re PR bootstrap/45700 (--enable-checking=fold bootstrap failures)
[gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "toplev.h" /* exact_log2 may be used by targets */
46
47 #ifndef STACK_PUSH_CODE
48 #ifdef STACK_GROWS_DOWNWARD
49 #define STACK_PUSH_CODE PRE_DEC
50 #else
51 #define STACK_PUSH_CODE PRE_INC
52 #endif
53 #endif
54
55 #ifndef STACK_POP_CODE
56 #ifdef STACK_GROWS_DOWNWARD
57 #define STACK_POP_CODE POST_INC
58 #else
59 #define STACK_POP_CODE POST_DEC
60 #endif
61 #endif
62
63 #ifndef HAVE_ATTR_enabled
64 static inline bool
65 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
66 {
67 return true;
68 }
69 #endif
70
71 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
72 static void validate_replace_src_1 (rtx *, void *);
73 static rtx split_insn (rtx);
74
75 /* Nonzero means allow operands to be volatile.
76 This should be 0 if you are generating rtl, such as if you are calling
77 the functions in optabs.c and expmed.c (most of the time).
78 This should be 1 if all valid insns need to be recognized,
79 such as in reginfo.c and final.c and reload.c.
80
81 init_recog and init_recog_no_volatile are responsible for setting this. */
82
83 int volatile_ok;
84
85 struct recog_data recog_data;
86
87 /* Contains a vector of operand_alternative structures for every operand.
88 Set up by preprocess_constraints. */
89 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
90
91 /* On return from `constrain_operands', indicate which alternative
92 was satisfied. */
93
94 int which_alternative;
95
96 /* Nonzero after end of reload pass.
97 Set to 1 or 0 by toplev.c.
98 Controls the significance of (SUBREG (MEM)). */
99
100 int reload_completed;
101
102 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
103 int epilogue_completed;
104
105 /* Initialize data used by the function `recog'.
106 This must be called once in the compilation of a function
107 before any insn recognition may be done in the function. */
108
109 void
110 init_recog_no_volatile (void)
111 {
112 volatile_ok = 0;
113 }
114
115 void
116 init_recog (void)
117 {
118 volatile_ok = 1;
119 }
120
121 \f
122 /* Check that X is an insn-body for an `asm' with operands
123 and that the operands mentioned in it are legitimate. */
124
125 int
126 check_asm_operands (rtx x)
127 {
128 int noperands;
129 rtx *operands;
130 const char **constraints;
131 int i;
132
133 /* Post-reload, be more strict with things. */
134 if (reload_completed)
135 {
136 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
137 extract_insn (make_insn_raw (x));
138 constrain_operands (1);
139 return which_alternative >= 0;
140 }
141
142 noperands = asm_noperands (x);
143 if (noperands < 0)
144 return 0;
145 if (noperands == 0)
146 return 1;
147
148 operands = XALLOCAVEC (rtx, noperands);
149 constraints = XALLOCAVEC (const char *, noperands);
150
151 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
152
153 for (i = 0; i < noperands; i++)
154 {
155 const char *c = constraints[i];
156 if (c[0] == '%')
157 c++;
158 if (! asm_operand_ok (operands[i], c, constraints))
159 return 0;
160 }
161
162 return 1;
163 }
164 \f
165 /* Static data for the next two routines. */
166
167 typedef struct change_t
168 {
169 rtx object;
170 int old_code;
171 rtx *loc;
172 rtx old;
173 bool unshare;
174 } change_t;
175
176 static change_t *changes;
177 static int changes_allocated;
178
179 static int num_changes = 0;
180
181 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
182 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
183 the change is simply made.
184
185 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
186 will be called with the address and mode as parameters. If OBJECT is
187 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
188 the change in place.
189
190 IN_GROUP is nonzero if this is part of a group of changes that must be
191 performed as a group. In that case, the changes will be stored. The
192 function `apply_change_group' will validate and apply the changes.
193
194 If IN_GROUP is zero, this is a single change. Try to recognize the insn
195 or validate the memory reference with the change applied. If the result
196 is not valid for the machine, suppress the change and return zero.
197 Otherwise, perform the change and return 1. */
198
199 static bool
200 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
201 {
202 rtx old = *loc;
203
204 if (old == new_rtx || rtx_equal_p (old, new_rtx))
205 return 1;
206
207 gcc_assert (in_group != 0 || num_changes == 0);
208
209 *loc = new_rtx;
210
211 /* Save the information describing this change. */
212 if (num_changes >= changes_allocated)
213 {
214 if (changes_allocated == 0)
215 /* This value allows for repeated substitutions inside complex
216 indexed addresses, or changes in up to 5 insns. */
217 changes_allocated = MAX_RECOG_OPERANDS * 5;
218 else
219 changes_allocated *= 2;
220
221 changes = XRESIZEVEC (change_t, changes, changes_allocated);
222 }
223
224 changes[num_changes].object = object;
225 changes[num_changes].loc = loc;
226 changes[num_changes].old = old;
227 changes[num_changes].unshare = unshare;
228
229 if (object && !MEM_P (object))
230 {
231 /* Set INSN_CODE to force rerecognition of insn. Save old code in
232 case invalid. */
233 changes[num_changes].old_code = INSN_CODE (object);
234 INSN_CODE (object) = -1;
235 }
236
237 num_changes++;
238
239 /* If we are making a group of changes, return 1. Otherwise, validate the
240 change group we made. */
241
242 if (in_group)
243 return 1;
244 else
245 return apply_change_group ();
246 }
247
248 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
249 UNSHARE to false. */
250
251 bool
252 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
253 {
254 return validate_change_1 (object, loc, new_rtx, in_group, false);
255 }
256
257 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
258 UNSHARE to true. */
259
260 bool
261 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
262 {
263 return validate_change_1 (object, loc, new_rtx, in_group, true);
264 }
265
266
267 /* Keep X canonicalized if some changes have made it non-canonical; only
268 modifies the operands of X, not (for example) its code. Simplifications
269 are not the job of this routine.
270
271 Return true if anything was changed. */
272 bool
273 canonicalize_change_group (rtx insn, rtx x)
274 {
275 if (COMMUTATIVE_P (x)
276 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
277 {
278 /* Oops, the caller has made X no longer canonical.
279 Let's redo the changes in the correct order. */
280 rtx tem = XEXP (x, 0);
281 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
282 validate_change (insn, &XEXP (x, 1), tem, 1);
283 return true;
284 }
285 else
286 return false;
287 }
288
289
290 /* This subroutine of apply_change_group verifies whether the changes to INSN
291 were valid; i.e. whether INSN can still be recognized. */
292
293 int
294 insn_invalid_p (rtx insn)
295 {
296 rtx pat = PATTERN (insn);
297 int num_clobbers = 0;
298 /* If we are before reload and the pattern is a SET, see if we can add
299 clobbers. */
300 int icode = recog (pat, insn,
301 (GET_CODE (pat) == SET
302 && ! reload_completed && ! reload_in_progress)
303 ? &num_clobbers : 0);
304 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
305
306
307 /* If this is an asm and the operand aren't legal, then fail. Likewise if
308 this is not an asm and the insn wasn't recognized. */
309 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
310 || (!is_asm && icode < 0))
311 return 1;
312
313 /* If we have to add CLOBBERs, fail if we have to add ones that reference
314 hard registers since our callers can't know if they are live or not.
315 Otherwise, add them. */
316 if (num_clobbers > 0)
317 {
318 rtx newpat;
319
320 if (added_clobbers_hard_reg_p (icode))
321 return 1;
322
323 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
324 XVECEXP (newpat, 0, 0) = pat;
325 add_clobbers (newpat, icode);
326 PATTERN (insn) = pat = newpat;
327 }
328
329 /* After reload, verify that all constraints are satisfied. */
330 if (reload_completed)
331 {
332 extract_insn (insn);
333
334 if (! constrain_operands (1))
335 return 1;
336 }
337
338 INSN_CODE (insn) = icode;
339 return 0;
340 }
341
342 /* Return number of changes made and not validated yet. */
343 int
344 num_changes_pending (void)
345 {
346 return num_changes;
347 }
348
349 /* Tentatively apply the changes numbered NUM and up.
350 Return 1 if all changes are valid, zero otherwise. */
351
352 int
353 verify_changes (int num)
354 {
355 int i;
356 rtx last_validated = NULL_RTX;
357
358 /* The changes have been applied and all INSN_CODEs have been reset to force
359 rerecognition.
360
361 The changes are valid if we aren't given an object, or if we are
362 given a MEM and it still is a valid address, or if this is in insn
363 and it is recognized. In the latter case, if reload has completed,
364 we also require that the operands meet the constraints for
365 the insn. */
366
367 for (i = num; i < num_changes; i++)
368 {
369 rtx object = changes[i].object;
370
371 /* If there is no object to test or if it is the same as the one we
372 already tested, ignore it. */
373 if (object == 0 || object == last_validated)
374 continue;
375
376 if (MEM_P (object))
377 {
378 if (! memory_address_addr_space_p (GET_MODE (object),
379 XEXP (object, 0),
380 MEM_ADDR_SPACE (object)))
381 break;
382 }
383 else if (REG_P (changes[i].old)
384 && asm_noperands (PATTERN (object)) > 0
385 && REG_EXPR (changes[i].old) != NULL_TREE
386 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
387 && DECL_REGISTER (REG_EXPR (changes[i].old)))
388 {
389 /* Don't allow changes of hard register operands to inline
390 assemblies if they have been defined as register asm ("x"). */
391 break;
392 }
393 else if (DEBUG_INSN_P (object))
394 continue;
395 else if (insn_invalid_p (object))
396 {
397 rtx pat = PATTERN (object);
398
399 /* Perhaps we couldn't recognize the insn because there were
400 extra CLOBBERs at the end. If so, try to re-recognize
401 without the last CLOBBER (later iterations will cause each of
402 them to be eliminated, in turn). But don't do this if we
403 have an ASM_OPERAND. */
404 if (GET_CODE (pat) == PARALLEL
405 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
406 && asm_noperands (PATTERN (object)) < 0)
407 {
408 rtx newpat;
409
410 if (XVECLEN (pat, 0) == 2)
411 newpat = XVECEXP (pat, 0, 0);
412 else
413 {
414 int j;
415
416 newpat
417 = gen_rtx_PARALLEL (VOIDmode,
418 rtvec_alloc (XVECLEN (pat, 0) - 1));
419 for (j = 0; j < XVECLEN (newpat, 0); j++)
420 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
421 }
422
423 /* Add a new change to this group to replace the pattern
424 with this new pattern. Then consider this change
425 as having succeeded. The change we added will
426 cause the entire call to fail if things remain invalid.
427
428 Note that this can lose if a later change than the one
429 we are processing specified &XVECEXP (PATTERN (object), 0, X)
430 but this shouldn't occur. */
431
432 validate_change (object, &PATTERN (object), newpat, 1);
433 continue;
434 }
435 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
436 || GET_CODE (pat) == VAR_LOCATION)
437 /* If this insn is a CLOBBER or USE, it is always valid, but is
438 never recognized. */
439 continue;
440 else
441 break;
442 }
443 last_validated = object;
444 }
445
446 return (i == num_changes);
447 }
448
449 /* A group of changes has previously been issued with validate_change
450 and verified with verify_changes. Call df_insn_rescan for each of
451 the insn changed and clear num_changes. */
452
453 void
454 confirm_change_group (void)
455 {
456 int i;
457 rtx last_object = NULL;
458
459 for (i = 0; i < num_changes; i++)
460 {
461 rtx object = changes[i].object;
462
463 if (changes[i].unshare)
464 *changes[i].loc = copy_rtx (*changes[i].loc);
465
466 /* Avoid unnecessary rescanning when multiple changes to same instruction
467 are made. */
468 if (object)
469 {
470 if (object != last_object && last_object && INSN_P (last_object))
471 df_insn_rescan (last_object);
472 last_object = object;
473 }
474 }
475
476 if (last_object && INSN_P (last_object))
477 df_insn_rescan (last_object);
478 num_changes = 0;
479 }
480
481 /* Apply a group of changes previously issued with `validate_change'.
482 If all changes are valid, call confirm_change_group and return 1,
483 otherwise, call cancel_changes and return 0. */
484
485 int
486 apply_change_group (void)
487 {
488 if (verify_changes (0))
489 {
490 confirm_change_group ();
491 return 1;
492 }
493 else
494 {
495 cancel_changes (0);
496 return 0;
497 }
498 }
499
500
501 /* Return the number of changes so far in the current group. */
502
503 int
504 num_validated_changes (void)
505 {
506 return num_changes;
507 }
508
509 /* Retract the changes numbered NUM and up. */
510
511 void
512 cancel_changes (int num)
513 {
514 int i;
515
516 /* Back out all the changes. Do this in the opposite order in which
517 they were made. */
518 for (i = num_changes - 1; i >= num; i--)
519 {
520 *changes[i].loc = changes[i].old;
521 if (changes[i].object && !MEM_P (changes[i].object))
522 INSN_CODE (changes[i].object) = changes[i].old_code;
523 }
524 num_changes = num;
525 }
526
527 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
528 rtx. */
529
530 static void
531 simplify_while_replacing (rtx *loc, rtx to, rtx object,
532 enum machine_mode op0_mode)
533 {
534 rtx x = *loc;
535 enum rtx_code code = GET_CODE (x);
536 rtx new_rtx;
537
538 if (SWAPPABLE_OPERANDS_P (x)
539 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
540 {
541 validate_unshare_change (object, loc,
542 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
543 : swap_condition (code),
544 GET_MODE (x), XEXP (x, 1),
545 XEXP (x, 0)), 1);
546 x = *loc;
547 code = GET_CODE (x);
548 }
549
550 switch (code)
551 {
552 case PLUS:
553 /* If we have a PLUS whose second operand is now a CONST_INT, use
554 simplify_gen_binary to try to simplify it.
