i386.c (legitimize_tls_address): Generate tls_initial_exec_64_sun only when !TARGET_X32.
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
49 #else
50 #define STACK_PUSH_CODE PRE_INC
51 #endif
52 #endif
53
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
57 #else
58 #define STACK_POP_CODE POST_DEC
59 #endif
60 #endif
61
62 #ifndef HAVE_ATTR_enabled
63 static inline bool
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
65 {
66 return true;
67 }
68 #endif
69
70 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
71 static void validate_replace_src_1 (rtx *, void *);
72 static rtx split_insn (rtx);
73
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
79
80 init_recog and init_recog_no_volatile are responsible for setting this. */
81
82 int volatile_ok;
83
84 struct recog_data recog_data;
85
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
89
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
92
93 int which_alternative;
94
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
98
99 int reload_completed;
100
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
103
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
107
108 void
109 init_recog_no_volatile (void)
110 {
111 volatile_ok = 0;
112 }
113
114 void
115 init_recog (void)
116 {
117 volatile_ok = 1;
118 }
119
120 \f
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
122
123 static bool
124 asm_labels_ok (rtx body)
125 {
126 rtx asmop;
127 int i;
128
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
132
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
136
137 return true;
138 }
139
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
142
143 int
144 check_asm_operands (rtx x)
145 {
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
150
151 if (!asm_labels_ok (x))
152 return 0;
153
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
156 {
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
161 }
162
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
168
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
171
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
173
174 for (i = 0; i < noperands; i++)
175 {
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
181 }
182
183 return 1;
184 }
185 \f
186 /* Static data for the next two routines. */
187
188 typedef struct change_t
189 {
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
196
197 static change_t *changes;
198 static int changes_allocated;
199
200 static int num_changes = 0;
201
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
205
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
210
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
214
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
219
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
222 {
223 rtx old = *loc;
224
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
227
228 gcc_assert (in_group != 0 || num_changes == 0);
229
230 *loc = new_rtx;
231
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
234 {
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
241
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
243 }
244
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
249
250 if (object && !MEM_P (object))
251 {
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
256 }
257
258 num_changes++;
259
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
262
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
267 }
268
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
271
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 {
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
276 }
277
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
280
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
283 {
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
285 }
286
287
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
291
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
295 {
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
298 {
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
305 }
306 else
307 return false;
308 }
309
310
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized.
313
314 If IN_GROUP is true clobbers which have to be added in order to
315 match the instructions will be added to the current change group.
316 Otherwise the changes will take effect immediately. */
317
318 int
319 insn_invalid_p (rtx insn, bool in_group)
320 {
321 rtx pat = PATTERN (insn);
322 int num_clobbers = 0;
323 /* If we are before reload and the pattern is a SET, see if we can add
324 clobbers. */
325 int icode = recog (pat, insn,
326 (GET_CODE (pat) == SET
327 && ! reload_completed && ! reload_in_progress)
328 ? &num_clobbers : 0);
329 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
330
331
332 /* If this is an asm and the operand aren't legal, then fail. Likewise if
333 this is not an asm and the insn wasn't recognized. */
334 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
335 || (!is_asm && icode < 0))
336 return 1;
337
338 /* If we have to add CLOBBERs, fail if we have to add ones that reference
339 hard registers since our callers can't know if they are live or not.
340 Otherwise, add them. */
341 if (num_clobbers > 0)
342 {
343 rtx newpat;
344
345 if (added_clobbers_hard_reg_p (icode))
346 return 1;
347
348 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
349 XVECEXP (newpat, 0, 0) = pat;
350 add_clobbers (newpat, icode);
351 if (in_group)
352 validate_change (insn, &PATTERN (insn), newpat, 1);
353 else
354 PATTERN (insn) = pat = newpat;
355 }
356
357 /* After reload, verify that all constraints are satisfied. */
358 if (reload_completed)
359 {
360 extract_insn (insn);
361
362 if (! constrain_operands (1))
363 return 1;
364 }
365
366 INSN_CODE (insn) = icode;
367 return 0;
368 }
369
370 /* Return number of changes made and not validated yet. */
371 int
372 num_changes_pending (void)
373 {
374 return num_changes;
375 }
376
377 /* Tentatively apply the changes numbered NUM and up.
378 Return 1 if all changes are valid, zero otherwise. */
379
380 int
381 verify_changes (int num)
382 {
383 int i;
384 rtx last_validated = NULL_RTX;
385
386 /* The changes have been applied and all INSN_CODEs have been reset to force
387 rerecognition.
388
389 The changes are valid if we aren't given an object, or if we are
390 given a MEM and it still is a valid address, or if this is in insn
391 and it is recognized. In the latter case, if reload has completed,
392 we also require that the operands meet the constraints for
393 the insn. */
394
395 for (i = num; i < num_changes; i++)
396 {
397 rtx object = changes[i].object;
398
399 /* If there is no object to test or if it is the same as the one we
400 already tested, ignore it. */
401 if (object == 0 || object == last_validated)
402 continue;
403
404 if (MEM_P (object))
405 {
406 if (! memory_address_addr_space_p (GET_MODE (object),
407 XEXP (object, 0),
408 MEM_ADDR_SPACE (object)))
409 break;
410 }
411 else if (REG_P (changes[i].old)
412 && asm_noperands (PATTERN (object)) > 0
413 && REG_EXPR (changes[i].old) != NULL_TREE
414 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
415 && DECL_REGISTER (REG_EXPR (changes[i].old)))
416 {
417 /* Don't allow changes of hard register operands to inline
418 assemblies if they have been defined as register asm ("x"). */
419 break;
420 }
421 else if (DEBUG_INSN_P (object))
422 continue;
423 else if (insn_invalid_p (object, true))
424 {
425 rtx pat = PATTERN (object);
426
427 /* Perhaps we couldn't recognize the insn because there were
428 extra CLOBBERs at the end. If so, try to re-recognize
429 without the last CLOBBER (later iterations will cause each of
430 them to be eliminated, in turn). But don't do this if we
431 have an ASM_OPERAND. */
432 if (GET_CODE (pat) == PARALLEL
433 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
434 && asm_noperands (PATTERN (object)) < 0)
435 {
436 rtx newpat;
437
438 if (XVECLEN (pat, 0) == 2)
439 newpat = XVECEXP (pat, 0, 0);
440 else
441 {
442 int j;
443
444 newpat
445 = gen_rtx_PARALLEL (VOIDmode,
446 rtvec_alloc (XVECLEN (pat, 0) - 1));
447 for (j = 0; j < XVECLEN (newpat, 0); j++)
448 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
449 }
450
451 /* Add a new change to this group to replace the pattern
452 with this new pattern. Then consider this change
453 as having succeeded. The change we added will
454 cause the entire call to fail if things remain invalid.
455
456 Note that this can lose if a later change than the one
457 we are processing specified &XVECEXP (PATTERN (object), 0, X)
458 but this shouldn't occur. */
459
460 validate_change (object, &PATTERN (object), newpat, 1);
461 continue;
462 }
463 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
464 || GET_CODE (pat) == VAR_LOCATION)
465 /* If this insn is a CLOBBER or USE, it is always valid, but is
466 never recognized. */
467 continue;
468 else
469 break;
470 }
471 last_validated = object;
472 }
473
474 return (i == num_changes);
475 }
476
477 /* A group of changes has previously been issued with validate_change
478 and verified with verify_changes. Call df_insn_rescan for each of
479 the insn changed and clear num_changes. */
480
481 void
482 confirm_change_group (void)
483 {
484 int i;
485 rtx last_object = NULL;
486
487 for (i = 0; i < num_changes; i++)
488 {
489 rtx object = changes[i].object;
490
491 if (changes[i].unshare)
492 *changes[i].loc = copy_rtx (*changes[i].loc);
493
494 /* Avoid unnecessary rescanning when multiple changes to same instruction
495 are made. */
496 if (object)
497 {
498 if (object != last_object && last_object && INSN_P (last_object))
499 df_insn_rescan (last_object);
500 last_object = object;
501 }
502 }
503
504 if (last_object && INSN_P (last_object))
505 df_insn_rescan (last_object);
506 num_changes = 0;
507 }
508
509 /* Apply a group of changes previously issued with `validate_change'.
510 If all changes are valid, call confirm_change_group and return 1,
511 otherwise, call cancel_changes and return 0. */
512
513 int
514 apply_change_group (void)
515 {
516 if (verify_changes (0))
517 {
518 confirm_change_group ();
519 return 1;
520 }
521 else
522 {
523 cancel_changes (0);
524 return 0;
525 }
526 }
527
528
529 /* Return the number of changes so far in the current group. */
530
531 int
532 num_validated_changes (void)
533 {
534 return num_changes;
535 }
536
537 /* Retract the changes numbered NUM and up. */
538
539 void
540 cancel_changes (int num)
541 {
542 int i;
543
544 /* Back out all the changes. Do this in the opposite order in which
545 they were made. */
546 for (i = num_changes - 1; i >= num; i--)
547 {
548 *changes[i].loc = changes[i].old;
549 if (changes[i].object && !MEM_P (changes[i].object))
550 INSN_CODE (changes[i].object) = changes[i].old_code;
551 }
552 num_changes = num;
553 }
554
555 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
556 rtx. */
557
558 static void
559 simplify_while_replacing (rtx *loc, rtx to, rtx object,
560 enum machine_mode op0_mode)
561 {
562 rtx x = *loc;
563 enum rtx_code code = GET_CODE (x);
564 rtx new_rtx;
565
566 if (SWAPPABLE_OPERANDS_P (x)
567 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568 {
569 validate_unshare_change (object, loc,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 : swap_condition (code),
572 GET_MODE (x), XEXP (x, 1),
573 XEXP (x, 0)), 1);
574 x = *loc;
575 code = GET_CODE (x);
576 }
577
578 switch (code)
579 {
580 case PLUS:
581 /* If we have a PLUS whose second operand is now a CONST_INT, use
582 simplify_gen_binary to try to simplify it.
583 ??? We may want later to remove this, once simplification is
584 separated from this function. */
585 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
586 validate_change (object, loc,
587 simplify_gen_binary
588 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
589 break;
590 case MINUS:
591 if (CONST_INT_P (XEXP (x, 1))
592 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
593 validate_change (object, loc,
594 simplify_gen_binary
595 (PLUS, GET_MODE (x), XEXP (x, 0),
596 simplify_gen_unary (NEG,
597 GET_MODE (x), XEXP (x, 1),
598 GET_MODE (x))), 1);
599 break;
600 case ZERO_EXTEND:
601 case SIGN_EXTEND:
602 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
603 {
604 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
605 op0_mode);
606 /* If any of the above failed, substitute in something that
607 we know won't be recognized. */
608 if (!new_rtx)
609 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
610 validate_change (object, loc, new_rtx, 1);
611 }
612 break;
613 case SUBREG:
614 /* All subregs possible to simplify should be simplified. */
615 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
616 SUBREG_BYTE (x));
617
618 /* Subregs of VOIDmode operands are incorrect. */
619 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
620 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
621 if (new_rtx)
622 validate_change (object, loc, new_rtx, 1);
623 break;
624 case ZERO_EXTRACT:
625 case SIGN_EXTRACT:
626 /* If we are replacing a register with memory, try to change the memory
627 to be the mode required for memory in extract operations (this isn't
628 likely to be an insertion operation; if it was, nothing bad will
629 happen, we might just fail in some cases). */
630
631 if (MEM_P (XEXP (x, 0))
632 && CONST_INT_P (XEXP (x, 1))
633 && CONST_INT_P (XEXP (x, 2))
634 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
635 && !MEM_VOLATILE_P (XEXP (x, 0)))
636 {
637 enum machine_mode wanted_mode = VOIDmode;
638 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
639 int pos = INTVAL (XEXP (x, 2));
640
641 if (GET_CODE (x) == ZERO_EXTRACT)
642 {
643 enum machine_mode new_mode
644 = mode_for_extraction (EP_extzv, 1);
645 if (new_mode != MAX_MACHINE_MODE)
646 wanted_mode = new_mode;
647 }
648 else if (GET_CODE (x) == SIGN_EXTRACT)
649 {
650 enum machine_mode new_mode
651 = mode_for_extraction (EP_extv, 1);
652 if (new_mode != MAX_MACHINE_MODE)
653 wanted_mode = new_mode;
654 }
655
656 /* If we have a narrower mode, we can do something. */
657 if (wanted_mode != VOIDmode
658 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
659 {
660 int offset = pos / BITS_PER_UNIT;
661 rtx newmem;
662
663 /* If the bytes and bits are counted differently, we
664 must adjust the offset. */
665 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
666 offset =
667 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
668 offset);
669
670 gcc_assert (GET_MODE_PRECISION (wanted_mode)
671 == GET_MODE_BITSIZE (wanted_mode));
672 pos %= GET_MODE_BITSIZE (wanted_mode);
673
674 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
675
676 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
677 validate_change (object, &XEXP (x, 0), newmem, 1);
678 }
679 }
680
681 break;
682
683 default:
684 break;
685 }
686 }
687
688 /* Replace every occurrence of FROM in X with TO. Mark each change with
689 validate_change passing OBJECT. */
690
691 static void
692 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
693 bool simplify)
694 {
695 int i, j;
696 const char *fmt;
697 rtx x = *loc;
698 enum rtx_code code;
699 enum machine_mode op0_mode = VOIDmode;
700 int prev_changes = num_changes;
701
702 if (!x)
703 return;
704
705 code = GET_CODE (x);
706 fmt = GET_RTX_FORMAT (code);
707 if (fmt[0] == 'e')
708 op0_mode = GET_MODE (XEXP (x, 0));
709
710 /* X matches FROM if it is the same rtx or they are both referring to the
711 same register in the same mode. Avoid calling rtx_equal_p unless the
712 operands look similar. */
713
714 if (x == from
715 || (REG_P (x) && REG_P (from)
716 && GET_MODE (x) == GET_MODE (from)
717 && REGNO (x) == REGNO (from))
718 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
719 && rtx_equal_p (x, from)))
720 {
721 validate_unshare_change (object, loc, to, 1);
722 return;
723 }
724
725 /* Call ourself recursively to perform the replacements.
