0)
2805 for (eopno = seen_earlyclobber_at;
2806 eopno < recog_data.n_operands;
2807 eopno++)
2808 /* Ignore earlyclobber operands now in memory,
2809 because we would often report failure when we have
2810 two memory operands, one of which was formerly a REG. */
2811 if (earlyclobber[eopno]
2812 && REG_P (recog_data.operand[eopno]))
2813 for (opno = 0; opno < recog_data.n_operands; opno++)
2814 if ((MEM_P (recog_data.operand[opno])
2815 || recog_data.operand_type[opno] != OP_OUT)
2816 && opno != eopno
2817 /* Ignore things like match_operator operands. */
2818 && *recog_data.constraints[opno] != 0
2819 && ! (matching_operands[opno] == eopno
2820 && operands_match_p (recog_data.operand[opno],
2821 recog_data.operand[eopno]))
2822 && ! safe_from_earlyclobber (recog_data.operand[opno],
2823 recog_data.operand[eopno]))
2824 lose = 1;
2825
2826 if (! lose)
2827 {
2828 while (--funny_match_index >= 0)
2829 {
2830 recog_data.operand[funny_match[funny_match_index].other]
2831 = recog_data.operand[funny_match[funny_match_index].this_op];
2832 }
2833
2834 /* For operands without < or > constraints reject side-effects. */
2835 if (AUTO_INC_DEC && recog_data.is_asm)
2836 {
2837 for (opno = 0; opno < recog_data.n_operands; opno++)
2838 if (MEM_P (recog_data.operand[opno]))
2839 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2840 {
2841 case PRE_INC:
2842 case POST_INC:
2843 case PRE_DEC:
2844 case POST_DEC:
2845 case PRE_MODIFY:
2846 case POST_MODIFY:
2847 if (strchr (recog_data.constraints[opno], '<') == NULL
2848 && strchr (recog_data.constraints[opno], '>')
2849 == NULL)
2850 return 0;
2851 break;
2852 default:
2853 break;
2854 }
2855 }
2856
2857 return 1;
2858 }
2859 }
2860
2861 which_alternative++;
2862 }
2863 while (which_alternative < recog_data.n_alternatives);
2864
2865 which_alternative = -1;
2866 /* If we are about to reject this, but we are not to test strictly,
2867 try a very loose test. Only return failure if it fails also. */
2868 if (strict == 0)
2869 return constrain_operands (-1, alternatives);
2870 else
2871 return 0;
2872 }
2873
2874 /* Return true iff OPERAND (assumed to be a REG rtx)
2875 is a hard reg in class CLASS when its regno is offset by OFFSET
2876 and changed to mode MODE.
2877 If REG occupies multiple hard regs, all of them must be in CLASS. */
2878
2879 bool
2880 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2881 machine_mode mode)
2882 {
2883 unsigned int regno = REGNO (operand);
2884
2885 if (cl == NO_REGS)
2886 return false;
2887
2888 /* Regno must not be a pseudo register. Offset may be negative. */
2889 return (HARD_REGISTER_NUM_P (regno)
2890 && HARD_REGISTER_NUM_P (regno + offset)
2891 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2892 regno + offset));
2893 }
2894 \f
2895 /* Split single instruction. Helper function for split_all_insns and
2896 split_all_insns_noflow. Return last insn in the sequence if successful,
2897 or NULL if unsuccessful. */
2898
2899 static rtx_insn *
2900 split_insn (rtx_insn *insn)
2901 {
2902 /* Split insns here to get max fine-grain parallelism. */
2903 rtx_insn *first = PREV_INSN (insn);
2904 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2905 rtx insn_set, last_set, note;
2906
2907 if (last == insn)
2908 return NULL;
2909
2910 /* If the original instruction was a single set that was known to be
2911 equivalent to a constant, see if we can say the same about the last
2912 instruction in the split sequence. The two instructions must set
2913 the same destination. */
2914 insn_set = single_set (insn);
2915 if (insn_set)
2916 {
2917 last_set = single_set (last);
2918 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2919 {
2920 note = find_reg_equal_equiv_note (insn);
2921 if (note && CONSTANT_P (XEXP (note, 0)))
2922 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2923 else if (CONSTANT_P (SET_SRC (insn_set)))
2924 set_unique_reg_note (last, REG_EQUAL,
2925 copy_rtx (SET_SRC (insn_set)));
2926 }
2927 }
2928
2929 /* try_split returns the NOTE that INSN became. */
2930 SET_INSN_DELETED (insn);
2931
2932 /* ??? Coddle to md files that generate subregs in post-reload
2933 splitters instead of computing the proper hard register. */
2934 if (reload_completed && first != last)
2935 {
2936 first = NEXT_INSN (first);
2937 for (;;)
2938 {
2939 if (INSN_P (first))
2940 cleanup_subreg_operands (first);
2941 if (first == last)
2942 break;
2943 first = NEXT_INSN (first);
2944 }
2945 }
2946
2947 return last;
2948 }
2949
2950 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2951
2952 void
2953 split_all_insns (void)
2954 {
2955 bool changed;
2956 bool need_cfg_cleanup = false;
2957 basic_block bb;
2958
2959 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2960 bitmap_clear (blocks);
2961 changed = false;
2962
2963 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2964 {
2965 rtx_insn *insn, *next;
2966 bool finish = false;
2967
2968 rtl_profile_for_bb (bb);
2969 for (insn = BB_HEAD (bb); !finish ; insn = next)
2970 {
2971 /* Can't use `next_real_insn' because that might go across
2972 CODE_LABELS and short-out basic blocks. */
2973 next = NEXT_INSN (insn);
2974 finish = (insn == BB_END (bb));
2975
2976 /* If INSN has a REG_EH_REGION note and we split INSN, the
2977 resulting split may not have/need REG_EH_REGION notes.