555 ??? We may want later to remove this, once simplification is
556 separated from this function. */
557 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
558 validate_change (object, loc,
559 simplify_gen_binary
560 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
561 break;
562 case MINUS:
563 if (CONST_INT_P (XEXP (x, 1))
564 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
565 validate_change (object, loc,
566 simplify_gen_binary
567 (PLUS, GET_MODE (x), XEXP (x, 0),
568 simplify_gen_unary (NEG,
569 GET_MODE (x), XEXP (x, 1),
570 GET_MODE (x))), 1);
571 break;
572 case ZERO_EXTEND:
573 case SIGN_EXTEND:
574 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
575 {
576 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
577 op0_mode);
578 /* If any of the above failed, substitute in something that
579 we know won't be recognized. */
580 if (!new_rtx)
581 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
582 validate_change (object, loc, new_rtx, 1);
583 }
584 break;
585 case SUBREG:
586 /* All subregs possible to simplify should be simplified. */
587 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
588 SUBREG_BYTE (x));
589
590 /* Subregs of VOIDmode operands are incorrect. */
591 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
592 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
593 if (new_rtx)
594 validate_change (object, loc, new_rtx, 1);
595 break;
596 case ZERO_EXTRACT:
597 case SIGN_EXTRACT:
598 /* If we are replacing a register with memory, try to change the memory
599 to be the mode required for memory in extract operations (this isn't
600 likely to be an insertion operation; if it was, nothing bad will
601 happen, we might just fail in some cases). */
602
603 if (MEM_P (XEXP (x, 0))
604 && CONST_INT_P (XEXP (x, 1))
605 && CONST_INT_P (XEXP (x, 2))
606 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
607 && !MEM_VOLATILE_P (XEXP (x, 0)))
608 {
609 enum machine_mode wanted_mode = VOIDmode;
610 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
611 int pos = INTVAL (XEXP (x, 2));
612
613 if (GET_CODE (x) == ZERO_EXTRACT)
614 {
615 enum machine_mode new_mode
616 = mode_for_extraction (EP_extzv, 1);
617 if (new_mode != MAX_MACHINE_MODE)
618 wanted_mode = new_mode;
619 }
620 else if (GET_CODE (x) == SIGN_EXTRACT)
621 {
622 enum machine_mode new_mode
623 = mode_for_extraction (EP_extv, 1);
624 if (new_mode != MAX_MACHINE_MODE)
625 wanted_mode = new_mode;
626 }
627
628 /* If we have a narrower mode, we can do something. */
629 if (wanted_mode != VOIDmode
630 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
631 {
632 int offset = pos / BITS_PER_UNIT;
633 rtx newmem;
634
635 /* If the bytes and bits are counted differently, we
636 must adjust the offset. */
637 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
638 offset =
639 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
640 offset);
641
642 pos %= GET_MODE_BITSIZE (wanted_mode);
643
644 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
645
646 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
647 validate_change (object, &XEXP (x, 0), newmem, 1);
648 }
649 }
650
651 break;
652
653 default:
654 break;
655 }
656 }
657
658 /* Replace every occurrence of FROM in X with TO. Mark each change with
659 validate_change passing OBJECT. */
660
661 static void
662 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
663 bool simplify)
664 {
665 int i, j;
666 const char *fmt;
667 rtx x = *loc;
668 enum rtx_code code;
669 enum machine_mode op0_mode = VOIDmode;
670 int prev_changes = num_changes;
671
672 if (!x)
673 return;
674
675 code = GET_CODE (x);
676 fmt = GET_RTX_FORMAT (code);
677 if (fmt[0] == 'e')
678 op0_mode = GET_MODE (XEXP (x, 0));
679
680 /* X matches FROM if it is the same rtx or they are both referring to the
681 same register in the same mode. Avoid calling rtx_equal_p unless the
682 operands look similar. */
683
684 if (x == from
685 || (REG_P (x) && REG_P (from)
686 && GET_MODE (x) == GET_MODE (from)
687 && REGNO (x) == REGNO (from))
688 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
689 && rtx_equal_p (x, from)))
690 {
691 validate_unshare_change (object, loc, to, 1);
692 return;
693 }
694
695 /* Call ourself recursively to perform the replacements.
696 We must not replace inside already replaced expression, otherwise we
697 get infinite recursion for replacements like (reg X)->(subreg (reg X))
698 done by regmove, so we must special case shared ASM_OPERANDS. */
699
700 if (GET_CODE (x) == PARALLEL)
701 {
702 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
703 {
704 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
705 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
706 {
707 /* Verify that operands are really shared. */
708 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
709 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
710 (x, 0, j))));
711 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
712 from, to, object, simplify);
713 }
714 else
715 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
716 simplify);
717 }
718 }
719 else
720 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
721 {
722 if (fmt[i] == 'e')
723 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
724 else if (fmt[i] == 'E')
725 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
726 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
727 simplify);
728 }
729
730 /* If we didn't substitute, there is nothing more to do. */
731 if (num_changes == prev_changes)
732 return;
733
734 /* Allow substituted expression to have different mode. This is used by
735 regmove to change mode of pseudo register. */
736 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
737 op0_mode = GET_MODE (XEXP (x, 0));
738
739 /* Do changes needed to keep rtx consistent. Don't do any other
740 simplifications, as it is not our job. */
741 if (simplify)
742 simplify_while_replacing (loc, to, object, op0_mode);
743 }
744
745 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
746 with TO. After all changes have been made, validate by seeing
747 if INSN is still valid. */
748
749 int
750 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
751 {
752 validate_replace_rtx_1 (loc, from, to, insn, true);
753 return apply_change_group ();
754 }
755
756 /* Try replacing every occurrence of FROM in INSN with TO. After all
757 changes have been made, validate by seeing if INSN is still valid. */
758
759 int
760 validate_replace_rtx (rtx from, rtx to, rtx insn)
761 {
762 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
763 return apply_change_group ();
764 }
765
766 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
767 is a part of INSN. After all changes have been made, validate by seeing if
768 INSN is still valid.
769 validate_replace_rtx (from, to, insn) is equivalent to
770 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
771
772 int
773 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
774 {
775 validate_replace_rtx_1 (where, from, to, insn, true);
776 return apply_change_group ();
777 }
778
779 /* Same as above, but do not simplify rtx afterwards. */
780 int
781 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
782 rtx insn)
783 {
784 validate_replace_rtx_1 (where, from, to, insn, false);
785 return apply_change_group ();
786
787 }
788
789 /* Try replacing every occurrence of FROM in INSN with TO. This also
790 will replace in REG_EQUAL and REG_EQUIV notes. */
791
792 void
793 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
794 {
795 rtx note;
796 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
797 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
798 if (REG_NOTE_KIND (note) == REG_EQUAL
799 || REG_NOTE_KIND (note) == REG_EQUIV)
800 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
801 }
802
803 /* Function called by note_uses to replace used subexpressions. */
804 struct validate_replace_src_data
805 {
806 rtx from; /* Old RTX */
807 rtx to; /* New RTX */
808 rtx insn; /* Insn in which substitution is occurring. */
809 };
810
811 static void
812 validate_replace_src_1 (rtx *x, void *data)
813 {
814 struct validate_replace_src_data *d
815 = (struct validate_replace_src_data *) data;
816
817 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
818 }
819
820 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
821 SET_DESTs. */
822
823 void
824 validate_replace_src_group (rtx from, rtx to, rtx insn)
825 {
826 struct validate_replace_src_data d;
827
828 d.from = from;
829 d.to = to;
830 d.insn = insn;
831 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
832 }
833
834 /* Try simplify INSN.
835 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
836 pattern and return true if something was simplified. */
837
838 bool
839 validate_simplify_insn (rtx insn)
840 {
841 int i;
842 rtx pat = NULL;
843 rtx newpat = NULL;
844
845 pat = PATTERN (insn);
846
847 if (GET_CODE (pat) == SET)
848 {
849 newpat = simplify_rtx (SET_SRC (pat));
850 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
851 validate_change (insn, &SET_SRC (pat), newpat, 1);
852 newpat = simplify_rtx (SET_DEST (pat));
853 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
854 validate_change (insn, &SET_DEST (pat), newpat, 1);
855 }
856 else if (GET_CODE (pat) == PARALLEL)
857 for (i = 0; i < XVECLEN (pat, 0); i++)
858 {
859 rtx s = XVECEXP (pat, 0, i);
860
861 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
862 {
863 newpat = simplify_rtx (SET_SRC (s));
864 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
865 validate_change (insn, &SET_SRC (s), newpat, 1);
866 newpat = simplify_rtx (SET_DEST (s));
867 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
868 validate_change (insn, &SET_DEST (s), newpat, 1);
869 }
870 }
871 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
872 }
873 \f
874 #ifdef HAVE_cc0
875 /* Return 1 if the insn using CC0 set by INSN does not contain
876 any ordered tests applied to the condition codes.
877 EQ and NE tests do not count. */
878
879 int
880 next_insn_tests_no_inequality (rtx insn)
881 {
882 rtx next = next_cc0_user (insn);
883
884 /* If there is no next insn, we have to take the conservative choice. */
885 if (next == 0)
886 return 0;
887
888 return (INSN_P (next)
889 && ! inequality_comparisons_p (PATTERN (next)));
890 }
891 #endif
892 \f
893 /* Return 1 if OP is a valid general operand for machine mode MODE.
894 This is either a register reference, a memory reference,
895 or a constant. In the case of a memory reference, the address
896 is checked for general validity for the target machine.
897
898 Register and memory references must have mode MODE in order to be valid,
899 but some constants have no machine mode and are valid for any mode.
900
901 If MODE is VOIDmode, OP is checked for validity for whatever mode
902 it has.
903
904 The main use of this function is as a predicate in match_operand
905 expressions in the machine description.
906
907 For an explanation of this function's behavior for registers of
908 class NO_REGS, see the comment for `register_operand'. */
909
910 int
911 general_operand (rtx op, enum machine_mode mode)
912 {
913 enum rtx_code code = GET_CODE (op);
914
915 if (mode == VOIDmode)
916 mode = GET_MODE (op);
917
918 /* Don't accept CONST_INT or anything similar
919 if the caller wants something floating. */
920 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
921 && GET_MODE_CLASS (mode) != MODE_INT
922 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
923 return 0;
924
925 if (CONST_INT_P (op)
926 && mode != VOIDmode
927 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
928 return 0;
929
930 if (CONSTANT_P (op))
931 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
932 || mode == VOIDmode)
933 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
934 && LEGITIMATE_CONSTANT_P (op));
935
936 /* Except for certain constants with VOIDmode, already checked for,
937 OP's mode must match MODE if MODE specifies a mode. */
938
939 if (GET_MODE (op) != mode)
940 return 0;
941
942 if (code == SUBREG)
943 {
944 rtx sub = SUBREG_REG (op);
945
946 #ifdef INSN_SCHEDULING
947 /* On machines that have insn scheduling, we want all memory
948 reference to be explicit, so outlaw paradoxical SUBREGs.
949 However, we must allow them after reload so that they can
950 get cleaned up by cleanup_subreg_operands. */
951 if (!reload_completed && MEM_P (sub)
952 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
953 return 0;
954 #endif
955 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
956 may result in incorrect reference. We should simplify all valid
957 subregs of MEM anyway. But allow this after reload because we
958 might be called from cleanup_subreg_operands.
959
960 ??? This is a kludge. */
961 if (!reload_completed && SUBREG_BYTE (op) != 0
962 && MEM_P (sub))
963 return 0;
964
965 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
966 create such rtl, and we must reject it. */
967 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
968 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
969 return 0;
970
971 op = sub;
972 code = GET_CODE (op);
973 }
974
975 if (code == REG)
976 /* A register whose class is NO_REGS is not a general operand. */
977 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
978 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
979
980 if (code == MEM)
981 {
982 rtx y = XEXP (op, 0);
983
984 if (! volatile_ok && MEM_VOLATILE_P (op))
985 return 0;
986
987 /* Use the mem's mode, since it will be reloaded thus. */
988 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
989 return 1;
990 }
991
992 return 0;
993 }
994 \f
995 /* Return 1 if OP is a valid memory address for a memory reference
996 of mode MODE.
997
998 The main use of this function is as a predicate in match_operand
999 expressions in the machine description. */
1000
1001 int
1002 address_operand (rtx op, enum machine_mode mode)
1003 {
1004 return memory_address_p (mode, op);
1005 }
1006
1007 /* Return 1 if OP is a register reference of mode MODE.
1008 If MODE is VOIDmode, accept a register in any mode.
1009
1010 The main use of this function is as a predicate in match_operand
1011 expressions in the machine description.
1012
1013 As a special exception, registers whose class is NO_REGS are
1014 not accepted by `register_operand'. The reason for this change
1015 is to allow the representation of special architecture artifacts
1016 (such as a condition code register) without extending the rtl
1017 definitions. Since registers of class NO_REGS cannot be used
1018 as registers in any case where register classes are examined,
1019 it is most consistent to keep this function from accepting them. */
1020
1021 int
1022 register_operand (rtx op, enum machine_mode mode)
1023 {
1024 if (GET_MODE (op) != mode && mode != VOIDmode)
1025 return 0;
1026
1027 if (GET_CODE (op) == SUBREG)
1028 {
1029 rtx sub = SUBREG_REG (op);
1030
1031 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1032 because it is guaranteed to be reloaded into one.