726 We must not replace inside already replaced expression, otherwise we
727 get infinite recursion for replacements like (reg X)->(subreg (reg X))
728 done by regmove, so we must special case shared ASM_OPERANDS. */
729
730 if (GET_CODE (x) == PARALLEL)
731 {
732 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
733 {
734 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
735 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
736 {
737 /* Verify that operands are really shared. */
738 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
739 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
740 (x, 0, j))));
741 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
742 from, to, object, simplify);
743 }
744 else
745 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
746 simplify);
747 }
748 }
749 else
750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
751 {
752 if (fmt[i] == 'e')
753 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
754 else if (fmt[i] == 'E')
755 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
756 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
757 simplify);
758 }
759
760 /* If we didn't substitute, there is nothing more to do. */
761 if (num_changes == prev_changes)
762 return;
763
764 /* Allow substituted expression to have different mode. This is used by
765 regmove to change mode of pseudo register. */
766 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
767 op0_mode = GET_MODE (XEXP (x, 0));
768
769 /* Do changes needed to keep rtx consistent. Don't do any other
770 simplifications, as it is not our job. */
771 if (simplify)
772 simplify_while_replacing (loc, to, object, op0_mode);
773 }
774
775 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
776 with TO. After all changes have been made, validate by seeing
777 if INSN is still valid. */
778
779 int
780 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
781 {
782 validate_replace_rtx_1 (loc, from, to, insn, true);
783 return apply_change_group ();
784 }
785
786 /* Try replacing every occurrence of FROM in INSN with TO. After all
787 changes have been made, validate by seeing if INSN is still valid. */
788
789 int
790 validate_replace_rtx (rtx from, rtx to, rtx insn)
791 {
792 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
793 return apply_change_group ();
794 }
795
796 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
797 is a part of INSN. After all changes have been made, validate by seeing if
798 INSN is still valid.
799 validate_replace_rtx (from, to, insn) is equivalent to
800 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
801
802 int
803 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
804 {
805 validate_replace_rtx_1 (where, from, to, insn, true);
806 return apply_change_group ();
807 }
808
809 /* Same as above, but do not simplify rtx afterwards. */
810 int
811 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
812 rtx insn)
813 {
814 validate_replace_rtx_1 (where, from, to, insn, false);
815 return apply_change_group ();
816
817 }
818
819 /* Try replacing every occurrence of FROM in INSN with TO. This also
820 will replace in REG_EQUAL and REG_EQUIV notes. */
821
822 void
823 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
824 {
825 rtx note;
826 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
827 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
828 if (REG_NOTE_KIND (note) == REG_EQUAL
829 || REG_NOTE_KIND (note) == REG_EQUIV)
830 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
831 }
832
833 /* Function called by note_uses to replace used subexpressions. */
834 struct validate_replace_src_data
835 {
836 rtx from; /* Old RTX */
837 rtx to; /* New RTX */
838 rtx insn; /* Insn in which substitution is occurring. */
839 };
840
841 static void
842 validate_replace_src_1 (rtx *x, void *data)
843 {
844 struct validate_replace_src_data *d
845 = (struct validate_replace_src_data *) data;
846
847 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
848 }
849
850 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
851 SET_DESTs. */
852
853 void
854 validate_replace_src_group (rtx from, rtx to, rtx insn)
855 {
856 struct validate_replace_src_data d;
857
858 d.from = from;
859 d.to = to;
860 d.insn = insn;
861 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
862 }
863
864 /* Try simplify INSN.
865 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
866 pattern and return true if something was simplified. */
867
868 bool
869 validate_simplify_insn (rtx insn)
870 {
871 int i;
872 rtx pat = NULL;
873 rtx newpat = NULL;
874
875 pat = PATTERN (insn);
876
877 if (GET_CODE (pat) == SET)
878 {
879 newpat = simplify_rtx (SET_SRC (pat));
880 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
881 validate_change (insn, &SET_SRC (pat), newpat, 1);
882 newpat = simplify_rtx (SET_DEST (pat));
883 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
884 validate_change (insn, &SET_DEST (pat), newpat, 1);
885 }
886 else if (GET_CODE (pat) == PARALLEL)
887 for (i = 0; i < XVECLEN (pat, 0); i++)
888 {
889 rtx s = XVECEXP (pat, 0, i);
890
891 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
892 {
893 newpat = simplify_rtx (SET_SRC (s));
894 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
895 validate_change (insn, &SET_SRC (s), newpat, 1);
896 newpat = simplify_rtx (SET_DEST (s));
897 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
898 validate_change (insn, &SET_DEST (s), newpat, 1);
899 }
900 }
901 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
902 }
903 \f
904 #ifdef HAVE_cc0
905 /* Return 1 if the insn using CC0 set by INSN does not contain
906 any ordered tests applied to the condition codes.
907 EQ and NE tests do not count. */
908
909 int
910 next_insn_tests_no_inequality (rtx insn)
911 {
912 rtx next = next_cc0_user (insn);
913
914 /* If there is no next insn, we have to take the conservative choice. */
915 if (next == 0)
916 return 0;
917
918 return (INSN_P (next)
919 && ! inequality_comparisons_p (PATTERN (next)));
920 }
921 #endif
922 \f
923 /* Return 1 if OP is a valid general operand for machine mode MODE.
924 This is either a register reference, a memory reference,
925 or a constant. In the case of a memory reference, the address
926 is checked for general validity for the target machine.
927
928 Register and memory references must have mode MODE in order to be valid,
929 but some constants have no machine mode and are valid for any mode.
930
931 If MODE is VOIDmode, OP is checked for validity for whatever mode
932 it has.
933
934 The main use of this function is as a predicate in match_operand
935 expressions in the machine description. */
936
937 int
938 general_operand (rtx op, enum machine_mode mode)
939 {
940 enum rtx_code code = GET_CODE (op);
941
942 if (mode == VOIDmode)
943 mode = GET_MODE (op);
944
945 /* Don't accept CONST_INT or anything similar
946 if the caller wants something floating. */
947 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
948 && GET_MODE_CLASS (mode) != MODE_INT
949 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
950 return 0;
951
952 if (CONST_INT_P (op)
953 && mode != VOIDmode
954 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
955 return 0;
956
957 if (CONSTANT_P (op))
958 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
959 || mode == VOIDmode)
960 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
961 && targetm.legitimate_constant_p (mode == VOIDmode
962 ? GET_MODE (op)
963 : mode, op));
964
965 /* Except for certain constants with VOIDmode, already checked for,
966 OP's mode must match MODE if MODE specifies a mode. */
967
968 if (GET_MODE (op) != mode)
969 return 0;
970
971 if (code == SUBREG)
972 {
973 rtx sub = SUBREG_REG (op);
974
975 #ifdef INSN_SCHEDULING
976 /* On machines that have insn scheduling, we want all memory
977 reference to be explicit, so outlaw paradoxical SUBREGs.
978 However, we must allow them after reload so that they can
979 get cleaned up by cleanup_subreg_operands. */
980 if (!reload_completed && MEM_P (sub)
981 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
982 return 0;
983 #endif
984 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
985 may result in incorrect reference. We should simplify all valid
986 subregs of MEM anyway. But allow this after reload because we
987 might be called from cleanup_subreg_operands.
988
989 ??? This is a kludge. */
990 if (!reload_completed && SUBREG_BYTE (op) != 0
991 && MEM_P (sub))
992 return 0;
993
994 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
995 create such rtl, and we must reject it. */
996 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
997 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
998 return 0;
999
1000 op = sub;
1001 code = GET_CODE (op);
1002 }
1003
1004 if (code == REG)
1005 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1006 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1007
1008 if (code == MEM)
1009 {
1010 rtx y = XEXP (op, 0);
1011
1012 if (! volatile_ok && MEM_VOLATILE_P (op))
1013 return 0;
1014
1015 /* Use the mem's mode, since it will be reloaded thus. */
1016 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1017 return 1;
1018 }
1019
1020 return 0;
1021 }
1022 \f
1023 /* Return 1 if OP is a valid memory address for a memory reference
1024 of mode MODE.
1025
1026 The main use of this function is as a predicate in match_operand
1027 expressions in the machine description. */
1028
1029 int
1030 address_operand (rtx op, enum machine_mode mode)
1031 {
1032 return memory_address_p (mode, op);
1033 }
1034
1035 /* Return 1 if OP is a register reference of mode MODE.
1036 If MODE is VOIDmode, accept a register in any mode.
1037
1038 The main use of this function is as a predicate in match_operand
1039 expressions in the machine description. */
1040
1041 int
1042 register_operand (rtx op, enum machine_mode mode)
1043 {
1044 if (GET_MODE (op) != mode && mode != VOIDmode)
1045 return 0;
1046
1047 if (GET_CODE (op) == SUBREG)
1048 {
1049 rtx sub = SUBREG_REG (op);
1050
1051 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1052 because it is guaranteed to be reloaded into one.
1053 Just make sure the MEM is valid in itself.
1054 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1055 but currently it does result from (SUBREG (REG)...) where the
1056 reg went on the stack.) */
1057 if (! reload_completed && MEM_P (sub))
1058 return general_operand (op, mode);
1059
1060 #ifdef CANNOT_CHANGE_MODE_CLASS
1061 if (REG_P (sub)
1062 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1063 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1064 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1065 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1066 return 0;
1067 #endif
1068
1069 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1070 create such rtl, and we must reject it. */
1071 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1072 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1073 return 0;
1074
1075 op = sub;
1076 }
1077
1078 return (REG_P (op)
1079 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1080 || in_hard_reg_set_p (operand_reg_set,
1081 GET_MODE (op), REGNO (op))));
1082 }
1083
1084 /* Return 1 for a register in Pmode; ignore the tested mode. */
1085
1086 int
1087 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1088 {
1089 return register_operand (op, Pmode);
1090 }
1091
1092 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1093 or a hard register. */
1094
1095 int
1096 scratch_operand (rtx op, enum machine_mode mode)
1097 {
1098 if (GET_MODE (op) != mode && mode != VOIDmode)
1099 return 0;
1100
1101 return (GET_CODE (op) == SCRATCH
1102 || (REG_P (op)
1103 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1104 }
1105
1106 /* Return 1 if OP is a valid immediate operand for mode MODE.
1107
1108 The main use of this function is as a predicate in match_operand
1109 expressions in the machine description. */
1110
1111 int
1112 immediate_operand (rtx op, enum machine_mode mode)
1113 {
1114 /* Don't accept CONST_INT or anything similar
1115 if the caller wants something floating. */
1116 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1117 && GET_MODE_CLASS (mode) != MODE_INT
1118 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1119 return 0;
1120
1121 if (CONST_INT_P (op)
1122 && mode != VOIDmode
1123 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1124 return 0;
1125
1126 return (CONSTANT_P (op)
1127 && (GET_MODE (op) == mode || mode == VOIDmode
1128 || GET_MODE (op) == VOIDmode)
1129 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1130 && targetm.legitimate_constant_p (mode == VOIDmode
1131 ? GET_MODE (op)
1132 : mode, op));
1133 }
1134
1135 /* Returns 1 if OP is an operand that is a CONST_INT. */
1136
1137 int
1138 const_int_operand (rtx op, enum machine_mode mode)
1139 {
1140 if (!CONST_INT_P (op))
1141 return 0;
1142
1143 if (mode != VOIDmode
1144 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1145 return 0;
1146
1147 return 1;
1148 }
1149
1150 /* Returns 1 if OP is an operand that is a constant integer or constant
1151 floating-point number. */
1152
1153 int
1154 const_double_operand (rtx op, enum machine_mode mode)
1155 {
1156 /* Don't accept CONST_INT or anything similar
1157 if the caller wants something floating. */
1158 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1159 && GET_MODE_CLASS (mode) != MODE_INT
1160 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1161 return 0;
1162
1163 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1164 && (mode == VOIDmode || GET_MODE (op) == mode
1165 || GET_MODE (op) == VOIDmode));
1166 }
1167
1168 /* Return 1 if OP is a general operand that is not an immediate operand. */
1169
1170 int
1171 nonimmediate_operand (rtx op, enum machine_mode mode)
1172 {
1173 return (general_operand (op, mode) && ! CONSTANT_P (op));
1174 }
1175
1176 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1177
1178 int
1179 nonmemory_operand (rtx op, enum machine_mode mode)
1180 {
1181 if (CONSTANT_P (op))
1182 return immediate_operand (op, mode);
1183
1184 if (GET_MODE (op) != mode && mode != VOIDmode)
1185 return 0;
1186
1187 if (GET_CODE (op) == SUBREG)
1188 {
1189 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1190 because it is guaranteed to be reloaded into one.
