(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "basic-block.h"
41 #include "output.h"
42 #include "reload.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
46 #include "df.h"
47
48 #ifndef STACK_PUSH_CODE
49 #ifdef STACK_GROWS_DOWNWARD
50 #define STACK_PUSH_CODE PRE_DEC
51 #else
52 #define STACK_PUSH_CODE PRE_INC
53 #endif
54 #endif
55
56 #ifndef STACK_POP_CODE
57 #ifdef STACK_GROWS_DOWNWARD
58 #define STACK_POP_CODE POST_INC
59 #else
60 #define STACK_POP_CODE POST_DEC
61 #endif
62 #endif
63
64 #ifndef HAVE_ATTR_enabled
65 static inline bool
66 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
67 {
68 return true;
69 }
70 #endif
71
72 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
73 static void validate_replace_src_1 (rtx *, void *);
74 static rtx split_insn (rtx);
75
76 /* Nonzero means allow operands to be volatile.
77 This should be 0 if you are generating rtl, such as if you are calling
78 the functions in optabs.c and expmed.c (most of the time).
79 This should be 1 if all valid insns need to be recognized,
80 such as in reginfo.c and final.c and reload.c.
81
82 init_recog and init_recog_no_volatile are responsible for setting this. */
83
84 int volatile_ok;
85
86 struct recog_data recog_data;
87
88 /* Contains a vector of operand_alternative structures for every operand.
89 Set up by preprocess_constraints. */
90 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
91
92 /* On return from `constrain_operands', indicate which alternative
93 was satisfied. */
94
95 int which_alternative;
96
97 /* Nonzero after end of reload pass.
98 Set to 1 or 0 by toplev.c.
99 Controls the significance of (SUBREG (MEM)). */
100
101 int reload_completed;
102
103 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
104 int epilogue_completed;
105
106 /* Initialize data used by the function `recog'.
107 This must be called once in the compilation of a function
108 before any insn recognition may be done in the function. */
109
110 void
111 init_recog_no_volatile (void)
112 {
113 volatile_ok = 0;
114 }
115
116 void
117 init_recog (void)
118 {
119 volatile_ok = 1;
120 }
121
122 \f
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
125
126 int
127 check_asm_operands (rtx x)
128 {
129 int noperands;
130 rtx *operands;
131 const char **constraints;
132 int i;
133
134 /* Post-reload, be more strict with things. */
135 if (reload_completed)
136 {
137 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
138 extract_insn (make_insn_raw (x));
139 constrain_operands (1);
140 return which_alternative >= 0;
141 }
142
143 noperands = asm_noperands (x);
144 if (noperands < 0)
145 return 0;
146 if (noperands == 0)
147 return 1;
148
149 operands = XALLOCAVEC (rtx, noperands);
150 constraints = XALLOCAVEC (const char *, noperands);
151
152 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
153
154 for (i = 0; i < noperands; i++)
155 {
156 const char *c = constraints[i];
157 if (c[0] == '%')
158 c++;
159 if (! asm_operand_ok (operands[i], c, constraints))
160 return 0;
161 }
162
163 return 1;
164 }
165 \f
166 /* Static data for the next two routines. */
167
168 typedef struct change_t
169 {
170 rtx object;
171 int old_code;
172 rtx *loc;
173 rtx old;
174 bool unshare;
175 } change_t;
176
177 static change_t *changes;
178 static int changes_allocated;
179
180 static int num_changes = 0;
181
182 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
183 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
184 the change is simply made.
185
186 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
187 will be called with the address and mode as parameters. If OBJECT is
188 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
189 the change in place.
190
191 IN_GROUP is nonzero if this is part of a group of changes that must be
192 performed as a group. In that case, the changes will be stored. The
193 function `apply_change_group' will validate and apply the changes.
194
195 If IN_GROUP is zero, this is a single change. Try to recognize the insn
196 or validate the memory reference with the change applied. If the result
197 is not valid for the machine, suppress the change and return zero.
198 Otherwise, perform the change and return 1. */
199
200 static bool
201 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
202 {
203 rtx old = *loc;
204
205 if (old == new_rtx || rtx_equal_p (old, new_rtx))
206 return 1;
207
208 gcc_assert (in_group != 0 || num_changes == 0);
209
210 *loc = new_rtx;
211
212 /* Save the information describing this change. */
213 if (num_changes >= changes_allocated)
214 {
215 if (changes_allocated == 0)
216 /* This value allows for repeated substitutions inside complex
217 indexed addresses, or changes in up to 5 insns. */
218 changes_allocated = MAX_RECOG_OPERANDS * 5;
219 else
220 changes_allocated *= 2;
221
222 changes = XRESIZEVEC (change_t, changes, changes_allocated);
223 }
224
225 changes[num_changes].object = object;
226 changes[num_changes].loc = loc;
227 changes[num_changes].old = old;
228 changes[num_changes].unshare = unshare;
229
230 if (object && !MEM_P (object))
231 {
232 /* Set INSN_CODE to force rerecognition of insn. Save old code in
233 case invalid. */
234 changes[num_changes].old_code = INSN_CODE (object);
235 INSN_CODE (object) = -1;
236 }
237
238 num_changes++;
239
240 /* If we are making a group of changes, return 1. Otherwise, validate the
241 change group we made. */
242
243 if (in_group)
244 return 1;
245 else
246 return apply_change_group ();
247 }
248
249 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
250 UNSHARE to false. */
251
252 bool
253 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
254 {
255 return validate_change_1 (object, loc, new_rtx, in_group, false);
256 }
257
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to true. */
260
261 bool
262 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
263 {
264 return validate_change_1 (object, loc, new_rtx, in_group, true);
265 }
266
267
268 /* Keep X canonicalized if some changes have made it non-canonical; only
269 modifies the operands of X, not (for example) its code. Simplifications
270 are not the job of this routine.
271
272 Return true if anything was changed. */
273 bool
274 canonicalize_change_group (rtx insn, rtx x)
275 {
276 if (COMMUTATIVE_P (x)
277 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
278 {
279 /* Oops, the caller has made X no longer canonical.
280 Let's redo the changes in the correct order. */
281 rtx tem = XEXP (x, 0);
282 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
283 validate_change (insn, &XEXP (x, 1), tem, 1);
284 return true;
285 }
286 else
287 return false;
288 }
289
290
291 /* This subroutine of apply_change_group verifies whether the changes to INSN
292 were valid; i.e. whether INSN can still be recognized. */
293
294 int
295 insn_invalid_p (rtx insn)
296 {
297 rtx pat = PATTERN (insn);
298 int num_clobbers = 0;
299 /* If we are before reload and the pattern is a SET, see if we can add
300 clobbers. */
301 int icode = recog (pat, insn,
302 (GET_CODE (pat) == SET
303 && ! reload_completed && ! reload_in_progress)
304 ? &num_clobbers : 0);
305 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
306
307
308 /* If this is an asm and the operand aren't legal, then fail. Likewise if
309 this is not an asm and the insn wasn't recognized. */
310 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
311 || (!is_asm && icode < 0))
312 return 1;
313
314 /* If we have to add CLOBBERs, fail if we have to add ones that reference
315 hard registers since our callers can't know if they are live or not.
316 Otherwise, add them. */
317 if (num_clobbers > 0)
318 {
319 rtx newpat;
320
321 if (added_clobbers_hard_reg_p (icode))
322 return 1;
323
324 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
325 XVECEXP (newpat, 0, 0) = pat;
326 add_clobbers (newpat, icode);
327 PATTERN (insn) = pat = newpat;
328 }
329
330 /* After reload, verify that all constraints are satisfied. */
331 if (reload_completed)
332 {
333 extract_insn (insn);
334
335 if (! constrain_operands (1))
336 return 1;
337 }
338
339 INSN_CODE (insn) = icode;
340 return 0;
341 }
342
343 /* Return number of changes made and not validated yet. */
344 int
345 num_changes_pending (void)
346 {
347 return num_changes;
348 }
349
350 /* Tentatively apply the changes numbered NUM and up.
351 Return 1 if all changes are valid, zero otherwise. */
352
353 int
354 verify_changes (int num)
355 {
356 int i;
357 rtx last_validated = NULL_RTX;
358
359 /* The changes have been applied and all INSN_CODEs have been reset to force
360 rerecognition.
361
362 The changes are valid if we aren't given an object, or if we are
363 given a MEM and it still is a valid address, or if this is in insn
364 and it is recognized. In the latter case, if reload has completed,
365 we also require that the operands meet the constraints for
366 the insn. */
367
368 for (i = num; i < num_changes; i++)
369 {
370 rtx object = changes[i].object;
371
372 /* If there is no object to test or if it is the same as the one we
373 already tested, ignore it. */
374 if (object == 0 || object == last_validated)
375 continue;
376
377 if (MEM_P (object))
378 {
379 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
380 break;
381 }
382 else if (REG_P (changes[i].old)
383 && asm_noperands (PATTERN (object)) > 0
384 && REG_EXPR (changes[i].old) != NULL_TREE
385 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
386 && DECL_REGISTER (REG_EXPR (changes[i].old)))
387 {
388 /* Don't allow changes of hard register operands to inline
389 assemblies if they have been defined as register asm ("x"). */
390 break;
391 }
392 else if (insn_invalid_p (object))
393 {
394 rtx pat = PATTERN (object);
395
396 /* Perhaps we couldn't recognize the insn because there were
397 extra CLOBBERs at the end. If so, try to re-recognize
398 without the last CLOBBER (later iterations will cause each of
399 them to be eliminated, in turn). But don't do this if we
400 have an ASM_OPERAND. */
401 if (GET_CODE (pat) == PARALLEL
402 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
403 && asm_noperands (PATTERN (object)) < 0)
404 {
405 rtx newpat;
406
407 if (XVECLEN (pat, 0) == 2)
408 newpat = XVECEXP (pat, 0, 0);
409 else
410 {
411 int j;
412
413 newpat
414 = gen_rtx_PARALLEL (VOIDmode,
415 rtvec_alloc (XVECLEN (pat, 0) - 1));
416 for (j = 0; j < XVECLEN (newpat, 0); j++)
417 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
418 }
419
420 /* Add a new change to this group to replace the pattern
421 with this new pattern. Then consider this change
422 as having succeeded. The change we added will
423 cause the entire call to fail if things remain invalid.
424
425 Note that this can lose if a later change than the one
426 we are processing specified &XVECEXP (PATTERN (object), 0, X)
427 but this shouldn't occur. */
428
429 validate_change (object, &PATTERN (object), newpat, 1);
430 continue;
431 }
432 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
433 /* If this insn is a CLOBBER or USE, it is always valid, but is
434 never recognized. */
435 continue;
436 else
437 break;
438 }
439 last_validated = object;
440 }
441
442 return (i == num_changes);
443 }
444
445 /* A group of changes has previously been issued with validate_change
446 and verified with verify_changes. Call df_insn_rescan for each of
447 the insn changed and clear num_changes. */
448
449 void
450 confirm_change_group (void)
451 {
452 int i;
453 rtx last_object = NULL;
454
455 for (i = 0; i < num_changes; i++)
456 {
457 rtx object = changes[i].object;
458
459 if (changes[i].unshare)
460 *changes[i].loc = copy_rtx (*changes[i].loc);
461
462 /* Avoid unnecessary rescanning when multiple changes to same instruction
463 are made. */
464 if (object)
465 {
466 if (object != last_object && last_object && INSN_P (last_object))
467 df_insn_rescan (last_object);
468 last_object = object;
469 }
470 }
471
472 if (last_object && INSN_P (last_object))
473 df_insn_rescan (last_object);
474 num_changes = 0;
475 }
476
477 /* Apply a group of changes previously issued with `validate_change'.
478 If all changes are valid, call confirm_change_group and return 1,
479 otherwise, call cancel_changes and return 0. */
480
481 int
482 apply_change_group (void)
483 {
484 if (verify_changes (0))
485 {
486 confirm_change_group ();
487 return 1;
488 }
489 else
490 {
491 cancel_changes (0);
492 return 0;
493 }
494 }
495
496
497 /* Return the number of changes so far in the current group. */
498
499 int
500 num_validated_changes (void)
501 {
502 return num_changes;
503 }
504
505 /* Retract the changes numbered NUM and up. */
506
507 void
508 cancel_changes (int num)
509 {
510 int i;
511
512 /* Back out all the changes. Do this in the opposite order in which
513 they were made. */
514 for (i = num_changes - 1; i >= num; i--)
515 {
516 *changes[i].loc = changes[i].old;
517 if (changes[i].object && !MEM_P (changes[i].object))
518 INSN_CODE (changes[i].object) = changes[i].old_code;
519 }
520 num_changes = num;
521 }
522
523 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
524 rtx. */
525
526 static void
527 simplify_while_replacing (rtx *loc, rtx to, rtx object,
528 enum machine_mode op0_mode)
529 {
530 rtx x = *loc;
531 enum rtx_code code = GET_CODE (x);
532 rtx new_rtx;
533
534 if (SWAPPABLE_OPERANDS_P (x)
535 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
536 {
537 validate_unshare_change (object, loc,
538 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
539 : swap_condition (code),
540 GET_MODE (x), XEXP (x, 1),
541 XEXP (x, 0)), 1);
542 x = *loc;
543 code = GET_CODE (x);
544 }
545
546 switch (code)
547 {
548 case PLUS:
549 /* If we have a PLUS whose second operand is now a CONST_INT, use
550 simplify_gen_binary to try to simplify it.