2978
2979 If that happens and INSN was the last reference to the
2980 given EH region, then the EH region will become unreachable.
2981 We cannot leave the unreachable blocks in the CFG as that
2982 will trigger a checking failure.
2983
2984 So track if INSN has a REG_EH_REGION note. If so and we
2985 split INSN, then trigger a CFG cleanup. */
2986 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2987 if (INSN_P (insn))
2988 {
2989 rtx set = single_set (insn);
2990
2991 /* Don't split no-op move insns. These should silently
2992 disappear later in final. Splitting such insns would
2993 break the code that handles LIBCALL blocks. */
2994 if (set && set_noop_p (set))
2995 {
2996 /* Nops get in the way while scheduling, so delete them
2997 now if register allocation has already been done. It
2998 is too risky to try to do this before register
2999 allocation, and there are unlikely to be very many
3000 nops then anyways. */
3001 if (reload_completed)
3002 delete_insn_and_edges (insn);
3003 if (note)
3004 need_cfg_cleanup = true;
3005 }
3006 else
3007 {
3008 if (split_insn (insn))
3009 {
3010 bitmap_set_bit (blocks, bb->index);
3011 changed = true;
3012 if (note)
3013 need_cfg_cleanup = true;
3014 }
3015 }
3016 }
3017 }
3018 }
3019
3020 default_rtl_profile ();
3021 if (changed)
3022 {
3023 find_many_sub_basic_blocks (blocks);
3024
3025 /* Splitting could drop an REG_EH_REGION if it potentially
3026 trapped in its original form, but does not in its split
3027 form. Consider a FLOAT_TRUNCATE which splits into a memory
3028 store/load pair and -fnon-call-exceptions. */
3029 if (need_cfg_cleanup)
3030 cleanup_cfg (0);
3031 }
3032
3033 checking_verify_flow_info ();
3034 }
3035
3036 /* Same as split_all_insns, but do not expect CFG to be available.
3037 Used by machine dependent reorg passes. */
3038
3039 unsigned int
3040 split_all_insns_noflow (void)
3041 {
3042 rtx_insn *next, *insn;
3043
3044 for (insn = get_insns (); insn; insn = next)
3045 {
3046 next = NEXT_INSN (insn);
3047 if (INSN_P (insn))
3048 {
3049 /* Don't split no-op move insns. These should silently
3050 disappear later in final. Splitting such insns would
3051 break the code that handles LIBCALL blocks. */
3052 rtx set = single_set (insn);
3053 if (set && set_noop_p (set))
3054 {
3055 /* Nops get in the way while scheduling, so delete them
3056 now if register allocation has already been done. It
3057 is too risky to try to do this before register
3058 allocation, and there are unlikely to be very many
3059 nops then anyways.
3060
3061 ??? Should we use delete_insn when the CFG isn't valid? */
3062 if (reload_completed)
3063 delete_insn_and_edges (insn);
3064 }
3065 else
3066 split_insn (insn);
3067 }
3068 }
3069 return 0;
3070 }
3071 \f
3072 struct peep2_insn_data
3073 {
3074 rtx_insn *insn;
3075 regset live_before;
3076 };
3077
3078 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3079 static int peep2_current;
3080
3081 static bool peep2_do_rebuild_jump_labels;
3082 static bool peep2_do_cleanup_cfg;
3083
3084 /* The number of instructions available to match a peep2. */
3085 int peep2_current_count;
3086
3087 /* A marker indicating the last insn of the block. The live_before regset
3088 for this element is correct, indicating DF_LIVE_OUT for the block. */
3089 #define PEEP2_EOB invalid_insn_rtx
3090
3091 /* Wrap N to fit into the peep2_insn_data buffer. */
3092
3093 static int
3094 peep2_buf_position (int n)
3095 {
3096 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3097 n -= MAX_INSNS_PER_PEEP2 + 1;
3098 return n;
3099 }
3100
3101 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3102 does not exist. Used by the recognizer to find the next insn to match
3103 in a multi-insn pattern. */
3104
3105 rtx_insn *
3106 peep2_next_insn (int n)
3107 {
3108 gcc_assert (n <= peep2_current_count);
3109
3110 n = peep2_buf_position (peep2_current + n);
3111
3112 return peep2_insn_data[n].insn;
3113 }
3114
3115 /* Return true if REGNO is dead before the Nth non-note insn
3116 after `current'. */
3117
3118 int
3119 peep2_regno_dead_p (int ofs, int regno)
3120 {
3121 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3122
3123 ofs = peep2_buf_position (peep2_current + ofs);
3124
3125 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3126
3127 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3128 }
3129
3130 /* Similarly for a REG. */
3131
3132 int
3133 peep2_reg_dead_p (int ofs, rtx reg)
3134 {
3135 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3136
3137 ofs = peep2_buf_position (peep2_current + ofs);
3138
3139 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3140
3141 unsigned int end_regno = END_REGNO (reg);
3142 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3143 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3144 return 0;
3145 return 1;
3146 }
3147
3148 /* Regno offset to be used in the register search. */
3149 static int search_ofs;
3150
3151 /* Try to find a hard register of mode MODE, matching the register class in
3152 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3153 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3154 in which case the only condition is that the register must be available
3155 before CURRENT_INSN.