1191 Just make sure the MEM is valid in itself.
1192 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1193 but currently it does result from (SUBREG (REG)...) where the
1194 reg went on the stack.) */
1195 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1196 return general_operand (op, mode);
1197 op = SUBREG_REG (op);
1198 }
1199
1200 return (REG_P (op)
1201 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1202 || in_hard_reg_set_p (operand_reg_set,
1203 GET_MODE (op), REGNO (op))));
1204 }
1205
1206 /* Return 1 if OP is a valid operand that stands for pushing a
1207 value of mode MODE onto the stack.
1208
1209 The main use of this function is as a predicate in match_operand
1210 expressions in the machine description. */
1211
1212 int
1213 push_operand (rtx op, enum machine_mode mode)
1214 {
1215 unsigned int rounded_size = GET_MODE_SIZE (mode);
1216
1217 #ifdef PUSH_ROUNDING
1218 rounded_size = PUSH_ROUNDING (rounded_size);
1219 #endif
1220
1221 if (!MEM_P (op))
1222 return 0;
1223
1224 if (mode != VOIDmode && GET_MODE (op) != mode)
1225 return 0;
1226
1227 op = XEXP (op, 0);
1228
1229 if (rounded_size == GET_MODE_SIZE (mode))
1230 {
1231 if (GET_CODE (op) != STACK_PUSH_CODE)
1232 return 0;
1233 }
1234 else
1235 {
1236 if (GET_CODE (op) != PRE_MODIFY
1237 || GET_CODE (XEXP (op, 1)) != PLUS
1238 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1239 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1240 #ifdef STACK_GROWS_DOWNWARD
1241 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1242 #else
1243 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1244 #endif
1245 )
1246 return 0;
1247 }
1248
1249 return XEXP (op, 0) == stack_pointer_rtx;
1250 }
1251
1252 /* Return 1 if OP is a valid operand that stands for popping a
1253 value of mode MODE off the stack.
1254
1255 The main use of this function is as a predicate in match_operand
1256 expressions in the machine description. */
1257
1258 int
1259 pop_operand (rtx op, enum machine_mode mode)
1260 {
1261 if (!MEM_P (op))
1262 return 0;
1263
1264 if (mode != VOIDmode && GET_MODE (op) != mode)
1265 return 0;
1266
1267 op = XEXP (op, 0);
1268
1269 if (GET_CODE (op) != STACK_POP_CODE)
1270 return 0;
1271
1272 return XEXP (op, 0) == stack_pointer_rtx;
1273 }
1274
1275 /* Return 1 if ADDR is a valid memory address
1276 for mode MODE in address space AS. */
1277
1278 int
1279 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1280 rtx addr, addr_space_t as)
1281 {
1282 #ifdef GO_IF_LEGITIMATE_ADDRESS
1283 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1284 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1285 return 0;
1286
1287 win:
1288 return 1;
1289 #else
1290 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1291 #endif
1292 }
1293
1294 /* Return 1 if OP is a valid memory reference with mode MODE,
1295 including a valid address.
1296
1297 The main use of this function is as a predicate in match_operand
1298 expressions in the machine description. */
1299
1300 int
1301 memory_operand (rtx op, enum machine_mode mode)
1302 {
1303 rtx inner;
1304
1305 if (! reload_completed)
1306 /* Note that no SUBREG is a memory operand before end of reload pass,
1307 because (SUBREG (MEM...)) forces reloading into a register. */
1308 return MEM_P (op) && general_operand (op, mode);
1309
1310 if (mode != VOIDmode && GET_MODE (op) != mode)
1311 return 0;
1312
1313 inner = op;
1314 if (GET_CODE (inner) == SUBREG)
1315 inner = SUBREG_REG (inner);
1316
1317 return (MEM_P (inner) && general_operand (op, mode));
1318 }
1319
1320 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1321 that is, a memory reference whose address is a general_operand. */
1322
1323 int
1324 indirect_operand (rtx op, enum machine_mode mode)
1325 {
1326 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1327 if (! reload_completed
1328 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1329 {
1330 int offset = SUBREG_BYTE (op);
1331 rtx inner = SUBREG_REG (op);
1332
1333 if (mode != VOIDmode && GET_MODE (op) != mode)
1334 return 0;
1335
1336 /* The only way that we can have a general_operand as the resulting
1337 address is if OFFSET is zero and the address already is an operand
1338 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1339 operand. */
1340
1341 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1342 || (GET_CODE (XEXP (inner, 0)) == PLUS
1343 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1344 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1345 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1346 }
1347
1348 return (MEM_P (op)
1349 && memory_operand (op, mode)
1350 && general_operand (XEXP (op, 0), Pmode));
1351 }
1352
1353 /* Return 1 if this is an ordered comparison operator (not including
1354 ORDERED and UNORDERED). */
1355
1356 int
1357 ordered_comparison_operator (rtx op, enum machine_mode mode)
1358 {
1359 if (mode != VOIDmode && GET_MODE (op) != mode)
1360 return false;
1361 switch (GET_CODE (op))
1362 {
1363 case EQ:
1364 case NE:
1365 case LT:
1366 case LTU:
1367 case LE:
1368 case LEU:
1369 case GT:
1370 case GTU:
1371 case GE:
1372 case GEU:
1373 return true;
1374 default:
1375 return false;
1376 }
1377 }
1378
1379 /* Return 1 if this is a comparison operator. This allows the use of
1380 MATCH_OPERATOR to recognize all the branch insns. */
1381
1382 int
1383 comparison_operator (rtx op, enum machine_mode mode)
1384 {
1385 return ((mode == VOIDmode || GET_MODE (op) == mode)
1386 && COMPARISON_P (op));
1387 }
1388 \f
1389 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1390
1391 rtx
1392 extract_asm_operands (rtx body)
1393 {
1394 rtx tmp;
1395 switch (GET_CODE (body))
1396 {
1397 case ASM_OPERANDS:
1398 return body;
1399
1400 case SET:
1401 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1402 tmp = SET_SRC (body);
1403 if (GET_CODE (tmp) == ASM_OPERANDS)
1404 return tmp;
1405 break;
1406
1407 case PARALLEL:
1408 tmp = XVECEXP (body, 0, 0);
1409 if (GET_CODE (tmp) == ASM_OPERANDS)
1410 return tmp;
1411 if (GET_CODE (tmp) == SET)
1412 {
1413 tmp = SET_SRC (tmp);
1414 if (GET_CODE (tmp) == ASM_OPERANDS)
1415 return tmp;
1416 }
1417 break;
1418
1419 default:
1420 break;
1421 }
1422 return NULL;
1423 }
1424
1425 /* If BODY is an insn body that uses ASM_OPERANDS,
1426 return the number of operands (both input and output) in the insn.
1427 Otherwise return -1. */
1428
1429 int
1430 asm_noperands (const_rtx body)
1431 {
1432 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1433 int n_sets = 0;
1434
1435 if (asm_op == NULL)
1436 return -1;
1437
1438 if (GET_CODE (body) == SET)
1439 n_sets = 1;
1440 else if (GET_CODE (body) == PARALLEL)
1441 {
1442 int i;
1443 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1444 {
1445 /* Multiple output operands, or 1 output plus some clobbers:
1446 body is
1447 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1448 /* Count backwards through CLOBBERs to determine number of SETs. */
1449 for (i = XVECLEN (body, 0); i > 0; i--)
1450 {
1451 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1452 break;
1453 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1454 return -1;
1455 }
1456
1457 /* N_SETS is now number of output operands. */
1458 n_sets = i;
1459
1460 /* Verify that all the SETs we have
1461 came from a single original asm_operands insn
1462 (so that invalid combinations are blocked). */
1463 for (i = 0; i < n_sets; i++)
1464 {
1465 rtx elt = XVECEXP (body, 0, i);
1466 if (GET_CODE (elt) != SET)
1467 return -1;
1468 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1469 return -1;
1470 /* If these ASM_OPERANDS rtx's came from different original insns
1471 then they aren't allowed together. */
1472 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1473 != ASM_OPERANDS_INPUT_VEC (asm_op))
1474 return -1;
1475 }
1476 }
1477 else
1478 {
1479 /* 0 outputs, but some clobbers:
1480 body is [(asm_operands ...) (clobber (reg ...))...]. */
1481 /* Make sure all the other parallel things really are clobbers. */
1482 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1483 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1484 return -1;
1485 }
1486 }
1487
1488 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1489 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1490 }
1491
1492 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1493 copy its operands (both input and output) into the vector OPERANDS,
1494 the locations of the operands within the insn into the vector OPERAND_LOCS,
1495 and the constraints for the operands into CONSTRAINTS.
1496 Write the modes of the operands into MODES.
1497 Return the assembler-template.
1498
1499 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1500 we don't store that info. */
1501
1502 const char *
1503 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1504 const char **constraints, enum machine_mode *modes,
1505 location_t *loc)
1506 {
1507 int nbase = 0, n, i;
1508 rtx asmop;
1509
1510 switch (GET_CODE (body))
1511 {
1512 case ASM_OPERANDS:
1513 /* Zero output asm: BODY is (asm_operands ...). */
1514 asmop = body;
1515 break;
1516
1517 case SET:
1518 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1519 asmop = SET_SRC (body);
1520
1521 /* The output is in the SET.
1522 Its constraint is in the ASM_OPERANDS itself. */
1523 if (operands)
1524 operands[0] = SET_DEST (body);
1525 if (operand_locs)
1526 operand_locs[0] = &SET_DEST (body);
1527 if (constraints)
1528 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1529 if (modes)
1530 modes[0] = GET_MODE (SET_DEST (body));
1531 nbase = 1;
1532 break;
1533
1534 case PARALLEL:
1535 {
1536 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1537
1538 asmop = XVECEXP (body, 0, 0);
1539 if (GET_CODE (asmop) == SET)
1540 {
1541 asmop = SET_SRC (asmop);
1542
1543 /* At least one output, plus some CLOBBERs. The outputs are in
1544 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1545 for (i = 0; i < nparallel; i++)
1546 {
1547 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1548 break; /* Past last SET */
1549 if (operands)
1550 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1551 if (operand_locs)
1552 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1553 if (constraints)
1554 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1555 if (modes)
1556 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1557 }
1558 nbase = i;
1559 }
1560 break;
1561 }
1562
1563 default:
1564 gcc_unreachable ();
1565 }
1566
1567 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1568 for (i = 0; i < n; i++)
1569 {
1570 if (operand_locs)
1571 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1572 if (operands)
1573 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1574 if (constraints)
1575 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1576 if (modes)
1577 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1578 }
1579 nbase += n;
1580
1581 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1582 for (i = 0; i < n; i++)
1583 {
1584 if (operand_locs)
1585 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1586 if (operands)
1587 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1588 if (constraints)
1589 constraints[nbase + i] = "";
1590 if (modes)
1591 modes[nbase + i] = Pmode;
1592 }
1593
1594 if (loc)
1595 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1596
1597 return ASM_OPERANDS_TEMPLATE (asmop);
1598 }
1599
1600 /* Check if an asm_operand matches its constraints.
1601 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1602
1603 int
1604 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1605 {
1606 int result = 0;
1607 #ifdef AUTO_INC_DEC
1608 bool incdec_ok = false;
1609 #endif
1610
1611 /* Use constrain_operands after reload. */
1612 gcc_assert (!reload_completed);
1613
1614 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1615 many alternatives as required to match the other operands. */
1616 if (*constraint == '\0')
1617 result = 1;
1618
1619 while (*constraint)
1620 {
1621 char c = *constraint;
1622 int len;
1623 switch (c)
1624 {
1625 case ',':
1626 constraint++;
1627 continue;
1628 case '=':
1629 case '+':
1630 case '*':
1631 case '%':
1632 case '!':
1633 case '#':
1634 case '&':
1635 case '?':
1636 break;
1637
1638 case '0': case '1': case '2': case '3': case '4':
1639 case '5': case '6': case '7': case '8': case '9':
1640 /* If caller provided constraints pointer, look up
1641 the maching constraint. Otherwise, our caller should have
1642 given us the proper matching constraint, but we can't
1643 actually fail the check if they didn't. Indicate that
1644 results are inconclusive. */
1645 if (constraints)
1646 {
1647 char *end;
1648 unsigned long match;
1649
1650 match = strtoul (constraint, &end, 10);
1651 if (!result)
1652 result = asm_operand_ok (op, constraints[match], NULL);
1653 constraint = (const char *) end;
1654 }
1655 else
1656 {
1657 do
1658 constraint++;
1659 while (ISDIGIT (*constraint));
1660 if (! result)
1661 result = -1;
1662 }
1663 continue;
1664
1665 case 'p':
1666 if (address_operand (op, VOIDmode))
1667 result = 1;
1668 break;
1669
1670 case TARGET_MEM_CONSTRAINT:
1671 case 'V': /* non-offsettable */
1672 if (memory_operand (op, VOIDmode))
1673 result = 1;
1674 break;
1675
1676 case 'o': /* offsettable */
1677 if (offsettable_nonstrict_memref_p (op))
1678 result = 1;
1679 break;
1680
1681 case '<':
1682 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1683 excepting those that expand_call created. Further, on some
1684 machines which do not have generalized auto inc/dec, an inc/dec
1685 is not a memory_operand.