551 ??? We may want later to remove this, once simplification is
552 separated from this function. */
553 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
554 validate_change (object, loc,
555 simplify_gen_binary
556 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
557 break;
558 case MINUS:
559 if (GET_CODE (XEXP (x, 1)) == CONST_INT
560 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
561 validate_change (object, loc,
562 simplify_gen_binary
563 (PLUS, GET_MODE (x), XEXP (x, 0),
564 simplify_gen_unary (NEG,
565 GET_MODE (x), XEXP (x, 1),
566 GET_MODE (x))), 1);
567 break;
568 case ZERO_EXTEND:
569 case SIGN_EXTEND:
570 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
571 {
572 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
573 op0_mode);
574 /* If any of the above failed, substitute in something that
575 we know won't be recognized. */
576 if (!new_rtx)
577 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
578 validate_change (object, loc, new_rtx, 1);
579 }
580 break;
581 case SUBREG:
582 /* All subregs possible to simplify should be simplified. */
583 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
584 SUBREG_BYTE (x));
585
586 /* Subregs of VOIDmode operands are incorrect. */
587 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
588 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
589 if (new_rtx)
590 validate_change (object, loc, new_rtx, 1);
591 break;
592 case ZERO_EXTRACT:
593 case SIGN_EXTRACT:
594 /* If we are replacing a register with memory, try to change the memory
595 to be the mode required for memory in extract operations (this isn't
596 likely to be an insertion operation; if it was, nothing bad will
597 happen, we might just fail in some cases). */
598
599 if (MEM_P (XEXP (x, 0))
600 && GET_CODE (XEXP (x, 1)) == CONST_INT
601 && GET_CODE (XEXP (x, 2)) == CONST_INT
602 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
603 && !MEM_VOLATILE_P (XEXP (x, 0)))
604 {
605 enum machine_mode wanted_mode = VOIDmode;
606 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
607 int pos = INTVAL (XEXP (x, 2));
608
609 if (GET_CODE (x) == ZERO_EXTRACT)
610 {
611 enum machine_mode new_mode
612 = mode_for_extraction (EP_extzv, 1);
613 if (new_mode != MAX_MACHINE_MODE)
614 wanted_mode = new_mode;
615 }
616 else if (GET_CODE (x) == SIGN_EXTRACT)
617 {
618 enum machine_mode new_mode
619 = mode_for_extraction (EP_extv, 1);
620 if (new_mode != MAX_MACHINE_MODE)
621 wanted_mode = new_mode;
622 }
623
624 /* If we have a narrower mode, we can do something. */
625 if (wanted_mode != VOIDmode
626 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
627 {
628 int offset = pos / BITS_PER_UNIT;
629 rtx newmem;
630
631 /* If the bytes and bits are counted differently, we
632 must adjust the offset. */
633 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
634 offset =
635 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
636 offset);
637
638 pos %= GET_MODE_BITSIZE (wanted_mode);
639
640 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
641
642 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
643 validate_change (object, &XEXP (x, 0), newmem, 1);
644 }
645 }
646
647 break;
648
649 default:
650 break;
651 }
652 }
653
654 /* Replace every occurrence of FROM in X with TO. Mark each change with
655 validate_change passing OBJECT. */
656
657 static void
658 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
659 bool simplify)
660 {
661 int i, j;
662 const char *fmt;
663 rtx x = *loc;
664 enum rtx_code code;
665 enum machine_mode op0_mode = VOIDmode;
666 int prev_changes = num_changes;
667
668 if (!x)
669 return;
670
671 code = GET_CODE (x);
672 fmt = GET_RTX_FORMAT (code);
673 if (fmt[0] == 'e')
674 op0_mode = GET_MODE (XEXP (x, 0));
675
676 /* X matches FROM if it is the same rtx or they are both referring to the
677 same register in the same mode. Avoid calling rtx_equal_p unless the
678 operands look similar. */
679
680 if (x == from
681 || (REG_P (x) && REG_P (from)
682 && GET_MODE (x) == GET_MODE (from)
683 && REGNO (x) == REGNO (from))
684 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
685 && rtx_equal_p (x, from)))
686 {
687 validate_unshare_change (object, loc, to, 1);
688 return;
689 }
690
691 /* Call ourself recursively to perform the replacements.
692 We must not replace inside already replaced expression, otherwise we
693 get infinite recursion for replacements like (reg X)->(subreg (reg X))
694 done by regmove, so we must special case shared ASM_OPERANDS. */
695
696 if (GET_CODE (x) == PARALLEL)
697 {
698 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
699 {
700 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
701 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
702 {
703 /* Verify that operands are really shared. */
704 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
705 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
706 (x, 0, j))));
707 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
708 from, to, object, simplify);
709 }
710 else
711 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
712 simplify);
713 }
714 }
715 else
716 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
717 {
718 if (fmt[i] == 'e')
719 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
720 else if (fmt[i] == 'E')
721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
722 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
723 simplify);
724 }
725
726 /* If we didn't substitute, there is nothing more to do. */
727 if (num_changes == prev_changes)
728 return;
729
730 /* Allow substituted expression to have different mode. This is used by
731 regmove to change mode of pseudo register. */
732 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
733 op0_mode = GET_MODE (XEXP (x, 0));
734
735 /* Do changes needed to keep rtx consistent. Don't do any other
736 simplifications, as it is not our job. */
737 if (simplify)
738 simplify_while_replacing (loc, to, object, op0_mode);
739 }
740
741 /* Try replacing every occurrence of FROM in INSN with TO. After all
742 changes have been made, validate by seeing if INSN is still valid. */
743
744 int
745 validate_replace_rtx (rtx from, rtx to, rtx insn)
746 {
747 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
748 return apply_change_group ();
749 }
750
751 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
752 is a part of INSN. After all changes have been made, validate by seeing if
753 INSN is still valid.
754 validate_replace_rtx (from, to, insn) is equivalent to
755 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
756
757 int
758 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
759 {
760 validate_replace_rtx_1 (where, from, to, insn, true);
761 return apply_change_group ();
762 }
763
764 /* Same as above, but do not simplify rtx afterwards. */
765 int
766 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
767 rtx insn)
768 {
769 validate_replace_rtx_1 (where, from, to, insn, false);
770 return apply_change_group ();
771
772 }
773
774 /* Try replacing every occurrence of FROM in INSN with TO. */
775
776 void
777 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
778 {
779 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
780 }
781
782 /* Function called by note_uses to replace used subexpressions. */
783 struct validate_replace_src_data
784 {
785 rtx from; /* Old RTX */
786 rtx to; /* New RTX */
787 rtx insn; /* Insn in which substitution is occurring. */
788 };
789
790 static void
791 validate_replace_src_1 (rtx *x, void *data)
792 {
793 struct validate_replace_src_data *d
794 = (struct validate_replace_src_data *) data;
795
796 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
797 }
798
799 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
800 SET_DESTs. */
801
802 void
803 validate_replace_src_group (rtx from, rtx to, rtx insn)
804 {
805 struct validate_replace_src_data d;
806
807 d.from = from;
808 d.to = to;
809 d.insn = insn;
810 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
811 }
812
813 /* Try simplify INSN.
814 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
815 pattern and return true if something was simplified. */
816
817 bool
818 validate_simplify_insn (rtx insn)
819 {
820 int i;
821 rtx pat = NULL;
822 rtx newpat = NULL;
823
824 pat = PATTERN (insn);
825
826 if (GET_CODE (pat) == SET)
827 {
828 newpat = simplify_rtx (SET_SRC (pat));
829 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
830 validate_change (insn, &SET_SRC (pat), newpat, 1);
831 newpat = simplify_rtx (SET_DEST (pat));
832 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
833 validate_change (insn, &SET_DEST (pat), newpat, 1);
834 }
835 else if (GET_CODE (pat) == PARALLEL)
836 for (i = 0; i < XVECLEN (pat, 0); i++)
837 {
838 rtx s = XVECEXP (pat, 0, i);
839
840 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
841 {
842 newpat = simplify_rtx (SET_SRC (s));
843 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
844 validate_change (insn, &SET_SRC (s), newpat, 1);
845 newpat = simplify_rtx (SET_DEST (s));
846 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
847 validate_change (insn, &SET_DEST (s), newpat, 1);
848 }
849 }
850 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
851 }
852 \f
853 #ifdef HAVE_cc0
854 /* Return 1 if the insn using CC0 set by INSN does not contain
855 any ordered tests applied to the condition codes.
856 EQ and NE tests do not count. */
857
858 int
859 next_insn_tests_no_inequality (rtx insn)
860 {
861 rtx next = next_cc0_user (insn);
862
863 /* If there is no next insn, we have to take the conservative choice. */
864 if (next == 0)
865 return 0;
866
867 return (INSN_P (next)
868 && ! inequality_comparisons_p (PATTERN (next)));
869 }
870 #endif
871 \f
872 /* Return 1 if OP is a valid general operand for machine mode MODE.
873 This is either a register reference, a memory reference,
874 or a constant. In the case of a memory reference, the address
875 is checked for general validity for the target machine.
876
877 Register and memory references must have mode MODE in order to be valid,
878 but some constants have no machine mode and are valid for any mode.
879
880 If MODE is VOIDmode, OP is checked for validity for whatever mode
881 it has.
882
883 The main use of this function is as a predicate in match_operand
884 expressions in the machine description.
885
886 For an explanation of this function's behavior for registers of
887 class NO_REGS, see the comment for `register_operand'. */
888
889 int
890 general_operand (rtx op, enum machine_mode mode)
891 {
892 enum rtx_code code = GET_CODE (op);
893
894 if (mode == VOIDmode)
895 mode = GET_MODE (op);
896
897 /* Don't accept CONST_INT or anything similar
898 if the caller wants something floating. */
899 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
900 && GET_MODE_CLASS (mode) != MODE_INT
901 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
902 return 0;
903
904 if (GET_CODE (op) == CONST_INT
905 && mode != VOIDmode
906 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
907 return 0;
908
909 if (CONSTANT_P (op))
910 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
911 || mode == VOIDmode)
912 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
913 && LEGITIMATE_CONSTANT_P (op));
914
915 /* Except for certain constants with VOIDmode, already checked for,
916 OP's mode must match MODE if MODE specifies a mode. */
917
918 if (GET_MODE (op) != mode)
919 return 0;
920
921 if (code == SUBREG)
922 {
923 rtx sub = SUBREG_REG (op);
924
925 #ifdef INSN_SCHEDULING
926 /* On machines that have insn scheduling, we want all memory
927 reference to be explicit, so outlaw paradoxical SUBREGs.
928 However, we must allow them after reload so that they can
929 get cleaned up by cleanup_subreg_operands. */
930 if (!reload_completed && MEM_P (sub)
931 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
932 return 0;
933 #endif
934 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
935 may result in incorrect reference. We should simplify all valid
936 subregs of MEM anyway. But allow this after reload because we
937 might be called from cleanup_subreg_operands.
938
939 ??? This is a kludge. */
940 if (!reload_completed && SUBREG_BYTE (op) != 0
941 && MEM_P (sub))
942 return 0;
943
944 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
945 create such rtl, and we must reject it. */
946 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
947 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
948 return 0;
949
950 op = sub;
951 code = GET_CODE (op);
952 }
953
954 if (code == REG)
955 /* A register whose class is NO_REGS is not a general operand. */
956 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
957 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
958
959 if (code == MEM)
960 {
961 rtx y = XEXP (op, 0);
962
963 if (! volatile_ok && MEM_VOLATILE_P (op))
964 return 0;
965
966 /* Use the mem's mode, since it will be reloaded thus. */
967 if (memory_address_p (GET_MODE (op), y))
968 return 1;
969 }
970
971 return 0;
972 }
973 \f
974 /* Return 1 if OP is a valid memory address for a memory reference
975 of mode MODE.