3156 Registers that already have bits set in REG_SET will not be considered.
3157
3158 If an appropriate register is available, it will be returned and the
3159 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3160 returned. */
3161
3162 rtx
3163 peep2_find_free_register (int from, int to, const char *class_str,
3164 machine_mode mode, HARD_REG_SET *reg_set)
3165 {
3166 enum reg_class cl;
3167 HARD_REG_SET live;
3168 df_ref def;
3169 int i;
3170
3171 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3172 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3173
3174 from = peep2_buf_position (peep2_current + from);
3175 to = peep2_buf_position (peep2_current + to);
3176
3177 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3178 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3179
3180 while (from != to)
3181 {
3182 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3183
3184 /* Don't use registers set or clobbered by the insn. */
3185 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3186 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3187
3188 from = peep2_buf_position (from + 1);
3189 }
3190
3191 cl = reg_class_for_constraint (lookup_constraint (class_str));
3192
3193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3194 {
3195 int raw_regno, regno, success, j;
3196
3197 /* Distribute the free registers as much as possible. */
3198 raw_regno = search_ofs + i;
3199 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3200 raw_regno -= FIRST_PSEUDO_REGISTER;
3201 #ifdef REG_ALLOC_ORDER
3202 regno = reg_alloc_order[raw_regno];
3203 #else
3204 regno = raw_regno;
3205 #endif
3206
3207 /* Can it support the mode we need? */
3208 if (!targetm.hard_regno_mode_ok (regno, mode))
3209 continue;
3210
3211 success = 1;
3212 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3213 {
3214 /* Don't allocate fixed registers. */
3215 if (fixed_regs[regno + j])
3216 {
3217 success = 0;
3218 break;
3219 }
3220 /* Don't allocate global registers. */
3221 if (global_regs[regno + j])
3222 {
3223 success = 0;
3224 break;
3225 }
3226 /* Make sure the register is of the right class. */
3227 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3228 {
3229 success = 0;
3230 break;
3231 }
3232 /* And that we don't create an extra save/restore. */
3233 if (! crtl->abi->clobbers_full_reg_p (regno + j)
3234 && ! df_regs_ever_live_p (regno + j))
3235 {
3236 success = 0;
3237 break;
3238 }
3239
3240 if (! targetm.hard_regno_scratch_ok (regno + j))
3241 {
3242 success = 0;
3243 break;
3244 }
3245
3246 /* And we don't clobber traceback for noreturn functions. */
3247 if ((regno + j == FRAME_POINTER_REGNUM
3248 || regno + j == HARD_FRAME_POINTER_REGNUM)
3249 && (! reload_completed || frame_pointer_needed))
3250 {
3251 success = 0;
3252 break;
3253 }
3254
3255 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3256 || TEST_HARD_REG_BIT (live, regno + j))
3257 {
3258 success = 0;
3259 break;
3260 }
3261 }
3262
3263 if (success)
3264 {
3265 add_to_hard_reg_set (reg_set, mode, regno);
3266
3267 /* Start the next search with the next register. */
3268 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3269 raw_regno = 0;
3270 search_ofs = raw_regno;
3271
3272 return gen_rtx_REG (mode, regno);
3273 }
3274 }
3275
3276 search_ofs = 0;
3277 return NULL_RTX;
3278 }
3279
3280 /* Forget all currently tracked instructions, only remember current
3281 LIVE regset. */
3282
3283 static void
3284 peep2_reinit_state (regset live)
3285 {
3286 int i;
3287
3288 /* Indicate that all slots except the last holds invalid data. */
3289 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3290 peep2_insn_data[i].insn = NULL;
3291 peep2_current_count = 0;
3292
3293 /* Indicate that the last slot contains live_after data. */
3294 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3295 peep2_current = MAX_INSNS_PER_PEEP2;
3296
3297 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3298 }
3299
3300 /* Copies frame related info of an insn (OLD_INSN) to the single
3301 insn (NEW_INSN) that was obtained by splitting OLD_INSN. */
3302
3303 void
3304 copy_frame_info_to_split_insn (rtx_insn *old_insn, rtx_insn *new_insn)
3305 {
3306 bool any_note = false;
3307 rtx note;
3308
3309 if (!RTX_FRAME_RELATED_P (old_insn))
3310 return;
3311
3312 RTX_FRAME_RELATED_P (new_insn) = 1;
3313
3314 /* Allow the backend to fill in a note during the split. */
3315 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3316 switch (REG_NOTE_KIND (note))
3317 {
3318 case REG_FRAME_RELATED_EXPR:
3319 case REG_CFA_DEF_CFA:
3320 case REG_CFA_ADJUST_CFA:
3321 case REG_CFA_OFFSET:
3322 case REG_CFA_REGISTER:
3323 case REG_CFA_EXPRESSION:
3324 case REG_CFA_RESTORE:
3325 case REG_CFA_SET_VDRAP:
3326 any_note = true;
3327 break;
3328 default:
3329 break;
3330 }
3331
3332 /* If the backend didn't supply a note, copy one over. */
3333 if (!any_note)
3334 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3335 switch (REG_NOTE_KIND (note))
3336 {
3337 case REG_FRAME_RELATED_EXPR:
3338 case REG_CFA_DEF_CFA:
3339 case REG_CFA_ADJUST_CFA:
3340 case REG_CFA_OFFSET:
3341 case REG_CFA_REGISTER:
3342 case REG_CFA_EXPRESSION:
3343 case REG_CFA_RESTORE:
3344 case REG_CFA_SET_VDRAP:
3345 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3346 any_note = true;
3347 break;
3348 default:
3349 break;
3350 }
3351
3352 /* If there still isn't a note, make sure the unwind info sees the
3353 same expression as before the split. */
3354 if (!any_note)
3355 {
3356 rtx old_set, new_set;
3357
3358 /* The old insn had better have been simple, or annotated. */
3359 old_set = single_set (old_insn);
3360 gcc_assert (old_set != NULL);
3361
3362 new_set = single_set (new_insn);
3363 if (!new_set || !rtx_equal_p (new_set, old_set))
3364 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3365 }
3366
3367 /* Copy prologue/epilogue status. This is required in order to keep
3368 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3369 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3370 }
3371
3372 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3373 starting at INSN. Perform the replacement, removing the old insns and
3374 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3375 if the replacement is rejected. */
3376
3377 static rtx_insn *
3378 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3379 {
3380 int i;
3381 rtx_insn *last, *before_try, *x;
3382 rtx eh_note, as_note;
3383 rtx_insn *old_insn;
3384 rtx_insn *new_insn;
3385 bool was_call = false;
3386
3387 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3388 match more than one insn, or to be split into more than one insn. */
3389 old_insn = peep2_insn_data[peep2_current].insn;
3390 if (RTX_FRAME_RELATED_P (old_insn))
3391 {
3392 if (match_len != 0)
3393 return NULL;
3394
3395 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3396 may be in the stream for the purpose of register allocation. */
3397 if (active_insn_p (attempt))
3398 new_insn = attempt;
3399 else
3400 new_insn = next_active_insn (attempt);
3401 if (next_active_insn (new_insn))
3402 return NULL;
3403
3404 /* We have a 1-1 replacement. Copy over any frame-related info. */
3405 copy_frame_info_to_split_insn (old_insn, new_insn);
3406 }
3407
3408 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3409 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3410 cfg-related call notes. */
3411 for (i = 0; i <= match_len; ++i)
3412 {
3413 int j;
3414 rtx note;
3415
3416 j = peep2_buf_position (peep2_current + i);
3417 old_insn = peep2_insn_data[j].insn;
3418 if (!CALL_P (old_insn))
3419 continue;
3420 was_call = true;
3421
3422 new_insn = attempt;
3423 while (new_insn != NULL_RTX)
3424 {
3425 if (CALL_P (new_insn))
3426 break;
3427 new_insn = NEXT_INSN (new_insn);
3428 }
3429
3430 gcc_assert (new_insn != NULL_RTX);
3431
3432 CALL_INSN_FUNCTION_USAGE (new_insn)
3433 = CALL_INSN_FUNCTION_USAGE (old_insn);
3434 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3435
3436 for (note = REG_NOTES (old_insn);
3437 note;
3438 note = XEXP (note, 1))
3439 switch (REG_NOTE_KIND (note))
3440 {
3441 case REG_NORETURN:
3442 case REG_SETJMP:
3443 case REG_TM:
3444 case REG_CALL_NOCF_CHECK:
3445 add_reg_note (new_insn, REG_NOTE_KIND (note),
3446 XEXP (note, 0));
3447 break;
3448 default:
3449 /* Discard all other reg notes. */
3450 break;
3451 }
3452
3453 /* Croak if there is another call in the sequence. */
3454 while (++i <= match_len)
3455 {
3456 j = peep2_buf_position (peep2_current + i);
3457 old_insn = peep2_insn_data[j].insn;
3458 gcc_assert (!CALL_P (old_insn));
3459 }
3460 break;
3461 }
3462
3463 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3464 move those notes over to the new sequence. */
3465 as_note = NULL;
3466 for (i = match_len; i >= 0; --i)
3467 {
3468 int j = peep2_buf_position (peep2_current + i);
3469 old_insn = peep2_insn_data[j].insn;
3470
3471 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3472 if (as_note)
3473 break;
3474 }
3475
3476 i = peep2_buf_position (peep2_current + match_len);
3477 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3478
3479 /* Replace the old sequence with the new. */
3480 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3481 last = emit_insn_after_setloc (attempt,