1033 Just make sure the MEM is valid in itself.
1034 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1035 but currently it does result from (SUBREG (REG)...) where the
1036 reg went on the stack.) */
1037 if (! reload_completed && MEM_P (sub))
1038 return general_operand (op, mode);
1039
1040 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 if (REG_P (sub)
1042 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1043 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1044 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1045 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1046 return 0;
1047 #endif
1048
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1053 return 0;
1054
1055 op = sub;
1056 }
1057
1058 /* We don't consider registers whose class is NO_REGS
1059 to be a register operand. */
1060 return (REG_P (op)
1061 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1062 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1063 }
1064
1065 /* Return 1 for a register in Pmode; ignore the tested mode. */
1066
1067 int
1068 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1069 {
1070 return register_operand (op, Pmode);
1071 }
1072
1073 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1074 or a hard register. */
1075
1076 int
1077 scratch_operand (rtx op, enum machine_mode mode)
1078 {
1079 if (GET_MODE (op) != mode && mode != VOIDmode)
1080 return 0;
1081
1082 return (GET_CODE (op) == SCRATCH
1083 || (REG_P (op)
1084 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1085 }
1086
1087 /* Return 1 if OP is a valid immediate operand for mode MODE.
1088
1089 The main use of this function is as a predicate in match_operand
1090 expressions in the machine description. */
1091
1092 int
1093 immediate_operand (rtx op, enum machine_mode mode)
1094 {
1095 /* Don't accept CONST_INT or anything similar
1096 if the caller wants something floating. */
1097 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1098 && GET_MODE_CLASS (mode) != MODE_INT
1099 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1100 return 0;
1101
1102 if (CONST_INT_P (op)
1103 && mode != VOIDmode
1104 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1105 return 0;
1106
1107 return (CONSTANT_P (op)
1108 && (GET_MODE (op) == mode || mode == VOIDmode
1109 || GET_MODE (op) == VOIDmode)
1110 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1111 && LEGITIMATE_CONSTANT_P (op));
1112 }
1113
1114 /* Returns 1 if OP is an operand that is a CONST_INT. */
1115
1116 int
1117 const_int_operand (rtx op, enum machine_mode mode)
1118 {
1119 if (!CONST_INT_P (op))
1120 return 0;
1121
1122 if (mode != VOIDmode
1123 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1124 return 0;
1125
1126 return 1;
1127 }
1128
1129 /* Returns 1 if OP is an operand that is a constant integer or constant
1130 floating-point number. */
1131
1132 int
1133 const_double_operand (rtx op, enum machine_mode mode)
1134 {
1135 /* Don't accept CONST_INT or anything similar
1136 if the caller wants something floating. */
1137 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1138 && GET_MODE_CLASS (mode) != MODE_INT
1139 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1140 return 0;
1141
1142 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1143 && (mode == VOIDmode || GET_MODE (op) == mode
1144 || GET_MODE (op) == VOIDmode));
1145 }
1146
1147 /* Return 1 if OP is a general operand that is not an immediate operand. */
1148
1149 int
1150 nonimmediate_operand (rtx op, enum machine_mode mode)
1151 {
1152 return (general_operand (op, mode) && ! CONSTANT_P (op));
1153 }
1154
1155 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1156
1157 int
1158 nonmemory_operand (rtx op, enum machine_mode mode)
1159 {
1160 if (CONSTANT_P (op))
1161 return immediate_operand (op, mode);
1162
1163 if (GET_MODE (op) != mode && mode != VOIDmode)
1164 return 0;
1165
1166 if (GET_CODE (op) == SUBREG)
1167 {
1168 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1169 because it is guaranteed to be reloaded into one.
1170 Just make sure the MEM is valid in itself.
1171 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1172 but currently it does result from (SUBREG (REG)...) where the
1173 reg went on the stack.) */
1174 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1175 return general_operand (op, mode);
1176 op = SUBREG_REG (op);
1177 }
1178
1179 /* We don't consider registers whose class is NO_REGS
1180 to be a register operand. */
1181 return (REG_P (op)
1182 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1183 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1184 }
1185
1186 /* Return 1 if OP is a valid operand that stands for pushing a
1187 value of mode MODE onto the stack.
1188
1189 The main use of this function is as a predicate in match_operand
1190 expressions in the machine description. */
1191
1192 int
1193 push_operand (rtx op, enum machine_mode mode)
1194 {
1195 unsigned int rounded_size = GET_MODE_SIZE (mode);
1196
1197 #ifdef PUSH_ROUNDING
1198 rounded_size = PUSH_ROUNDING (rounded_size);
1199 #endif
1200
1201 if (!MEM_P (op))
1202 return 0;
1203
1204 if (mode != VOIDmode && GET_MODE (op) != mode)
1205 return 0;
1206
1207 op = XEXP (op, 0);
1208
1209 if (rounded_size == GET_MODE_SIZE (mode))
1210 {
1211 if (GET_CODE (op) != STACK_PUSH_CODE)
1212 return 0;
1213 }
1214 else
1215 {
1216 if (GET_CODE (op) != PRE_MODIFY
1217 || GET_CODE (XEXP (op, 1)) != PLUS
1218 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1219 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1220 #ifdef STACK_GROWS_DOWNWARD
1221 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1222 #else
1223 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1224 #endif
1225 )
1226 return 0;
1227 }
1228
1229 return XEXP (op, 0) == stack_pointer_rtx;
1230 }
1231
1232 /* Return 1 if OP is a valid operand that stands for popping a
1233 value of mode MODE off the stack.
1234
1235 The main use of this function is as a predicate in match_operand
1236 expressions in the machine description. */
1237
1238 int
1239 pop_operand (rtx op, enum machine_mode mode)
1240 {
1241 if (!MEM_P (op))
1242 return 0;
1243
1244 if (mode != VOIDmode && GET_MODE (op) != mode)
1245 return 0;
1246
1247 op = XEXP (op, 0);
1248
1249 if (GET_CODE (op) != STACK_POP_CODE)
1250 return 0;
1251
1252 return XEXP (op, 0) == stack_pointer_rtx;
1253 }
1254
1255 /* Return 1 if ADDR is a valid memory address
1256 for mode MODE in address space AS. */
1257
1258 int
1259 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1260 rtx addr, addr_space_t as)
1261 {
1262 #ifdef GO_IF_LEGITIMATE_ADDRESS
1263 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1264 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1265 return 0;
1266
1267 win:
1268 return 1;
1269 #else
1270 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1271 #endif
1272 }
1273
1274 /* Return 1 if OP is a valid memory reference with mode MODE,
1275 including a valid address.
1276
1277 The main use of this function is as a predicate in match_operand
1278 expressions in the machine description. */
1279
1280 int
1281 memory_operand (rtx op, enum machine_mode mode)
1282 {
1283 rtx inner;
1284
1285 if (! reload_completed)
1286 /* Note that no SUBREG is a memory operand before end of reload pass,
1287 because (SUBREG (MEM...)) forces reloading into a register. */
1288 return MEM_P (op) && general_operand (op, mode);
1289
1290 if (mode != VOIDmode && GET_MODE (op) != mode)
1291 return 0;
1292
1293 inner = op;
1294 if (GET_CODE (inner) == SUBREG)
1295 inner = SUBREG_REG (inner);
1296
1297 return (MEM_P (inner) && general_operand (op, mode));
1298 }
1299
1300 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1301 that is, a memory reference whose address is a general_operand. */
1302
1303 int
1304 indirect_operand (rtx op, enum machine_mode mode)
1305 {
1306 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1307 if (! reload_completed
1308 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1309 {
1310 int offset = SUBREG_BYTE (op);
1311 rtx inner = SUBREG_REG (op);
1312
1313 if (mode != VOIDmode && GET_MODE (op) != mode)
1314 return 0;
1315
1316 /* The only way that we can have a general_operand as the resulting
1317 address is if OFFSET is zero and the address already is an operand
1318 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1319 operand. */
1320
1321 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1322 || (GET_CODE (XEXP (inner, 0)) == PLUS
1323 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1324 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1325 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1326 }
1327
1328 return (MEM_P (op)
1329 && memory_operand (op, mode)
1330 && general_operand (XEXP (op, 0), Pmode));
1331 }
1332
1333 /* Return 1 if this is an ordered comparison operator (not including
1334 ORDERED and UNORDERED). */
1335
1336 int
1337 ordered_comparison_operator (rtx op, enum machine_mode mode)
1338 {
1339 if (mode != VOIDmode && GET_MODE (op) != mode)
1340 return false;
1341 switch (GET_CODE (op))
1342 {
1343 case EQ:
1344 case NE:
1345 case LT:
1346 case LTU:
1347 case LE:
1348 case LEU:
1349 case GT:
1350 case GTU:
1351 case GE:
1352 case GEU:
1353 return true;
1354 default:
1355 return false;
1356 }
1357 }
1358
1359 /* Return 1 if this is a comparison operator. This allows the use of
1360 MATCH_OPERATOR to recognize all the branch insns. */
1361
1362 int
1363 comparison_operator (rtx op, enum machine_mode mode)
1364 {
1365 return ((mode == VOIDmode || GET_MODE (op) == mode)
1366 && COMPARISON_P (op));
1367 }
1368 \f
1369 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1370
1371 rtx
1372 extract_asm_operands (rtx body)
1373 {
1374 rtx tmp;
1375 switch (GET_CODE (body))
1376 {
1377 case ASM_OPERANDS:
1378 return body;
1379
1380 case SET:
1381 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1382 tmp = SET_SRC (body);
1383 if (GET_CODE (tmp) == ASM_OPERANDS)
1384 return tmp;
1385 break;
1386
1387 case PARALLEL:
1388 tmp = XVECEXP (body, 0, 0);
1389 if (GET_CODE (tmp) == ASM_OPERANDS)
1390 return tmp;
1391 if (GET_CODE (tmp) == SET)
1392 {
1393 tmp = SET_SRC (tmp);
1394 if (GET_CODE (tmp) == ASM_OPERANDS)
1395 return tmp;
1396 }
1397 break;
1398
1399 default:
1400 break;
1401 }
1402 return NULL;
1403 }
1404
1405 /* If BODY is an insn body that uses ASM_OPERANDS,
1406 return the number of operands (both input and output) in the insn.
1407 Otherwise return -1. */
1408
1409 int
1410 asm_noperands (const_rtx body)
1411 {
1412 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1413 int n_sets = 0;
1414
1415 if (asm_op == NULL)
1416 return -1;
1417
1418 if (GET_CODE (body) == SET)
1419 n_sets = 1;
1420 else if (GET_CODE (body) == PARALLEL)
1421 {
1422 int i;
1423 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1424 {
1425 /* Multiple output operands, or 1 output plus some clobbers:
1426 body is
1427 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1428 /* Count backwards through CLOBBERs to determine number of SETs. */
1429 for (i = XVECLEN (body, 0); i > 0; i--)
1430 {
1431 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1432 break;
1433 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1434 return -1;
1435 }
1436
1437 /* N_SETS is now number of output operands. */
1438 n_sets = i;
1439
1440 /* Verify that all the SETs we have
1441 came from a single original asm_operands insn
1442 (so that invalid combinations are blocked). */
1443 for (i = 0; i < n_sets; i++)
1444 {
1445 rtx elt = XVECEXP (body, 0, i);
1446 if (GET_CODE (elt) != SET)
1447 return -1;
1448 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1449 return -1;
1450 /* If these ASM_OPERANDS rtx's came from different original insns
1451 then they aren't allowed together. */
1452 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1453 != ASM_OPERANDS_INPUT_VEC (asm_op))
1454 return -1;
1455 }
1456 }
1457 else
1458 {
1459 /* 0 outputs, but some clobbers:
1460 body is [(asm_operands ...) (clobber (reg ...))...]. */
1461 /* Make sure all the other parallel things really are clobbers. */
1462 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1463 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1464 return -1;
1465 }
1466 }
1467
1468 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1469 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1470 }
1471
1472 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1473 copy its operands (both input and output) into the vector OPERANDS,
1474 the locations of the operands within the insn into the vector OPERAND_LOCS,
1475 and the constraints for the operands into CONSTRAINTS.
1476 Write the modes of the operands into MODES.
1477 Return the assembler-template.
1478
1479 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1480 we don't store that info. */
1481
1482 const char *
1483 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1484 const char **constraints, enum machine_mode *modes,
1485 location_t *loc)
1486 {
1487 int nbase = 0, n, i;
1488 rtx asmop;
1489
1490 switch (GET_CODE (body))
1491 {
1492 case ASM_OPERANDS:
1493 /* Zero output asm: BODY is (asm_operands ...). */
1494 asmop = body;
1495 break;
1496
1497 case SET:
1498 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1499 asmop = SET_SRC (body);
1500
1501 /* The output is in the SET.