976
977 The main use of this function is as a predicate in match_operand
978 expressions in the machine description. */
979
980 int
981 address_operand (rtx op, enum machine_mode mode)
982 {
983 return memory_address_p (mode, op);
984 }
985
986 /* Return 1 if OP is a register reference of mode MODE.
987 If MODE is VOIDmode, accept a register in any mode.
988
989 The main use of this function is as a predicate in match_operand
990 expressions in the machine description.
991
992 As a special exception, registers whose class is NO_REGS are
993 not accepted by `register_operand'. The reason for this change
994 is to allow the representation of special architecture artifacts
995 (such as a condition code register) without extending the rtl
996 definitions. Since registers of class NO_REGS cannot be used
997 as registers in any case where register classes are examined,
998 it is most consistent to keep this function from accepting them. */
999
1000 int
1001 register_operand (rtx op, enum machine_mode mode)
1002 {
1003 if (GET_MODE (op) != mode && mode != VOIDmode)
1004 return 0;
1005
1006 if (GET_CODE (op) == SUBREG)
1007 {
1008 rtx sub = SUBREG_REG (op);
1009
1010 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1011 because it is guaranteed to be reloaded into one.
1012 Just make sure the MEM is valid in itself.
1013 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1014 but currently it does result from (SUBREG (REG)...) where the
1015 reg went on the stack.) */
1016 if (! reload_completed && MEM_P (sub))
1017 return general_operand (op, mode);
1018
1019 #ifdef CANNOT_CHANGE_MODE_CLASS
1020 if (REG_P (sub)
1021 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1022 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1023 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1024 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1025 return 0;
1026 #endif
1027
1028 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1029 create such rtl, and we must reject it. */
1030 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1031 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1032 return 0;
1033
1034 op = sub;
1035 }
1036
1037 /* We don't consider registers whose class is NO_REGS
1038 to be a register operand. */
1039 return (REG_P (op)
1040 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1041 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1042 }
1043
1044 /* Return 1 for a register in Pmode; ignore the tested mode. */
1045
1046 int
1047 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1048 {
1049 return register_operand (op, Pmode);
1050 }
1051
1052 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1053 or a hard register. */
1054
1055 int
1056 scratch_operand (rtx op, enum machine_mode mode)
1057 {
1058 if (GET_MODE (op) != mode && mode != VOIDmode)
1059 return 0;
1060
1061 return (GET_CODE (op) == SCRATCH
1062 || (REG_P (op)
1063 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1064 }
1065
1066 /* Return 1 if OP is a valid immediate operand for mode MODE.
1067
1068 The main use of this function is as a predicate in match_operand
1069 expressions in the machine description. */
1070
1071 int
1072 immediate_operand (rtx op, enum machine_mode mode)
1073 {
1074 /* Don't accept CONST_INT or anything similar
1075 if the caller wants something floating. */
1076 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1077 && GET_MODE_CLASS (mode) != MODE_INT
1078 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1079 return 0;
1080
1081 if (GET_CODE (op) == CONST_INT
1082 && mode != VOIDmode
1083 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1084 return 0;
1085
1086 return (CONSTANT_P (op)
1087 && (GET_MODE (op) == mode || mode == VOIDmode
1088 || GET_MODE (op) == VOIDmode)
1089 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1090 && LEGITIMATE_CONSTANT_P (op));
1091 }
1092
1093 /* Returns 1 if OP is an operand that is a CONST_INT. */
1094
1095 int
1096 const_int_operand (rtx op, enum machine_mode mode)
1097 {
1098 if (GET_CODE (op) != CONST_INT)
1099 return 0;
1100
1101 if (mode != VOIDmode
1102 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1103 return 0;
1104
1105 return 1;
1106 }
1107
1108 /* Returns 1 if OP is an operand that is a constant integer or constant
1109 floating-point number. */
1110
1111 int
1112 const_double_operand (rtx op, enum machine_mode mode)
1113 {
1114 /* Don't accept CONST_INT or anything similar
1115 if the caller wants something floating. */
1116 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1117 && GET_MODE_CLASS (mode) != MODE_INT
1118 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1119 return 0;
1120
1121 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1122 && (mode == VOIDmode || GET_MODE (op) == mode
1123 || GET_MODE (op) == VOIDmode));
1124 }
1125
1126 /* Return 1 if OP is a general operand that is not an immediate operand. */
1127
1128 int
1129 nonimmediate_operand (rtx op, enum machine_mode mode)
1130 {
1131 return (general_operand (op, mode) && ! CONSTANT_P (op));
1132 }
1133
1134 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1135
1136 int
1137 nonmemory_operand (rtx op, enum machine_mode mode)
1138 {
1139 if (CONSTANT_P (op))
1140 {
1141 /* Don't accept CONST_INT or anything similar
1142 if the caller wants something floating. */
1143 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1144 && GET_MODE_CLASS (mode) != MODE_INT
1145 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1146 return 0;
1147
1148 if (GET_CODE (op) == CONST_INT
1149 && mode != VOIDmode
1150 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1151 return 0;
1152
1153 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1154 || mode == VOIDmode)
1155 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1156 && LEGITIMATE_CONSTANT_P (op));
1157 }
1158
1159 if (GET_MODE (op) != mode && mode != VOIDmode)
1160 return 0;
1161
1162 if (GET_CODE (op) == SUBREG)
1163 {
1164 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1165 because it is guaranteed to be reloaded into one.
1166 Just make sure the MEM is valid in itself.
1167 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1168 but currently it does result from (SUBREG (REG)...) where the
1169 reg went on the stack.) */
1170 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1171 return general_operand (op, mode);
1172 op = SUBREG_REG (op);
1173 }
1174
1175 /* We don't consider registers whose class is NO_REGS
1176 to be a register operand. */
1177 return (REG_P (op)
1178 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1179 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1180 }
1181
1182 /* Return 1 if OP is a valid operand that stands for pushing a
1183 value of mode MODE onto the stack.
1184
1185 The main use of this function is as a predicate in match_operand
1186 expressions in the machine description. */
1187
1188 int
1189 push_operand (rtx op, enum machine_mode mode)
1190 {
1191 unsigned int rounded_size = GET_MODE_SIZE (mode);
1192
1193 #ifdef PUSH_ROUNDING
1194 rounded_size = PUSH_ROUNDING (rounded_size);
1195 #endif
1196
1197 if (!MEM_P (op))
1198 return 0;
1199
1200 if (mode != VOIDmode && GET_MODE (op) != mode)
1201 return 0;
1202
1203 op = XEXP (op, 0);
1204
1205 if (rounded_size == GET_MODE_SIZE (mode))
1206 {
1207 if (GET_CODE (op) != STACK_PUSH_CODE)
1208 return 0;
1209 }
1210 else
1211 {
1212 if (GET_CODE (op) != PRE_MODIFY
1213 || GET_CODE (XEXP (op, 1)) != PLUS
1214 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1215 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1216 #ifdef STACK_GROWS_DOWNWARD
1217 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1218 #else
1219 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1220 #endif
1221 )
1222 return 0;
1223 }
1224
1225 return XEXP (op, 0) == stack_pointer_rtx;
1226 }
1227
1228 /* Return 1 if OP is a valid operand that stands for popping a
1229 value of mode MODE off the stack.
1230
1231 The main use of this function is as a predicate in match_operand
1232 expressions in the machine description. */
1233
1234 int
1235 pop_operand (rtx op, enum machine_mode mode)
1236 {
1237 if (!MEM_P (op))
1238 return 0;
1239
1240 if (mode != VOIDmode && GET_MODE (op) != mode)
1241 return 0;
1242
1243 op = XEXP (op, 0);
1244
1245 if (GET_CODE (op) != STACK_POP_CODE)
1246 return 0;
1247
1248 return XEXP (op, 0) == stack_pointer_rtx;
1249 }
1250
1251 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1252
1253 int
1254 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
1255 {
1256 #ifdef GO_IF_LEGITIMATE_ADDRESS
1257 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1258 return 0;
1259
1260 win:
1261 return 1;
1262 #else
1263 return targetm.legitimate_address_p (mode, addr, 0);
1264 #endif
1265 }
1266
1267 /* Return 1 if OP is a valid memory reference with mode MODE,
1268 including a valid address.
1269
1270 The main use of this function is as a predicate in match_operand
1271 expressions in the machine description. */
1272
1273 int
1274 memory_operand (rtx op, enum machine_mode mode)
1275 {
1276 rtx inner;
1277
1278 if (! reload_completed)
1279 /* Note that no SUBREG is a memory operand before end of reload pass,
1280 because (SUBREG (MEM...)) forces reloading into a register. */
1281 return MEM_P (op) && general_operand (op, mode);
1282
1283 if (mode != VOIDmode && GET_MODE (op) != mode)
1284 return 0;
1285
1286 inner = op;
1287 if (GET_CODE (inner) == SUBREG)
1288 inner = SUBREG_REG (inner);
1289
1290 return (MEM_P (inner) && general_operand (op, mode));
1291 }
1292
1293 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1294 that is, a memory reference whose address is a general_operand. */
1295
1296 int
1297 indirect_operand (rtx op, enum machine_mode mode)
1298 {
1299 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1300 if (! reload_completed
1301 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1302 {
1303 int offset = SUBREG_BYTE (op);
1304 rtx inner = SUBREG_REG (op);
1305
1306 if (mode != VOIDmode && GET_MODE (op) != mode)
1307 return 0;
1308
1309 /* The only way that we can have a general_operand as the resulting
1310 address is if OFFSET is zero and the address already is an operand
1311 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1312 operand. */
1313
1314 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1315 || (GET_CODE (XEXP (inner, 0)) == PLUS
1316 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1317 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1318 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1319 }
1320
1321 return (MEM_P (op)
1322 && memory_operand (op, mode)
1323 && general_operand (XEXP (op, 0), Pmode));
1324 }
1325
1326 /* Return 1 if this is an ordered comparison operator (not including
1327 ORDERED and UNORDERED). */
1328
1329 int
1330 ordered_comparison_operator (rtx op, enum machine_mode mode)
1331 {
1332 if (mode != VOIDmode && GET_MODE (op) != mode)
1333 return false;
1334 switch (GET_CODE (op))
1335 {
1336 case EQ:
1337 case NE:
1338 case LT:
1339 case LTU:
1340 case LE:
1341 case LEU:
1342 case GT:
1343 case GTU:
1344 case GE:
1345 case GEU:
1346 return true;
1347 default:
1348 return false;
1349 }
1350 }
1351
1352 /* Return 1 if this is a comparison operator. This allows the use of
1353 MATCH_OPERATOR to recognize all the branch insns. */
1354
1355 int
1356 comparison_operator (rtx op, enum machine_mode mode)
1357 {
1358 return ((mode == VOIDmode || GET_MODE (op) == mode)
1359 && COMPARISON_P (op));
1360 }
1361 \f
1362 /* If BODY is an insn body that uses ASM_OPERANDS,
1363 return the number of operands (both input and output) in the insn.
1364 Otherwise return -1. */
1365
1366 int
1367 asm_noperands (const_rtx body)
1368 {
1369 switch (GET_CODE (body))
1370 {
1371 case ASM_OPERANDS:
1372 /* No output operands: return number of input operands. */
1373 return ASM_OPERANDS_INPUT_LENGTH (body);
1374 case SET:
1375 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1376 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1377 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1378 else
1379 return -1;
1380 case PARALLEL:
1381 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1382 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1383 {
1384 /* Multiple output operands, or 1 output plus some clobbers:
1385 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1386 int i;
1387 int n_sets;
1388
1389 /* Count backwards through CLOBBERs to determine number of SETs. */
1390 for (i = XVECLEN (body, 0); i > 0; i--)
1391 {
1392 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1393 break;
1394 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1395 return -1;
1396 }
1397
1398 /* N_SETS is now number of output operands. */
1399 n_sets = i;
1400
1401 /* Verify that all the SETs we have
1402 came from a single original asm_operands insn
1403 (so that invalid combinations are blocked). */
1404 for (i = 0; i < n_sets; i++)
1405 {
1406 rtx elt = XVECEXP (body, 0, i);
1407 if (GET_CODE (elt) != SET)
1408 return -1;
1409 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1410 return -1;
1411 /* If these ASM_OPERANDS rtx's came from different original insns
1412 then they aren't allowed together. */
1413 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1414 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1415 return -1;
1416 }
1417 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1418 + n_sets);
1419 }
1420 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1421 {
1422 /* 0 outputs, but some clobbers:
1423 body is [(asm_operands ...) (clobber (reg ...))...]. */
1424 int i;
1425
1426 /* Make sure all the other parallel things really are clobbers. */
1427 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1428 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1429 return -1;
1430
1431 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1432 }
1433 else
1434 return -1;
1435 default:
1436 return -1;
1437 }
1438 }
1439
1440 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1441 copy its operands (both input and output) into the vector OPERANDS,
1442 the locations of the operands within the insn into the vector OPERAND_LOCS,
1443 and the constraints for the operands into CONSTRAINTS.