3482 peep2_insn_data[i].insn,
3483 INSN_LOCATION (peepinsn));
3484 if (JUMP_P (peepinsn) && JUMP_P (last))
3485 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3486 before_try = PREV_INSN (insn);
3487 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3488
3489 /* Re-insert the EH_REGION notes. */
3490 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3491 {
3492 edge eh_edge;
3493 edge_iterator ei;
3494
3495 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3496 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3497 break;
3498
3499 if (eh_note)
3500 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3501
3502 if (eh_edge)
3503 for (x = last; x != before_try; x = PREV_INSN (x))
3504 if (x != BB_END (bb)
3505 && (can_throw_internal (x)
3506 || can_nonlocal_goto (x)))
3507 {
3508 edge nfte, nehe;
3509 int flags;
3510
3511 nfte = split_block (bb, x);
3512 flags = (eh_edge->flags
3513 & (EDGE_EH | EDGE_ABNORMAL));
3514 if (CALL_P (x))
3515 flags |= EDGE_ABNORMAL_CALL;
3516 nehe = make_edge (nfte->src, eh_edge->dest,
3517 flags);
3518
3519 nehe->probability = eh_edge->probability;
3520 nfte->probability = nehe->probability.invert ();
3521
3522 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3523 bb = nfte->src;
3524 eh_edge = nehe;
3525 }
3526
3527 /* Converting possibly trapping insn to non-trapping is
3528 possible. Zap dummy outgoing edges. */
3529 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3530 }
3531
3532 /* Re-insert the ARGS_SIZE notes. */
3533 if (as_note)
3534 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3535
3536 /* Scan the new insns for embedded side effects and add appropriate
3537 REG_INC notes. */
3538 if (AUTO_INC_DEC)
3539 for (x = last; x != before_try; x = PREV_INSN (x))
3540 if (NONDEBUG_INSN_P (x))
3541 add_auto_inc_notes (x, PATTERN (x));
3542
3543 /* If we generated a jump instruction, it won't have
3544 JUMP_LABEL set. Recompute after we're done. */
3545 for (x = last; x != before_try; x = PREV_INSN (x))
3546 if (JUMP_P (x))
3547 {
3548 peep2_do_rebuild_jump_labels = true;
3549 break;
3550 }
3551
3552 return last;
3553 }
3554
3555 /* After performing a replacement in basic block BB, fix up the life
3556 information in our buffer. LAST is the last of the insns that we
3557 emitted as a replacement. PREV is the insn before the start of
3558 the replacement. MATCH_LEN is the number of instructions that were
3559 matched, and which now need to be replaced in the buffer. */
3560
3561 static void
3562 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3563 rtx_insn *prev)
3564 {
3565 int i = peep2_buf_position (peep2_current + match_len + 1);
3566 rtx_insn *x;
3567 regset_head live;
3568
3569 INIT_REG_SET (&live);
3570 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3571
3572 gcc_assert (peep2_current_count >= match_len + 1);
3573 peep2_current_count -= match_len + 1;
3574
3575 x = last;
3576 do
3577 {
3578 if (INSN_P (x))
3579 {
3580 df_insn_rescan (x);
3581 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3582 {
3583 peep2_current_count++;
3584 if (--i < 0)
3585 i = MAX_INSNS_PER_PEEP2;
3586 peep2_insn_data[i].insn = x;
3587 df_simulate_one_insn_backwards (bb, x, &live);
3588 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3589 }
3590 }
3591 x = PREV_INSN (x);
3592 }
3593 while (x != prev);
3594 CLEAR_REG_SET (&live);
3595
3596 peep2_current = i;
3597 }
3598
3599 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3600 Return true if we added it, false otherwise. The caller will try to match
3601 peepholes against the buffer if we return false; otherwise it will try to
3602 add more instructions to the buffer. */
3603
3604 static bool
3605 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3606 {
3607 int pos;
3608
3609 /* Once we have filled the maximum number of insns the buffer can hold,
3610 allow the caller to match the insns against peepholes. We wait until
3611 the buffer is full in case the target has similar peepholes of different
3612 length; we always want to match the longest if possible. */
3613 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3614 return false;
3615
3616 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3617 any other pattern, lest it change the semantics of the frame info. */
3618 if (RTX_FRAME_RELATED_P (insn))
3619 {
3620 /* Let the buffer drain first. */
3621 if (peep2_current_count > 0)
3622 return false;
3623 /* Now the insn will be the only thing in the buffer. */
3624 }
3625
3626 pos = peep2_buf_position (peep2_current + peep2_current_count);