1502 Its constraint is in the ASM_OPERANDS itself. */
1503 if (operands)
1504 operands[0] = SET_DEST (body);
1505 if (operand_locs)
1506 operand_locs[0] = &SET_DEST (body);
1507 if (constraints)
1508 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1509 if (modes)
1510 modes[0] = GET_MODE (SET_DEST (body));
1511 nbase = 1;
1512 break;
1513
1514 case PARALLEL:
1515 {
1516 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1517
1518 asmop = XVECEXP (body, 0, 0);
1519 if (GET_CODE (asmop) == SET)
1520 {
1521 asmop = SET_SRC (asmop);
1522
1523 /* At least one output, plus some CLOBBERs. The outputs are in
1524 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1525 for (i = 0; i < nparallel; i++)
1526 {
1527 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1528 break; /* Past last SET */
1529 if (operands)
1530 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1531 if (operand_locs)
1532 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1533 if (constraints)
1534 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1535 if (modes)
1536 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1537 }
1538 nbase = i;
1539 }
1540 break;
1541 }
1542
1543 default:
1544 gcc_unreachable ();
1545 }
1546
1547 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1548 for (i = 0; i < n; i++)
1549 {
1550 if (operand_locs)
1551 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1552 if (operands)
1553 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1554 if (constraints)
1555 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1556 if (modes)
1557 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1558 }
1559 nbase += n;
1560
1561 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1562 for (i = 0; i < n; i++)
1563 {
1564 if (operand_locs)
1565 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1566 if (operands)
1567 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1568 if (constraints)
1569 constraints[nbase + i] = "";
1570 if (modes)
1571 modes[nbase + i] = Pmode;
1572 }
1573
1574 if (loc)
1575 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1576
1577 return ASM_OPERANDS_TEMPLATE (asmop);
1578 }
1579
1580 /* Check if an asm_operand matches its constraints.
1581 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1582
1583 int
1584 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1585 {
1586 int result = 0;
1587 #ifdef AUTO_INC_DEC
1588 bool incdec_ok = false;
1589 #endif
1590
1591 /* Use constrain_operands after reload. */
1592 gcc_assert (!reload_completed);
1593
1594 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1595 many alternatives as required to match the other operands. */
1596 if (*constraint == '\0')
1597 result = 1;
1598
1599 while (*constraint)
1600 {
1601 char c = *constraint;
1602 int len;
1603 switch (c)
1604 {
1605 case ',':
1606 constraint++;
1607 continue;
1608 case '=':
1609 case '+':
1610 case '*':
1611 case '%':
1612 case '!':
1613 case '#':
1614 case '&':
1615 case '?':
1616 break;
1617
1618 case '0': case '1': case '2': case '3': case '4':
1619 case '5': case '6': case '7': case '8': case '9':
1620 /* If caller provided constraints pointer, look up
1621 the maching constraint. Otherwise, our caller should have
1622 given us the proper matching constraint, but we can't
1623 actually fail the check if they didn't. Indicate that
1624 results are inconclusive. */
1625 if (constraints)
1626 {
1627 char *end;
1628 unsigned long match;
1629
1630 match = strtoul (constraint, &end, 10);
1631 if (!result)
1632 result = asm_operand_ok (op, constraints[match], NULL);
1633 constraint = (const char *) end;
1634 }
1635 else
1636 {
1637 do
1638 constraint++;
1639 while (ISDIGIT (*constraint));
1640 if (! result)
1641 result = -1;
1642 }
1643 continue;
1644
1645 case 'p':
1646 if (address_operand (op, VOIDmode))
1647 result = 1;
1648 break;
1649
1650 case TARGET_MEM_CONSTRAINT:
1651 case 'V': /* non-offsettable */
1652 if (memory_operand (op, VOIDmode))
1653 result = 1;
1654 break;
1655
1656 case 'o': /* offsettable */
1657 if (offsettable_nonstrict_memref_p (op))
1658 result = 1;
1659 break;
1660
1661 case '<':
1662 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1663 excepting those that expand_call created. Further, on some
1664 machines which do not have generalized auto inc/dec, an inc/dec
1665 is not a memory_operand.
1666
1667 Match any memory and hope things are resolved after reload. */
1668
1669 if (MEM_P (op)
1670 && (1
1671 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1672 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1673 result = 1;
1674 #ifdef AUTO_INC_DEC
1675 incdec_ok = true;
1676 #endif
1677 break;
1678
1679 case '>':
1680 if (MEM_P (op)
1681 && (1
1682 || GET_CODE (XEXP (op, 0)) == PRE_INC
1683 || GET_CODE (XEXP (op, 0)) == POST_INC))
1684 result = 1;
1685 #ifdef AUTO_INC_DEC
1686 incdec_ok = true;
1687 #endif
1688 break;
1689
1690 case 'E':
1691 case 'F':
1692 if (GET_CODE (op) == CONST_DOUBLE
1693 || (GET_CODE (op) == CONST_VECTOR
1694 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1695 result = 1;
1696 break;
1697
1698 case 'G':
1699 if (GET_CODE (op) == CONST_DOUBLE
1700 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1701 result = 1;
1702 break;
1703 case 'H':
1704 if (GET_CODE (op) == CONST_DOUBLE
1705 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1706 result = 1;
1707 break;
1708
1709 case 's':
1710 if (CONST_INT_P (op)
1711 || (GET_CODE (op) == CONST_DOUBLE
1712 && GET_MODE (op) == VOIDmode))
1713 break;
1714 /* Fall through. */
1715
1716 case 'i':
1717 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1718 result = 1;
1719 break;
1720
1721 case 'n':
1722 if (CONST_INT_P (op)
1723 || (GET_CODE (op) == CONST_DOUBLE
1724 && GET_MODE (op) == VOIDmode))
1725 result = 1;
1726 break;
1727
1728 case 'I':
1729 if (CONST_INT_P (op)
1730 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1731 result = 1;
1732 break;
1733 case 'J':
1734 if (CONST_INT_P (op)
1735 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1736 result = 1;
1737 break;
1738 case 'K':
1739 if (CONST_INT_P (op)
1740 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1741 result = 1;
1742 break;
1743 case 'L':
1744 if (CONST_INT_P (op)
1745 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1746 result = 1;
1747 break;
1748 case 'M':
1749 if (CONST_INT_P (op)
1750 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1751 result = 1;
1752 break;
1753 case 'N':
1754 if (CONST_INT_P (op)
1755 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1756 result = 1;
1757 break;
1758 case 'O':
1759 if (CONST_INT_P (op)
1760 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1761 result = 1;
1762 break;
1763 case 'P':
1764 if (CONST_INT_P (op)
1765 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1766 result = 1;
1767 break;
1768
1769 case 'X':
1770 result = 1;
1771 break;
1772
1773 case 'g':
1774 if (general_operand (op, VOIDmode))
1775 result = 1;
1776 break;
1777
1778 default:
1779 /* For all other letters, we first check for a register class,
1780 otherwise it is an EXTRA_CONSTRAINT. */
1781 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1782 {
1783 case 'r':
1784 if (GET_MODE (op) == BLKmode)
1785 break;
1786 if (register_operand (op, VOIDmode))
1787 result = 1;
1788 }
1789 #ifdef EXTRA_CONSTRAINT_STR
1790 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1791 /* Every memory operand can be reloaded to fit. */
1792 result = result || memory_operand (op, VOIDmode);
1793 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1794 /* Every address operand can be reloaded to fit. */
1795 result = result || address_operand (op, VOIDmode);
1796 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1797 result = 1;
1798 #endif
1799 break;
1800 }
1801 len = CONSTRAINT_LEN (c, constraint);
1802 do
1803 constraint++;
1804 while (--len && *constraint);
1805 if (len)
1806 return 0;
1807 }
1808
1809 #ifdef AUTO_INC_DEC
1810 /* For operands without < or > constraints reject side-effects. */
1811 if (!incdec_ok && result && MEM_P (op))
1812 switch (GET_CODE (XEXP (op, 0)))
1813 {
1814 case PRE_INC:
1815 case POST_INC:
1816 case PRE_DEC:
1817 case POST_DEC:
1818 case PRE_MODIFY:
1819 case POST_MODIFY:
1820 return 0;
1821 default:
1822 break;
1823 }
1824 #endif
1825
1826 return result;
1827 }
1828 \f
1829 /* Given an rtx *P, if it is a sum containing an integer constant term,
1830 return the location (type rtx *) of the pointer to that constant term.
1831 Otherwise, return a null pointer. */
1832
1833 rtx *
1834 find_constant_term_loc (rtx *p)
1835 {
1836 rtx *tem;
1837 enum rtx_code code = GET_CODE (*p);
1838
1839 /* If *P IS such a constant term, P is its location. */
1840
1841 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1842 || code == CONST)
1843 return p;
1844
1845 /* Otherwise, if not a sum, it has no constant term. */
1846
1847 if (GET_CODE (*p) != PLUS)
1848 return 0;
1849
1850 /* If one of the summands is constant, return its location. */
1851
1852 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1853 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1854 return p;
1855
1856 /* Otherwise, check each summand for containing a constant term. */
1857
1858 if (XEXP (*p, 0) != 0)
1859 {
1860 tem = find_constant_term_loc (&XEXP (*p, 0));
1861 if (tem != 0)
1862 return tem;
1863 }
1864
1865 if (XEXP (*p, 1) != 0)
1866 {
1867 tem = find_constant_term_loc (&XEXP (*p, 1));
1868 if (tem != 0)
1869 return tem;
1870 }
1871
1872 return 0;
1873 }
1874 \f
1875 /* Return 1 if OP is a memory reference
1876 whose address contains no side effects
1877 and remains valid after the addition
1878 of a positive integer less than the
1879 size of the object being referenced.
1880
1881 We assume that the original address is valid and do not check it.
1882
1883 This uses strict_memory_address_p as a subroutine, so
1884 don't use it before reload. */
1885
1886 int
1887 offsettable_memref_p (rtx op)
1888 {
1889 return ((MEM_P (op))
1890 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1891 MEM_ADDR_SPACE (op)));
1892 }
1893
1894 /* Similar, but don't require a strictly valid mem ref:
1895 consider pseudo-regs valid as index or base regs. */
1896
1897 int
1898 offsettable_nonstrict_memref_p (rtx op)
1899 {
1900 return ((MEM_P (op))
1901 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1902 MEM_ADDR_SPACE (op)));
1903 }
1904
1905 /* Return 1 if Y is a memory address which contains no side effects
1906 and would remain valid for address space AS after the addition of
1907 a positive integer less than the size of that mode.
1908
1909 We assume that the original address is valid and do not check it.
1910 We do check that it is valid for narrower modes.
1911
1912 If STRICTP is nonzero, we require a strictly valid address,
1913 for the sake of use in reload.c. */
1914
1915 int
1916 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1917 addr_space_t as)
1918 {
1919 enum rtx_code ycode = GET_CODE (y);
1920 rtx z;
1921 rtx y1 = y;
1922 rtx *y2;
1923 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1924 (strictp ? strict_memory_address_addr_space_p
1925 : memory_address_addr_space_p);
1926 unsigned int mode_sz = GET_MODE_SIZE (mode);
1927
1928 if (CONSTANT_ADDRESS_P (y))
1929 return 1;
1930
1931 /* Adjusting an offsettable address involves changing to a narrower mode.
1932 Make sure that's OK. */
1933
1934 if (mode_dependent_address_p (y))
1935 return 0;
1936
1937 /* ??? How much offset does an offsettable BLKmode reference need?
1938 Clearly that depends on the situation in which it's being used.
1939 However, the current situation in which we test 0xffffffff is
1940 less than ideal. Caveat user. */
1941 if (mode_sz == 0)
1942 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1943
1944 /* If the expression contains a constant term,
1945 see if it remains valid when max possible offset is added. */
1946
1947 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1948 {
1949 int good;
1950
1951 y1 = *y2;
1952 *y2 = plus_constant (*y2, mode_sz - 1);
1953 /* Use QImode because an odd displacement may be automatically invalid
1954 for any wider mode. But it should be valid for a single byte. */
1955 good = (*addressp) (QImode, y, as);
1956
1957 /* In any case, restore old contents of memory. */
1958 *y2 = y1;
1959 return good;
1960 }
1961
1962 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1963 return 0;
1964
1965 /* The offset added here is chosen as the maximum offset that
1966 any instruction could need to add when operating on something
1967 of the specified mode. We assume that if Y and Y+c are
1968 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1969 go inside a LO_SUM here, so we do so as well. */
1970 if (GET_CODE (y) == LO_SUM
1971 && mode != BLKmode
1972 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1973 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1974 plus_constant (XEXP (y, 1), mode_sz - 1));
1975 else
1976 z = plus_constant (y, mode_sz - 1);
1977
1978 /* Use QImode because an odd displacement may be automatically invalid
1979 for any wider mode. But it should be valid for a single byte. */
1980 return (*addressp) (QImode, z, as);
1981 }
1982
1983 /* Return 1 if ADDR is an address-expression whose effect depends
1984 on the mode of the memory reference it is used in.
1985
1986 Autoincrement addressing is a typical example of mode-dependence
1987 because the amount of the increment depends on the mode. */
1988
1989 bool
1990 mode_dependent_address_p (rtx addr)
1991 {
1992 /* Auto-increment addressing with anything other than post_modify
1993 or pre_modify always introduces a mode dependency. Catch such
1994 cases now instead of deferring to the target. */
1995 if (GET_CODE (addr) == PRE_INC
1996 || GET_CODE (addr) == POST_INC
1997 || GET_CODE (addr) == PRE_DEC
1998 || GET_CODE (addr) == POST_DEC)
1999 return true;
2000
2001 return targetm.mode_dependent_address_p (addr);
2002 }
2003 \f
2004 /* Like extract_insn, but save insn extracted and don't extract again, when
2005 called again for the same insn expecting that recog_data still contain the
2006 valid information. This is used primary by gen_attr infrastructure that
2007 often does extract insn again and again. */
2008 void
2009 extract_insn_cached (rtx insn)
2010 {
2011 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2012 return;
2013 extract_insn (insn);
2014 recog_data.insn = insn;
2015 }
2016
2017 /* Do cached extract_insn, constrain_operands and complain about failures.