1444 Write the modes of the operands into MODES.
1445 Return the assembler-template.
1446
1447 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1448 we don't store that info. */
1449
1450 const char *
1451 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1452 const char **constraints, enum machine_mode *modes,
1453 location_t *loc)
1454 {
1455 int i;
1456 int noperands;
1457 rtx asmop = 0;
1458
1459 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1460 {
1461 asmop = SET_SRC (body);
1462 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1463
1464 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1465
1466 for (i = 1; i < noperands; i++)
1467 {
1468 if (operand_locs)
1469 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1470 if (operands)
1471 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1472 if (constraints)
1473 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1474 if (modes)
1475 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1476 }
1477
1478 /* The output is in the SET.
1479 Its constraint is in the ASM_OPERANDS itself. */
1480 if (operands)
1481 operands[0] = SET_DEST (body);
1482 if (operand_locs)
1483 operand_locs[0] = &SET_DEST (body);
1484 if (constraints)
1485 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1486 if (modes)
1487 modes[0] = GET_MODE (SET_DEST (body));
1488 }
1489 else if (GET_CODE (body) == ASM_OPERANDS)
1490 {
1491 asmop = body;
1492 /* No output operands: BODY is (asm_operands ....). */
1493
1494 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1495
1496 /* The input operands are found in the 1st element vector. */
1497 /* Constraints for inputs are in the 2nd element vector. */
1498 for (i = 0; i < noperands; i++)
1499 {
1500 if (operand_locs)
1501 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1502 if (operands)
1503 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1504 if (constraints)
1505 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1506 if (modes)
1507 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1508 }
1509 }
1510 else if (GET_CODE (body) == PARALLEL
1511 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1512 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1513 {
1514 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1515 int nin;
1516 int nout = 0; /* Does not include CLOBBERs. */
1517
1518 asmop = SET_SRC (XVECEXP (body, 0, 0));
1519 nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1520
1521 /* At least one output, plus some CLOBBERs. */
1522
1523 /* The outputs are in the SETs.
1524 Their constraints are in the ASM_OPERANDS itself. */
1525 for (i = 0; i < nparallel; i++)
1526 {
1527 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1528 break; /* Past last SET */
1529
1530 if (operands)
1531 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1532 if (operand_locs)
1533 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1534 if (constraints)
1535 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1536 if (modes)
1537 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1538 nout++;
1539 }
1540
1541 for (i = 0; i < nin; i++)
1542 {
1543 if (operand_locs)
1544 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1545 if (operands)
1546 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1547 if (constraints)
1548 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1549 if (modes)
1550 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1551 }
1552 }
1553 else if (GET_CODE (body) == PARALLEL
1554 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1555 {
1556 /* No outputs, but some CLOBBERs. */
1557
1558 int nin;
1559
1560 asmop = XVECEXP (body, 0, 0);
1561 nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1562
1563 for (i = 0; i < nin; i++)
1564 {
1565 if (operand_locs)
1566 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1567 if (operands)
1568 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1569 if (constraints)
1570 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1571 if (modes)
1572 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1573 }
1574
1575 }
1576
1577 if (loc)
1578 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1579
1580 return ASM_OPERANDS_TEMPLATE (asmop);
1581 }
1582
1583 /* Check if an asm_operand matches its constraints.
1584 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1585
1586 int
1587 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1588 {
1589 int result = 0;
1590
1591 /* Use constrain_operands after reload. */
1592 gcc_assert (!reload_completed);
1593
1594 while (*constraint)
1595 {
1596 char c = *constraint;
1597 int len;
1598 switch (c)
1599 {
1600 case ',':
1601 constraint++;
1602 continue;
1603 case '=':
1604 case '+':
1605 case '*':
1606 case '%':
1607 case '!':
1608 case '#':
1609 case '&':
1610 case '?':
1611 break;
1612
1613 case '0': case '1': case '2': case '3': case '4':
1614 case '5': case '6': case '7': case '8': case '9':
1615 /* If caller provided constraints pointer, look up
1616 the maching constraint. Otherwise, our caller should have
1617 given us the proper matching constraint, but we can't
1618 actually fail the check if they didn't. Indicate that
1619 results are inconclusive. */
1620 if (constraints)
1621 {
1622 char *end;
1623 unsigned long match;
1624
1625 match = strtoul (constraint, &end, 10);
1626 if (!result)
1627 result = asm_operand_ok (op, constraints[match], NULL);
1628 constraint = (const char *) end;
1629 }
1630 else
1631 {
1632 do
1633 constraint++;
1634 while (ISDIGIT (*constraint));
1635 if (! result)
1636 result = -1;
1637 }
1638 continue;
1639
1640 case 'p':
1641 if (address_operand (op, VOIDmode))
1642 result = 1;
1643 break;
1644
1645 case TARGET_MEM_CONSTRAINT:
1646 case 'V': /* non-offsettable */
1647 if (memory_operand (op, VOIDmode))
1648 result = 1;
1649 break;
1650
1651 case 'o': /* offsettable */
1652 if (offsettable_nonstrict_memref_p (op))
1653 result = 1;
1654 break;
1655
1656 case '<':
1657 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1658 excepting those that expand_call created. Further, on some
1659 machines which do not have generalized auto inc/dec, an inc/dec
1660 is not a memory_operand.
1661
1662 Match any memory and hope things are resolved after reload. */
1663
1664 if (MEM_P (op)
1665 && (1
1666 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1667 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1668 result = 1;
1669 break;
1670
1671 case '>':
1672 if (MEM_P (op)
1673 && (1
1674 || GET_CODE (XEXP (op, 0)) == PRE_INC
1675 || GET_CODE (XEXP (op, 0)) == POST_INC))
1676 result = 1;
1677 break;
1678
1679 case 'E':
1680 case 'F':
1681 if (GET_CODE (op) == CONST_DOUBLE
1682 || (GET_CODE (op) == CONST_VECTOR
1683 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1684 result = 1;
1685 break;
1686
1687 case 'G':
1688 if (GET_CODE (op) == CONST_DOUBLE
1689 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1690 result = 1;
1691 break;
1692 case 'H':
1693 if (GET_CODE (op) == CONST_DOUBLE
1694 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1695 result = 1;
1696 break;
1697
1698 case 's':
1699 if (GET_CODE (op) == CONST_INT
1700 || (GET_CODE (op) == CONST_DOUBLE
1701 && GET_MODE (op) == VOIDmode))
1702 break;
1703 /* Fall through. */
1704
1705 case 'i':
1706 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1707 result = 1;
1708 break;
1709
1710 case 'n':
1711 if (GET_CODE (op) == CONST_INT
1712 || (GET_CODE (op) == CONST_DOUBLE
1713 && GET_MODE (op) == VOIDmode))
1714 result = 1;
1715 break;
1716
1717 case 'I':
1718 if (GET_CODE (op) == CONST_INT
1719 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1720 result = 1;
1721 break;
1722 case 'J':
1723 if (GET_CODE (op) == CONST_INT
1724 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1725 result = 1;
1726 break;
1727 case 'K':
1728 if (GET_CODE (op) == CONST_INT
1729 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1730 result = 1;
1731 break;
1732 case 'L':
1733 if (GET_CODE (op) == CONST_INT
1734 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1735 result = 1;
1736 break;
1737 case 'M':
1738 if (GET_CODE (op) == CONST_INT
1739 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1740 result = 1;
1741 break;
1742 case 'N':
1743 if (GET_CODE (op) == CONST_INT
1744 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1745 result = 1;
1746 break;
1747 case 'O':
1748 if (GET_CODE (op) == CONST_INT
1749 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1750 result = 1;
1751 break;
1752 case 'P':
1753 if (GET_CODE (op) == CONST_INT
1754 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1755 result = 1;
1756 break;
1757
1758 case 'X':
1759 result = 1;
1760 break;
1761
1762 case 'g':
1763 if (general_operand (op, VOIDmode))
1764 result = 1;
1765 break;
1766
1767 default:
1768 /* For all other letters, we first check for a register class,
1769 otherwise it is an EXTRA_CONSTRAINT. */
1770 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1771 {
1772 case 'r':
1773 if (GET_MODE (op) == BLKmode)
1774 break;
1775 if (register_operand (op, VOIDmode))
1776 result = 1;
1777 }
1778 #ifdef EXTRA_CONSTRAINT_STR
1779 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1780 /* Every memory operand can be reloaded to fit. */
1781 result = result || memory_operand (op, VOIDmode);
1782 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1783 /* Every address operand can be reloaded to fit. */
1784 result = result || address_operand (op, VOIDmode);
1785 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1786 result = 1;
1787 #endif
1788 break;
1789 }
1790 len = CONSTRAINT_LEN (c, constraint);
1791 do
1792 constraint++;
1793 while (--len && *constraint);
1794 if (len)
1795 return 0;
1796 }
1797
1798 return result;
1799 }
1800 \f
1801 /* Given an rtx *P, if it is a sum containing an integer constant term,
1802 return the location (type rtx *) of the pointer to that constant term.
1803 Otherwise, return a null pointer. */
1804
1805 rtx *
1806 find_constant_term_loc (rtx *p)
1807 {
1808 rtx *tem;
1809 enum rtx_code code = GET_CODE (*p);
1810
1811 /* If *P IS such a constant term, P is its location. */
1812
1813 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1814 || code == CONST)
1815 return p;
1816
1817 /* Otherwise, if not a sum, it has no constant term. */
1818
1819 if (GET_CODE (*p) != PLUS)
1820 return 0;
1821
1822 /* If one of the summands is constant, return its location. */
1823
1824 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1825 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1826 return p;
1827
1828 /* Otherwise, check each summand for containing a constant term. */
1829
1830 if (XEXP (*p, 0) != 0)
1831 {
1832 tem = find_constant_term_loc (&XEXP (*p, 0));
1833 if (tem != 0)
1834 return tem;
1835 }
1836
1837 if (XEXP (*p, 1) != 0)
1838 {
1839 tem = find_constant_term_loc (&XEXP (*p, 1));
1840 if (tem != 0)
1841 return tem;
1842 }
1843
1844 return 0;
1845 }
1846 \f
1847 /* Return 1 if OP is a memory reference
1848 whose address contains no side effects
1849 and remains valid after the addition
1850 of a positive integer less than the
1851 size of the object being referenced.
1852
1853 We assume that the original address is valid and do not check it.
1854
1855 This uses strict_memory_address_p as a subroutine, so
1856 don't use it before reload. */
1857
1858 int
1859 offsettable_memref_p (rtx op)
1860 {
1861 return ((MEM_P (op))
1862 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1863 }
1864
1865 /* Similar, but don't require a strictly valid mem ref:
1866 consider pseudo-regs valid as index or base regs. */
1867
1868 int
1869 offsettable_nonstrict_memref_p (rtx op)
1870 {
1871 return ((MEM_P (op))
1872 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1873 }
1874
1875 /* Return 1 if Y is a memory address which contains no side effects
1876 and would remain valid after the addition of a positive integer
1877 less than the size of that mode.
1878
1879 We assume that the original address is valid and do not check it.
1880 We do check that it is valid for narrower modes.
1881
1882 If STRICTP is nonzero, we require a strictly valid address,
1883 for the sake of use in reload.c. */
1884
1885 int
1886 offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
1887 {
1888 enum rtx_code ycode = GET_CODE (y);
1889 rtx z;
1890 rtx y1 = y;
1891 rtx *y2;
1892 int (*addressp) (enum machine_mode, rtx) =
1893 (strictp ? strict_memory_address_p : memory_address_p);
1894 unsigned int mode_sz = GET_MODE_SIZE (mode);
1895
1896 if (CONSTANT_ADDRESS_P (y))
1897 return 1;
1898
1899 /* Adjusting an offsettable address involves changing to a narrower mode.
1900 Make sure that's OK. */
1901
1902 if (mode_dependent_address_p (y))
1903 return 0;
1904
1905 /* ??? How much offset does an offsettable BLKmode reference need?