3627 peep2_insn_data[pos].insn = insn;
3628 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3629 peep2_current_count++;
3630
3631 df_simulate_one_insn_forwards (bb, insn, live);
3632 return true;
3633 }
3634
3635 /* Perform the peephole2 optimization pass. */
3636
3637 static void
3638 peephole2_optimize (void)
3639 {
3640 rtx_insn *insn;
3641 bitmap live;
3642 int i;
3643 basic_block bb;
3644
3645 peep2_do_cleanup_cfg = false;
3646 peep2_do_rebuild_jump_labels = false;
3647
3648 df_set_flags (DF_LR_RUN_DCE);
3649 df_note_add_problem ();
3650 df_analyze ();
3651
3652 /* Initialize the regsets we're going to use. */
3653 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3654 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3655 search_ofs = 0;
3656 live = BITMAP_ALLOC (&reg_obstack);
3657
3658 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3659 {
3660 bool past_end = false;
3661 int pos;
3662
3663 rtl_profile_for_bb (bb);
3664
3665 /* Start up propagation. */
3666 bitmap_copy (live, DF_LR_IN (bb));
3667 df_simulate_initialize_forwards (bb, live);
3668 peep2_reinit_state (live);
3669
3670 insn = BB_HEAD (bb);
3671 for (;;)
3672 {
3673 rtx_insn *attempt, *head;
3674 int match_len;
3675
3676 if (!past_end && !NONDEBUG_INSN_P (insn))
3677 {
3678 next_insn:
3679 insn = NEXT_INSN (insn);
3680 if (insn == NEXT_INSN (BB_END (bb)))
3681 past_end = true;
3682 continue;
3683 }
3684 if (!past_end && peep2_fill_buffer (bb, insn, live))
3685 goto next_insn;
3686
3687 /* If we did not fill an empty buffer, it signals the end of the
3688 block. */
3689 if (peep2_current_count == 0)
3690 break;
3691
3692 /* The buffer filled to the current maximum, so try to match. */
3693
3694 pos = peep2_buf_position (peep2_current + peep2_current_count);
3695 peep2_insn_data[pos].insn = PEEP2_EOB;
3696 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3697
3698 /* Match the peephole. */
3699 head = peep2_insn_data[peep2_current].insn;
3700 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3701 if (attempt != NULL)
3702 {
3703 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3704 if (last)
3705 {
3706 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3707 continue;
3708 }
3709 }
3710
3711 /* No match: advance the buffer by one insn. */
3712 peep2_current = peep2_buf_position (peep2_current + 1);
3713 peep2_current_count--;
3714 }
3715 }
3716
3717 default_rtl_profile ();
3718 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3719 BITMAP_FREE (peep2_insn_data[i].live_before);
3720 BITMAP_FREE (live);
3721 if (peep2_do_rebuild_jump_labels)
3722 rebuild_jump_labels (get_insns ());
3723 if (peep2_do_cleanup_cfg)
3724 cleanup_cfg (CLEANUP_CFG_CHANGED);
3725 }
3726
3727 /* Common predicates for use with define_bypass. */
3728
3729 /* Helper function for store_data_bypass_p, handle just a single SET
3730 IN_SET. */
3731
3732 static bool
3733 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3734 {
3735 if (!MEM_P (SET_DEST (in_set)))
3736 return false;
3737
3738 rtx out_set = single_set (out_insn);
3739 if (out_set)
3740 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3741
3742 rtx out_pat = PATTERN (out_insn);
3743 if (GET_CODE (out_pat) != PARALLEL)
3744 return false;
3745
3746 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3747 {
3748 rtx out_exp = XVECEXP (out_pat, 0, i);
3749
3750 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE)
3751 continue;
3752
3753 gcc_assert (GET_CODE (out_exp) == SET);
3754
3755 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3756 return false;
3757 }
3758
3759 return true;
3760 }
3761
3762 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3763 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3764 must be either a single_set or a PARALLEL with SETs inside. */
3765
3766 int
3767 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3768 {
3769 rtx in_set = single_set (in_insn);
3770 if (in_set)
3771 return store_data_bypass_p_1 (out_insn, in_set);
3772
3773 rtx in_pat = PATTERN (in_insn);
3774 if (GET_CODE (in_pat) != PARALLEL)
3775 return false;
3776
3777 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3778 {
3779 rtx in_exp = XVECEXP (in_pat, 0, i);
3780
3781 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE)
3782 continue;
3783
3784 gcc_assert (GET_CODE (in_exp) == SET);
3785
3786 if (!store_data_bypass_p_1 (out_insn, in_exp))
3787 return false;
3788 }
3789
3790 return true;
3791 }
3792
3793 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3794 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3795 or multiple set; IN_INSN should be single_set for truth, but for convenience