2018 Used by insn_attrtab. */
2019 void
2020 extract_constrain_insn_cached (rtx insn)
2021 {
2022 extract_insn_cached (insn);
2023 if (which_alternative == -1
2024 && !constrain_operands (reload_completed))
2025 fatal_insn_not_found (insn);
2026 }
2027
2028 /* Do cached constrain_operands and complain about failures. */
2029 int
2030 constrain_operands_cached (int strict)
2031 {
2032 if (which_alternative == -1)
2033 return constrain_operands (strict);
2034 else
2035 return 1;
2036 }
2037 \f
2038 /* Analyze INSN and fill in recog_data. */
2039
2040 void
2041 extract_insn (rtx insn)
2042 {
2043 int i;
2044 int icode;
2045 int noperands;
2046 rtx body = PATTERN (insn);
2047
2048 recog_data.n_operands = 0;
2049 recog_data.n_alternatives = 0;
2050 recog_data.n_dups = 0;
2051 recog_data.is_asm = false;
2052
2053 switch (GET_CODE (body))
2054 {
2055 case USE:
2056 case CLOBBER:
2057 case ASM_INPUT:
2058 case ADDR_VEC:
2059 case ADDR_DIFF_VEC:
2060 case VAR_LOCATION:
2061 return;
2062
2063 case SET:
2064 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2065 goto asm_insn;
2066 else
2067 goto normal_insn;
2068 case PARALLEL:
2069 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2070 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2071 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2072 goto asm_insn;
2073 else
2074 goto normal_insn;
2075 case ASM_OPERANDS:
2076 asm_insn:
2077 recog_data.n_operands = noperands = asm_noperands (body);
2078 if (noperands >= 0)
2079 {
2080 /* This insn is an `asm' with operands. */
2081
2082 /* expand_asm_operands makes sure there aren't too many operands. */
2083 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2084
2085 /* Now get the operand values and constraints out of the insn. */
2086 decode_asm_operands (body, recog_data.operand,
2087 recog_data.operand_loc,
2088 recog_data.constraints,
2089 recog_data.operand_mode, NULL);
2090 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2091 if (noperands > 0)
2092 {
2093 const char *p = recog_data.constraints[0];
2094 recog_data.n_alternatives = 1;
2095 while (*p)
2096 recog_data.n_alternatives += (*p++ == ',');
2097 }
2098 recog_data.is_asm = true;
2099 break;
2100 }
2101 fatal_insn_not_found (insn);
2102
2103 default:
2104 normal_insn:
2105 /* Ordinary insn: recognize it, get the operands via insn_extract
2106 and get the constraints. */
2107
2108 icode = recog_memoized (insn);
2109 if (icode < 0)
2110 fatal_insn_not_found (insn);
2111
2112 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2113 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2114 recog_data.n_dups = insn_data[icode].n_dups;
2115
2116 insn_extract (insn);
2117
2118 for (i = 0; i < noperands; i++)
2119 {
2120 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2121 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2122 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2123 /* VOIDmode match_operands gets mode from their real operand. */
2124 if (recog_data.operand_mode[i] == VOIDmode)
2125 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2126 }
2127 }
2128 for (i = 0; i < noperands; i++)
2129 recog_data.operand_type[i]
2130 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2131 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2132 : OP_IN);
2133
2134 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2135
2136 if (INSN_CODE (insn) < 0)
2137 for (i = 0; i < recog_data.n_alternatives; i++)
2138 recog_data.alternative_enabled_p[i] = true;
2139 else
2140 {
2141 recog_data.insn = insn;
2142 for (i = 0; i < recog_data.n_alternatives; i++)
2143 {
2144 which_alternative = i;
2145 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2146 }
2147 }
2148
2149 recog_data.insn = NULL;
2150 which_alternative = -1;
2151 }
2152
2153 /* After calling extract_insn, you can use this function to extract some
2154 information from the constraint strings into a more usable form.
2155 The collected data is stored in recog_op_alt. */
2156 void
2157 preprocess_constraints (void)
2158 {
2159 int i;
2160
2161 for (i = 0; i < recog_data.n_operands; i++)
2162 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2163 * sizeof (struct operand_alternative)));
2164
2165 for (i = 0; i < recog_data.n_operands; i++)
2166 {
2167 int j;
2168 struct operand_alternative *op_alt;
2169 const char *p = recog_data.constraints[i];
2170
2171 op_alt = recog_op_alt[i];
2172
2173 for (j = 0; j < recog_data.n_alternatives; j++)
2174 {
2175 op_alt[j].cl = NO_REGS;
2176 op_alt[j].constraint = p;
2177 op_alt[j].matches = -1;
2178 op_alt[j].matched = -1;
2179
2180 if (!recog_data.alternative_enabled_p[j])
2181 {
2182 p = skip_alternative (p);
2183 continue;
2184 }
2185
2186 if (*p == '\0' || *p == ',')
2187 {
2188 op_alt[j].anything_ok = 1;
2189 continue;
2190 }
2191
2192 for (;;)
2193 {
2194 char c = *p;
2195 if (c == '#')
2196 do
2197 c = *++p;
2198 while (c != ',' && c != '\0');
2199 if (c == ',' || c == '\0')
2200 {
2201 p++;
2202 break;
2203 }
2204
2205 switch (c)
2206 {
2207 case '=': case '+': case '*': case '%':
2208 case 'E': case 'F': case 'G': case 'H':
2209 case 's': case 'i': case 'n':
2210 case 'I': case 'J': case 'K': case 'L':
2211 case 'M': case 'N': case 'O': case 'P':
2212 /* These don't say anything we care about. */
2213 break;
2214
2215 case '?':
2216 op_alt[j].reject += 6;
2217 break;
2218 case '!':
2219 op_alt[j].reject += 600;
2220 break;
2221 case '&':
2222 op_alt[j].earlyclobber = 1;
2223 break;
2224
2225 case '0': case '1': case '2': case '3': case '4':
2226 case '5': case '6': case '7': case '8': case '9':
2227 {
2228 char *end;
2229 op_alt[j].matches = strtoul (p, &end, 10);
2230 recog_op_alt[op_alt[j].matches][j].matched = i;
2231 p = end;
2232 }
2233 continue;
2234
2235 case TARGET_MEM_CONSTRAINT:
2236 op_alt[j].memory_ok = 1;
2237 break;
2238 case '<':
2239 op_alt[j].decmem_ok = 1;
2240 break;
2241 case '>':
2242 op_alt[j].incmem_ok = 1;
2243 break;
2244 case 'V':
2245 op_alt[j].nonoffmem_ok = 1;
2246 break;
2247 case 'o':
2248 op_alt[j].offmem_ok = 1;
2249 break;
2250 case 'X':
2251 op_alt[j].anything_ok = 1;
2252 break;
2253
2254 case 'p':
2255 op_alt[j].is_address = 1;
2256 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2257 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
2258 break;
2259
2260 case 'g':
2261 case 'r':
2262 op_alt[j].cl =
2263 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2264 break;
2265
2266 default:
2267 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2268 {
2269 op_alt[j].memory_ok = 1;
2270 break;
2271 }
2272 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2273 {
2274 op_alt[j].is_address = 1;
2275 op_alt[j].cl
2276 = (reg_class_subunion
2277 [(int) op_alt[j].cl]
2278 [(int) base_reg_class (VOIDmode, ADDRESS,
2279 SCRATCH)]);
2280 break;
2281 }
2282
2283 op_alt[j].cl
2284 = (reg_class_subunion
2285 [(int) op_alt[j].cl]
2286 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2287 break;
2288 }
2289 p += CONSTRAINT_LEN (c, p);
2290 }
2291 }
2292 }
2293 }
2294
2295 /* Check the operands of an insn against the insn's operand constraints
2296 and return 1 if they are valid.
2297 The information about the insn's operands, constraints, operand modes
2298 etc. is obtained from the global variables set up by extract_insn.
2299
2300 WHICH_ALTERNATIVE is set to a number which indicates which
2301 alternative of constraints was matched: 0 for the first alternative,
2302 1 for the next, etc.
2303
2304 In addition, when two operands are required to match
2305 and it happens that the output operand is (reg) while the
2306 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2307 make the output operand look like the input.
2308 This is because the output operand is the one the template will print.
2309
2310 This is used in final, just before printing the assembler code and by
2311 the routines that determine an insn's attribute.
2312
2313 If STRICT is a positive nonzero value, it means that we have been
2314 called after reload has been completed. In that case, we must
2315 do all checks strictly. If it is zero, it means that we have been called
2316 before reload has completed. In that case, we first try to see if we can
2317 find an alternative that matches strictly. If not, we try again, this
2318 time assuming that reload will fix up the insn. This provides a "best
2319 guess" for the alternative and is used to compute attributes of insns prior
2320 to reload. A negative value of STRICT is used for this internal call. */
2321
2322 struct funny_match
2323 {
2324 int this_op, other;
2325 };
2326
2327 int
2328 constrain_operands (int strict)
2329 {
2330 const char *constraints[MAX_RECOG_OPERANDS];
2331 int matching_operands[MAX_RECOG_OPERANDS];
2332 int earlyclobber[MAX_RECOG_OPERANDS];
2333 int c;
2334
2335 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2336 int funny_match_index;
2337
2338 which_alternative = 0;
2339 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2340 return 1;
2341
2342 for (c = 0; c < recog_data.n_operands; c++)
2343 {
2344 constraints[c] = recog_data.constraints[c];
2345 matching_operands[c] = -1;
2346 }
2347
2348 do
2349 {
2350 int seen_earlyclobber_at = -1;
2351 int opno;
2352 int lose = 0;
2353 funny_match_index = 0;
2354
2355 if (!recog_data.alternative_enabled_p[which_alternative])
2356 {
2357 int i;
2358
2359 for (i = 0; i < recog_data.n_operands; i++)
2360 constraints[i] = skip_alternative (constraints[i]);
2361
2362 which_alternative++;
2363 continue;
2364 }
2365
2366 for (opno = 0; opno < recog_data.n_operands; opno++)
2367 {
2368 rtx op = recog_data.operand[opno];
2369 enum machine_mode mode = GET_MODE (op);
2370 const char *p = constraints[opno];
2371 int offset = 0;
2372 int win = 0;
2373 int val;
2374 int len;
2375
2376 earlyclobber[opno] = 0;
2377
2378 /* A unary operator may be accepted by the predicate, but it
2379 is irrelevant for matching constraints. */
2380 if (UNARY_P (op))
2381 op = XEXP (op, 0);
2382
2383 if (GET_CODE (op) == SUBREG)
2384 {
2385 if (REG_P (SUBREG_REG (op))
2386 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2387 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2388 GET_MODE (SUBREG_REG (op)),
2389 SUBREG_BYTE (op),
2390 GET_MODE (op));
2391 op = SUBREG_REG (op);
2392 }
2393
2394 /* An empty constraint or empty alternative
2395 allows anything which matched the pattern. */
2396 if (*p == 0 || *p == ',')
2397 win = 1;
2398
2399 do
2400 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2401 {
2402 case '\0':
2403 len = 0;
2404 break;
2405 case ',':
2406 c = '\0';
2407 break;
2408
2409 case '?': case '!': case '*': case '%':
2410 case '=': case '+':
2411 break;
2412
2413 case '#':
2414 /* Ignore rest of this alternative as far as
2415 constraint checking is concerned. */
2416 do
2417 p++;
2418 while (*p && *p != ',');
2419 len = 0;
2420 break;
2421
2422 case '&':
2423 earlyclobber[opno] = 1;
2424 if (seen_earlyclobber_at < 0)
2425 seen_earlyclobber_at = opno;
2426 break;
2427
2428 case '0': case '1': case '2': case '3': case '4':
2429 case '5': case '6': case '7': case '8': case '9':
2430 {
2431 /* This operand must be the same as a previous one.
2432 This kind of constraint is used for instructions such
2433 as add when they take only two operands.