1906 Clearly that depends on the situation in which it's being used.
1907 However, the current situation in which we test 0xffffffff is
1908 less than ideal. Caveat user. */
1909 if (mode_sz == 0)
1910 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1911
1912 /* If the expression contains a constant term,
1913 see if it remains valid when max possible offset is added. */
1914
1915 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1916 {
1917 int good;
1918
1919 y1 = *y2;
1920 *y2 = plus_constant (*y2, mode_sz - 1);
1921 /* Use QImode because an odd displacement may be automatically invalid
1922 for any wider mode. But it should be valid for a single byte. */
1923 good = (*addressp) (QImode, y);
1924
1925 /* In any case, restore old contents of memory. */
1926 *y2 = y1;
1927 return good;
1928 }
1929
1930 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1931 return 0;
1932
1933 /* The offset added here is chosen as the maximum offset that
1934 any instruction could need to add when operating on something
1935 of the specified mode. We assume that if Y and Y+c are
1936 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1937 go inside a LO_SUM here, so we do so as well. */
1938 if (GET_CODE (y) == LO_SUM
1939 && mode != BLKmode
1940 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1941 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1942 plus_constant (XEXP (y, 1), mode_sz - 1));
1943 else
1944 z = plus_constant (y, mode_sz - 1);
1945
1946 /* Use QImode because an odd displacement may be automatically invalid
1947 for any wider mode. But it should be valid for a single byte. */
1948 return (*addressp) (QImode, z);
1949 }
1950
1951 /* Return 1 if ADDR is an address-expression whose effect depends
1952 on the mode of the memory reference it is used in.
1953
1954 Autoincrement addressing is a typical example of mode-dependence
1955 because the amount of the increment depends on the mode. */
1956
1957 int
1958 mode_dependent_address_p (rtx addr)
1959 {
1960 /* Auto-increment addressing with anything other than post_modify
1961 or pre_modify always introduces a mode dependency. Catch such
1962 cases now instead of deferring to the target. */
1963 if (GET_CODE (addr) == PRE_INC
1964 || GET_CODE (addr) == POST_INC
1965 || GET_CODE (addr) == PRE_DEC
1966 || GET_CODE (addr) == POST_DEC)
1967 return 1;
1968
1969 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1970 return 0;
1971 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1972 win: ATTRIBUTE_UNUSED_LABEL
1973 return 1;
1974 }
1975 \f
1976 /* Like extract_insn, but save insn extracted and don't extract again, when
1977 called again for the same insn expecting that recog_data still contain the
1978 valid information. This is used primary by gen_attr infrastructure that
1979 often does extract insn again and again. */
1980 void
1981 extract_insn_cached (rtx insn)
1982 {
1983 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
1984 return;
1985 extract_insn (insn);
1986 recog_data.insn = insn;
1987 }
1988
1989 /* Do cached extract_insn, constrain_operands and complain about failures.
1990 Used by insn_attrtab. */
1991 void
1992 extract_constrain_insn_cached (rtx insn)
1993 {
1994 extract_insn_cached (insn);
1995 if (which_alternative == -1
1996 && !constrain_operands (reload_completed))
1997 fatal_insn_not_found (insn);
1998 }
1999
2000 /* Do cached constrain_operands and complain about failures. */
2001 int
2002 constrain_operands_cached (int strict)
2003 {
2004 if (which_alternative == -1)
2005 return constrain_operands (strict);
2006 else
2007 return 1;
2008 }
2009 \f
2010 /* Analyze INSN and fill in recog_data. */
2011
2012 void
2013 extract_insn (rtx insn)
2014 {
2015 int i;
2016 int icode;
2017 int noperands;
2018 rtx body = PATTERN (insn);
2019
2020 recog_data.n_operands = 0;
2021 recog_data.n_alternatives = 0;
2022 recog_data.n_dups = 0;
2023
2024 switch (GET_CODE (body))
2025 {
2026 case USE:
2027 case CLOBBER:
2028 case ASM_INPUT:
2029 case ADDR_VEC:
2030 case ADDR_DIFF_VEC:
2031 return;
2032
2033 case SET:
2034 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2035 goto asm_insn;
2036 else
2037 goto normal_insn;
2038 case PARALLEL:
2039 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2040 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2041 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2042 goto asm_insn;
2043 else
2044 goto normal_insn;
2045 case ASM_OPERANDS:
2046 asm_insn:
2047 recog_data.n_operands = noperands = asm_noperands (body);
2048 if (noperands >= 0)
2049 {
2050 /* This insn is an `asm' with operands. */
2051
2052 /* expand_asm_operands makes sure there aren't too many operands. */
2053 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2054
2055 /* Now get the operand values and constraints out of the insn. */
2056 decode_asm_operands (body, recog_data.operand,
2057 recog_data.operand_loc,
2058 recog_data.constraints,
2059 recog_data.operand_mode, NULL);
2060 if (noperands > 0)
2061 {
2062 const char *p = recog_data.constraints[0];
2063 recog_data.n_alternatives = 1;
2064 while (*p)
2065 recog_data.n_alternatives += (*p++ == ',');
2066 }
2067 break;
2068 }
2069 fatal_insn_not_found (insn);
2070
2071 default:
2072 normal_insn:
2073 /* Ordinary insn: recognize it, get the operands via insn_extract
2074 and get the constraints. */
2075
2076 icode = recog_memoized (insn);
2077 if (icode < 0)
2078 fatal_insn_not_found (insn);
2079
2080 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2081 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2082 recog_data.n_dups = insn_data[icode].n_dups;
2083
2084 insn_extract (insn);
2085
2086 for (i = 0; i < noperands; i++)
2087 {
2088 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2089 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2090 /* VOIDmode match_operands gets mode from their real operand. */
2091 if (recog_data.operand_mode[i] == VOIDmode)
2092 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2093 }
2094 }
2095 for (i = 0; i < noperands; i++)
2096 recog_data.operand_type[i]
2097 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2098 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2099 : OP_IN);
2100
2101 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2102
2103 if (INSN_CODE (insn) < 0)
2104 for (i = 0; i < recog_data.n_alternatives; i++)
2105 recog_data.alternative_enabled_p[i] = true;
2106 else
2107 {
2108 recog_data.insn = insn;
2109 for (i = 0; i < recog_data.n_alternatives; i++)
2110 {
2111 which_alternative = i;
2112 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2113 }
2114 }
2115
2116 recog_data.insn = NULL;
2117 which_alternative = -1;
2118 }
2119
2120 /* After calling extract_insn, you can use this function to extract some
2121 information from the constraint strings into a more usable form.
2122 The collected data is stored in recog_op_alt. */
2123 void
2124 preprocess_constraints (void)
2125 {
2126 int i;
2127
2128 for (i = 0; i < recog_data.n_operands; i++)
2129 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2130 * sizeof (struct operand_alternative)));
2131
2132 for (i = 0; i < recog_data.n_operands; i++)
2133 {
2134 int j;
2135 struct operand_alternative *op_alt;
2136 const char *p = recog_data.constraints[i];
2137
2138 op_alt = recog_op_alt[i];
2139
2140 for (j = 0; j < recog_data.n_alternatives; j++)
2141 {
2142 op_alt[j].cl = NO_REGS;
2143 op_alt[j].constraint = p;
2144 op_alt[j].matches = -1;
2145 op_alt[j].matched = -1;
2146
2147 if (!recog_data.alternative_enabled_p[j])
2148 {
2149 p = skip_alternative (p);
2150 continue;
2151 }
2152
2153 if (*p == '\0' || *p == ',')
2154 {
2155 op_alt[j].anything_ok = 1;
2156 continue;
2157 }
2158
2159 for (;;)
2160 {
2161 char c = *p;
2162 if (c == '#')
2163 do
2164 c = *++p;
2165 while (c != ',' && c != '\0');
2166 if (c == ',' || c == '\0')
2167 {
2168 p++;
2169 break;
2170 }
2171
2172 switch (c)
2173 {
2174 case '=': case '+': case '*': case '%':
2175 case 'E': case 'F': case 'G': case 'H':
2176 case 's': case 'i': case 'n':
2177 case 'I': case 'J': case 'K': case 'L':
2178 case 'M': case 'N': case 'O': case 'P':
2179 /* These don't say anything we care about. */
2180 break;
2181
2182 case '?':
2183 op_alt[j].reject += 6;
2184 break;
2185 case '!':
2186 op_alt[j].reject += 600;
2187 break;
2188 case '&':
2189 op_alt[j].earlyclobber = 1;
2190 break;
2191
2192 case '0': case '1': case '2': case '3': case '4':
2193 case '5': case '6': case '7': case '8': case '9':
2194 {
2195 char *end;
2196 op_alt[j].matches = strtoul (p, &end, 10);
2197 recog_op_alt[op_alt[j].matches][j].matched = i;
2198 p = end;
2199 }
2200 continue;
2201
2202 case TARGET_MEM_CONSTRAINT:
2203 op_alt[j].memory_ok = 1;
2204 break;
2205 case '<':
2206 op_alt[j].decmem_ok = 1;
2207 break;
2208 case '>':
2209 op_alt[j].incmem_ok = 1;
2210 break;
2211 case 'V':
2212 op_alt[j].nonoffmem_ok = 1;
2213 break;
2214 case 'o':
2215 op_alt[j].offmem_ok = 1;
2216 break;
2217 case 'X':
2218 op_alt[j].anything_ok = 1;
2219 break;
2220
2221 case 'p':
2222 op_alt[j].is_address = 1;
2223 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2224 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2225 break;
2226
2227 case 'g':
2228 case 'r':
2229 op_alt[j].cl =
2230 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2231 break;
2232
2233 default:
2234 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2235 {
2236 op_alt[j].memory_ok = 1;
2237 break;
2238 }
2239 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2240 {
2241 op_alt[j].is_address = 1;
2242 op_alt[j].cl
2243 = (reg_class_subunion
2244 [(int) op_alt[j].cl]
2245 [(int) base_reg_class (VOIDmode, ADDRESS,
2246 SCRATCH)]);
2247 break;
2248 }
2249
2250 op_alt[j].cl
2251 = (reg_class_subunion
2252 [(int) op_alt[j].cl]
2253 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2254 break;
2255 }
2256 p += CONSTRAINT_LEN (c, p);
2257 }
2258 }
2259 }
2260 }
2261
2262 /* Check the operands of an insn against the insn's operand constraints
2263 and return 1 if they are valid.
2264 The information about the insn's operands, constraints, operand modes
2265 etc. is obtained from the global variables set up by extract_insn.
2266
2267 WHICH_ALTERNATIVE is set to a number which indicates which
2268 alternative of constraints was matched: 0 for the first alternative,
2269 1 for the next, etc.
2270
2271 In addition, when two operands are required to match
2272 and it happens that the output operand is (reg) while the
2273 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2274 make the output operand look like the input.
2275 This is because the output operand is the one the template will print.
2276
2277 This is used in final, just before printing the assembler code and by
2278 the routines that determine an insn's attribute.
2279
2280 If STRICT is a positive nonzero value, it means that we have been
2281 called after reload has been completed. In that case, we must
2282 do all checks strictly. If it is zero, it means that we have been called
2283 before reload has completed. In that case, we first try to see if we can
2284 find an alternative that matches strictly. If not, we try again, this
2285 time assuming that reload will fix up the insn. This provides a "best
2286 guess" for the alternative and is used to compute attributes of insns prior
2287 to reload. A negative value of STRICT is used for this internal call. */
2288
2289 struct funny_match
2290 {
2291 int this_op, other;
2292 };
2293
2294 int
2295 constrain_operands (int strict)
2296 {
2297 const char *constraints[MAX_RECOG_OPERANDS];
2298 int matching_operands[MAX_RECOG_OPERANDS];
2299 int earlyclobber[MAX_RECOG_OPERANDS];
2300 int c;
2301
2302 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2303 int funny_match_index;
2304
2305 which_alternative = 0;
2306 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2307 return 1;
2308
2309 for (c = 0; c < recog_data.n_operands; c++)
2310 {
2311 constraints[c] = recog_data.constraints[c];
2312 matching_operands[c] = -1;
2313 }
2314
2315 do
2316 {
2317 int seen_earlyclobber_at = -1;
2318 int opno;
2319 int lose = 0;
2320 funny_match_index = 0;
2321
2322 if (!recog_data.alternative_enabled_p[which_alternative])
2323 {
2324 int i;
2325
2326 for (i = 0; i < recog_data.n_operands; i++)
2327 constraints[i] = skip_alternative (constraints[i]);
2328
2329 which_alternative++;
2330 continue;
2331 }
2332
2333 for (opno = 0; opno < recog_data.n_operands; opno++)
2334 {
2335 rtx op = recog_data.operand[opno];
2336 enum machine_mode mode = GET_MODE (op);
2337 const char *p = constraints[opno];
2338 int offset = 0;
2339 int win = 0;
2340 int val;
2341 int len;
2342
2343 earlyclobber[opno] = 0;
2344
2345 /* A unary operator may be accepted by the predicate, but it
2346 is irrelevant for matching constraints. */
2347 if (UNARY_P (op))
2348 op = XEXP (op, 0);
2349
2350 if (GET_CODE (op) == SUBREG)
2351 {
2352 if (REG_P (SUBREG_REG (op))
2353 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2354 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2355 GET_MODE (SUBREG_REG (op)),
2356 SUBREG_BYTE (op),
2357 GET_MODE (op));
2358 op = SUBREG_REG (op);
2359 }
2360
2361 /* An empty constraint or empty alternative
2362 allows anything which matched the pattern. */
2363 if (*p == 0 || *p == ',')
2364 win = 1;
2365
2366 do
2367 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2368 {
2369 case '\0':
2370 len = 0;
2371 break;
2372 case ',':
2373 c = '\0';
2374 break;
2375
2376 case '?': case '!': case '*': case '%':
2377 case '=': case '+':
2378 break;
2379
2380 case '#':
2381 /* Ignore rest of this alternative as far as
2382 constraint checking is concerned. */
2383 do
2384 p++;
2385 while (*p && *p != ',');
2386 len = 0;
2387 break;
2388
2389 case '&':
2390 earlyclobber[opno] = 1;
2391 if (seen_earlyclobber_at < 0)
2392 seen_earlyclobber_at = opno;
2393 break;
2394
2395 case '0': case '1': case '2': case '3': case '4':
2396 case '5': case '6': case '7': case '8': case '9':
2397 {
2398 /* This operand must be the same as a previous one.