1686
1687 Match any memory and hope things are resolved after reload. */
1688
1689 if (MEM_P (op)
1690 && (1
1691 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1692 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1693 result = 1;
1694 #ifdef AUTO_INC_DEC
1695 incdec_ok = true;
1696 #endif
1697 break;
1698
1699 case '>':
1700 if (MEM_P (op)
1701 && (1
1702 || GET_CODE (XEXP (op, 0)) == PRE_INC
1703 || GET_CODE (XEXP (op, 0)) == POST_INC))
1704 result = 1;
1705 #ifdef AUTO_INC_DEC
1706 incdec_ok = true;
1707 #endif
1708 break;
1709
1710 case 'E':
1711 case 'F':
1712 if (GET_CODE (op) == CONST_DOUBLE
1713 || (GET_CODE (op) == CONST_VECTOR
1714 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1715 result = 1;
1716 break;
1717
1718 case 'G':
1719 if (GET_CODE (op) == CONST_DOUBLE
1720 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1721 result = 1;
1722 break;
1723 case 'H':
1724 if (GET_CODE (op) == CONST_DOUBLE
1725 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1726 result = 1;
1727 break;
1728
1729 case 's':
1730 if (CONST_INT_P (op)
1731 || (GET_CODE (op) == CONST_DOUBLE
1732 && GET_MODE (op) == VOIDmode))
1733 break;
1734 /* Fall through. */
1735
1736 case 'i':
1737 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1738 result = 1;
1739 break;
1740
1741 case 'n':
1742 if (CONST_INT_P (op)
1743 || (GET_CODE (op) == CONST_DOUBLE
1744 && GET_MODE (op) == VOIDmode))
1745 result = 1;
1746 break;
1747
1748 case 'I':
1749 if (CONST_INT_P (op)
1750 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1751 result = 1;
1752 break;
1753 case 'J':
1754 if (CONST_INT_P (op)
1755 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1756 result = 1;
1757 break;
1758 case 'K':
1759 if (CONST_INT_P (op)
1760 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1761 result = 1;
1762 break;
1763 case 'L':
1764 if (CONST_INT_P (op)
1765 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1766 result = 1;
1767 break;
1768 case 'M':
1769 if (CONST_INT_P (op)
1770 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1771 result = 1;
1772 break;
1773 case 'N':
1774 if (CONST_INT_P (op)
1775 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1776 result = 1;
1777 break;
1778 case 'O':
1779 if (CONST_INT_P (op)
1780 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1781 result = 1;
1782 break;
1783 case 'P':
1784 if (CONST_INT_P (op)
1785 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1786 result = 1;
1787 break;
1788
1789 case 'X':
1790 result = 1;
1791 break;
1792
1793 case 'g':
1794 if (general_operand (op, VOIDmode))
1795 result = 1;
1796 break;
1797
1798 default:
1799 /* For all other letters, we first check for a register class,
1800 otherwise it is an EXTRA_CONSTRAINT. */
1801 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1802 {
1803 case 'r':
1804 if (GET_MODE (op) == BLKmode)
1805 break;
1806 if (register_operand (op, VOIDmode))
1807 result = 1;
1808 }
1809 #ifdef EXTRA_CONSTRAINT_STR
1810 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1811 /* Every memory operand can be reloaded to fit. */
1812 result = result || memory_operand (op, VOIDmode);
1813 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1814 /* Every address operand can be reloaded to fit. */
1815 result = result || address_operand (op, VOIDmode);
1816 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1817 result = 1;
1818 #endif
1819 break;
1820 }
1821 len = CONSTRAINT_LEN (c, constraint);
1822 do
1823 constraint++;
1824 while (--len && *constraint);
1825 if (len)
1826 return 0;
1827 }
1828
1829 #ifdef AUTO_INC_DEC
1830 /* For operands without < or > constraints reject side-effects. */
1831 if (!incdec_ok && result && MEM_P (op))
1832 switch (GET_CODE (XEXP (op, 0)))
1833 {
1834 case PRE_INC:
1835 case POST_INC:
1836 case PRE_DEC:
1837 case POST_DEC:
1838 case PRE_MODIFY:
1839 case POST_MODIFY:
1840 return 0;
1841 default:
1842 break;
1843 }
1844 #endif
1845
1846 return result;
1847 }
1848 \f
1849 /* Given an rtx *P, if it is a sum containing an integer constant term,
1850 return the location (type rtx *) of the pointer to that constant term.
1851 Otherwise, return a null pointer. */
1852
1853 rtx *
1854 find_constant_term_loc (rtx *p)
1855 {
1856 rtx *tem;
1857 enum rtx_code code = GET_CODE (*p);
1858
1859 /* If *P IS such a constant term, P is its location. */
1860
1861 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1862 || code == CONST)
1863 return p;
1864
1865 /* Otherwise, if not a sum, it has no constant term. */
1866
1867 if (GET_CODE (*p) != PLUS)
1868 return 0;
1869
1870 /* If one of the summands is constant, return its location. */
1871
1872 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1873 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1874 return p;
1875
1876 /* Otherwise, check each summand for containing a constant term. */
1877
1878 if (XEXP (*p, 0) != 0)
1879 {
1880 tem = find_constant_term_loc (&XEXP (*p, 0));
1881 if (tem != 0)
1882 return tem;
1883 }
1884
1885 if (XEXP (*p, 1) != 0)
1886 {
1887 tem = find_constant_term_loc (&XEXP (*p, 1));
1888 if (tem != 0)
1889 return tem;
1890 }
1891
1892 return 0;
1893 }
1894 \f
1895 /* Return 1 if OP is a memory reference
1896 whose address contains no side effects
1897 and remains valid after the addition
1898 of a positive integer less than the
1899 size of the object being referenced.
1900
1901 We assume that the original address is valid and do not check it.
1902
1903 This uses strict_memory_address_p as a subroutine, so
1904 don't use it before reload. */
1905
1906 int
1907 offsettable_memref_p (rtx op)
1908 {
1909 return ((MEM_P (op))
1910 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1911 MEM_ADDR_SPACE (op)));
1912 }
1913
1914 /* Similar, but don't require a strictly valid mem ref:
1915 consider pseudo-regs valid as index or base regs. */
1916
1917 int
1918 offsettable_nonstrict_memref_p (rtx op)
1919 {
1920 return ((MEM_P (op))
1921 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1922 MEM_ADDR_SPACE (op)));
1923 }
1924
1925 /* Return 1 if Y is a memory address which contains no side effects
1926 and would remain valid for address space AS after the addition of
1927 a positive integer less than the size of that mode.
1928
1929 We assume that the original address is valid and do not check it.
1930 We do check that it is valid for narrower modes.
1931
1932 If STRICTP is nonzero, we require a strictly valid address,
1933 for the sake of use in reload.c. */
1934
1935 int
1936 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1937 addr_space_t as)
1938 {
1939 enum rtx_code ycode = GET_CODE (y);
1940 rtx z;
1941 rtx y1 = y;
1942 rtx *y2;
1943 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1944 (strictp ? strict_memory_address_addr_space_p
1945 : memory_address_addr_space_p);
1946 unsigned int mode_sz = GET_MODE_SIZE (mode);
1947
1948 if (CONSTANT_ADDRESS_P (y))
1949 return 1;
1950
1951 /* Adjusting an offsettable address involves changing to a narrower mode.
1952 Make sure that's OK. */
1953
1954 if (mode_dependent_address_p (y))
1955 return 0;
1956
1957 /* ??? How much offset does an offsettable BLKmode reference need?
1958 Clearly that depends on the situation in which it's being used.
1959 However, the current situation in which we test 0xffffffff is
1960 less than ideal. Caveat user. */
1961 if (mode_sz == 0)
1962 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1963
1964 /* If the expression contains a constant term,
1965 see if it remains valid when max possible offset is added. */
1966
1967 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1968 {
1969 int good;
1970
1971 y1 = *y2;
1972 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1973 /* Use QImode because an odd displacement may be automatically invalid
1974 for any wider mode. But it should be valid for a single byte. */
1975 good = (*addressp) (QImode, y, as);
1976
1977 /* In any case, restore old contents of memory. */
1978 *y2 = y1;
1979 return good;
1980 }
1981
1982 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1983 return 0;
1984
1985 /* The offset added here is chosen as the maximum offset that
1986 any instruction could need to add when operating on something
1987 of the specified mode. We assume that if Y and Y+c are
1988 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1989 go inside a LO_SUM here, so we do so as well. */
1990 if (GET_CODE (y) == LO_SUM
1991 && mode != BLKmode
1992 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1993 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1994 plus_constant (GET_MODE (y), XEXP (y, 1),
1995 mode_sz - 1));
1996 else
1997 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
1998
1999 /* Use QImode because an odd displacement may be automatically invalid
2000 for any wider mode. But it should be valid for a single byte. */
2001 return (*addressp) (QImode, z, as);
2002 }
2003
2004 /* Return 1 if ADDR is an address-expression whose effect depends
2005 on the mode of the memory reference it is used in.
2006
2007 Autoincrement addressing is a typical example of mode-dependence
2008 because the amount of the increment depends on the mode. */
2009
2010 bool
2011 mode_dependent_address_p (rtx addr)
2012 {
2013 /* Auto-increment addressing with anything other than post_modify
2014 or pre_modify always introduces a mode dependency. Catch such
2015 cases now instead of deferring to the target. */
2016 if (GET_CODE (addr) == PRE_INC
2017 || GET_CODE (addr) == POST_INC
2018 || GET_CODE (addr) == PRE_DEC
2019 || GET_CODE (addr) == POST_DEC)
2020 return true;
2021
2022 return targetm.mode_dependent_address_p (addr);
2023 }
2024 \f
2025 /* Like extract_insn, but save insn extracted and don't extract again, when
2026 called again for the same insn expecting that recog_data still contain the
2027 valid information. This is used primary by gen_attr infrastructure that
2028 often does extract insn again and again. */
2029 void
2030 extract_insn_cached (rtx insn)
2031 {
2032 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2033 return;
2034 extract_insn (insn);
2035 recog_data.insn = insn;
2036 }
2037
2038 /* Do cached extract_insn, constrain_operands and complain about failures.
2039 Used by insn_attrtab. */
2040 void
2041 extract_constrain_insn_cached (rtx insn)
2042 {
2043 extract_insn_cached (insn);
2044 if (which_alternative == -1
2045 && !constrain_operands (reload_completed))
2046 fatal_insn_not_found (insn);
2047 }
2048
2049 /* Do cached constrain_operands and complain about failures. */
2050 int
2051 constrain_operands_cached (int strict)
2052 {
2053 if (which_alternative == -1)
2054 return constrain_operands (strict);
2055 else
2056 return 1;
2057 }
2058 \f
2059 /* Analyze INSN and fill in recog_data. */
2060
2061 void
2062 extract_insn (rtx insn)
2063 {
2064 int i;
2065 int icode;
2066 int noperands;
2067 rtx body = PATTERN (insn);
2068
2069 recog_data.n_operands = 0;
2070 recog_data.n_alternatives = 0;
2071 recog_data.n_dups = 0;
2072 recog_data.is_asm = false;
2073
2074 switch (GET_CODE (body))
2075 {
2076 case USE:
2077 case CLOBBER:
2078 case ASM_INPUT:
2079 case ADDR_VEC:
2080 case ADDR_DIFF_VEC:
2081 case VAR_LOCATION:
2082 return;
2083
2084 case SET:
2085 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2086 goto asm_insn;
2087 else
2088 goto normal_insn;
2089 case PARALLEL:
2090 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2091 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2092 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2093 goto asm_insn;
2094 else
2095 goto normal_insn;
2096 case ASM_OPERANDS:
2097 asm_insn:
2098 recog_data.n_operands = noperands = asm_noperands (body);
2099 if (noperands >= 0)
2100 {
2101 /* This insn is an `asm' with operands. */
2102
2103 /* expand_asm_operands makes sure there aren't too many operands. */
2104 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2105
2106 /* Now get the operand values and constraints out of the insn. */
2107 decode_asm_operands (body, recog_data.operand,
2108 recog_data.operand_loc,
2109 recog_data.constraints,
2110 recog_data.operand_mode, NULL);
2111 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2112 if (noperands > 0)
2113 {
2114 const char *p = recog_data.constraints[0];
2115 recog_data.n_alternatives = 1;
2116 while (*p)
2117 recog_data.n_alternatives += (*p++ == ',');
2118 }
2119 recog_data.is_asm = true;
2120 break;
2121 }
2122 fatal_insn_not_found (insn);
2123
2124 default:
2125 normal_insn:
2126 /* Ordinary insn: recognize it, get the operands via insn_extract
2127 and get the constraints. */
2128
2129 icode = recog_memoized (insn);
2130 if (icode < 0)
2131 fatal_insn_not_found (insn);
2132
2133 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2134 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2135 recog_data.n_dups = insn_data[icode].n_dups;
2136
2137 insn_extract (insn);
2138
2139 for (i = 0; i < noperands; i++)
2140 {
2141 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2142 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2143 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2144 /* VOIDmode match_operands gets mode from their real operand. */
2145 if (recog_data.operand_mode[i] == VOIDmode)
2146 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2147 }
2148 }
2149 for (i = 0; i < noperands; i++)
2150 recog_data.operand_type[i]
2151 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2152 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2153 : OP_IN);
2154
2155 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2156
2157 if (INSN_CODE (insn) < 0)
2158 for (i = 0; i < recog_data.n_alternatives; i++)
2159 recog_data.alternative_enabled_p[i] = true;
2160 else
2161 {
2162 recog_data.insn = insn;
2163 for (i = 0; i < recog_data.n_alternatives; i++)
2164 {
2165 which_alternative = i;
2166 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2167 }
2168 }
2169
2170 recog_data.insn = NULL;
2171 which_alternative = -1;
2172 }
2173
2174 /* After calling extract_insn, you can use this function to extract some
2175 information from the constraint strings into a more usable form.