2434
2435 Note that the lower-numbered operand is passed first.
2436
2437 If we are not testing strictly, assume that this
2438 constraint will be satisfied. */
2439
2440 char *end;
2441 int match;
2442
2443 match = strtoul (p, &end, 10);
2444 p = end;
2445
2446 if (strict < 0)
2447 val = 1;
2448 else
2449 {
2450 rtx op1 = recog_data.operand[match];
2451 rtx op2 = recog_data.operand[opno];
2452
2453 /* A unary operator may be accepted by the predicate,
2454 but it is irrelevant for matching constraints. */
2455 if (UNARY_P (op1))
2456 op1 = XEXP (op1, 0);
2457 if (UNARY_P (op2))
2458 op2 = XEXP (op2, 0);
2459
2460 val = operands_match_p (op1, op2);
2461 }
2462
2463 matching_operands[opno] = match;
2464 matching_operands[match] = opno;
2465
2466 if (val != 0)
2467 win = 1;
2468
2469 /* If output is *x and input is *--x, arrange later
2470 to change the output to *--x as well, since the
2471 output op is the one that will be printed. */
2472 if (val == 2 && strict > 0)
2473 {
2474 funny_match[funny_match_index].this_op = opno;
2475 funny_match[funny_match_index++].other = match;
2476 }
2477 }
2478 len = 0;
2479 break;
2480
2481 case 'p':
2482 /* p is used for address_operands. When we are called by
2483 gen_reload, no one will have checked that the address is
2484 strictly valid, i.e., that all pseudos requiring hard regs
2485 have gotten them. */
2486 if (strict <= 0
2487 || (strict_memory_address_p (recog_data.operand_mode[opno],
2488 op)))
2489 win = 1;
2490 break;
2491
2492 /* No need to check general_operand again;
2493 it was done in insn-recog.c. Well, except that reload
2494 doesn't check the validity of its replacements, but
2495 that should only matter when there's a bug. */
2496 case 'g':
2497 /* Anything goes unless it is a REG and really has a hard reg
2498 but the hard reg is not in the class GENERAL_REGS. */
2499 if (REG_P (op))
2500 {
2501 if (strict < 0
2502 || GENERAL_REGS == ALL_REGS
2503 || (reload_in_progress
2504 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2505 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2506 win = 1;
2507 }
2508 else if (strict < 0 || general_operand (op, mode))
2509 win = 1;
2510 break;
2511
2512 case 'X':
2513 /* This is used for a MATCH_SCRATCH in the cases when
2514 we don't actually need anything. So anything goes
2515 any time. */
2516 win = 1;
2517 break;
2518
2519 case TARGET_MEM_CONSTRAINT:
2520 /* Memory operands must be valid, to the extent
2521 required by STRICT. */
2522 if (MEM_P (op))
2523 {
2524 if (strict > 0
2525 && !strict_memory_address_addr_space_p
2526 (GET_MODE (op), XEXP (op, 0),
2527 MEM_ADDR_SPACE (op)))
2528 break;
2529 if (strict == 0
2530 && !memory_address_addr_space_p
2531 (GET_MODE (op), XEXP (op, 0),
2532 MEM_ADDR_SPACE (op)))
2533 break;
2534 win = 1;
2535 }
2536 /* Before reload, accept what reload can turn into mem. */
2537 else if (strict < 0 && CONSTANT_P (op))
2538 win = 1;
2539 /* During reload, accept a pseudo */
2540 else if (reload_in_progress && REG_P (op)
2541 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2542 win = 1;
2543 break;
2544
2545 case '<':
2546 if (MEM_P (op)
2547 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2548 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2549 win = 1;
2550 break;
2551
2552 case '>':
2553 if (MEM_P (op)
2554 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2555 || GET_CODE (XEXP (op, 0)) == POST_INC))
2556 win = 1;
2557 break;
2558
2559 case 'E':
2560 case 'F':
2561 if (GET_CODE (op) == CONST_DOUBLE
2562 || (GET_CODE (op) == CONST_VECTOR
2563 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2564 win = 1;
2565 break;
2566
2567 case 'G':
2568 case 'H':
2569 if (GET_CODE (op) == CONST_DOUBLE
2570 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2571 win = 1;
2572 break;
2573
2574 case 's':
2575 if (CONST_INT_P (op)
2576 || (GET_CODE (op) == CONST_DOUBLE
2577 && GET_MODE (op) == VOIDmode))
2578 break;
2579 case 'i':
2580 if (CONSTANT_P (op))
2581 win = 1;
2582 break;
2583
2584 case 'n':
2585 if (CONST_INT_P (op)
2586 || (GET_CODE (op) == CONST_DOUBLE
2587 && GET_MODE (op) == VOIDmode))
2588 win = 1;
2589 break;
2590
2591 case 'I':
2592 case 'J':
2593 case 'K':
2594 case 'L':
2595 case 'M':
2596 case 'N':
2597 case 'O':
2598 case 'P':
2599 if (CONST_INT_P (op)
2600 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2601 win = 1;
2602 break;
2603
2604 case 'V':
2605 if (MEM_P (op)
2606 && ((strict > 0 && ! offsettable_memref_p (op))
2607 || (strict < 0
2608 && !(CONSTANT_P (op) || MEM_P (op)))
2609 || (reload_in_progress
2610 && !(REG_P (op)
2611 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2612 win = 1;
2613 break;
2614
2615 case 'o':
2616 if ((strict > 0 && offsettable_memref_p (op))
2617 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2618 /* Before reload, accept what reload can handle. */
2619 || (strict < 0
2620 && (CONSTANT_P (op) || MEM_P (op)))
2621 /* During reload, accept a pseudo */
2622 || (reload_in_progress && REG_P (op)
2623 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2624 win = 1;
2625 break;
2626
2627 default:
2628 {
2629 enum reg_class cl;
2630
2631 cl = (c == 'r'
2632 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2633 if (cl != NO_REGS)
2634 {
2635 if (strict < 0
2636 || (strict == 0
2637 && REG_P (op)
2638 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2639 || (strict == 0 && GET_CODE (op) == SCRATCH)
2640 || (REG_P (op)
2641 && reg_fits_class_p (op, cl, offset, mode)))
2642 win = 1;
2643 }
2644 #ifdef EXTRA_CONSTRAINT_STR
2645 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2646 win = 1;
2647
2648 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2649 /* Every memory operand can be reloaded to fit. */
2650 && ((strict < 0 && MEM_P (op))
2651 /* Before reload, accept what reload can turn
2652 into mem. */
2653 || (strict < 0 && CONSTANT_P (op))
2654 /* During reload, accept a pseudo */
2655 || (reload_in_progress && REG_P (op)
2656 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2657 win = 1;
2658 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2659 /* Every address operand can be reloaded to fit. */
2660 && strict < 0)
2661 win = 1;
2662 #endif
2663 break;
2664 }
2665 }
2666 while (p += len, c);
2667
2668 constraints[opno] = p;
2669 /* If this operand did not win somehow,
2670 this alternative loses. */
2671 if (! win)
2672 lose = 1;
2673 }
2674 /* This alternative won; the operands are ok.
2675 Change whichever operands this alternative says to change. */
2676 if (! lose)
2677 {
2678 int opno, eopno;
2679
2680 /* See if any earlyclobber operand conflicts with some other
2681 operand. */
2682
2683 if (strict > 0 && seen_earlyclobber_at >= 0)
2684 for (eopno = seen_earlyclobber_at;
2685 eopno < recog_data.n_operands;
2686 eopno++)
2687 /* Ignore earlyclobber operands now in memory,
2688 because we would often report failure when we have
2689 two memory operands, one of which was formerly a REG. */
2690 if (earlyclobber[eopno]
2691 && REG_P (recog_data.operand[eopno]))
2692 for (opno = 0; opno < recog_data.n_operands; opno++)
2693 if ((MEM_P (recog_data.operand[opno])
2694 || recog_data.operand_type[opno] != OP_OUT)
2695 && opno != eopno
2696 /* Ignore things like match_operator operands. */
2697 && *recog_data.constraints[opno] != 0
2698 && ! (matching_operands[opno] == eopno
2699 && operands_match_p (recog_data.operand[opno],
2700 recog_data.operand[eopno]))
2701 && ! safe_from_earlyclobber (recog_data.operand[opno],
2702 recog_data.operand[eopno]))
2703 lose = 1;
2704
2705 if (! lose)
2706 {
2707 while (--funny_match_index >= 0)
2708 {
2709 recog_data.operand[funny_match[funny_match_index].other]
2710 = recog_data.operand[funny_match[funny_match_index].this_op];
2711 }
2712
2713 #ifdef AUTO_INC_DEC
2714 /* For operands without < or > constraints reject side-effects. */
2715 if (recog_data.is_asm)
2716 {
2717 for (opno = 0; opno < recog_data.n_operands; opno++)
2718 if (MEM_P (recog_data.operand[opno]))
2719 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2720 {
2721 case PRE_INC:
2722 case POST_INC:
2723 case PRE_DEC:
2724 case POST_DEC:
2725 case PRE_MODIFY:
2726 case POST_MODIFY:
2727 if (strchr (recog_data.constraints[opno], '<') == NULL
2728 && strchr (recog_data.constraints[opno], '>')
2729 == NULL)
2730 return 0;
2731 break;
2732 default:
2733 break;
2734 }
2735 }
2736 #endif
2737 return 1;
2738 }
2739 }
2740
2741 which_alternative++;
2742 }
2743 while (which_alternative < recog_data.n_alternatives);
2744
2745 which_alternative = -1;
2746 /* If we are about to reject this, but we are not to test strictly,
2747 try a very loose test. Only return failure if it fails also. */
2748 if (strict == 0)
2749 return constrain_operands (-1);
2750 else
2751 return 0;
2752 }
2753
2754 /* Return true iff OPERAND (assumed to be a REG rtx)
2755 is a hard reg in class CLASS when its regno is offset by OFFSET
2756 and changed to mode MODE.
2757 If REG occupies multiple hard regs, all of them must be in CLASS. */
2758
2759 bool
2760 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2761 enum machine_mode mode)
2762 {
2763 int regno = REGNO (operand);
2764
2765 if (cl == NO_REGS)
2766 return false;
2767
2768 return (HARD_REGISTER_NUM_P (regno)
2769 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2770 mode, regno + offset));
2771 }
2772 \f
2773 /* Split single instruction. Helper function for split_all_insns and
2774 split_all_insns_noflow. Return last insn in the sequence if successful,
2775 or NULL if unsuccessful. */
2776
2777 static rtx
2778 split_insn (rtx insn)
2779 {
2780 /* Split insns here to get max fine-grain parallelism. */
2781 rtx first = PREV_INSN (insn);
2782 rtx last = try_split (PATTERN (insn), insn, 1);
2783 rtx insn_set, last_set, note;
2784
2785 if (last == insn)
2786 return NULL_RTX;
2787
2788 /* If the original instruction was a single set that was known to be
2789 equivalent to a constant, see if we can say the same about the last
2790 instruction in the split sequence. The two instructions must set
2791 the same destination. */
2792 insn_set = single_set (insn);
2793 if (insn_set)
2794 {
2795 last_set = single_set (last);
2796 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2797 {
2798 note = find_reg_equal_equiv_note (insn);
2799 if (note && CONSTANT_P (XEXP (note, 0)))
2800 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2801 else if (CONSTANT_P (SET_SRC (insn_set)))
2802 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2803 }
2804 }
2805
2806 /* try_split returns the NOTE that INSN became. */
2807 SET_INSN_DELETED (insn);
2808
2809 /* ??? Coddle to md files that generate subregs in post-reload
2810 splitters instead of computing the proper hard register. */
2811 if (reload_completed && first != last)
2812 {
2813 first = NEXT_INSN (first);
2814 for (;;)
2815 {
2816 if (INSN_P (first))
2817 cleanup_subreg_operands (first);
2818 if (first == last)
2819 break;
2820 first = NEXT_INSN (first);
2821 }
2822 }
2823
2824 return last;
2825 }
2826
2827 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2828
2829 void
2830 split_all_insns (void)
2831 {
2832 sbitmap blocks;
2833 bool changed;
2834 basic_block bb;
2835
2836 blocks = sbitmap_alloc (last_basic_block);
2837 sbitmap_zero (blocks);
2838 changed = false;
2839
2840 FOR_EACH_BB_REVERSE (bb)
2841 {
2842 rtx insn, next;
2843 bool finish = false;
2844
2845 rtl_profile_for_bb (bb);
2846 for (insn = BB_HEAD (bb); !finish ; insn = next)
2847 {
2848 /* Can't use `next_real_insn' because that might go across
2849 CODE_LABELS and short-out basic blocks. */
2850 next = NEXT_INSN (insn);
2851 finish = (insn == BB_END (bb));
2852 if (INSN_P (insn))
2853 {
2854 rtx set = single_set (insn);
2855
2856 /* Don't split no-op move insns. These should silently
2857 disappear later in final. Splitting such insns would
2858 break the code that handles LIBCALL blocks. */
2859 if (set && set_noop_p (set))
2860 {
2861 /* Nops get in the way while scheduling, so delete them
2862 now if register allocation has already been done. It
2863 is too risky to try to do this before register
2864 allocation, and there are unlikely to be very many
2865 nops then anyways. */
2866 if (reload_completed)
2867 delete_insn_and_edges (insn);
2868 }
2869 else
2870 {
2871 if (split_insn (insn))
2872 {
2873 SET_BIT (blocks, bb->index);
2874 changed = true;
2875 }
2876 }
2877 }
2878 }
2879 }
2880
2881 default_rtl_profile ();
2882 if (changed)
2883 find_many_sub_basic_blocks (blocks);
2884
2885 #ifdef ENABLE_CHECKING
2886 verify_flow_info ();
2887 #endif
2888
2889 sbitmap_free (blocks);
2890 }
2891
2892 /* Same as split_all_insns, but do not expect CFG to be available.
2893 Used by machine dependent reorg passes. */
2894
2895 unsigned int
2896 split_all_insns_noflow (void)
2897 {
2898 rtx next, insn;
2899
2900 for (insn = get_insns (); insn; insn = next)
2901 {
2902 next = NEXT_INSN (insn);
2903 if (INSN_P (insn))
2904 {
2905 /* Don't split no-op move insns. These should silently
2906 disappear later in final. Splitting such insns would
2907 break the code that handles LIBCALL blocks. */
2908 rtx set = single_set (insn);
2909 if (set && set_noop_p (set))
2910 {
2911 /* Nops get in the way while scheduling, so delete them
2912 now if register allocation has already been done. It
2913 is too risky to try to do this before register
2914 allocation, and there are unlikely to be very many
2915 nops then anyways.