2399 This kind of constraint is used for instructions such
2400 as add when they take only two operands.
2401
2402 Note that the lower-numbered operand is passed first.
2403
2404 If we are not testing strictly, assume that this
2405 constraint will be satisfied. */
2406
2407 char *end;
2408 int match;
2409
2410 match = strtoul (p, &end, 10);
2411 p = end;
2412
2413 if (strict < 0)
2414 val = 1;
2415 else
2416 {
2417 rtx op1 = recog_data.operand[match];
2418 rtx op2 = recog_data.operand[opno];
2419
2420 /* A unary operator may be accepted by the predicate,
2421 but it is irrelevant for matching constraints. */
2422 if (UNARY_P (op1))
2423 op1 = XEXP (op1, 0);
2424 if (UNARY_P (op2))
2425 op2 = XEXP (op2, 0);
2426
2427 val = operands_match_p (op1, op2);
2428 }
2429
2430 matching_operands[opno] = match;
2431 matching_operands[match] = opno;
2432
2433 if (val != 0)
2434 win = 1;
2435
2436 /* If output is *x and input is *--x, arrange later
2437 to change the output to *--x as well, since the
2438 output op is the one that will be printed. */
2439 if (val == 2 && strict > 0)
2440 {
2441 funny_match[funny_match_index].this_op = opno;
2442 funny_match[funny_match_index++].other = match;
2443 }
2444 }
2445 len = 0;
2446 break;
2447
2448 case 'p':
2449 /* p is used for address_operands. When we are called by
2450 gen_reload, no one will have checked that the address is
2451 strictly valid, i.e., that all pseudos requiring hard regs
2452 have gotten them. */
2453 if (strict <= 0
2454 || (strict_memory_address_p (recog_data.operand_mode[opno],
2455 op)))
2456 win = 1;
2457 break;
2458
2459 /* No need to check general_operand again;
2460 it was done in insn-recog.c. Well, except that reload
2461 doesn't check the validity of its replacements, but
2462 that should only matter when there's a bug. */
2463 case 'g':
2464 /* Anything goes unless it is a REG and really has a hard reg
2465 but the hard reg is not in the class GENERAL_REGS. */
2466 if (REG_P (op))
2467 {
2468 if (strict < 0
2469 || GENERAL_REGS == ALL_REGS
2470 || (reload_in_progress
2471 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2472 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2473 win = 1;
2474 }
2475 else if (strict < 0 || general_operand (op, mode))
2476 win = 1;
2477 break;
2478
2479 case 'X':
2480 /* This is used for a MATCH_SCRATCH in the cases when
2481 we don't actually need anything. So anything goes
2482 any time. */
2483 win = 1;
2484 break;
2485
2486 case TARGET_MEM_CONSTRAINT:
2487 /* Memory operands must be valid, to the extent
2488 required by STRICT. */
2489 if (MEM_P (op))
2490 {
2491 if (strict > 0
2492 && !strict_memory_address_p (GET_MODE (op),
2493 XEXP (op, 0)))
2494 break;
2495 if (strict == 0
2496 && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
2497 break;
2498 win = 1;
2499 }
2500 /* Before reload, accept what reload can turn into mem. */
2501 else if (strict < 0 && CONSTANT_P (op))
2502 win = 1;
2503 /* During reload, accept a pseudo */
2504 else if (reload_in_progress && REG_P (op)
2505 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2506 win = 1;
2507 break;
2508
2509 case '<':
2510 if (MEM_P (op)
2511 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2512 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2513 win = 1;
2514 break;
2515
2516 case '>':
2517 if (MEM_P (op)
2518 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2519 || GET_CODE (XEXP (op, 0)) == POST_INC))
2520 win = 1;
2521 break;
2522
2523 case 'E':
2524 case 'F':
2525 if (GET_CODE (op) == CONST_DOUBLE
2526 || (GET_CODE (op) == CONST_VECTOR
2527 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2528 win = 1;
2529 break;
2530
2531 case 'G':
2532 case 'H':
2533 if (GET_CODE (op) == CONST_DOUBLE
2534 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2535 win = 1;
2536 break;
2537
2538 case 's':
2539 if (GET_CODE (op) == CONST_INT
2540 || (GET_CODE (op) == CONST_DOUBLE
2541 && GET_MODE (op) == VOIDmode))
2542 break;
2543 case 'i':
2544 if (CONSTANT_P (op))
2545 win = 1;
2546 break;
2547
2548 case 'n':
2549 if (GET_CODE (op) == CONST_INT
2550 || (GET_CODE (op) == CONST_DOUBLE
2551 && GET_MODE (op) == VOIDmode))
2552 win = 1;
2553 break;
2554
2555 case 'I':
2556 case 'J':
2557 case 'K':
2558 case 'L':
2559 case 'M':
2560 case 'N':
2561 case 'O':
2562 case 'P':
2563 if (GET_CODE (op) == CONST_INT
2564 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2565 win = 1;
2566 break;
2567
2568 case 'V':
2569 if (MEM_P (op)
2570 && ((strict > 0 && ! offsettable_memref_p (op))
2571 || (strict < 0
2572 && !(CONSTANT_P (op) || MEM_P (op)))
2573 || (reload_in_progress
2574 && !(REG_P (op)
2575 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2576 win = 1;
2577 break;
2578
2579 case 'o':
2580 if ((strict > 0 && offsettable_memref_p (op))
2581 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2582 /* Before reload, accept what reload can handle. */
2583 || (strict < 0
2584 && (CONSTANT_P (op) || MEM_P (op)))
2585 /* During reload, accept a pseudo */
2586 || (reload_in_progress && REG_P (op)
2587 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2588 win = 1;
2589 break;
2590
2591 default:
2592 {
2593 enum reg_class cl;
2594
2595 cl = (c == 'r'
2596 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2597 if (cl != NO_REGS)
2598 {
2599 if (strict < 0
2600 || (strict == 0
2601 && REG_P (op)
2602 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2603 || (strict == 0 && GET_CODE (op) == SCRATCH)
2604 || (REG_P (op)
2605 && reg_fits_class_p (op, cl, offset, mode)))
2606 win = 1;
2607 }
2608 #ifdef EXTRA_CONSTRAINT_STR
2609 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2610 win = 1;
2611
2612 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2613 /* Every memory operand can be reloaded to fit. */
2614 && ((strict < 0 && MEM_P (op))
2615 /* Before reload, accept what reload can turn
2616 into mem. */
2617 || (strict < 0 && CONSTANT_P (op))
2618 /* During reload, accept a pseudo */
2619 || (reload_in_progress && REG_P (op)
2620 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2621 win = 1;
2622 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2623 /* Every address operand can be reloaded to fit. */
2624 && strict < 0)
2625 win = 1;
2626 #endif
2627 break;
2628 }
2629 }
2630 while (p += len, c);
2631
2632 constraints[opno] = p;
2633 /* If this operand did not win somehow,
2634 this alternative loses. */
2635 if (! win)
2636 lose = 1;
2637 }
2638 /* This alternative won; the operands are ok.
2639 Change whichever operands this alternative says to change. */
2640 if (! lose)
2641 {
2642 int opno, eopno;
2643
2644 /* See if any earlyclobber operand conflicts with some other
2645 operand. */
2646
2647 if (strict > 0 && seen_earlyclobber_at >= 0)
2648 for (eopno = seen_earlyclobber_at;
2649 eopno < recog_data.n_operands;
2650 eopno++)
2651 /* Ignore earlyclobber operands now in memory,
2652 because we would often report failure when we have
2653 two memory operands, one of which was formerly a REG. */
2654 if (earlyclobber[eopno]
2655 && REG_P (recog_data.operand[eopno]))
2656 for (opno = 0; opno < recog_data.n_operands; opno++)
2657 if ((MEM_P (recog_data.operand[opno])
2658 || recog_data.operand_type[opno] != OP_OUT)
2659 && opno != eopno
2660 /* Ignore things like match_operator operands. */
2661 && *recog_data.constraints[opno] != 0
2662 && ! (matching_operands[opno] == eopno
2663 && operands_match_p (recog_data.operand[opno],
2664 recog_data.operand[eopno]))
2665 && ! safe_from_earlyclobber (recog_data.operand[opno],
2666 recog_data.operand[eopno]))
2667 lose = 1;
2668
2669 if (! lose)
2670 {
2671 while (--funny_match_index >= 0)
2672 {
2673 recog_data.operand[funny_match[funny_match_index].other]
2674 = recog_data.operand[funny_match[funny_match_index].this_op];
2675 }
2676
2677 return 1;
2678 }
2679 }
2680
2681 which_alternative++;
2682 }
2683 while (which_alternative < recog_data.n_alternatives);
2684
2685 which_alternative = -1;
2686 /* If we are about to reject this, but we are not to test strictly,
2687 try a very loose test. Only return failure if it fails also. */
2688 if (strict == 0)
2689 return constrain_operands (-1);
2690 else
2691 return 0;
2692 }
2693
2694 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2695 is a hard reg in class CLASS when its regno is offset by OFFSET
2696 and changed to mode MODE.
2697 If REG occupies multiple hard regs, all of them must be in CLASS. */
2698
2699 int
2700 reg_fits_class_p (rtx operand, enum reg_class cl, int offset,
2701 enum machine_mode mode)
2702 {
2703 int regno = REGNO (operand);
2704
2705 if (cl == NO_REGS)
2706 return 0;
2707
2708 return (regno < FIRST_PSEUDO_REGISTER
2709 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2710 mode, regno + offset));
2711 }
2712 \f
2713 /* Split single instruction. Helper function for split_all_insns and
2714 split_all_insns_noflow. Return last insn in the sequence if successful,
2715 or NULL if unsuccessful. */
2716
2717 static rtx
2718 split_insn (rtx insn)
2719 {
2720 /* Split insns here to get max fine-grain parallelism. */
2721 rtx first = PREV_INSN (insn);
2722 rtx last = try_split (PATTERN (insn), insn, 1);
2723 rtx insn_set, last_set, note;
2724
2725 if (last == insn)
2726 return NULL_RTX;
2727
2728 /* If the original instruction was a single set that was known to be
2729 equivalent to a constant, see if we can say the same about the last
2730 instruction in the split sequence. The two instructions must set
2731 the same destination. */
2732 insn_set = single_set (insn);
2733 if (insn_set)
2734 {
2735 last_set = single_set (last);
2736 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2737 {
2738 note = find_reg_equal_equiv_note (insn);
2739 if (note && CONSTANT_P (XEXP (note, 0)))
2740 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2741 else if (CONSTANT_P (SET_SRC (insn_set)))
2742 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2743 }
2744 }
2745
2746 /* try_split returns the NOTE that INSN became. */
2747 SET_INSN_DELETED (insn);
2748
2749 /* ??? Coddle to md files that generate subregs in post-reload
2750 splitters instead of computing the proper hard register. */
2751 if (reload_completed && first != last)
2752 {
2753 first = NEXT_INSN (first);
2754 for (;;)
2755 {
2756 if (INSN_P (first))
2757 cleanup_subreg_operands (first);
2758 if (first == last)
2759 break;
2760 first = NEXT_INSN (first);
2761 }
2762 }
2763
2764 return last;
2765 }
2766
2767 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2768
2769 void
2770 split_all_insns (void)
2771 {
2772 sbitmap blocks;
2773 bool changed;
2774 basic_block bb;
2775
2776 blocks = sbitmap_alloc (last_basic_block);
2777 sbitmap_zero (blocks);
2778 changed = false;
2779
2780 FOR_EACH_BB_REVERSE (bb)
2781 {
2782 rtx insn, next;
2783 bool finish = false;
2784
2785 rtl_profile_for_bb (bb);
2786 for (insn = BB_HEAD (bb); !finish ; insn = next)
2787 {
2788 /* Can't use `next_real_insn' because that might go across
2789 CODE_LABELS and short-out basic blocks. */
2790 next = NEXT_INSN (insn);
2791 finish = (insn == BB_END (bb));
2792 if (INSN_P (insn))
2793 {
2794 rtx set = single_set (insn);
2795
2796 /* Don't split no-op move insns. These should silently
2797 disappear later in final. Splitting such insns would
2798 break the code that handles LIBCALL blocks. */
2799 if (set && set_noop_p (set))
2800 {
2801 /* Nops get in the way while scheduling, so delete them
2802 now if register allocation has already been done. It
2803 is too risky to try to do this before register
2804 allocation, and there are unlikely to be very many
2805 nops then anyways. */
2806 if (reload_completed)
2807 delete_insn_and_edges (insn);
2808 }
2809 else
2810 {
2811 rtx last = split_insn (insn);
2812 if (last)
2813 {
2814 /* The split sequence may include barrier, but the
2815 BB boundary we are interested in will be set to
2816 previous one. */
2817
2818 while (BARRIER_P (last))
2819 last = PREV_INSN (last);
2820 SET_BIT (blocks, bb->index);
2821 changed = true;
2822 }
2823 }
2824 }
2825 }
2826 }
2827
2828 default_rtl_profile ();
2829 if (changed)
2830 find_many_sub_basic_blocks (blocks);
2831
2832 #ifdef ENABLE_CHECKING
2833 verify_flow_info ();
2834 #endif
2835
2836 sbitmap_free (blocks);
2837 }
2838
2839 /* Same as split_all_insns, but do not expect CFG to be available.