3796 of insn categorization may be any JUMP or CALL insn. */
3797
3798 int
3799 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3800 {
3801 rtx out_set, in_set;
3802
3803 in_set = single_set (in_insn);
3804 if (! in_set)
3805 {
3806 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3807 return false;
3808 }
3809
3810 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3811 return false;
3812 in_set = SET_SRC (in_set);
3813
3814 out_set = single_set (out_insn);
3815 if (out_set)
3816 {
3817 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3818 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3819 return false;
3820 }
3821 else
3822 {
3823 rtx out_pat;
3824 int i;
3825
3826 out_pat = PATTERN (out_insn);
3827 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3828
3829 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3830 {
3831 rtx exp = XVECEXP (out_pat, 0, i);
3832
3833 if (GET_CODE (exp) == CLOBBER)
3834 continue;
3835
3836 gcc_assert (GET_CODE (exp) == SET);
3837
3838 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3839 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3840 return false;
3841 }
3842 }
3843
3844 return true;
3845 }
3846 \f
3847 static unsigned int
3848 rest_of_handle_peephole2 (void)
3849 {
3850 if (HAVE_peephole2)
3851 peephole2_optimize ();
3852
3853 return 0;
3854 }
3855
3856 namespace {
3857
3858 const pass_data pass_data_peephole2 =
3859 {
3860 RTL_PASS, /* type */
3861 "peephole2", /* name */
3862 OPTGROUP_NONE, /* optinfo_flags */
3863 TV_PEEPHOLE2, /* tv_id */
3864 0, /* properties_required */
3865 0, /* properties_provided */
3866 0, /* properties_destroyed */
3867 0, /* todo_flags_start */
3868 TODO_df_finish, /* todo_flags_finish */
3869 };
3870
3871 class pass_peephole2 : public rtl_opt_pass
3872 {
3873 public:
3874 pass_peephole2 (gcc::context *ctxt)
3875 : rtl_opt_pass (pass_data_peephole2, ctxt)
3876 {}
3877
3878 /* opt_pass methods: */
3879 /* The epiphany backend creates a second instance of this pass, so we need
3880 a clone method. */
3881 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3882 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3883 virtual unsigned int execute (function *)
3884 {
3885 return rest_of_handle_peephole2 ();
3886 }
3887
3888 }; // class pass_peephole2
3889
3890 } // anon namespace
3891
3892 rtl_opt_pass *
3893 make_pass_peephole2 (gcc::context *ctxt)
3894 {
3895 return new pass_peephole2 (ctxt);
3896 }
3897
3898 namespace {
3899
3900 const pass_data pass_data_split_all_insns =
3901 {
3902 RTL_PASS, /* type */
3903 "split1", /* name */
3904 OPTGROUP_NONE, /* optinfo_flags */
3905 TV_NONE, /* tv_id */
3906 0, /* properties_required */
3907 PROP_rtl_split_insns, /* properties_provided */
3908 0, /* properties_destroyed */
3909 0, /* todo_flags_start */
3910 0, /* todo_flags_finish */
3911 };
3912
3913 class pass_split_all_insns : public rtl_opt_pass
3914 {
3915 public:
3916 pass_split_all_insns (gcc::context *ctxt)
3917 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3918 {}
3919
3920 /* opt_pass methods: */
3921 /* The epiphany backend creates a second instance of this pass, so
3922 we need a clone method. */
3923 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3924 virtual unsigned int execute (function *)
3925 {
3926 split_all_insns ();
3927 return 0;
3928 }
3929
3930 }; // class pass_split_all_insns
3931
3932 } // anon namespace
3933
3934 rtl_opt_pass *
3935 make_pass_split_all_insns (gcc::context *ctxt)
3936 {
3937 return new pass_split_all_insns (ctxt);
3938 }
3939
3940 namespace {
3941
3942 const pass_data pass_data_split_after_reload =
3943 {
3944 RTL_PASS, /* type */
3945 "split2", /* name */
3946 OPTGROUP_NONE, /* optinfo_flags */
3947 TV_NONE, /* tv_id */
3948 0, /* properties_required */
3949 0, /* properties_provided */
3950 0, /* properties_destroyed */
3951 0, /* todo_flags_start */
3952 0, /* todo_flags_finish */
3953 };
3954
3955 class pass_split_after_reload : public rtl_opt_pass
3956 {
3957 public:
3958 pass_split_after_reload (gcc::context *ctxt)
3959 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3960 {}
3961
3962 /* opt_pass methods: */
3963 virtual bool gate (function *)
3964 {
3965 /* If optimizing, then go ahead and split insns now. */
3966 return optimize > 0;
3967 }
3968
3969 virtual unsigned int execute (function *)
3970 {
3971 split_all_insns ();
3972 return 0;
3973 }
3974
3975 }; // class pass_split_after_reload
3976
3977 } // anon namespace
3978
3979 rtl_opt_pass *
3980 make_pass_split_after_reload (gcc::context *ctxt)
3981 {
3982 return new pass_split_after_reload (ctxt);