2176 The collected data is stored in recog_op_alt. */
2177 void
2178 preprocess_constraints (void)
2179 {
2180 int i;
2181
2182 for (i = 0; i < recog_data.n_operands; i++)
2183 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2184 * sizeof (struct operand_alternative)));
2185
2186 for (i = 0; i < recog_data.n_operands; i++)
2187 {
2188 int j;
2189 struct operand_alternative *op_alt;
2190 const char *p = recog_data.constraints[i];
2191
2192 op_alt = recog_op_alt[i];
2193
2194 for (j = 0; j < recog_data.n_alternatives; j++)
2195 {
2196 op_alt[j].cl = NO_REGS;
2197 op_alt[j].constraint = p;
2198 op_alt[j].matches = -1;
2199 op_alt[j].matched = -1;
2200
2201 if (!recog_data.alternative_enabled_p[j])
2202 {
2203 p = skip_alternative (p);
2204 continue;
2205 }
2206
2207 if (*p == '\0' || *p == ',')
2208 {
2209 op_alt[j].anything_ok = 1;
2210 continue;
2211 }
2212
2213 for (;;)
2214 {
2215 char c = *p;
2216 if (c == '#')
2217 do
2218 c = *++p;
2219 while (c != ',' && c != '\0');
2220 if (c == ',' || c == '\0')
2221 {
2222 p++;
2223 break;
2224 }
2225
2226 switch (c)
2227 {
2228 case '=': case '+': case '*': case '%':
2229 case 'E': case 'F': case 'G': case 'H':
2230 case 's': case 'i': case 'n':
2231 case 'I': case 'J': case 'K': case 'L':
2232 case 'M': case 'N': case 'O': case 'P':
2233 /* These don't say anything we care about. */
2234 break;
2235
2236 case '?':
2237 op_alt[j].reject += 6;
2238 break;
2239 case '!':
2240 op_alt[j].reject += 600;
2241 break;
2242 case '&':
2243 op_alt[j].earlyclobber = 1;
2244 break;
2245
2246 case '0': case '1': case '2': case '3': case '4':
2247 case '5': case '6': case '7': case '8': case '9':
2248 {
2249 char *end;
2250 op_alt[j].matches = strtoul (p, &end, 10);
2251 recog_op_alt[op_alt[j].matches][j].matched = i;
2252 p = end;
2253 }
2254 continue;
2255
2256 case TARGET_MEM_CONSTRAINT:
2257 op_alt[j].memory_ok = 1;
2258 break;
2259 case '<':
2260 op_alt[j].decmem_ok = 1;
2261 break;
2262 case '>':
2263 op_alt[j].incmem_ok = 1;
2264 break;
2265 case 'V':
2266 op_alt[j].nonoffmem_ok = 1;
2267 break;
2268 case 'o':
2269 op_alt[j].offmem_ok = 1;
2270 break;
2271 case 'X':
2272 op_alt[j].anything_ok = 1;
2273 break;
2274
2275 case 'p':
2276 op_alt[j].is_address = 1;
2277 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2278 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2279 ADDRESS, SCRATCH)];
2280 break;
2281
2282 case 'g':
2283 case 'r':
2284 op_alt[j].cl =
2285 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2286 break;
2287
2288 default:
2289 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2290 {
2291 op_alt[j].memory_ok = 1;
2292 break;
2293 }
2294 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2295 {
2296 op_alt[j].is_address = 1;
2297 op_alt[j].cl
2298 = (reg_class_subunion
2299 [(int) op_alt[j].cl]
2300 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2301 ADDRESS, SCRATCH)]);
2302 break;
2303 }
2304
2305 op_alt[j].cl
2306 = (reg_class_subunion
2307 [(int) op_alt[j].cl]
2308 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2309 break;
2310 }
2311 p += CONSTRAINT_LEN (c, p);
2312 }
2313 }
2314 }
2315 }
2316
2317 /* Check the operands of an insn against the insn's operand constraints
2318 and return 1 if they are valid.
2319 The information about the insn's operands, constraints, operand modes
2320 etc. is obtained from the global variables set up by extract_insn.
2321
2322 WHICH_ALTERNATIVE is set to a number which indicates which
2323 alternative of constraints was matched: 0 for the first alternative,
2324 1 for the next, etc.
2325
2326 In addition, when two operands are required to match
2327 and it happens that the output operand is (reg) while the
2328 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2329 make the output operand look like the input.
2330 This is because the output operand is the one the template will print.
2331
2332 This is used in final, just before printing the assembler code and by
2333 the routines that determine an insn's attribute.
2334
2335 If STRICT is a positive nonzero value, it means that we have been
2336 called after reload has been completed. In that case, we must
2337 do all checks strictly. If it is zero, it means that we have been called
2338 before reload has completed. In that case, we first try to see if we can
2339 find an alternative that matches strictly. If not, we try again, this
2340 time assuming that reload will fix up the insn. This provides a "best
2341 guess" for the alternative and is used to compute attributes of insns prior
2342 to reload. A negative value of STRICT is used for this internal call. */
2343
2344 struct funny_match
2345 {
2346 int this_op, other;
2347 };
2348
2349 int
2350 constrain_operands (int strict)
2351 {
2352 const char *constraints[MAX_RECOG_OPERANDS];
2353 int matching_operands[MAX_RECOG_OPERANDS];
2354 int earlyclobber[MAX_RECOG_OPERANDS];
2355 int c;
2356
2357 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2358 int funny_match_index;
2359
2360 which_alternative = 0;
2361 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2362 return 1;
2363
2364 for (c = 0; c < recog_data.n_operands; c++)
2365 {
2366 constraints[c] = recog_data.constraints[c];
2367 matching_operands[c] = -1;
2368 }
2369
2370 do
2371 {
2372 int seen_earlyclobber_at = -1;
2373 int opno;
2374 int lose = 0;
2375 funny_match_index = 0;
2376
2377 if (!recog_data.alternative_enabled_p[which_alternative])
2378 {
2379 int i;
2380
2381 for (i = 0; i < recog_data.n_operands; i++)
2382 constraints[i] = skip_alternative (constraints[i]);
2383
2384 which_alternative++;
2385 continue;
2386 }
2387
2388 for (opno = 0; opno < recog_data.n_operands; opno++)
2389 {
2390 rtx op = recog_data.operand[opno];
2391 enum machine_mode mode = GET_MODE (op);
2392 const char *p = constraints[opno];
2393 int offset = 0;
2394 int win = 0;
2395 int val;
2396 int len;
2397
2398 earlyclobber[opno] = 0;
2399
2400 /* A unary operator may be accepted by the predicate, but it
2401 is irrelevant for matching constraints. */
2402 if (UNARY_P (op))
2403 op = XEXP (op, 0);
2404
2405 if (GET_CODE (op) == SUBREG)
2406 {
2407 if (REG_P (SUBREG_REG (op))
2408 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2409 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2410 GET_MODE (SUBREG_REG (op)),
2411 SUBREG_BYTE (op),
2412 GET_MODE (op));
2413 op = SUBREG_REG (op);
2414 }
2415
2416 /* An empty constraint or empty alternative
2417 allows anything which matched the pattern. */
2418 if (*p == 0 || *p == ',')
2419 win = 1;
2420
2421 do
2422 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2423 {
2424 case '\0':
2425 len = 0;
2426 break;
2427 case ',':
2428 c = '\0';
2429 break;
2430
2431 case '?': case '!': case '*': case '%':
2432 case '=': case '+':
2433 break;
2434
2435 case '#':
2436 /* Ignore rest of this alternative as far as
2437 constraint checking is concerned. */
2438 do
2439 p++;
2440 while (*p && *p != ',');
2441 len = 0;
2442 break;
2443
2444 case '&':
2445 earlyclobber[opno] = 1;
2446 if (seen_earlyclobber_at < 0)
2447 seen_earlyclobber_at = opno;
2448 break;
2449
2450 case '0': case '1': case '2': case '3': case '4':
2451 case '5': case '6': case '7': case '8': case '9':
2452 {
2453 /* This operand must be the same as a previous one.
2454 This kind of constraint is used for instructions such
2455 as add when they take only two operands.