2840 Used by machine dependent reorg passes. */
2841
2842 unsigned int
2843 split_all_insns_noflow (void)
2844 {
2845 rtx next, insn;
2846
2847 for (insn = get_insns (); insn; insn = next)
2848 {
2849 next = NEXT_INSN (insn);
2850 if (INSN_P (insn))
2851 {
2852 /* Don't split no-op move insns. These should silently
2853 disappear later in final. Splitting such insns would
2854 break the code that handles LIBCALL blocks. */
2855 rtx set = single_set (insn);
2856 if (set && set_noop_p (set))
2857 {
2858 /* Nops get in the way while scheduling, so delete them
2859 now if register allocation has already been done. It
2860 is too risky to try to do this before register
2861 allocation, and there are unlikely to be very many
2862 nops then anyways.
2863
2864 ??? Should we use delete_insn when the CFG isn't valid? */
2865 if (reload_completed)
2866 delete_insn_and_edges (insn);
2867 }
2868 else
2869 split_insn (insn);
2870 }
2871 }
2872 return 0;
2873 }
2874 \f
2875 #ifdef HAVE_peephole2
2876 struct peep2_insn_data
2877 {
2878 rtx insn;
2879 regset live_before;
2880 };
2881
2882 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2883 static int peep2_current;
2884 /* The number of instructions available to match a peep2. */
2885 int peep2_current_count;
2886
2887 /* A non-insn marker indicating the last insn of the block.
2888 The live_before regset for this element is correct, indicating
2889 DF_LIVE_OUT for the block. */
2890 #define PEEP2_EOB pc_rtx
2891
2892 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2893 does not exist. Used by the recognizer to find the next insn to match
2894 in a multi-insn pattern. */
2895
2896 rtx
2897 peep2_next_insn (int n)
2898 {
2899 gcc_assert (n <= peep2_current_count);
2900
2901 n += peep2_current;
2902 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2903 n -= MAX_INSNS_PER_PEEP2 + 1;
2904
2905 return peep2_insn_data[n].insn;
2906 }
2907
2908 /* Return true if REGNO is dead before the Nth non-note insn
2909 after `current'. */
2910
2911 int
2912 peep2_regno_dead_p (int ofs, int regno)
2913 {
2914 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2915
2916 ofs += peep2_current;
2917 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2918 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2919
2920 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2921
2922 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2923 }
2924
2925 /* Similarly for a REG. */
2926
2927 int
2928 peep2_reg_dead_p (int ofs, rtx reg)
2929 {
2930 int regno, n;
2931
2932 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2933
2934 ofs += peep2_current;
2935 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2936 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2937
2938 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2939
2940 regno = REGNO (reg);
2941 n = hard_regno_nregs[regno][GET_MODE (reg)];
2942 while (--n >= 0)
2943 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2944 return 0;
2945 return 1;
2946 }
2947
2948 /* Try to find a hard register of mode MODE, matching the register class in
2949 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2950 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2951 in which case the only condition is that the register must be available
2952 before CURRENT_INSN.
2953 Registers that already have bits set in REG_SET will not be considered.
2954
2955 If an appropriate register is available, it will be returned and the
2956 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2957 returned. */
2958
2959 rtx
2960 peep2_find_free_register (int from, int to, const char *class_str,
2961 enum machine_mode mode, HARD_REG_SET *reg_set)
2962 {
2963 static int search_ofs;
2964 enum reg_class cl;
2965 HARD_REG_SET live;
2966 int i;
2967
2968 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
2969 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
2970
2971 from += peep2_current;
2972 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2973 from -= MAX_INSNS_PER_PEEP2 + 1;
2974 to += peep2_current;
2975 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2976 to -= MAX_INSNS_PER_PEEP2 + 1;
2977
2978 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2979 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2980
2981 while (from != to)
2982 {
2983 HARD_REG_SET this_live;
2984
2985 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2986 from = 0;
2987 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
2988 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2989 IOR_HARD_REG_SET (live, this_live);
2990 }
2991
2992 cl = (class_str[0] == 'r' ? GENERAL_REGS
2993 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
2994
2995 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2996 {
2997 int raw_regno, regno, success, j;
2998
2999 /* Distribute the free registers as much as possible. */
3000 raw_regno = search_ofs + i;
3001 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3002 raw_regno -= FIRST_PSEUDO_REGISTER;
3003 #ifdef REG_ALLOC_ORDER
3004 regno = reg_alloc_order[raw_regno];
3005 #else
3006 regno = raw_regno;
3007 #endif
3008
3009 /* Don't allocate fixed registers. */
3010 if (fixed_regs[regno])
3011 continue;
3012 /* Don't allocate global registers. */
3013 if (global_regs[regno])
3014 continue;
3015 /* Make sure the register is of the right class. */
3016 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3017 continue;
3018 /* And can support the mode we need. */
3019 if (! HARD_REGNO_MODE_OK (regno, mode))
3020 continue;
3021 /* And that we don't create an extra save/restore. */
3022 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3023 continue;
3024 if (! targetm.hard_regno_scratch_ok (regno))
3025 continue;
3026
3027 /* And we don't clobber traceback for noreturn functions. */
3028 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3029 && (! reload_completed || frame_pointer_needed))
3030 continue;
3031
3032 success = 1;
3033 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3034 {
3035 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3036 || TEST_HARD_REG_BIT (live, regno + j))
3037 {
3038 success = 0;
3039 break;
3040 }
3041 }
3042 if (success)
3043 {
3044 add_to_hard_reg_set (reg_set, mode, regno);
3045
3046 /* Start the next search with the next register. */
3047 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3048 raw_regno = 0;
3049 search_ofs = raw_regno;
3050
3051 return gen_rtx_REG (mode, regno);
3052 }
3053 }
3054
3055 search_ofs = 0;
3056 return NULL_RTX;
3057 }
3058
3059 /* Perform the peephole2 optimization pass. */
3060
3061 static void
3062 peephole2_optimize (void)
3063 {
3064 rtx insn, prev;
3065 bitmap live;
3066 int i;
3067 basic_block bb;
3068 bool do_cleanup_cfg = false;
3069 bool do_rebuild_jump_labels = false;
3070
3071 df_set_flags (DF_LR_RUN_DCE);
3072 df_analyze ();
3073
3074 /* Initialize the regsets we're going to use. */
3075 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3076 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3077 live = BITMAP_ALLOC (&reg_obstack);
3078
3079 FOR_EACH_BB_REVERSE (bb)
3080 {
3081 rtl_profile_for_bb (bb);
3082 /* Indicate that all slots except the last holds invalid data. */
3083 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3084 peep2_insn_data[i].insn = NULL_RTX;
3085 peep2_current_count = 0;
3086
3087 /* Indicate that the last slot contains live_after data. */
3088 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3089 peep2_current = MAX_INSNS_PER_PEEP2;
3090
3091 /* Start up propagation. */
3092 bitmap_copy (live, DF_LR_OUT (bb));
3093 df_simulate_initialize_backwards (bb, live);
3094 bitmap_copy (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3095
3096 for (insn = BB_END (bb); ; insn = prev)
3097 {
3098 prev = PREV_INSN (insn);
3099 if (INSN_P (insn))
3100 {
3101 rtx attempt, before_try, x;
3102 int match_len;
3103 rtx note;
3104 bool was_call = false;
3105
3106 /* Record this insn. */
3107 if (--peep2_current < 0)
3108 peep2_current = MAX_INSNS_PER_PEEP2;
3109 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3110 && peep2_insn_data[peep2_current].insn == NULL_RTX)
3111 peep2_current_count++;
3112 peep2_insn_data[peep2_current].insn = insn;
3113 df_simulate_one_insn_backwards (bb, insn, live);
3114 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3115
3116 if (RTX_FRAME_RELATED_P (insn))
3117 {
3118 /* If an insn has RTX_FRAME_RELATED_P set, peephole
3119 substitution would lose the
3120 REG_FRAME_RELATED_EXPR that is attached. */
3121 peep2_current_count = 0;
3122 attempt = NULL;
3123 }
3124 else
3125 /* Match the peephole. */
3126 attempt = peephole2_insns (PATTERN (insn), insn, &match_len);
3127
3128 if (attempt != NULL)
3129 {
3130 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3131 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3132 cfg-related call notes. */
3133 for (i = 0; i <= match_len; ++i)
3134 {
3135 int j;
3136 rtx old_insn, new_insn, note;
3137
3138 j = i + peep2_current;
3139 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3140 j -= MAX_INSNS_PER_PEEP2 + 1;
3141 old_insn = peep2_insn_data[j].insn;
3142 if (!CALL_P (old_insn))
3143 continue;
3144 was_call = true;
3145
3146 new_insn = attempt;
3147 while (new_insn != NULL_RTX)
3148 {
3149 if (CALL_P (new_insn))
3150 break;
3151 new_insn = NEXT_INSN (new_insn);
3152 }
3153
3154 gcc_assert (new_insn != NULL_RTX);
3155
3156 CALL_INSN_FUNCTION_USAGE (new_insn)
3157 = CALL_INSN_FUNCTION_USAGE (old_insn);
3158
3159 for (note = REG_NOTES (old_insn);
3160 note;
3161 note = XEXP (note, 1))
3162 switch (REG_NOTE_KIND (note))
3163 {
3164 case REG_NORETURN:
3165 case REG_SETJMP:
3166 add_reg_note (new_insn, REG_NOTE_KIND (note),
3167 XEXP (note, 0));
3168 break;
3169 default:
3170 /* Discard all other reg notes. */
3171 break;
3172 }
3173
3174 /* Croak if there is another call in the sequence. */
3175 while (++i <= match_len)
3176 {
3177 j = i + peep2_current;
3178 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3179 j -= MAX_INSNS_PER_PEEP2 + 1;
3180 old_insn = peep2_insn_data[j].insn;
3181 gcc_assert (!CALL_P (old_insn));
3182 }
3183 break;
3184 }
3185
3186 i = match_len + peep2_current;
3187 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3188 i -= MAX_INSNS_PER_PEEP2 + 1;
3189
3190 note = find_reg_note (peep2_insn_data[i].insn,
3191 REG_EH_REGION, NULL_RTX);
3192
3193 /* Replace the old sequence with the new. */
3194 attempt = emit_insn_after_setloc (attempt,
3195 peep2_insn_data[i].insn,
3196 INSN_LOCATOR (peep2_insn_data[i].insn));
3197 before_try = PREV_INSN (insn);
3198 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3199
3200 /* Re-insert the EH_REGION notes. */
3201 if (note || (was_call && nonlocal_goto_handler_labels))
3202 {
3203 edge eh_edge;
3204 edge_iterator ei;
3205
3206 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3207 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3208 break;
3209
3210 for (x = attempt ; x != before_try ; x = PREV_INSN (x))
3211 if (CALL_P (x)
3212 || (flag_non_call_exceptions
3213 && may_trap_p (PATTERN (x))