2916
2917 ??? Should we use delete_insn when the CFG isn't valid? */
2918 if (reload_completed)
2919 delete_insn_and_edges (insn);
2920 }
2921 else
2922 split_insn (insn);
2923 }
2924 }
2925 return 0;
2926 }
2927 \f
2928 #ifdef HAVE_peephole2
2929 struct peep2_insn_data
2930 {
2931 rtx insn;
2932 regset live_before;
2933 };
2934
2935 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2936 static int peep2_current;
2937
2938 static bool peep2_do_rebuild_jump_labels;
2939 static bool peep2_do_cleanup_cfg;
2940
2941 /* The number of instructions available to match a peep2. */
2942 int peep2_current_count;
2943
2944 /* A non-insn marker indicating the last insn of the block.
2945 The live_before regset for this element is correct, indicating
2946 DF_LIVE_OUT for the block. */
2947 #define PEEP2_EOB pc_rtx
2948
2949 /* Wrap N to fit into the peep2_insn_data buffer. */
2950
2951 static int
2952 peep2_buf_position (int n)
2953 {
2954 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2955 n -= MAX_INSNS_PER_PEEP2 + 1;
2956 return n;
2957 }
2958
2959 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2960 does not exist. Used by the recognizer to find the next insn to match
2961 in a multi-insn pattern. */
2962
2963 rtx
2964 peep2_next_insn (int n)
2965 {
2966 gcc_assert (n <= peep2_current_count);
2967
2968 n = peep2_buf_position (peep2_current + n);
2969
2970 return peep2_insn_data[n].insn;
2971 }
2972
2973 /* Return true if REGNO is dead before the Nth non-note insn
2974 after `current'. */
2975
2976 int
2977 peep2_regno_dead_p (int ofs, int regno)
2978 {
2979 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2980
2981 ofs = peep2_buf_position (peep2_current + ofs);
2982
2983 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2984
2985 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2986 }
2987
2988 /* Similarly for a REG. */
2989
2990 int
2991 peep2_reg_dead_p (int ofs, rtx reg)
2992 {
2993 int regno, n;
2994
2995 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2996
2997 ofs = peep2_buf_position (peep2_current + ofs);
2998
2999 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3000
3001 regno = REGNO (reg);
3002 n = hard_regno_nregs[regno][GET_MODE (reg)];
3003 while (--n >= 0)
3004 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3005 return 0;
3006 return 1;
3007 }
3008
3009 /* Try to find a hard register of mode MODE, matching the register class in
3010 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3011 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3012 in which case the only condition is that the register must be available
3013 before CURRENT_INSN.
3014 Registers that already have bits set in REG_SET will not be considered.
3015
3016 If an appropriate register is available, it will be returned and the
3017 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3018 returned. */
3019
3020 rtx
3021 peep2_find_free_register (int from, int to, const char *class_str,
3022 enum machine_mode mode, HARD_REG_SET *reg_set)
3023 {
3024 static int search_ofs;
3025 enum reg_class cl;
3026 HARD_REG_SET live;
3027 int i;
3028
3029 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3030 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3031
3032 from = peep2_buf_position (peep2_current + from);
3033 to = peep2_buf_position (peep2_current + to);
3034
3035 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3036 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3037
3038 while (from != to)
3039 {
3040 HARD_REG_SET this_live;
3041
3042 from = peep2_buf_position (from + 1);
3043 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3044 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3045 IOR_HARD_REG_SET (live, this_live);
3046 }
3047
3048 cl = (class_str[0] == 'r' ? GENERAL_REGS
3049 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3050
3051 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3052 {
3053 int raw_regno, regno, success, j;
3054
3055 /* Distribute the free registers as much as possible. */
3056 raw_regno = search_ofs + i;
3057 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3058 raw_regno -= FIRST_PSEUDO_REGISTER;
3059 #ifdef REG_ALLOC_ORDER
3060 regno = reg_alloc_order[raw_regno];
3061 #else
3062 regno = raw_regno;
3063 #endif
3064
3065 /* Don't allocate fixed registers. */
3066 if (fixed_regs[regno])
3067 continue;
3068 /* Don't allocate global registers. */
3069 if (global_regs[regno])
3070 continue;
3071 /* Make sure the register is of the right class. */
3072 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3073 continue;
3074 /* And can support the mode we need. */
3075 if (! HARD_REGNO_MODE_OK (regno, mode))
3076 continue;
3077 /* And that we don't create an extra save/restore. */
3078 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3079 continue;
3080 if (! targetm.hard_regno_scratch_ok (regno))
3081 continue;
3082
3083 /* And we don't clobber traceback for noreturn functions. */
3084 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3085 && (! reload_completed || frame_pointer_needed))
3086 continue;
3087
3088 success = 1;
3089 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3090 {
3091 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3092 || TEST_HARD_REG_BIT (live, regno + j))
3093 {
3094 success = 0;
3095 break;
3096 }
3097 }
3098 if (success)
3099 {
3100 add_to_hard_reg_set (reg_set, mode, regno);
3101
3102 /* Start the next search with the next register. */
3103 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3104 raw_regno = 0;
3105 search_ofs = raw_regno;
3106
3107 return gen_rtx_REG (mode, regno);
3108 }
3109 }
3110
3111 search_ofs = 0;
3112 return NULL_RTX;
3113 }
3114
3115 /* Forget all currently tracked instructions, only remember current
3116 LIVE regset. */
3117
3118 static void
3119 peep2_reinit_state (regset live)
3120 {
3121 int i;
3122
3123 /* Indicate that all slots except the last holds invalid data. */
3124 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3125 peep2_insn_data[i].insn = NULL_RTX;
3126 peep2_current_count = 0;
3127
3128 /* Indicate that the last slot contains live_after data. */
3129 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3130 peep2_current = MAX_INSNS_PER_PEEP2;
3131
3132 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3133 }
3134
3135 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3136 starting at INSN. Perform the replacement, removing the old insns and
3137 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3138 if the replacement is rejected. */
3139
3140 static rtx
3141 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3142 {
3143 int i;
3144 rtx last, note, before_try, x;
3145 rtx old_insn, new_insn;
3146 bool was_call = false;
3147
3148 /* If we are splittind an RTX_FRAME_RELATED_P insn, do not allow it to
3149 match more than one insn, or to be split into more than one insn. */
3150 old_insn = peep2_insn_data[peep2_current].insn;
3151 if (RTX_FRAME_RELATED_P (old_insn))
3152 {
3153 bool any_note = false;
3154
3155 if (match_len != 0)
3156 return NULL;
3157
3158 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3159 may be in the stream for the purpose of register allocation. */
3160 if (active_insn_p (attempt))
3161 new_insn = attempt;
3162 else
3163 new_insn = next_active_insn (attempt);
3164 if (next_active_insn (new_insn))
3165 return NULL;
3166
3167 /* We have a 1-1 replacement. Copy over any frame-related info. */
3168 RTX_FRAME_RELATED_P (new_insn) = 1;
3169
3170 /* Allow the backend to fill in a note during the split. */
3171 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3172 switch (REG_NOTE_KIND (note))
3173 {
3174 case REG_FRAME_RELATED_EXPR:
3175 case REG_CFA_DEF_CFA:
3176 case REG_CFA_ADJUST_CFA:
3177 case REG_CFA_OFFSET:
3178 case REG_CFA_REGISTER:
3179 case REG_CFA_EXPRESSION:
3180 case REG_CFA_RESTORE:
3181 case REG_CFA_SET_VDRAP:
3182 any_note = true;
3183 break;
3184 default:
3185 break;
3186 }
3187
3188 /* If the backend didn't supply a note, copy one over. */
3189 if (!any_note)
3190 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3191 switch (REG_NOTE_KIND (note))
3192 {
3193 case REG_FRAME_RELATED_EXPR:
3194 case REG_CFA_DEF_CFA:
3195 case REG_CFA_ADJUST_CFA:
3196 case REG_CFA_OFFSET:
3197 case REG_CFA_REGISTER:
3198 case REG_CFA_EXPRESSION:
3199 case REG_CFA_RESTORE:
3200 case REG_CFA_SET_VDRAP:
3201 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3202 any_note = true;
3203 break;
3204 default:
3205 break;
3206 }
3207
3208 /* If there still isn't a note, make sure the unwind info sees the
3209 same expression as before the split. */
3210 if (!any_note)
3211 {
3212 rtx old_set, new_set;
3213
3214 /* The old insn had better have been simple, or annotated. */
3215 old_set = single_set (old_insn);
3216 gcc_assert (old_set != NULL);
3217
3218 new_set = single_set (new_insn);
3219 if (!new_set || !rtx_equal_p (new_set, old_set))
3220 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3221 }
3222
3223 /* Copy prologue/epilogue status. This is required in order to keep
3224 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3225 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3226 }
3227
3228 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3229 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3230 cfg-related call notes. */
3231 for (i = 0; i <= match_len; ++i)
3232 {
3233 int j;
3234
3235 j = peep2_buf_position (peep2_current + i);
3236 old_insn = peep2_insn_data[j].insn;
3237 if (!CALL_P (old_insn))
3238 continue;
3239 was_call = true;
3240
3241 new_insn = attempt;
3242 while (new_insn != NULL_RTX)
3243 {
3244 if (CALL_P (new_insn))
3245 break;
3246 new_insn = NEXT_INSN (new_insn);
3247 }
3248
3249 gcc_assert (new_insn != NULL_RTX);
3250
3251 CALL_INSN_FUNCTION_USAGE (new_insn)
3252 = CALL_INSN_FUNCTION_USAGE (old_insn);
3253
3254 for (note = REG_NOTES (old_insn);
3255 note;
3256 note = XEXP (note, 1))
3257 switch (REG_NOTE_KIND (note))
3258 {
3259 case REG_NORETURN:
3260 case REG_SETJMP:
3261 add_reg_note (new_insn, REG_NOTE_KIND (note),
3262 XEXP (note, 0));
3263 break;
3264 default:
3265 /* Discard all other reg notes. */
3266 break;
3267 }
3268
3269 /* Croak if there is another call in the sequence. */
3270 while (++i <= match_len)
3271 {
3272 j = peep2_buf_position (peep2_current + i);
3273 old_insn = peep2_insn_data[j].insn;
3274 gcc_assert (!CALL_P (old_insn));
3275 }
3276 break;
3277 }
3278
3279 i = peep2_buf_position (peep2_current + match_len);
3280
3281 note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3282
3283 /* Replace the old sequence with the new. */
3284 last = emit_insn_after_setloc (attempt,
3285 peep2_insn_data[i].insn,
3286 INSN_LOCATOR (peep2_insn_data[i].insn));
3287 before_try = PREV_INSN (insn);
3288 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3289
3290 /* Re-insert the EH_REGION notes. */
3291 if (note || (was_call && nonlocal_goto_handler_labels))
3292 {
3293 edge eh_edge;
3294 edge_iterator ei;
3295
3296 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3297 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3298 break;
3299
3300 if (note)
3301 copy_reg_eh_region_note_backward (note, last, before_try);
3302
3303 if (eh_edge)
3304 for (x = last; x != before_try; x = PREV_INSN (x))
3305 if (x != BB_END (bb)
3306 && (can_throw_internal (x)
3307 || can_nonlocal_goto (x)))
3308 {
3309 edge nfte, nehe;
3310 int flags;
3311
3312 nfte = split_block (bb, x);
3313 flags = (eh_edge->flags
3314 & (EDGE_EH | EDGE_ABNORMAL));
3315 if (CALL_P (x))
3316 flags |= EDGE_ABNORMAL_CALL;
3317 nehe = make_edge (nfte->src, eh_edge->dest,
3318 flags);
3319
3320 nehe->probability = eh_edge->probability;
3321 nfte->probability
3322 = REG_BR_PROB_BASE - nehe->probability;
3323
3324 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3325 bb = nfte->src;
3326 eh_edge = nehe;
3327 }
3328
3329 /* Converting possibly trapping insn to non-trapping is
3330 possible. Zap dummy outgoing edges. */
3331 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3332 }
3333
3334 /* If we generated a jump instruction, it won't have
3335 JUMP_LABEL set. Recompute after we're done. */
3336 for (x = last; x != before_try; x = PREV_INSN (x))
3337 if (JUMP_P (x))
3338 {
3339 peep2_do_rebuild_jump_labels = true;
3340 break;
3341 }
3342
3343 return last;
3344 }
3345
3346 /* After performing a replacement in basic block BB, fix up the life
3347 information in our buffer. LAST is the last of the insns that we
3348 emitted as a replacement. PREV is the insn before the start of
3349 the replacement. MATCH_LEN is the number of instructions that were
3350 matched, and which now need to be replaced in the buffer. */
3351
3352 static void
3353 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3354 {
3355 int i = peep2_buf_position (peep2_current + match_len + 1);
3356 rtx x;
3357 regset_head live;
3358
3359 INIT_REG_SET (&live);
3360 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3361