3983 }
3984
3985 static bool
3986 enable_split_before_sched2 (void)
3987 {
3988 #ifdef INSN_SCHEDULING
3989 return optimize > 0 && flag_schedule_insns_after_reload;
3990 #else
3991 return false;
3992 #endif
3993 }
3994
3995 namespace {
3996
3997 const pass_data pass_data_split_before_sched2 =
3998 {
3999 RTL_PASS, /* type */
4000 "split3", /* name */
4001 OPTGROUP_NONE, /* optinfo_flags */
4002 TV_NONE, /* tv_id */
4003 0, /* properties_required */
4004 0, /* properties_provided */
4005 0, /* properties_destroyed */
4006 0, /* todo_flags_start */
4007 0, /* todo_flags_finish */
4008 };
4009
4010 class pass_split_before_sched2 : public rtl_opt_pass
4011 {
4012 public:
4013 pass_split_before_sched2 (gcc::context *ctxt)
4014 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4015 {}
4016
4017 /* opt_pass methods: */
4018 virtual bool gate (function *)
4019 {
4020 return enable_split_before_sched2 ();
4021 }
4022
4023 virtual unsigned int execute (function *)
4024 {
4025 split_all_insns ();
4026 return 0;
4027 }
4028
4029 }; // class pass_split_before_sched2
4030
4031 } // anon namespace
4032
4033 rtl_opt_pass *
4034 make_pass_split_before_sched2 (gcc::context *ctxt)
4035 {
4036 return new pass_split_before_sched2 (ctxt);
4037 }
4038
4039 namespace {
4040
4041 const pass_data pass_data_split_before_regstack =
4042 {
4043 RTL_PASS, /* type */
4044 "split4", /* name */
4045 OPTGROUP_NONE, /* optinfo_flags */
4046 TV_NONE, /* tv_id */
4047 0, /* properties_required */
4048 0, /* properties_provided */
4049 0, /* properties_destroyed */
4050 0, /* todo_flags_start */
4051 0, /* todo_flags_finish */
4052 };
4053
4054 class pass_split_before_regstack : public rtl_opt_pass
4055 {
4056 public:
4057 pass_split_before_regstack (gcc::context *ctxt)
4058 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4059 {}
4060
4061 /* opt_pass methods: */
4062 virtual bool gate (function *);
4063 virtual unsigned int execute (function *)
4064 {
4065 split_all_insns ();
4066 return 0;
4067 }
4068
4069 }; // class pass_split_before_regstack
4070
4071 bool
4072 pass_split_before_regstack::gate (function *)
4073 {
4074 #if HAVE_ATTR_length && defined (STACK_REGS)
4075 /* If flow2 creates new instructions which need splitting
4076 and scheduling after reload is not done, they might not be
4077 split until final which doesn't allow splitting
4078 if HAVE_ATTR_length. */
4079 return !enable_split_before_sched2 ();
4080 #else
4081 return false;
4082 #endif
4083 }
4084
4085 } // anon namespace
4086
4087 rtl_opt_pass *
4088 make_pass_split_before_regstack (gcc::context *ctxt)
4089 {
4090 return new pass_split_before_regstack (ctxt);
4091 }
4092
4093 namespace {
4094
4095 const pass_data pass_data_split_for_shorten_branches =
4096 {
4097 RTL_PASS, /* type */
4098 "split5", /* name */
4099 OPTGROUP_NONE, /* optinfo_flags */
4100 TV_NONE, /* tv_id */
4101 0, /* properties_required */
4102 0, /* properties_provided */
4103 0, /* properties_destroyed */
4104 0, /* todo_flags_start */
4105 0, /* todo_flags_finish */
4106 };
4107
4108 class pass_split_for_shorten_branches : public rtl_opt_pass
4109 {
4110 public:
4111 pass_split_for_shorten_branches (gcc::context *ctxt)
4112 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4113 {}
4114
4115 /* opt_pass methods: */
4116 virtual bool gate (function *)
4117 {
4118 /* The placement of the splitting that we do for shorten_branches
4119 depends on whether regstack is used by the target or not. */
4120 #if HAVE_ATTR_length && !defined (STACK_REGS)
4121 return true;
4122 #else
4123 return false;
4124 #endif
4125 }
4126
4127 virtual unsigned int execute (function *)
4128 {
4129 return split_all_insns_noflow ();
4130 }
4131
4132 }; // class pass_split_for_shorten_branches
4133
4134 } // anon namespace
4135
4136 rtl_opt_pass *
4137 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4138 {
4139 return new pass_split_for_shorten_branches (ctxt);
4140 }
4141
4142 /* (Re)initialize the target information after a change in target. */
4143
4144 void
4145 recog_init ()
4146 {
4147 /* The information is zero-initialized, so we don't need to do anything
4148 first time round. */
4149 if (!this_target_recog->x_initialized)
4150 {
4151 this_target_recog->x_initialized = true;
4152 return;
4153 }
4154 memset (this_target_recog->x_bool_attr_masks, 0,
4155 sizeof (this_target_recog->x_bool_attr_masks));
4156 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4157 if (this_target_recog->x_op_alt[i])
4158 {
4159 free (this_target_recog->x_op_alt[i]);
4160 this_target_recog->x_op_alt[i] = 0;
4161 }
4162 }