2456
2457 Note that the lower-numbered operand is passed first.
2458
2459 If we are not testing strictly, assume that this
2460 constraint will be satisfied. */
2461
2462 char *end;
2463 int match;
2464
2465 match = strtoul (p, &end, 10);
2466 p = end;
2467
2468 if (strict < 0)
2469 val = 1;
2470 else
2471 {
2472 rtx op1 = recog_data.operand[match];
2473 rtx op2 = recog_data.operand[opno];
2474
2475 /* A unary operator may be accepted by the predicate,
2476 but it is irrelevant for matching constraints. */
2477 if (UNARY_P (op1))
2478 op1 = XEXP (op1, 0);
2479 if (UNARY_P (op2))
2480 op2 = XEXP (op2, 0);
2481
2482 val = operands_match_p (op1, op2);
2483 }
2484
2485 matching_operands[opno] = match;
2486 matching_operands[match] = opno;
2487
2488 if (val != 0)
2489 win = 1;
2490
2491 /* If output is *x and input is *--x, arrange later
2492 to change the output to *--x as well, since the
2493 output op is the one that will be printed. */
2494 if (val == 2 && strict > 0)
2495 {
2496 funny_match[funny_match_index].this_op = opno;
2497 funny_match[funny_match_index++].other = match;
2498 }
2499 }
2500 len = 0;
2501 break;
2502
2503 case 'p':
2504 /* p is used for address_operands. When we are called by
2505 gen_reload, no one will have checked that the address is
2506 strictly valid, i.e., that all pseudos requiring hard regs
2507 have gotten them. */
2508 if (strict <= 0
2509 || (strict_memory_address_p (recog_data.operand_mode[opno],
2510 op)))
2511 win = 1;
2512 break;
2513
2514 /* No need to check general_operand again;
2515 it was done in insn-recog.c. Well, except that reload
2516 doesn't check the validity of its replacements, but
2517 that should only matter when there's a bug. */
2518 case 'g':
2519 /* Anything goes unless it is a REG and really has a hard reg
2520 but the hard reg is not in the class GENERAL_REGS. */
2521 if (REG_P (op))
2522 {
2523 if (strict < 0
2524 || GENERAL_REGS == ALL_REGS
2525 || (reload_in_progress
2526 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2527 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2528 win = 1;
2529 }
2530 else if (strict < 0 || general_operand (op, mode))
2531 win = 1;
2532 break;
2533
2534 case 'X':
2535 /* This is used for a MATCH_SCRATCH in the cases when
2536 we don't actually need anything. So anything goes
2537 any time. */
2538 win = 1;
2539 break;
2540
2541 case TARGET_MEM_CONSTRAINT:
2542 /* Memory operands must be valid, to the extent
2543 required by STRICT. */
2544 if (MEM_P (op))
2545 {
2546 if (strict > 0
2547 && !strict_memory_address_addr_space_p
2548 (GET_MODE (op), XEXP (op, 0),
2549 MEM_ADDR_SPACE (op)))
2550 break;
2551 if (strict == 0
2552 && !memory_address_addr_space_p
2553 (GET_MODE (op), XEXP (op, 0),
2554 MEM_ADDR_SPACE (op)))
2555 break;
2556 win = 1;
2557 }
2558 /* Before reload, accept what reload can turn into mem. */
2559 else if (strict < 0 && CONSTANT_P (op))
2560 win = 1;
2561 /* During reload, accept a pseudo */
2562 else if (reload_in_progress && REG_P (op)
2563 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2564 win = 1;
2565 break;
2566
2567 case '<':
2568 if (MEM_P (op)
2569 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2570 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2571 win = 1;
2572 break;
2573
2574 case '>':
2575 if (MEM_P (op)
2576 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2577 || GET_CODE (XEXP (op, 0)) == POST_INC))
2578 win = 1;
2579 break;
2580
2581 case 'E':
2582 case 'F':
2583 if (GET_CODE (op) == CONST_DOUBLE
2584 || (GET_CODE (op) == CONST_VECTOR
2585 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2586 win = 1;
2587 break;
2588
2589 case 'G':
2590 case 'H':
2591 if (GET_CODE (op) == CONST_DOUBLE
2592 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2593 win = 1;
2594 break;
2595
2596 case 's':
2597 if (CONST_INT_P (op)
2598 || (GET_CODE (op) == CONST_DOUBLE
2599 && GET_MODE (op) == VOIDmode))
2600 break;
2601 case 'i':
2602 if (CONSTANT_P (op))
2603 win = 1;
2604 break;
2605
2606 case 'n':
2607 if (CONST_INT_P (op)
2608 || (GET_CODE (op) == CONST_DOUBLE
2609 && GET_MODE (op) == VOIDmode))
2610 win = 1;
2611 break;
2612
2613 case 'I':
2614 case 'J':
2615 case 'K':
2616 case 'L':
2617 case 'M':
2618 case 'N':
2619 case 'O':
2620 case 'P':
2621 if (CONST_INT_P (op)
2622 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2623 win = 1;
2624 break;
2625
2626 case 'V':
2627 if (MEM_P (op)
2628 && ((strict > 0 && ! offsettable_memref_p (op))
2629 || (strict < 0
2630 && !(CONSTANT_P (op) || MEM_P (op)))
2631 || (reload_in_progress
2632 && !(REG_P (op)
2633 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2634 win = 1;
2635 break;
2636
2637 case 'o':
2638 if ((strict > 0 && offsettable_memref_p (op))
2639 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2640 /* Before reload, accept what reload can handle. */
2641 || (strict < 0
2642 && (CONSTANT_P (op) || MEM_P (op)))
2643 /* During reload, accept a pseudo */
2644 || (reload_in_progress && REG_P (op)
2645 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2646 win = 1;
2647 break;
2648
2649 default:
2650 {
2651 enum reg_class cl;
2652
2653 cl = (c == 'r'
2654 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2655 if (cl != NO_REGS)
2656 {
2657 if (strict < 0
2658 || (strict == 0
2659 && REG_P (op)
2660 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2661 || (strict == 0 && GET_CODE (op) == SCRATCH)
2662 || (REG_P (op)
2663 && reg_fits_class_p (op, cl, offset, mode)))
2664 win = 1;
2665 }
2666 #ifdef EXTRA_CONSTRAINT_STR
2667 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2668 win = 1;
2669
2670 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2671 /* Every memory operand can be reloaded to fit. */
2672 && ((strict < 0 && MEM_P (op))
2673 /* Before reload, accept what reload can turn
2674 into mem. */
2675 || (strict < 0 && CONSTANT_P (op))
2676 /* During reload, accept a pseudo */
2677 || (reload_in_progress && REG_P (op)
2678 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2679 win = 1;
2680 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2681 /* Every address operand can be reloaded to fit. */
2682 && strict < 0)
2683 win = 1;
2684 /* Cater to architectures like IA-64 that define extra memory
2685 constraints without using define_memory_constraint. */
2686 else if (reload_in_progress
2687 && REG_P (op)
2688 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2689 && reg_renumber[REGNO (op)] < 0
2690 && reg_equiv_mem (REGNO (op)) != 0
2691 && EXTRA_CONSTRAINT_STR
2692 (reg_equiv_mem (REGNO (op)), c, p))
2693 win = 1;
2694 #endif
2695 break;
2696 }
2697 }
2698 while (p += len, c);
2699
2700 constraints[opno] = p;
2701 /* If this operand did not win somehow,
2702 this alternative loses. */
2703 if (! win)
2704 lose = 1;
2705 }
2706 /* This alternative won; the operands are ok.
2707 Change whichever operands this alternative says to change. */
2708 if (! lose)
2709 {
2710 int opno, eopno;
2711
2712 /* See if any earlyclobber operand conflicts with some other
2713 operand. */
2714
2715 if (strict > 0 && seen_earlyclobber_at >= 0)
2716 for (eopno = seen_earlyclobber_at;
2717 eopno < recog_data.n_operands;
2718 eopno++)
2719 /* Ignore earlyclobber operands now in memory,
2720 because we would often report failure when we have
2721 two memory operands, one of which was formerly a REG. */
2722 if (earlyclobber[eopno]
2723 && REG_P (recog_data.operand[eopno]))
2724 for (opno = 0; opno < recog_data.n_operands; opno++)
2725 if ((MEM_P (recog_data.operand[opno])
2726 || recog_data.operand_type[opno] != OP_OUT)
2727 && opno != eopno
2728 /* Ignore things like match_operator operands. */
2729 && *recog_data.constraints[opno] != 0
2730 && ! (matching_operands[opno] == eopno
2731 && operands_match_p (recog_data.operand[opno],
2732 recog_data.operand[eopno]))
2733 && ! safe_from_earlyclobber (recog_data.operand[opno],
2734 recog_data.operand[eopno]))
2735 lose = 1;
2736
2737 if (! lose)
2738 {
2739 while (--funny_match_index >= 0)
2740 {
2741 recog_data.operand[funny_match[funny_match_index].other]
2742 = recog_data.operand[funny_match[funny_match_index].this_op];
2743 }
2744
2745 #ifdef AUTO_INC_DEC
2746 /* For operands without < or > constraints reject side-effects. */
2747 if (recog_data.is_asm)
2748 {
2749 for (opno = 0; opno < recog_data.n_operands; opno++)
2750 if (MEM_P (recog_data.operand[opno]))
2751 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2752 {
2753 case PRE_INC:
2754 case POST_INC:
2755 case PRE_DEC:
2756 case POST_DEC:
2757 case PRE_MODIFY:
2758 case POST_MODIFY:
2759 if (strchr (recog_data.constraints[opno], '<') == NULL
2760 && strchr (recog_data.constraints[opno], '>')
2761 == NULL)
2762 return 0;
2763 break;
2764 default:
2765 break;
2766 }
2767 }
2768 #endif
2769 return 1;
2770 }
2771 }
2772
2773 which_alternative++;
2774 }
2775 while (which_alternative < recog_data.n_alternatives);
2776
2777 which_alternative = -1;
2778 /* If we are about to reject this, but we are not to test strictly,
2779 try a very loose test. Only return failure if it fails also. */
2780 if (strict == 0)
2781 return constrain_operands (-1);
2782 else
2783 return 0;
2784 }
2785
2786 /* Return true iff OPERAND (assumed to be a REG rtx)
2787 is a hard reg in class CLASS when its regno is offset by OFFSET
2788 and changed to mode MODE.
2789 If REG occupies multiple hard regs, all of them must be in CLASS. */
2790
2791 bool
2792 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2793 enum machine_mode mode)
2794 {
2795 unsigned int regno = REGNO (operand);
2796
2797 if (cl == NO_REGS)
2798 return false;
2799
2800 /* Regno must not be a pseudo register. Offset may be negative. */
2801 return (HARD_REGISTER_NUM_P (regno)
2802 && HARD_REGISTER_NUM_P (regno + offset)
2803 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2804 regno + offset));
2805 }
2806 \f
2807 /* Split single instruction. Helper function for split_all_insns and
2808 split_all_insns_noflow. Return last insn in the sequence if successful,
2809 or NULL if unsuccessful. */
2810
2811 static rtx
2812 split_insn (rtx insn)
2813 {
2814 /* Split insns here to get max fine-grain parallelism. */
2815 rtx first = PREV_INSN (insn);
2816 rtx last = try_split (PATTERN (insn), insn, 1);
2817 rtx insn_set, last_set, note;
2818
2819 if (last == insn)
2820 return NULL_RTX;
2821
2822 /* If the original instruction was a single set that was known to be
2823 equivalent to a constant, see if we can say the same about the last
2824 instruction in the split sequence. The two instructions must set
2825 the same destination. */
2826 insn_set = single_set (insn);
2827 if (insn_set)
2828 {
2829 last_set = single_set (last);
2830 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2831 {
2832 note = find_reg_equal_equiv_note (insn);
2833 if (note && CONSTANT_P (XEXP (note, 0)))
2834 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2835 else if (CONSTANT_P (SET_SRC (insn_set)))
2836 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2837 }
2838 }
2839
2840 /* try_split returns the NOTE that INSN became. */
2841 SET_INSN_DELETED (insn);
2842
2843 /* ??? Coddle to md files that generate subregs in post-reload
2844 splitters instead of computing the proper hard register. */
2845 if (reload_completed && first != last)
2846 {
2847 first = NEXT_INSN (first);
2848 for (;;)
2849 {
2850 if (INSN_P (first))
2851 cleanup_subreg_operands (first);
2852 if (first == last)
2853 break;
2854 first = NEXT_INSN (first);
2855 }
2856 }
2857
2858 return last;
2859 }
2860
2861 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2862
2863 void
2864 split_all_insns (void)
2865 {
2866 sbitmap blocks;
2867 bool changed;
2868 basic_block bb;
2869
2870 blocks = sbitmap_alloc (last_basic_block);
2871 sbitmap_zero (blocks);
2872 changed = false;
2873
2874 FOR_EACH_BB_REVERSE (bb)
2875 {
2876 rtx insn, next;
2877 bool finish = false;
2878
2879 rtl_profile_for_bb (bb);
2880 for (insn = BB_HEAD (bb); !finish ; insn = next)
2881 {
2882 /* Can't use `next_real_insn' because that might go across
2883 CODE_LABELS and short-out basic blocks. */
2884 next = NEXT_INSN (insn);
2885 finish = (insn == BB_END (bb));
2886 if (INSN_P (insn))
2887 {
2888 rtx set = single_set (insn);
2889
2890 /* Don't split no-op move insns. These should silently
2891 disappear later in final. Splitting such insns would
2892 break the code that handles LIBCALL blocks. */
2893 if (set && set_noop_p (set))
2894 {
2895 /* Nops get in the way while scheduling, so delete them
2896 now if register allocation has already been done. It
2897 is too risky to try to do this before register
2898 allocation, and there are unlikely to be very many
2899 nops then anyways. */
2900 if (reload_completed)
2901 delete_insn_and_edges (insn);
2902 }
2903 else
2904 {
2905 if (split_insn (insn))
2906 {
2907 SET_BIT (blocks, bb->index);
2908 changed = true;
2909 }
2910 }
2911 }
2912 }
2913 }
2914
2915 default_rtl_profile ();
2916 if (changed)
2917 find_many_sub_basic_blocks (blocks);
2918
2919 #ifdef ENABLE_CHECKING
2920 verify_flow_info ();
2921 #endif
2922
2923 sbitmap_free (blocks);
2924 }
2925
2926 /* Same as split_all_insns, but do not expect CFG to be available.
2927 Used by machine dependent reorg passes. */
2928
2929 unsigned int
2930 split_all_insns_noflow (void)
2931 {
2932 rtx next, insn;
2933
2934 for (insn = get_insns (); insn; insn = next)
2935 {
2936 next = NEXT_INSN (insn);
2937 if (INSN_P (insn))
2938 {
2939 /* Don't split no-op move insns. These should silently
2940 disappear later in final. Splitting such insns would
2941 break the code that handles LIBCALL blocks. */
2942 rtx set = single_set (insn);
2943 if (set && set_noop_p (set))
2944 {
2945 /* Nops get in the way while scheduling, so delete them
2946 now if register allocation has already been done. It
2947 is too risky to try to do this before register
2948 allocation, and there are unlikely to be very many
2949 nops then anyways.
2950
2951 ??? Should we use delete_insn when the CFG isn't valid? */
2952 if (reload_completed)
2953 delete_insn_and_edges (insn);
2954 }
2955 else
2956 split_insn (insn);
2957 }
2958 }
2959 return 0;
2960 }
2961 \f
2962 #ifdef HAVE_peephole2
2963 struct peep2_insn_data
2964 {
2965 rtx insn;
2966 regset live_before;
2967 };
2968
2969 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2970 static int peep2_current;
2971
2972 static bool peep2_do_rebuild_jump_labels;
2973 static bool peep2_do_cleanup_cfg;
2974
2975 /* The number of instructions available to match a peep2. */
2976 int peep2_current_count;
2977
2978 /* A non-insn marker indicating the last insn of the block.