3362 gcc_assert (peep2_current_count >= match_len + 1);
3363 peep2_current_count -= match_len + 1;
3364
3365 x = last;
3366 do
3367 {
3368 if (INSN_P (x))
3369 {
3370 df_insn_rescan (x);
3371 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3372 {
3373 peep2_current_count++;
3374 if (--i < 0)
3375 i = MAX_INSNS_PER_PEEP2;
3376 peep2_insn_data[i].insn = x;
3377 df_simulate_one_insn_backwards (bb, x, &live);
3378 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3379 }
3380 }
3381 x = PREV_INSN (x);
3382 }
3383 while (x != prev);
3384 CLEAR_REG_SET (&live);
3385
3386 peep2_current = i;
3387 }
3388
3389 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3390 Return true if we added it, false otherwise. The caller will try to match
3391 peepholes against the buffer if we return false; otherwise it will try to
3392 add more instructions to the buffer. */
3393
3394 static bool
3395 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3396 {
3397 int pos;
3398
3399 /* Once we have filled the maximum number of insns the buffer can hold,
3400 allow the caller to match the insns against peepholes. We wait until
3401 the buffer is full in case the target has similar peepholes of different
3402 length; we always want to match the longest if possible. */
3403 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3404 return false;
3405
3406 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3407 any other pattern, lest it change the semantics of the frame info. */
3408 if (RTX_FRAME_RELATED_P (insn))
3409 {
3410 /* Let the buffer drain first. */
3411 if (peep2_current_count > 0)
3412 return false;
3413 /* Now the insn will be the only thing in the buffer. */
3414 }
3415
3416 pos = peep2_buf_position (peep2_current + peep2_current_count);
3417 peep2_insn_data[pos].insn = insn;
3418 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3419 peep2_current_count++;
3420
3421 df_simulate_one_insn_forwards (bb, insn, live);
3422 return true;
3423 }
3424
3425 /* Perform the peephole2 optimization pass. */
3426
3427 static void
3428 peephole2_optimize (void)
3429 {
3430 rtx insn;
3431 bitmap live;
3432 int i;
3433 basic_block bb;
3434
3435 peep2_do_cleanup_cfg = false;
3436 peep2_do_rebuild_jump_labels = false;
3437
3438 df_set_flags (DF_LR_RUN_DCE);
3439 df_note_add_problem ();
3440 df_analyze ();
3441
3442 /* Initialize the regsets we're going to use. */
3443 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3444 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3445 live = BITMAP_ALLOC (&reg_obstack);
3446
3447 FOR_EACH_BB_REVERSE (bb)
3448 {
3449 bool past_end = false;
3450 int pos;
3451
3452 rtl_profile_for_bb (bb);
3453
3454 /* Start up propagation. */
3455 bitmap_copy (live, DF_LR_IN (bb));
3456 df_simulate_initialize_forwards (bb, live);
3457 peep2_reinit_state (live);
3458
3459 insn = BB_HEAD (bb);
3460 for (;;)
3461 {
3462 rtx attempt, head;
3463 int match_len;
3464
3465 if (!past_end && !NONDEBUG_INSN_P (insn))
3466 {
3467 next_insn:
3468 insn = NEXT_INSN (insn);
3469 if (insn == NEXT_INSN (BB_END (bb)))
3470 past_end = true;
3471 continue;
3472 }
3473 if (!past_end && peep2_fill_buffer (bb, insn, live))
3474 goto next_insn;
3475
3476 /* If we did not fill an empty buffer, it signals the end of the
3477 block. */
3478 if (peep2_current_count == 0)
3479 break;
3480
3481 /* The buffer filled to the current maximum, so try to match. */
3482
3483 pos = peep2_buf_position (peep2_current + peep2_current_count);
3484 peep2_insn_data[pos].insn = PEEP2_EOB;
3485 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3486
3487 /* Match the peephole. */
3488 head = peep2_insn_data[peep2_current].insn;
3489 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3490 if (attempt != NULL)
3491 {
3492 rtx last = peep2_attempt (bb, head, match_len, attempt);
3493 if (last)
3494 {
3495 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3496 continue;
3497 }
3498 }
3499
3500 /* No match: advance the buffer by one insn. */
3501 peep2_current = peep2_buf_position (peep2_current + 1);
3502 peep2_current_count--;
3503 }
3504 }
3505
3506 default_rtl_profile ();
3507 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3508 BITMAP_FREE (peep2_insn_data[i].live_before);
3509 BITMAP_FREE (live);
3510 if (peep2_do_rebuild_jump_labels)
3511 rebuild_jump_labels (get_insns ());
3512 }
3513 #endif /* HAVE_peephole2 */
3514
3515 /* Common predicates for use with define_bypass. */
3516
3517 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3518 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3519 must be either a single_set or a PARALLEL with SETs inside. */
3520
3521 int
3522 store_data_bypass_p (rtx out_insn, rtx in_insn)
3523 {
3524 rtx out_set, in_set;
3525 rtx out_pat, in_pat;
3526 rtx out_exp, in_exp;
3527 int i, j;
3528
3529 in_set = single_set (in_insn);
3530 if (in_set)
3531 {
3532 if (!MEM_P (SET_DEST (in_set)))
3533 return false;
3534
3535 out_set = single_set (out_insn);
3536 if (out_set)
3537 {
3538 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3539 return false;
3540 }
3541 else
3542 {
3543 out_pat = PATTERN (out_insn);
3544
3545 if (GET_CODE (out_pat) != PARALLEL)
3546 return false;
3547
3548 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3549 {
3550 out_exp = XVECEXP (out_pat, 0, i);
3551
3552 if (GET_CODE (out_exp) == CLOBBER)
3553 continue;
3554
3555 gcc_assert (GET_CODE (out_exp) == SET);
3556
3557 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3558 return false;
3559 }
3560 }
3561 }
3562 else
3563 {
3564 in_pat = PATTERN (in_insn);
3565 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3566
3567 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3568 {
3569 in_exp = XVECEXP (in_pat, 0, i);
3570
3571 if (GET_CODE (in_exp) == CLOBBER)
3572 continue;
3573
3574 gcc_assert (GET_CODE (in_exp) == SET);
3575
3576 if (!MEM_P (SET_DEST (in_exp)))
3577 return false;
3578
3579 out_set = single_set (out_insn);
3580 if (out_set)
3581 {
3582 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3583 return false;
3584 }
3585 else
3586 {
3587 out_pat = PATTERN (out_insn);
3588 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3589
3590 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3591 {
3592 out_exp = XVECEXP (out_pat, 0, j);
3593
3594 if (GET_CODE (out_exp) == CLOBBER)
3595 continue;
3596
3597 gcc_assert (GET_CODE (out_exp) == SET);
3598
3599 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3600 return false;
3601 }
3602 }
3603 }
3604 }
3605
3606 return true;
3607 }
3608
3609 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3610 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3611 or multiple set; IN_INSN should be single_set for truth, but for convenience
3612 of insn categorization may be any JUMP or CALL insn. */
3613
3614 int
3615 if_test_bypass_p (rtx out_insn, rtx in_insn)
3616 {
3617 rtx out_set, in_set;
3618
3619 in_set = single_set (in_insn);
3620 if (! in_set)
3621 {
3622 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3623 return false;
3624 }
3625
3626 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3627 return false;
3628 in_set = SET_SRC (in_set);
3629
3630 out_set = single_set (out_insn);
3631 if (out_set)
3632 {
3633 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3634 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3635 return false;
3636 }
3637 else
3638 {
3639 rtx out_pat;
3640 int i;
3641
3642 out_pat = PATTERN (out_insn);
3643 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3644
3645 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3646 {
3647 rtx exp = XVECEXP (out_pat, 0, i);
3648
3649 if (GET_CODE (exp) == CLOBBER)
3650 continue;
3651
3652 gcc_assert (GET_CODE (exp) == SET);
3653
3654 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3655 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3656 return false;
3657 }
3658 }
3659
3660 return true;
3661 }
3662 \f
3663 static bool
3664 gate_handle_peephole2 (void)
3665 {
3666 return (optimize > 0 && flag_peephole2);
3667 }
3668
3669 static unsigned int
3670 rest_of_handle_peephole2 (void)
3671 {
3672 #ifdef HAVE_peephole2
3673 peephole2_optimize ();
3674 #endif
3675 return 0;
3676 }
3677
3678 struct rtl_opt_pass pass_peephole2 =
3679 {
3680 {
3681 RTL_PASS,
3682 "peephole2", /* name */
3683 gate_handle_peephole2, /* gate */
3684 rest_of_handle_peephole2, /* execute */
3685 NULL, /* sub */
3686 NULL, /* next */
3687 0, /* static_pass_number */
3688 TV_PEEPHOLE2, /* tv_id */
3689 0, /* properties_required */
3690 0, /* properties_provided */
3691 0, /* properties_destroyed */
3692 0, /* todo_flags_start */
3693 TODO_df_finish | TODO_verify_rtl_sharing |
3694 TODO_dump_func /* todo_flags_finish */
3695 }
3696 };
3697
3698 static unsigned int
3699 rest_of_handle_split_all_insns (void)
3700 {
3701 split_all_insns ();
3702 return 0;
3703 }
3704
3705 struct rtl_opt_pass pass_split_all_insns =
3706 {
3707 {
3708 RTL_PASS,
3709 "split1", /* name */
3710 NULL, /* gate */
3711 rest_of_handle_split_all_insns, /* execute */
3712 NULL, /* sub */
3713 NULL, /* next */
3714 0, /* static_pass_number */
3715 TV_NONE, /* tv_id */
3716 0, /* properties_required */
3717 0, /* properties_provided */
3718 0, /* properties_destroyed */
3719 0, /* todo_flags_start */
3720 TODO_dump_func /* todo_flags_finish */
3721 }
3722 };
3723
3724 static unsigned int
3725 rest_of_handle_split_after_reload (void)
3726 {
3727 /* If optimizing, then go ahead and split insns now. */
3728 #ifndef STACK_REGS
3729 if (optimize > 0)
3730 #endif
3731 split_all_insns ();
3732 return 0;
3733 }
3734
3735 struct rtl_opt_pass pass_split_after_reload =
3736 {
3737 {
3738 RTL_PASS,
3739 "split2", /* name */
3740 NULL, /* gate */
3741 rest_of_handle_split_after_reload, /* execute */
3742 NULL, /* sub */
3743 NULL, /* next */
3744 0, /* static_pass_number */
3745 TV_NONE, /* tv_id */
3746 0, /* properties_required */
3747 0, /* properties_provided */
3748 0, /* properties_destroyed */
3749 0, /* todo_flags_start */
3750 TODO_dump_func /* todo_flags_finish */
3751 }
3752 };
3753
3754 static bool
3755 gate_handle_split_before_regstack (void)
3756 {
3757 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3758 /* If flow2 creates new instructions which need splitting
3759 and scheduling after reload is not done, they might not be
3760 split until final which doesn't allow splitting
3761 if HAVE_ATTR_length. */
3762 # ifdef INSN_SCHEDULING
3763 return (optimize && !flag_schedule_insns_after_reload);
3764 # else
3765 return (optimize);
3766 # endif
3767 #else
3768 return 0;
3769 #endif
3770 }
3771
3772 static unsigned int
3773 rest_of_handle_split_before_regstack (void)
3774 {
3775 split_all_insns ();
3776 return 0;
3777 }
3778
3779 struct rtl_opt_pass pass_split_before_regstack =
3780 {
3781 {
3782 RTL_PASS,
3783 "split3", /* name */
3784 gate_handle_split_before_regstack, /* gate */
3785 rest_of_handle_split_before_regstack, /* execute */
3786 NULL, /* sub */
3787 NULL, /* next */
3788 0, /* static_pass_number */
3789 TV_NONE, /* tv_id */
3790 0, /* properties_required */
3791 0, /* properties_provided */
3792 0, /* properties_destroyed */
3793 0, /* todo_flags_start */
3794 TODO_dump_func /* todo_flags_finish */
3795 }
3796 };
3797
3798 static bool
3799 gate_handle_split_before_sched2 (void)
3800 {
3801 #ifdef INSN_SCHEDULING
3802 return optimize > 0 && flag_schedule_insns_after_reload;
3803 #else
3804 return 0;
3805 #endif
3806 }
3807
3808 static unsigned int
3809 rest_of_handle_split_before_sched2 (void)
3810 {
3811 #ifdef INSN_SCHEDULING
3812 split_all_insns ();
3813 #endif
3814 return 0;
3815 }
3816
3817 struct rtl_opt_pass pass_split_before_sched2 =
3818 {
3819 {
3820 RTL_PASS,
3821 "split4", /* name */
3822 gate_handle_split_before_sched2, /* gate */
3823 rest_of_handle_split_before_sched2, /* execute */
3824 NULL, /* sub */
3825 NULL, /* next */
3826 0, /* static_pass_number */
3827 TV_NONE, /* tv_id */
3828 0, /* properties_required */
3829 0, /* properties_provided */
3830 0, /* properties_destroyed */
3831 0, /* todo_flags_start */
3832 TODO_verify_flow |
3833 TODO_dump_func /* todo_flags_finish */
3834 }
3835 };
3836
3837 /* The placement of the splitting that we do for shorten_branches
3838 depends on whether regstack is used by the target or not. */
3839 static bool
3840 gate_do_final_split (void)
3841 {
3842 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3843 return 1;
3844 #else
3845 return 0;
3846 #endif
3847 }
3848
3849 struct rtl_opt_pass pass_split_for_shorten_branches =
3850 {
3851 {
3852 RTL_PASS,
3853 "split5", /* name */
3854 gate_do_final_split, /* gate */
3855 split_all_insns_noflow, /* execute */
3856 NULL, /* sub */
3857 NULL, /* next */
3858 0, /* static_pass_number */
3859 TV_NONE, /* tv_id */
3860 0, /* properties_required */
3861 0, /* properties_provided */
3862 0, /* properties_destroyed */
3863 0, /* todo_flags_start */
3864 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
3865 }
3866 };