3214 && !find_reg_note (x, REG_EH_REGION, NULL)))
3215 {
3216 if (note)
3217 add_reg_note (x, REG_EH_REGION, XEXP (note, 0));
3218
3219 if (x != BB_END (bb) && eh_edge)
3220 {
3221 edge nfte, nehe;
3222 int flags;
3223
3224 nfte = split_block (bb, x);
3225 flags = (eh_edge->flags
3226 & (EDGE_EH | EDGE_ABNORMAL));
3227 if (CALL_P (x))
3228 flags |= EDGE_ABNORMAL_CALL;
3229 nehe = make_edge (nfte->src, eh_edge->dest,
3230 flags);
3231
3232 nehe->probability = eh_edge->probability;
3233 nfte->probability
3234 = REG_BR_PROB_BASE - nehe->probability;
3235
3236 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3237 bb = nfte->src;
3238 eh_edge = nehe;
3239 }
3240 }
3241
3242 /* Converting possibly trapping insn to non-trapping is
3243 possible. Zap dummy outgoing edges. */
3244 do_cleanup_cfg |= purge_dead_edges (bb);
3245 }
3246
3247 #ifdef HAVE_conditional_execution
3248 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3249 peep2_insn_data[i].insn = NULL_RTX;
3250 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3251 peep2_current_count = 0;
3252 #else
3253 /* Back up lifetime information past the end of the
3254 newly created sequence. */
3255 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3256 i = 0;
3257 bitmap_copy (live, peep2_insn_data[i].live_before);
3258
3259 /* Update life information for the new sequence. */
3260 x = attempt;
3261 do
3262 {
3263 if (INSN_P (x))
3264 {
3265 if (--i < 0)
3266 i = MAX_INSNS_PER_PEEP2;
3267 if (peep2_current_count < MAX_INSNS_PER_PEEP2
3268 && peep2_insn_data[i].insn == NULL_RTX)
3269 peep2_current_count++;
3270 peep2_insn_data[i].insn = x;
3271 df_insn_rescan (x);
3272 df_simulate_one_insn_backwards (bb, x, live);
3273 bitmap_copy (peep2_insn_data[i].live_before, live);
3274 }
3275 x = PREV_INSN (x);
3276 }
3277 while (x != prev);
3278
3279 peep2_current = i;
3280 #endif
3281
3282 /* If we generated a jump instruction, it won't have
3283 JUMP_LABEL set. Recompute after we're done. */
3284 for (x = attempt; x != before_try; x = PREV_INSN (x))
3285 if (JUMP_P (x))
3286 {
3287 do_rebuild_jump_labels = true;
3288 break;
3289 }
3290 }
3291 }
3292
3293 if (insn == BB_HEAD (bb))
3294 break;
3295 }
3296 }
3297
3298 default_rtl_profile ();
3299 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3300 BITMAP_FREE (peep2_insn_data[i].live_before);
3301 BITMAP_FREE (live);
3302 if (do_rebuild_jump_labels)
3303 rebuild_jump_labels (get_insns ());
3304 }
3305 #endif /* HAVE_peephole2 */
3306
3307 /* Common predicates for use with define_bypass. */
3308
3309 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3310 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3311 must be either a single_set or a PARALLEL with SETs inside. */
3312
3313 int
3314 store_data_bypass_p (rtx out_insn, rtx in_insn)
3315 {
3316 rtx out_set, in_set;
3317 rtx out_pat, in_pat;
3318 rtx out_exp, in_exp;
3319 int i, j;
3320
3321 in_set = single_set (in_insn);
3322 if (in_set)
3323 {
3324 if (!MEM_P (SET_DEST (in_set)))
3325 return false;
3326
3327 out_set = single_set (out_insn);
3328 if (out_set)
3329 {
3330 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3331 return false;
3332 }
3333 else
3334 {
3335 out_pat = PATTERN (out_insn);
3336
3337 if (GET_CODE (out_pat) != PARALLEL)
3338 return false;
3339
3340 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3341 {
3342 out_exp = XVECEXP (out_pat, 0, i);
3343
3344 if (GET_CODE (out_exp) == CLOBBER)
3345 continue;
3346
3347 gcc_assert (GET_CODE (out_exp) == SET);
3348
3349 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3350 return false;
3351 }
3352 }
3353 }
3354 else
3355 {
3356 in_pat = PATTERN (in_insn);
3357 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3358
3359 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3360 {
3361 in_exp = XVECEXP (in_pat, 0, i);
3362
3363 if (GET_CODE (in_exp) == CLOBBER)
3364 continue;
3365
3366 gcc_assert (GET_CODE (in_exp) == SET);
3367
3368 if (!MEM_P (SET_DEST (in_exp)))
3369 return false;
3370
3371 out_set = single_set (out_insn);
3372 if (out_set)
3373 {
3374 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3375 return false;
3376 }
3377 else
3378 {
3379 out_pat = PATTERN (out_insn);
3380 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3381
3382 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3383 {
3384 out_exp = XVECEXP (out_pat, 0, j);
3385
3386 if (GET_CODE (out_exp) == CLOBBER)
3387 continue;
3388
3389 gcc_assert (GET_CODE (out_exp) == SET);
3390
3391 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3392 return false;
3393 }
3394 }
3395 }
3396 }
3397
3398 return true;
3399 }
3400
3401 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3402 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3403 or multiple set; IN_INSN should be single_set for truth, but for convenience
3404 of insn categorization may be any JUMP or CALL insn. */
3405
3406 int
3407 if_test_bypass_p (rtx out_insn, rtx in_insn)
3408 {
3409 rtx out_set, in_set;
3410
3411 in_set = single_set (in_insn);
3412 if (! in_set)
3413 {
3414 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3415 return false;
3416 }
3417
3418 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3419 return false;
3420 in_set = SET_SRC (in_set);
3421
3422 out_set = single_set (out_insn);
3423 if (out_set)
3424 {
3425 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3426 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3427 return false;
3428 }
3429 else
3430 {
3431 rtx out_pat;
3432 int i;
3433
3434 out_pat = PATTERN (out_insn);
3435 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3436
3437 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3438 {
3439 rtx exp = XVECEXP (out_pat, 0, i);
3440
3441 if (GET_CODE (exp) == CLOBBER)
3442 continue;
3443
3444 gcc_assert (GET_CODE (exp) == SET);
3445
3446 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3447 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3448 return false;
3449 }
3450 }
3451
3452 return true;
3453 }
3454 \f
3455 static bool
3456 gate_handle_peephole2 (void)
3457 {
3458 return (optimize > 0 && flag_peephole2);
3459 }
3460
3461 static unsigned int
3462 rest_of_handle_peephole2 (void)
3463 {
3464 #ifdef HAVE_peephole2
3465 peephole2_optimize ();
3466 #endif
3467 return 0;
3468 }
3469
3470 struct rtl_opt_pass pass_peephole2 =
3471 {
3472 {
3473 RTL_PASS,
3474 "peephole2", /* name */
3475 gate_handle_peephole2, /* gate */
3476 rest_of_handle_peephole2, /* execute */
3477 NULL, /* sub */
3478 NULL, /* next */
3479 0, /* static_pass_number */
3480 TV_PEEPHOLE2, /* tv_id */
3481 0, /* properties_required */
3482 0, /* properties_provided */
3483 0, /* properties_destroyed */
3484 0, /* todo_flags_start */
3485 TODO_df_finish | TODO_verify_rtl_sharing |
3486 TODO_dump_func /* todo_flags_finish */
3487 }
3488 };
3489
3490 static unsigned int
3491 rest_of_handle_split_all_insns (void)
3492 {
3493 split_all_insns ();
3494 return 0;
3495 }
3496
3497 struct rtl_opt_pass pass_split_all_insns =
3498 {
3499 {
3500 RTL_PASS,
3501 "split1", /* name */
3502 NULL, /* gate */
3503 rest_of_handle_split_all_insns, /* execute */
3504 NULL, /* sub */
3505 NULL, /* next */
3506 0, /* static_pass_number */
3507 TV_NONE, /* tv_id */
3508 0, /* properties_required */
3509 0, /* properties_provided */
3510 0, /* properties_destroyed */
3511 0, /* todo_flags_start */
3512 TODO_dump_func /* todo_flags_finish */
3513 }
3514 };
3515
3516 static unsigned int
3517 rest_of_handle_split_after_reload (void)
3518 {
3519 /* If optimizing, then go ahead and split insns now. */
3520 #ifndef STACK_REGS
3521 if (optimize > 0)
3522 #endif
3523 split_all_insns ();
3524 return 0;
3525 }
3526
3527 struct rtl_opt_pass pass_split_after_reload =
3528 {
3529 {
3530 RTL_PASS,
3531 "split2", /* name */
3532 NULL, /* gate */
3533 rest_of_handle_split_after_reload, /* execute */
3534 NULL, /* sub */
3535 NULL, /* next */
3536 0, /* static_pass_number */
3537 TV_NONE, /* tv_id */
3538 0, /* properties_required */
3539 0, /* properties_provided */
3540 0, /* properties_destroyed */
3541 0, /* todo_flags_start */
3542 TODO_dump_func /* todo_flags_finish */
3543 }
3544 };
3545
3546 static bool
3547 gate_handle_split_before_regstack (void)
3548 {
3549 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3550 /* If flow2 creates new instructions which need splitting
3551 and scheduling after reload is not done, they might not be
3552 split until final which doesn't allow splitting
3553 if HAVE_ATTR_length. */
3554 # ifdef INSN_SCHEDULING
3555 return (optimize && !flag_schedule_insns_after_reload);
3556 # else
3557 return (optimize);
3558 # endif
3559 #else
3560 return 0;
3561 #endif
3562 }
3563
3564 static unsigned int
3565 rest_of_handle_split_before_regstack (void)
3566 {
3567 split_all_insns ();
3568 return 0;
3569 }
3570
3571 struct rtl_opt_pass pass_split_before_regstack =
3572 {
3573 {
3574 RTL_PASS,
3575 "split3", /* name */
3576 gate_handle_split_before_regstack, /* gate */
3577 rest_of_handle_split_before_regstack, /* execute */
3578 NULL, /* sub */
3579 NULL, /* next */
3580 0, /* static_pass_number */
3581 TV_NONE, /* tv_id */
3582 0, /* properties_required */
3583 0, /* properties_provided */
3584 0, /* properties_destroyed */
3585 0, /* todo_flags_start */
3586 TODO_dump_func /* todo_flags_finish */
3587 }
3588 };
3589
3590 static bool
3591 gate_handle_split_before_sched2 (void)
3592 {
3593 #ifdef INSN_SCHEDULING
3594 return optimize > 0 && flag_schedule_insns_after_reload;
3595 #else
3596 return 0;
3597 #endif
3598 }
3599
3600 static unsigned int
3601 rest_of_handle_split_before_sched2 (void)
3602 {
3603 #ifdef INSN_SCHEDULING
3604 split_all_insns ();
3605 #endif
3606 return 0;
3607 }
3608
3609 struct rtl_opt_pass pass_split_before_sched2 =
3610 {
3611 {
3612 RTL_PASS,
3613 "split4", /* name */
3614 gate_handle_split_before_sched2, /* gate */
3615 rest_of_handle_split_before_sched2, /* execute */
3616 NULL, /* sub */
3617 NULL, /* next */
3618 0, /* static_pass_number */
3619 TV_NONE, /* tv_id */
3620 0, /* properties_required */
3621 0, /* properties_provided */
3622 0, /* properties_destroyed */
3623 0, /* todo_flags_start */
3624 TODO_verify_flow |
3625 TODO_dump_func /* todo_flags_finish */
3626 }
3627 };
3628
3629 /* The placement of the splitting that we do for shorten_branches
3630 depends on whether regstack is used by the target or not. */
3631 static bool
3632 gate_do_final_split (void)
3633 {
3634 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3635 return 1;
3636 #else
3637 return 0;
3638 #endif
3639 }
3640
3641 struct rtl_opt_pass pass_split_for_shorten_branches =
3642 {
3643 {
3644 RTL_PASS,
3645 "split5", /* name */
3646 gate_do_final_split, /* gate */
3647 split_all_insns_noflow, /* execute */
3648 NULL, /* sub */
3649 NULL, /* next */
3650 0, /* static_pass_number */
3651 TV_NONE, /* tv_id */
3652 0, /* properties_required */
3653 0, /* properties_provided */
3654 0, /* properties_destroyed */
3655 0, /* todo_flags_start */
3656 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
3657 }
3658 };