2979 The live_before regset for this element is correct, indicating
2980 DF_LIVE_OUT for the block. */
2981 #define PEEP2_EOB pc_rtx
2982
2983 /* Wrap N to fit into the peep2_insn_data buffer. */
2984
2985 static int
2986 peep2_buf_position (int n)
2987 {
2988 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2989 n -= MAX_INSNS_PER_PEEP2 + 1;
2990 return n;
2991 }
2992
2993 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2994 does not exist. Used by the recognizer to find the next insn to match
2995 in a multi-insn pattern. */
2996
2997 rtx
2998 peep2_next_insn (int n)
2999 {
3000 gcc_assert (n <= peep2_current_count);
3001
3002 n = peep2_buf_position (peep2_current + n);
3003
3004 return peep2_insn_data[n].insn;
3005 }
3006
3007 /* Return true if REGNO is dead before the Nth non-note insn
3008 after `current'. */
3009
3010 int
3011 peep2_regno_dead_p (int ofs, int regno)
3012 {
3013 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3014
3015 ofs = peep2_buf_position (peep2_current + ofs);
3016
3017 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3018
3019 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3020 }
3021
3022 /* Similarly for a REG. */
3023
3024 int
3025 peep2_reg_dead_p (int ofs, rtx reg)
3026 {
3027 int regno, n;
3028
3029 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3030
3031 ofs = peep2_buf_position (peep2_current + ofs);
3032
3033 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3034
3035 regno = REGNO (reg);
3036 n = hard_regno_nregs[regno][GET_MODE (reg)];
3037 while (--n >= 0)
3038 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3039 return 0;
3040 return 1;
3041 }
3042
3043 /* Try to find a hard register of mode MODE, matching the register class in
3044 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3045 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3046 in which case the only condition is that the register must be available
3047 before CURRENT_INSN.
3048 Registers that already have bits set in REG_SET will not be considered.
3049
3050 If an appropriate register is available, it will be returned and the
3051 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3052 returned. */
3053
3054 rtx
3055 peep2_find_free_register (int from, int to, const char *class_str,
3056 enum machine_mode mode, HARD_REG_SET *reg_set)
3057 {
3058 static int search_ofs;
3059 enum reg_class cl;
3060 HARD_REG_SET live;
3061 df_ref *def_rec;
3062 int i;
3063
3064 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3065 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3066
3067 from = peep2_buf_position (peep2_current + from);
3068 to = peep2_buf_position (peep2_current + to);
3069
3070 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3071 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3072
3073 while (from != to)
3074 {
3075 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3076
3077 /* Don't use registers set or clobbered by the insn. */
3078 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3079 *def_rec; def_rec++)
3080 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3081
3082 from = peep2_buf_position (from + 1);
3083 }
3084
3085 cl = (class_str[0] == 'r' ? GENERAL_REGS
3086 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3087
3088 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3089 {
3090 int raw_regno, regno, success, j;
3091
3092 /* Distribute the free registers as much as possible. */
3093 raw_regno = search_ofs + i;
3094 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3095 raw_regno -= FIRST_PSEUDO_REGISTER;
3096 #ifdef REG_ALLOC_ORDER
3097 regno = reg_alloc_order[raw_regno];
3098 #else
3099 regno = raw_regno;
3100 #endif
3101
3102 /* Don't allocate fixed registers. */
3103 if (fixed_regs[regno])
3104 continue;
3105 /* Don't allocate global registers. */
3106 if (global_regs[regno])
3107 continue;
3108 /* Make sure the register is of the right class. */
3109 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3110 continue;
3111 /* And can support the mode we need. */
3112 if (! HARD_REGNO_MODE_OK (regno, mode))
3113 continue;
3114 /* And that we don't create an extra save/restore. */
3115 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3116 continue;
3117 if (! targetm.hard_regno_scratch_ok (regno))
3118 continue;
3119
3120 /* And we don't clobber traceback for noreturn functions. */
3121 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3122 && (! reload_completed || frame_pointer_needed))
3123 continue;
3124
3125 success = 1;
3126 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3127 {
3128 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3129 || TEST_HARD_REG_BIT (live, regno + j))
3130 {
3131 success = 0;
3132 break;
3133 }
3134 }
3135 if (success)
3136 {
3137 add_to_hard_reg_set (reg_set, mode, regno);
3138
3139 /* Start the next search with the next register. */
3140 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3141 raw_regno = 0;
3142 search_ofs = raw_regno;
3143
3144 return gen_rtx_REG (mode, regno);
3145 }
3146 }
3147
3148 search_ofs = 0;
3149 return NULL_RTX;
3150 }
3151
3152 /* Forget all currently tracked instructions, only remember current
3153 LIVE regset. */
3154
3155 static void
3156 peep2_reinit_state (regset live)
3157 {
3158 int i;
3159
3160 /* Indicate that all slots except the last holds invalid data. */
3161 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3162 peep2_insn_data[i].insn = NULL_RTX;
3163 peep2_current_count = 0;
3164
3165 /* Indicate that the last slot contains live_after data. */
3166 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3167 peep2_current = MAX_INSNS_PER_PEEP2;
3168
3169 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3170 }
3171
3172 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3173 starting at INSN. Perform the replacement, removing the old insns and
3174 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3175 if the replacement is rejected. */
3176
3177 static rtx
3178 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3179 {
3180 int i;
3181 rtx last, eh_note, as_note, before_try, x;
3182 rtx old_insn, new_insn;
3183 bool was_call = false;
3184
3185 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3186 match more than one insn, or to be split into more than one insn. */
3187 old_insn = peep2_insn_data[peep2_current].insn;
3188 if (RTX_FRAME_RELATED_P (old_insn))
3189 {
3190 bool any_note = false;
3191 rtx note;
3192
3193 if (match_len != 0)
3194 return NULL;
3195
3196 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3197 may be in the stream for the purpose of register allocation. */
3198 if (active_insn_p (attempt))
3199 new_insn = attempt;
3200 else
3201 new_insn = next_active_insn (attempt);
3202 if (next_active_insn (new_insn))
3203 return NULL;
3204
3205 /* We have a 1-1 replacement. Copy over any frame-related info. */
3206 RTX_FRAME_RELATED_P (new_insn) = 1;
3207
3208 /* Allow the backend to fill in a note during the split. */
3209 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3210 switch (REG_NOTE_KIND (note))
3211 {
3212 case REG_FRAME_RELATED_EXPR:
3213 case REG_CFA_DEF_CFA:
3214 case REG_CFA_ADJUST_CFA:
3215 case REG_CFA_OFFSET:
3216 case REG_CFA_REGISTER:
3217 case REG_CFA_EXPRESSION:
3218 case REG_CFA_RESTORE:
3219 case REG_CFA_SET_VDRAP:
3220 any_note = true;
3221 break;
3222 default:
3223 break;
3224 }
3225
3226 /* If the backend didn't supply a note, copy one over. */
3227 if (!any_note)
3228 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3229 switch (REG_NOTE_KIND (note))
3230 {
3231 case REG_FRAME_RELATED_EXPR:
3232 case REG_CFA_DEF_CFA:
3233 case REG_CFA_ADJUST_CFA:
3234 case REG_CFA_OFFSET:
3235 case REG_CFA_REGISTER:
3236 case REG_CFA_EXPRESSION:
3237 case REG_CFA_RESTORE:
3238 case REG_CFA_SET_VDRAP:
3239 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3240 any_note = true;
3241 break;
3242 default:
3243 break;
3244 }
3245
3246 /* If there still isn't a note, make sure the unwind info sees the
3247 same expression as before the split. */
3248 if (!any_note)
3249 {
3250 rtx old_set, new_set;
3251
3252 /* The old insn had better have been simple, or annotated. */
3253 old_set = single_set (old_insn);
3254 gcc_assert (old_set != NULL);
3255
3256 new_set = single_set (new_insn);
3257 if (!new_set || !rtx_equal_p (new_set, old_set))
3258 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3259 }
3260
3261 /* Copy prologue/epilogue status. This is required in order to keep
3262 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3263 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3264 }
3265
3266 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3267 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3268 cfg-related call notes. */
3269 for (i = 0; i <= match_len; ++i)
3270 {
3271 int j;
3272 rtx note;
3273
3274 j = peep2_buf_position (peep2_current + i);
3275 old_insn = peep2_insn_data[j].insn;
3276 if (!CALL_P (old_insn))
3277 continue;
3278 was_call = true;
3279
3280 new_insn = attempt;
3281 while (new_insn != NULL_RTX)
3282 {
3283 if (CALL_P (new_insn))
3284 break;
3285 new_insn = NEXT_INSN (new_insn);
3286 }
3287
3288 gcc_assert (new_insn != NULL_RTX);
3289
3290 CALL_INSN_FUNCTION_USAGE (new_insn)
3291 = CALL_INSN_FUNCTION_USAGE (old_insn);
3292
3293 for (note = REG_NOTES (old_insn);
3294 note;
3295 note = XEXP (note, 1))
3296 switch (REG_NOTE_KIND (note))
3297 {
3298 case REG_NORETURN:
3299 case REG_SETJMP:
3300 case REG_TM:
3301 add_reg_note (new_insn, REG_NOTE_KIND (note),
3302 XEXP (note, 0));
3303 break;
3304 default:
3305 /* Discard all other reg notes. */
3306 break;
3307 }
3308
3309 /* Croak if there is another call in the sequence. */
3310 while (++i <= match_len)
3311 {
3312 j = peep2_buf_position (peep2_current + i);
3313 old_insn = peep2_insn_data[j].insn;
3314 gcc_assert (!CALL_P (old_insn));
3315 }
3316 break;
3317 }
3318
3319 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3320 move those notes over to the new sequence. */
3321 as_note = NULL;
3322 for (i = match_len; i >= 0; --i)
3323 {
3324 int j = peep2_buf_position (peep2_current + i);
3325 old_insn = peep2_insn_data[j].insn;
3326
3327 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3328 if (as_note)
3329 break;
3330 }
3331
3332 i = peep2_buf_position (peep2_current + match_len);
3333 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3334
3335 /* Replace the old sequence with the new. */
3336 last = emit_insn_after_setloc (attempt,
3337 peep2_insn_data[i].insn,
3338 INSN_LOCATOR (peep2_insn_data[i].insn));
3339 before_try = PREV_INSN (insn);
3340 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3341
3342 /* Re-insert the EH_REGION notes. */
3343 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3344 {
3345 edge eh_edge;
3346 edge_iterator ei;
3347
3348 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3349 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3350 break;
3351
3352 if (eh_note)
3353 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3354
3355 if (eh_edge)
3356 for (x = last; x != before_try; x = PREV_INSN (x))
3357 if (x != BB_END (bb)
3358 && (can_throw_internal (x)
3359 || can_nonlocal_goto (x)))
3360 {
3361 edge nfte, nehe;
3362 int flags;
3363
3364 nfte = split_block (bb, x);
3365 flags = (eh_edge->flags
3366 & (EDGE_EH | EDGE_ABNORMAL));
3367 if (CALL_P (x))
3368 flags |= EDGE_ABNORMAL_CALL;
3369 nehe = make_edge (nfte->src, eh_edge->dest,
3370 flags);
3371
3372 nehe->probability = eh_edge->probability;
3373 nfte->probability
3374 = REG_BR_PROB_BASE - nehe->probability;
3375
3376 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3377 bb = nfte->src;
3378 eh_edge = nehe;
3379 }
3380
3381 /* Converting possibly trapping insn to non-trapping is
3382 possible. Zap dummy outgoing edges. */
3383 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3384 }
3385
3386 /* Re-insert the ARGS_SIZE notes. */
3387 if (as_note)
3388 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3389
3390 /* If we generated a jump instruction, it won't have
3391 JUMP_LABEL set. Recompute after we're done. */
3392 for (x = last; x != before_try; x = PREV_INSN (x))
3393 if (JUMP_P (x))
3394 {
3395 peep2_do_rebuild_jump_labels = true;
3396 break;
3397 }
3398
3399 return last;
3400 }
3401
3402 /* After performing a replacement in basic block BB, fix up the life
3403 information in our buffer. LAST is the last of the insns that we
3404 emitted as a replacement. PREV is the insn before the start of
3405 the replacement. MATCH_LEN is the number of instructions that were
3406 matched, and which now need to be replaced in the buffer. */
3407
3408 static void
3409 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3410 {
3411 int i = peep2_buf_position (peep2_current + match_len + 1);
3412 rtx x;
3413 regset_head live;
3414
3415 INIT_REG_SET (&live);
3416 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3417
3418 gcc_assert (peep2_current_count >= match_len + 1);
3419 peep2_current_count -= match_len + 1;
3420
3421 x = last;
3422 do
3423 {
3424 if (INSN_P (x))
3425 {
3426 df_insn_rescan (x);
3427 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3428 {
3429 peep2_current_count++;
3430 if (--i < 0)
3431 i = MAX_INSNS_PER_PEEP2;
3432 peep2_insn_data[i].insn = x;
3433 df_simulate_one_insn_backwards (bb, x, &live);
3434 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3435 }
3436 }
3437 x = PREV_INSN (x);
3438 }
3439 while (x != prev);
3440 CLEAR_REG_SET (&live);
3441
3442 peep2_current = i;
3443 }
3444
3445 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3446 Return true if we added it, false otherwise. The caller will try to match
3447 peepholes against the buffer if we return false; otherwise it will try to
3448 add more instructions to the buffer. */
3449
3450 static bool
3451 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3452 {
3453 int pos;
3454
3455 /* Once we have filled the maximum number of insns the buffer can hold,
3456 allow the caller to match the insns against peepholes. We wait until
3457 the buffer is full in case the target has similar peepholes of different
3458 length; we always want to match the longest if possible. */
3459 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3460 return false;
3461
3462 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3463 any other pattern, lest it change the semantics of the frame info. */
3464 if (RTX_FRAME_RELATED_P (insn))
3465 {
3466 /* Let the buffer drain first. */
3467 if (peep2_current_count > 0)
3468 return false;
3469 /* Now the insn will be the only thing in the buffer. */
3470 }
3471
3472 pos = peep2_buf_position (peep2_current + peep2_current_count);
3473 peep2_insn_data[pos].insn = insn;
3474 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3475 peep2_current_count++;
3476
3477 df_simulate_one_insn_forwards (bb, insn, live);
3478 return true;
3479 }
3480
3481 /* Perform the peephole2 optimization pass. */
3482
3483 static void
3484 peephole2_optimize (void)
3485 {
3486 rtx insn;
3487 bitmap live;
3488 int i;
3489 basic_block bb;
3490
3491 peep2_do_cleanup_cfg = false;
3492 peep2_do_rebuild_jump_labels = false;
3493
3494 df_set_flags (DF_LR_RUN_DCE);
3495 df_note_add_problem ();
3496 df_analyze ();
3497
3498 /* Initialize the regsets we're going to use. */
3499 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3500 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3501 live = BITMAP_ALLOC (&reg_obstack);
3502
3503 FOR_EACH_BB_REVERSE (bb)
3504 {
3505 bool past_end = false;
3506 int pos;
3507
3508 rtl_profile_for_bb (bb);
3509
3510 /* Start up propagation. */
3511 bitmap_copy (live, DF_LR_IN (bb));
3512 df_simulate_initialize_forwards (bb, live);
3513 peep2_reinit_state (live);
3514
3515 insn = BB_HEAD (bb);
3516 for (;;)
3517 {
3518 rtx attempt, head;
3519 int match_len;
3520
3521 if (!past_end && !NONDEBUG_INSN_P (insn))
3522 {
3523 next_insn:
3524 insn = NEXT_INSN (insn);
3525 if (insn == NEXT_INSN (BB_END (bb)))
3526 past_end = true;
3527 continue;
3528 }
3529 if (!past_end && peep2_fill_buffer (bb, insn, live))
3530 goto next_insn;
3531
3532 /* If we did not fill an empty buffer, it signals the end of the
3533 block. */
3534 if (peep2_current_count == 0)
3535 break;
3536
3537 /* The buffer filled to the current maximum, so try to match. */
3538
3539 pos = peep2_buf_position (peep2_current + peep2_current_count);
3540 peep2_insn_data[pos].insn = PEEP2_EOB;
3541 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3542
3543 /* Match the peephole. */
3544 head = peep2_insn_data[peep2_current].insn;
3545 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3546 if (attempt != NULL)
3547 {
3548 rtx last = peep2_attempt (bb, head, match_len, attempt);
3549 if (last)
3550 {
3551 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3552 continue;
3553 }
3554 }
3555
3556 /* No match: advance the buffer by one insn. */
3557 peep2_current = peep2_buf_position (peep2_current + 1);
3558 peep2_current_count--;
3559 }
3560 }
3561
3562 default_rtl_profile ();
3563 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3564 BITMAP_FREE (peep2_insn_data[i].live_before);
3565 BITMAP_FREE (live);
3566 if (peep2_do_rebuild_jump_labels)
3567 rebuild_jump_labels (get_insns ());
3568 }
3569 #endif /* HAVE_peephole2 */
3570
3571 /* Common predicates for use with define_bypass. */
3572
3573 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3574 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3575 must be either a single_set or a PARALLEL with SETs inside. */
3576
3577 int
3578 store_data_bypass_p (rtx out_insn, rtx in_insn)
3579 {
3580 rtx out_set, in_set;
3581 rtx out_pat, in_pat;
3582 rtx out_exp, in_exp;
3583 int i, j;
3584
3585 in_set = single_set (in_insn);
3586 if (in_set)
3587 {
3588 if (!MEM_P (SET_DEST (in_set)))
3589 return false;
3590
3591 out_set = single_set (out_insn);
3592 if (out_set)
3593 {
3594 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3595 return false;
3596 }
3597 else
3598 {
3599 out_pat = PATTERN (out_insn);
3600
3601 if (GET_CODE (out_pat) != PARALLEL)
3602 return false;
3603
3604 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3605 {
3606 out_exp = XVECEXP (out_pat, 0, i);
3607
3608 if (GET_CODE (out_exp) == CLOBBER)
3609 continue;
3610
3611 gcc_assert (GET_CODE (out_exp) == SET);
3612
3613 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3614 return false;
3615 }
3616 }
3617 }
3618 else
3619 {
3620 in_pat = PATTERN (in_insn);
3621 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3622
3623 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3624 {
3625 in_exp = XVECEXP (in_pat, 0, i);
3626
3627 if (GET_CODE (in_exp) == CLOBBER)
3628 continue;
3629
3630 gcc_assert (GET_CODE (in_exp) == SET);
3631
3632 if (!MEM_P (SET_DEST (in_exp)))
3633 return false;
3634
3635 out_set = single_set (out_insn);
3636 if (out_set)
3637 {
3638 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3639 return false;
3640 }
3641 else
3642 {
3643 out_pat = PATTERN (out_insn);
3644 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3645
3646 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3647 {
3648 out_exp = XVECEXP (out_pat, 0, j);
3649
3650 if (GET_CODE (out_exp) == CLOBBER)
3651 continue;
3652
3653 gcc_assert (GET_CODE (out_exp) == SET);
3654
3655 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3656 return false;
3657 }
3658 }
3659 }
3660 }
3661
3662 return true;
3663 }
3664
3665 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3666 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3667 or multiple set; IN_INSN should be single_set for truth, but for convenience
3668 of insn categorization may be any JUMP or CALL insn. */
3669
3670 int
3671 if_test_bypass_p (rtx out_insn, rtx in_insn)
3672 {
3673 rtx out_set, in_set;
3674
3675 in_set = single_set (in_insn);
3676 if (! in_set)
3677 {
3678 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3679 return false;
3680 }
3681
3682 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3683 return false;
3684 in_set = SET_SRC (in_set);
3685
3686 out_set = single_set (out_insn);
3687 if (out_set)
3688 {
3689 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3690 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3691 return false;
3692 }
3693 else
3694 {
3695 rtx out_pat;
3696 int i;
3697
3698 out_pat = PATTERN (out_insn);
3699 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3700
3701 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3702 {
3703 rtx exp = XVECEXP (out_pat, 0, i);
3704
3705 if (GET_CODE (exp) == CLOBBER)
3706 continue;
3707
3708 gcc_assert (GET_CODE (exp) == SET);
3709
3710 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3711 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3712 return false;
3713 }
3714 }
3715
3716 return true;
3717 }
3718 \f
3719 static bool
3720 gate_handle_peephole2 (void)
3721 {
3722 return (optimize > 0 && flag_peephole2);
3723 }
3724
3725 static unsigned int
3726 rest_of_handle_peephole2 (void)
3727 {
3728 #ifdef HAVE_peephole2
3729 peephole2_optimize ();
3730 #endif
3731 return 0;
3732 }
3733
3734 struct rtl_opt_pass pass_peephole2 =
3735 {
3736 {
3737 RTL_PASS,
3738 "peephole2", /* name */
3739 gate_handle_peephole2, /* gate */
3740 rest_of_handle_peephole2, /* execute */
3741 NULL, /* sub */
3742 NULL, /* next */
3743 0, /* static_pass_number */
3744 TV_PEEPHOLE2, /* tv_id */
3745 0, /* properties_required */
3746 0, /* properties_provided */
3747 0, /* properties_destroyed */
3748 0, /* todo_flags_start */
3749 TODO_df_finish | TODO_verify_rtl_sharing |
3750 0 /* todo_flags_finish */
3751 }
3752 };
3753
3754 static unsigned int
3755 rest_of_handle_split_all_insns (void)
3756 {
3757 split_all_insns ();
3758 return 0;
3759 }
3760
3761 struct rtl_opt_pass pass_split_all_insns =
3762 {
3763 {
3764 RTL_PASS,
3765 "split1", /* name */
3766 NULL, /* gate */
3767 rest_of_handle_split_all_insns, /* execute */
3768 NULL, /* sub */
3769 NULL, /* next */
3770 0, /* static_pass_number */
3771 TV_NONE, /* tv_id */
3772 0, /* properties_required */
3773 0, /* properties_provided */
3774 0, /* properties_destroyed */
3775 0, /* todo_flags_start */
3776 0 /* todo_flags_finish */
3777 }
3778 };
3779
3780 static unsigned int
3781 rest_of_handle_split_after_reload (void)
3782 {
3783 /* If optimizing, then go ahead and split insns now. */
3784 #ifndef STACK_REGS
3785 if (optimize > 0)
3786 #endif
3787 split_all_insns ();
3788 return 0;
3789 }
3790
3791 struct rtl_opt_pass pass_split_after_reload =
3792 {
3793 {
3794 RTL_PASS,
3795 "split2", /* name */
3796 NULL, /* gate */
3797 rest_of_handle_split_after_reload, /* execute */
3798 NULL, /* sub */
3799 NULL, /* next */
3800 0, /* static_pass_number */
3801 TV_NONE, /* tv_id */
3802 0, /* properties_required */
3803 0, /* properties_provided */
3804 0, /* properties_destroyed */
3805 0, /* todo_flags_start */
3806 0 /* todo_flags_finish */
3807 }
3808 };
3809
3810 static bool
3811 gate_handle_split_before_regstack (void)
3812 {
3813 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3814 /* If flow2 creates new instructions which need splitting
3815 and scheduling after reload is not done, they might not be
3816 split until final which doesn't allow splitting
3817 if HAVE_ATTR_length. */
3818 # ifdef INSN_SCHEDULING
3819 return (optimize && !flag_schedule_insns_after_reload);
3820 # else
3821 return (optimize);
3822 # endif
3823 #else
3824 return 0;
3825 #endif
3826 }
3827
3828 static unsigned int
3829 rest_of_handle_split_before_regstack (void)
3830 {
3831 split_all_insns ();
3832 return 0;
3833 }
3834
3835 struct rtl_opt_pass pass_split_before_regstack =
3836 {
3837 {
3838 RTL_PASS,
3839 "split3", /* name */
3840 gate_handle_split_before_regstack, /* gate */
3841 rest_of_handle_split_before_regstack, /* execute */
3842 NULL, /* sub */
3843 NULL, /* next */
3844 0, /* static_pass_number */
3845 TV_NONE, /* tv_id */
3846 0, /* properties_required */
3847 0, /* properties_provided */
3848 0, /* properties_destroyed */
3849 0, /* todo_flags_start */
3850 0 /* todo_flags_finish */
3851 }
3852 };
3853
3854 static bool
3855 gate_handle_split_before_sched2 (void)
3856 {
3857 #ifdef INSN_SCHEDULING
3858 return optimize > 0 && flag_schedule_insns_after_reload;
3859 #else
3860 return 0;
3861 #endif
3862 }
3863
3864 static unsigned int
3865 rest_of_handle_split_before_sched2 (void)
3866 {
3867 #ifdef INSN_SCHEDULING
3868 split_all_insns ();
3869 #endif
3870 return 0;
3871 }
3872
3873 struct rtl_opt_pass pass_split_before_sched2 =
3874 {
3875 {
3876 RTL_PASS,
3877 "split4", /* name */
3878 gate_handle_split_before_sched2, /* gate */
3879 rest_of_handle_split_before_sched2, /* execute */
3880 NULL, /* sub */
3881 NULL, /* next */
3882 0, /* static_pass_number */
3883 TV_NONE, /* tv_id */
3884 0, /* properties_required */
3885 0, /* properties_provided */
3886 0, /* properties_destroyed */
3887 0, /* todo_flags_start */
3888 TODO_verify_flow /* todo_flags_finish */
3889 }
3890 };
3891
3892 /* The placement of the splitting that we do for shorten_branches
3893 depends on whether regstack is used by the target or not. */
3894 static bool
3895 gate_do_final_split (void)
3896 {
3897 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3898 return 1;
3899 #else
3900 return 0;
3901 #endif
3902 }
3903
3904 struct rtl_opt_pass pass_split_for_shorten_branches =
3905 {
3906 {
3907 RTL_PASS,
3908 "split5", /* name */
3909 gate_do_final_split, /* gate */
3910 split_all_insns_noflow, /* execute */
3911 NULL, /* sub */
3912 NULL, /* next */
3913 0, /* static_pass_number */
3914 TV_NONE, /* tv_id */
3915 0, /* properties_required */
3916 0, /* properties_provided */
3917 0, /* properties_destroyed */
3918 0, /* todo_flags_start */
3919 TODO_verify_rtl_sharing /* todo_flags_finish */
3920 }
3921 };